
PONTIFICAL CA THOLIC UNIVERSITY OF RIO GRANDE DO SUL

F ACUL TY OF INFORMA TICS

COMPUTER SCIENCE GRADUA TE PROGRAM

Hybrid Synchrony Virtual Networks
Rasha Hasan

Dissertation submitted to the PontificaI
Catholic University ofRio Grande do Sul
in partial fullfillment of the requirements for
the degree ofPh. D. in Computer Science.

Advisor: Dr. Fernando Luís Dotti

Porto Alegre - Brazil
January 2017

Ficha Catalográfica

H344h Hasan, Rasha

Hvbrid Svnchronv Virrual Networks ,i Rasha Hasan . - 2017.
~ ~ ~

154 f.
Tese (Doutorado) - Programa de Pós-Graduação em Ciência da

Computação, PUCRS.

Orientador: Prof. Df. Fernando Luís Dotti.

1. Distributed Svstems. 2. Svnchronv. 3. Virtual Networks. 4.
~ ~ ~

Embedding. I. Dotti, Fernando Luís. 11. Tíhllo.

Elaborada pelo Sistema de Geração Automâtica de Ficha Catalogrâfica da PUCRS
com os dados fornecidos pelo(a) autor(a)

FACIN_ -:. Pontifícia Universidade Católica do Rio Grande do Sul
FACULDADE DE INFORMÁTICA

.PUCRS PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

TERMO DE APRESENTAÇÃO DE TESE DE DOUTORADO

Tese intitulada "Hybrid Synchrony Virtual Networks" apresentada por
Rasha Hasan como parte dos requisitos para obtenção do grau de
Doutora em Ciência da Computação, aprovada em 16 de janeiro de
2017 pela Comissão Examinadora:

Prof. Dr. Fernando Luís Dotti
PPGCCjPUCRS
(Orientador)

Prof. Dr. Tiago Coelho Ferreto
PPGCCjPUCRS

Prof. Dr. Luciano Paschoal Gaspary
UFRGS

Prof. Dr. Osmar Marchi dos Santos
UFSM

Homologada em// , conforme Ata No pela
Comissão Coordenadora.

Prof. Dr. Luiz Gustavo Leão Fernandes
Coordenador.

PUCRS PROGRAMA DE
PÓS-GRADUAÇÃO EM
CIÊNCIA DA COMPUTAÇÃO

Campus Central
Av. Ipiranga, 6681 - P. 32 - sala 507 - CEP: 90619-900
Fone: (51) 3320-3611 - Fax (51) 3320-3621
E-mail: ppgcc@pucrs.br
www.pucrs.brjfacinjpos

-

I dedicate my work to Damascus

I left you to see the world ...

Then I discovered that, you are the world.

Rasha

Acknowledgment

I would like to thank my supervisor, Dr. Fernando Luís Dotti for the support and orientation

he offered me all through my research.

I thank PUCRS staff, lecturers and colleagues for their help, cooperation, and smiles.

My mother and father, thank you for the education and care you gave me, since my early

age till today. This PhD is yours. may Allah help me to match your expectations.

My beloved spiritual teacher, thank you for brightening my mind and heart. Your com

pany is the biggest grace that Allah granted me.

Fernando, my beloved husband, thank you for all the support you offered me all through

my PhD path.

My beloved daughters Aya and Nour. \Vhen I look at you I realize that you are my

biggest achievement. Alhamdu li Allah. I am proud of you.

My sister Natasha, without you, this PhD might have become impossible. May Allah

elevate your rank in heaven.

My sister Sacha, I missed sharing with you the ups and downs of my PhD path, just the

way we shared all life together.

My brother Shadi, I missed a beautiful phase of your life when I traveled to follow my

study. But I traveled carrying my great love to you.

My teachers Rajaa Kharsa, Kamal Jabr, Adib Manfoush, thank you for the orientation

you offered me at the important phases of my educational life.

The first and last thanking is to You Allah. You always give me more than I deserve.

Resumo

N
as últimas três décadas de pesquisa em Sistemas Distribuídos (SDs), um aspecto

central discutido é o de sincronia. Com um sistema assíncrono, não fazemos su

posições sobre velocidades de execução de processos e / ou atrasos de entrega de

mensagens; Com um sistema síncrono, fazemos suposições sobre esses parâmetros [Sch93b].

Sincronismo em SDs impacta diretamente a complexidade e funcionalidade de algoritmos

tolerantes a falhas. Uma infra-estrutura síncrona contribui para o desenvolvimento de sis

temas mais simples e fiáveis, mas tal infra-estrutura é muito cara e às vezes nem sequer

viável de implementar. Uma infra-estrutura totalmente assíncrona é mais realista, mas al

guns problemas foram mostrados como insolúveis em tal ambiente através do resultado de

impossibilidade por Fischer, Lynch e Paterson [FLP85]. As limitaçes tanto em ambientes

totalmente síncronos como totalmente assíncronos levaram ao desenvolvimento de sistemas

distribuídos como síncronia parcial [CF99, Ver06].

Em um estudo de funcionalidade de sistemas distribuídos síncronos parciais e de pro

priedades de Redes Virtuais (RVs), descobrimos que existem vários desafios para este tipo de

sistemas que podem ser resolvidos com RVs devido às propriedades que a virtualização traz.

Por exemplo a) partilha de recursos fornecida por RVs permite diminuir o custo ao partilhar

a parte síncrona da infra-estrutura física, b) isolamento fornecido por a natureza da RVs, isso

pode beneficiar os SDs coexistentes na mesma infra-estrutura física que exigem certo nível

de isolamento,c) resiliência garantido através do processo de alocação de recursos de Redes

Virtuais, isso permite alocar recursos de reposição ao lado dos primários para redes virtuais

que exigem garantias de disponibilidade, por exemplo, SDs tolerantes a falhas. Em nosso

trabalho, argumentamos que as RVs e um adequado processo de alocação de recursos das

RVs oferecem um ambiente adequado para executar aplicativos distribuídos com sincronia

parcial. Isto levou à abstração de um novo tipo de RVs: As Redes Virtuais com sincronia

híbrida (RVSHs).

Nesta tese, apresentamos a idéia geral das Redes Virtuais com sincronia híbrida motivado

pelos SDs com síncronia híbrida, e dividimos nosso trabalho em duas partes: a) Espaço

RVSHs propostos pelo SDs com sincronia híbrida em espaço, e b) Tempo-RVSHs propostos

RESUMO

pelo SDs com sincronia híbrida em tempo. No SDs com síncronia híbrida em espaço, a infra

estrutura é composta de subconjuntos de componentes síncronos e assíncronos, e cada um

desses subconjuntos mantém seu status de sincronia através do tempo (i.e., os subconjuntos

síncronos permanecem síncronos e os assíncronos permanecem assíncronos). No SDs com

síncronia híbrida em tempo, a infra-estrutura é composta de subconjuntos de nós e laços que

podem alternar seu status de sincronia através do tempo (i.e., os componentes se comportam

de forma síncrona durante os intervalos de tempo e de forma assíncrona durante outros

intervalos de tempo).

As principais contribuições desta tese são: a) caracterizam os RVSHs em seus dois tipos

Espaço-RVSHs e Tempo-RVSHs para refletir tanto a natureza de sincronia em espaço e em

tempo; b) propor uma estrutura adequada para o processo de alocação de recursos para

ambos Espaço-RVSHs e Tempo-RVSHs, e c) fornecer uma avaliação dos modelos propostos

para RVSHs.

Palavras-chave: Sistemas distribuídos, Sincronia, Redes virtuais, alocação de recursos.

Abstract

I
n the last three decades of research in Distributed Systems (DSs), one core aspect dis

cussed is the one of synchrony. \Vith an asynchronous system, we make no assumptions

about process execution speeds andj or message delivery delays; with a synchronous

system, we do make assumptions about these parameters [Sch93b]. Synchrony in DSs im

pacts directly the complexity and functionality of fault-tolerant algorithms. Although a syn

chronous infrastructure contributes towards the development of simpler and reliable systems,

yet such an infrastructure is too expensive and sometimes even not feasible to implemento

On the other hand, a fully asynchronous infrastructure is more realistic, but some problems

were shown to be unsolvable in such an environment through the impossibility result by

Fischer, Lynch and Paterson [FLP85]. The limitations in both fully synchronous or fully

asynchronous environments have led to the development of partial synchronous distributed

systems [CF99, Ver06].

In a study of partial synchronous distributed systems functionality, and of Virtual Net

works (VNs) properties, we found that there are several challenges for this kind of systems

that can be solved with VNs due to the properties that virtualization brings. For example a)

resources sharing provided by VNs allows decreasing the cost when sharing the synchronous

portion of the physical infrastructure, b) isolation provided by the VNs nature can benefit

the coexistent DSs on same physical infrastructure that demand certain leveI of isolation, c)

resilience guaranteed through the Virtual Networks Embedding (VNE) process that allows

allocating spare resources beside the primary ones for virtual networks that require avail

ability guarantees, for example fault tolerant DSs. In our work, we argue that VNs and

a suitable VN embedding process offer suitable environment for running distributed appli

cations with partial synchrony. This has led to the abstraction of new type of VNs: The

Hybrid Synchrony Virtual Networks (HSVNs).

In this thesis, we introduce the general idea of Hybrid Synchrony Virtual Networks

(HSVNs) motivated by the hybrid synchronous DSs, and we branch our work into two

branches: a) Space-HSVNs addressed to spatial hybrid synchronous DSs, and b) Time

HSVNs addressed to the time hybrid synchronous DSs. In spatial hybrid synchronous DSs,

ABSTRACT

the hybrid synchronous physical infrastructure is composed of subsets of synchronous and

asynchronous components, and each of these subsets maintains its synchrony status through

time (i.e., synchronous subsets remain synchronous and asynchronous ones remain asyn

chronous). In time hybrid synchronous DSs, the hybrid synchronous physical infrastructure

is composed of subsets of nodes and links that can alternate their synchrony status through

time (i.e., the components behave synchronously during time intervals, and asynchronously

during other time intervals).

The main contributions of this thesis are: a) characterize the HSVNs in its two types

Space-HSVNs and Time-HSVNs to reflect both the synchrony space-variant and time-variant

nature ofDSs; b) propose a suitable embedding framework for both Space-HSVNs and Time

HSVNs, and c) provide an evaluation of the embedding mo deIs addressed to the HSVNs.

Key words: Distributed Systems, Synchrony, Virtual Networks, Embedding.

List af Figures

2.1 Distributed system architecture

2.2 Application topology with failure detector P [HMDI3]

35

39

2.3 Consensus algorithm-first round with Pl coordinator 41

2.4 Failure detection algorithm in Cassandra: A cluster of three nodes, replication

factor of 2, supposing node C goes down. Figure taken from [Hewll] 43

2.5 \VAS High-Ievel architecture. Figure taken from [eall]

2.6 Chubby system structure. Figure taken from [Bur06]

3.1 VN Management and Business Roles [S\VP+09]

44

45

50

3.2 Virtual networks mapping 51

3.3 Example of a virtual network in a backbone-star topology, where the four

backbone nodes are connected into a complete graph [LT06] 54

3.4 Topology remapping problem [LZ\VI5]

3.5 Comparison of Secure Virtual Node Ratio [\V\VG+16]

3.6 Assisting nodes and search regions [GKA +16b] ...

3.7 Illustrative figure for the sliding window technique .

3.8 Examples of generated sI ices of size 5 [IRll]

4.1 Illustrates figure for Space-HSVNs embedding

5.1 Embedding cost - Confidence interval

5.2 Space-HSVNs with S-SN: the change of average value for embedding cost with

56

61

65

66

67

77

86

the change of VN s synchrony demands .. 87

5.3 Space-HSVNs with S-SN: the change of average value for embedding cost with

the change of VN s size

5.4 Embedding time - Confidence interval .

89

91

LIST OF FIGURES

5.5 Space-HSVNs with SSN: the change of average value for embedding time with

the change of VNs synchrony demands .. 93

5.6 Space-HSVNs with S-SN: the change of average value for embedding time

with the change of VNs size .

5.7 Group A - Embedding cost vs. embedding time

5.8 Group B - Embedding cost vs. embedding time

5.9 Embedding cost vs. embedding time for experiments B2, B3, and B4

94

95

96

97

5.10 Group C - Embedding cost vs. embedding time 97

5.11 U nused physical nodes - Confidence interval 99

5.12 Unused physicallinks - Confidence interval . 100

5.13 Group A - accumulative number of physical nodes vs. nodes load 102

5.14 Group A - accumulative number of physicallinks vs. links load. . 103

5.15 Group B - accumulative number of physical nodes vs. nodes load 104

5.16 Group B - accumulative number of physicallinks vs. links load. . 105

5.17 Group C - accumulative number of physical nodes vs. nodes load 106

5.18 Group C - accumulative number of physical nodes vs. nodes load 107

5.19 Percentage of synchronous nodes and links in SN for scenarios in set 1 for

S-HSVN and C-HSVN 109

5.20 CDF for nodes usage in experiment C3 111

5.21 CDF for links usage in experiment C3 . 111

5.22 Individual nodes load in experiment C3 . 112

5.23 Individual links load in experiment C3 . 113

5.24 Percentage of SN sync. resources: Comparing groups setl and set2 114

5.25 Frequency of synchronous nodes vs. nodes connectivity - scenarios in set 2 115

5.26 Average connectivity of synchronous nodes for scenarios in set 2 116

5.27 Topology divergence of synchronous resources [HMODI4] 116

6.1 Synchronous and asynchronous rounds for a virtual no de or link

6.2 SN synchronous frames and slots proposed in [ZQT+11]

6.3 Physical no de or link synchrony frame during T ..

6.4 Block diagram for Time-HSVNs embedding phases

6.5 Graph based example for Time-HSVNs embedding .

121

121

122

123

124

LIST OF FIGURES

6.6 An illustrative scheme for the HSVNs optimization cycles .

7.1 Used bandwidth

7.2 CDF for resource usage in experiment C2 .

7.3 Topology divergence of used physical resources

130

132

134

135

List af Tables

3.1 Taxonomy of works on virtual networks mapping

4.1 List of variables definition for Space-HSVNs embedding mo deI

5.1 Space-HSVNs with S-SN scenarios parameters

5.2 Space-HSVNs with S-SN: average of embedding cost .

5.3 Space-HSVNs with S-SN: average of embedding time

5.4 Space-HSVNs with C-SN scenarios parameters set (set 1)

5.5 Economy in SN synchrony resources between S-HSVN and C-HSVN

performed for scenarios set 1 . . .

5.6 Experiments parameters in set 2 .

6.1 List of variables definition for Space-HSVNs embedding mo deI

71

79

84

87

93

108

110

114

125

6.2 List of variables definition for Time-HSVNs micro mapping phase model 129

7.1 Experiments parameters . . . 132

7.2 Embedding time (in minutes) 134

7.3 Number of mapped virtuallinks with different load and synchrony demands 136

Abbreviations

AN Assisting no de

BRITE Boston university Representative Internet Topology gEnerator

BW Band \íVidth

CDF Cumulative Distributed Function

CPU Central Processing Unit

C-SN Configurable Substrate Network

DB Data Base

DiffServ Differentiated Services

DS Distributed System

DiffServ TE Differentiated Services aware Traffic Engineering

EDP Edge Disjoint Path problem

FLP Fischer, Lynch and Paterson impossibility

ABBREVIATIONS

GB Giga Byte

Gbps Giga bit per second

GHZ Giga Hertz

GST Global Stabilization Time

HSDS Hybrid Synchronous Distributed Systems

HSVN Hybrid Synchrony Virtual Network

IP Internet Protocol

InP Infrastructure Provider

Mbps Mega bit per second

MILP Mixed Integer Linear Program

MIP Mixed Integer Program

MPLS Multi Protocol Label Switching

MVN Multicast Virtual Network

NP Nondeterministic Polynomial

NRF N odes Ranking and Filtering

ABBREVIATIONS

OF Objective Function

ORP Opportunistic Redundancy Pooling

OS Operating System

P2P Peer-to-Peer

QoS Quality of Service

RAM Random Access Memory

SLA Service LeveI Agreement

SP Service Provider

Space-HSVN Spatial Hybrid Synchrony Virtual Network

SN Substrate Network

S-SN Settled Substrate Network

TE Traffic Engineering

Time-HSVN Timely Hybrid Synchrony Virtual Network

UFP Unsplittable Flow Problem

VInf Virtual Infrastructure

ABBREVIATIONS

VN Virtual Network

VNA Virtual Network Assignment

VNO Virtual Network Operator

VNP Virtual Network Provider

VoIP Voice over Internet Protocol

WAS \Vindows Azure Storage

ZIMPL Zuse Institute Mathematical Programming Language

Contents

1 General Introduction

2 Work motivation: Hybrid synchrony in distributed systems

2.1 Distributed systems

2.2 Synchrony in distributed systems

2.3 Hybrid synchrony in distributed systems

2.3.1 Hybrid Synchrony in space .

2.3.2 Hybrid Synchrony in time

2.4 Hybrid synchrony in practice .

2.4.1 Apache Cassandra

2.4.2 \Vindows Azure . .

2.4.3 Chubby lock service .

2.4.4 Observations

2.5 Hybrid synchronous DSs and virtualization .

3 Related Work: Network Virtualization

3.1 Network Virtualization ...

3.2 Virtual Networks properties

3.3 Resources allocation in Virtual Networks

3.4 Literature review on VNs Embedding

3.4.1 Topology requirements ...

3.4.2 B\V and CPU requirements

3.4.3 Security requirements ..

3.4.4 Resilience requirements .

3.4.5 Delay requirements . . .

30

35

35

36

37

37

39

41

42

43

45

46

46

49

49

50

51

53

53

56

59

60

65

CONTENTS

3.4.6 Miscellaneous requirements

3.4.7 Synchrony requirements

3.5 Review on the VNE difficulties

4 Space-HSVNs embedding

4.1 Space-HSVNs: definition

4.2 \Vork positioning in the Iiterature

4.3 The Substrate Network for space-HSVNs

4.4 Graph based exampIe for Space-HSVNs embedding

4.5 Space-HSVNs embedding mo deI on S-SN

4.5.1 VariabIes definition

4.5.2 Embedding mo deI .

4.6 Space-HSVNs embedding mo deI on C-SN .

4.6.1 VariabIes definition

4.6.2 Embedding mo deI .

5 Performance Evaluation for Space-HSVN

5.1 Space HSVNs over a settIed SN

5.1.1 \Vorkload and tools .

5.1.2 Results

5.1.2.1 Embedding cost .

5.1.2.2 Embedding time

5.1.2.3 Embedding cost vs. embedding time

5.1.2.4 Physical resources Ioad .

5.2 Space HSVNs over a configurable SN

5.2.1 \Vork Ioad and tools

5.2.2 Results........

5.2.2.1 Economy in the embedding cost .

5.2.2.2 Physical resources Ioad

5.2.2.3 PriviIege of synchronous nodes

5.2.2.4 Topological study.

6 Time-HSVNs embedding

69

69

71

74

74

74

75

76

77

77

78

81

81

82

83

83

83

85

86

91

95

98

106

107

109

109

110

114

115

118

CONTENTS

6.1 Time-HSVNs: definition

6.2 \Vork positioning in the Iiterature

6.3 Time-HSVNs characterization

6.4 SN design

6.5 Time-HSVNs Embedding .

6.5.1 The Macro Mapping Phase .

6.5.1.1 VariabIes definition .

6.5.1.2 The Macro mathematicaI model .

6.5.2 The Micro mapping phase

6.5.2.1 Revision on the Cutting Stock Problem (CSP) .

6.5.2.2 The Micro mathematicaI model

7 Performance Evaluation for Time-HSVN

7.1 \Vorkload and tools

7.2 Results.......

7.2.1 Embedding cost .

7.2.2 PhysicaI resources Ioad

7.2.3 Embedding time

7.2.4 Topological study

7.2.5 Micro mapping mo deI efficiency

8 Conclusion

8.1 The thesis contributions

8.2 Achieved results

8.2.1 Space-HSVNs over a settIed SN (S-SN)

8.2.2 Space-HSVNs over a configurable SN (C-SN) .

8.2.3 Time-HSVNs

8.3 \Vork appIication . .

8.4 \Vork generaIization .

8.5 \Vork Iimitations

8.6 Future work

Bibliography

118

119

120

120

122

124

124

125

127

127

128

131

131

132

132

133

134

135

135

137

138

139

139

140

141

142

143

143

144

145

30
CHAPTER

1 General Introduction

A distributed System (DS) consists of a collection of autonomous computers linked

by a compute r network and equipped with distributed system software that

enables computers to coordinate their activities and to share the resources of the

system hardware, software, and data [Sch93a]. Users of distributed systems should perceive a

single, integrated computing facility even though it may be implemented by many computers

in different locations. This is in contrast to a network, where the user is aware that there

are several machines whose locations, storage replications, load balancing, and functionality

are not transparent. Benefits of distributed systems include bridging geographic distances,

improving performance and availability, maintaining autonomy, reducing cost, and allowing

for interaction.

In the last three decades of research in Distributed Systems (DSs), one core aspect dis

cussed is the one of synchrony. \Vith an asynchronous system, we make no assumptions

about process execution speeds andj or message delivery delays; with a synchronous system,

we do make assumptions about these parameters [Sch93b]. In particular, in a synchronous

system, the relative speeds of processes, as well the delays associated with communication

channels are assumed to be bounded. The research on DSs has longly touched problems that

base on the synchrony property of the system environment, for example the consensus prob

lem [DLS88] where synchrony ensures progress of several distributed algorithms; another

example is failure detection [GarOl].

Synchrony in DSs impacts directly the complexity and functionality of fault-tolerant

algorithms. Although a synchronous infrastructure contributes towards the development

of simpler and reliable systems; yet such an infrastructure is too expensive and sometimes

even not feasible to implemento On the other hand; a fully asynchronous infrastructure is

more realistic, but fundamental agreement problems showed to be unsolvable in such an

environment, such as the impossibility result by Fischer, Lynch and Paterson [FLP85]. The

limitations in both fully synchronous or fully asynchronous systems have led researchers to

the development of partial synchronous distributed systems, which we call in this thesis, as

well, by Hybrid Synchronous Distributed Systems.

CHAPTER 1. GENERAL INTRODUCTION 31

There are some applications that may benefit from the hybrid synchronous assumptions,

for example, Apache Cassandra, \Vindows Azure, and Chubby lock service. These applica

tions do not force the use of hybrid synchronous environment, although they need, rather

they run on asynchronous environments supported with algorithms andjor protocols (e.g.,

PAXOS protocol) to allow progress but without guarantees. If these application run on top

of hybrid synchronous infrastructure then the progress will be guaranteed by the provisioning

of elements designed to respect time upper bounds. The problem is that fully synchronous, or

partially synchronous, environment is expensive to build, complex to configure, and difficult

to controI. This makes the infrastructure providers escape to asynchronous environments

strengthened by algorithms andj or protocols with time-out specifications.

Virtual Networks (VNs) have attracted considerable attention in the last years, both

as an experimental environment to evaluate new protocols, as well as a technology to be

integrated in the current network architectures [CB09]. As can be seen in the literature, the

diversity of applications pose different requirements on their supporting VNs, e.g., topology,

security, and resilience requirements. In this context, the process of resources allocation

(called as well embedding or mapping) is a key aspect that (i) defines how resources of a

physical network (also called Substrate Network - SN) are used to support VNs, and (ii)

assumes several variants according to the kinds of applications and respective VNs demands.

In a study of partial synchronous distributed systems functionality, and of Virtual Net

works (VNs) properties , we found that there are several challenges for this kind of systems

that can be solved with VNs due to the properties that virtualization brings, for example:

• Network virtualization is defined by the decoupling of the roles of the traditional In

ternet Service Providers (ISPs) into two independent entities [TT05]: infrastructure

providers, who manage the physical infrastructure, and service providers, who create

virtual networks by aggregating resources from multiple infrastructure providers and

offer end-to-end services. The design of synchronous components in DSs requires fun

damental handling mechanisms [RSK+OO, RSK+01]. Considering a new architecture of

the DSs based on VNs provides a new business mo deI that allows sharing tasks: (i) the

synchronous resources design is assigned to the SN provider, and (ii) the resources allo

cation process is assigned to the VN provider. Delegating the design of the synchronous

resources to the SN provider and the embedding process to the VN provider may result

in dividing the complexity into more tractable parts.

• Heterogeneity in the context of network virtualization comes mainly from two fronts

[CBlO]: first, heterogeneity of the underlying networking technologies (e.g., optical,

wireless, and senso r); second, each end-to-end VN, created on top of that heterogeneous

combination of underlying networks, can also be heterogeneous. Considering a new

architecture of DSs based on VNs exhibits the system heterogeneity in the hybrid kind

CHAPTER 1. GENERAL INTRODUCTION 32

of physical resources required to be synchronous and asynchronous, which allows using

the VNs framework to manage hybrid environment .

• The building cost of synchronous resources in DSs is considerably high when compared to

the asynchronous resources. VNs allow sharing the synchronous portion of the physical

infrastructure between several applications, which will result in reducing the overall

cost .

• The VNs Embedding process (VNE) allows allocating resources according to a pattern

that guarantees resilience. In fault-tolerant DSs, system availability is a requirement.

In other words, the occurrence of faults should be masked allowing the continuity of

the system functioning. This can be tackled easily by adopting the VNs embedding

framework, which allows allocating spare resources beside the primary ones for virtual

networks that require availability guarantees.

In our work, we argue that VNs and a suitable VN embedding process offer suitable

environment for running distributed applications with partial synchrony. This has led to the

abstraction of new type of virtual networks that we name The Hybrid Synchrony Virtual

Networks (HSVNs). They are virtual networks that have subsets of nodes and links that

obey time bounds for processing and communication. Although HSVNs can run on a fully

synchronous SN, this decision would result in an excess of an unneeded cost, since even

asynchronous virtual nodes and links will be mapped on synchronous physical ones. \\Te

argue that a hybrid synchronous SN, combined with a suitable embedding process, is capable

to answer the synchrony requirements in an economic manner. Furthermore, revising the

literature on the topic of VNs embedding, we have not found a mapping solution aware of the

synchrony parameter so it can be adopted for the HSVN resources allocation, this motivated

us to develop a mathematical mo deI for the HSVNs embedding processo

Thesis contributions

The main contributions of this thesis are:

1. Provide a state of the art for research on VNs embedding, classifying the works based

on applications requirements.

2. Introduce the general ide a of HSVNs motivated by the hybrid synchronous DSs. \\Te

branch our work into two paths:

• Space-HSVNs: addressed for hybrid synchronous DSs in space, where the applica

tion synchronous and asynchronous components maintain their synchrony status

during the system execution. \\Tith Space-HSVNs, we consider two types of Sub

strate Network (SN): (a) Settled Substrate network (S-SN), where physical nodes

CHAPTER 1. GENERAL INTRODUCTION 33

and links are designed to behave synchronously or asynchronously independently

of the VNs synchrony demands, and (b) Configurable Substrate Network (C-SN),

where the physical nodes and links are configured to behave synchronously or asyn

chronously dependently on the VNs synchrony demands .

• Time-HSVNs: addressed for hybrid synchronous DSs in time, where the appli

cation components eventually alternate their synchrony status during the system

execution.

3. Develop suitable embedding mo deIs for: a) Space-HSVNs over S-SN, b) Space-HSVNs

over C-SN, and c Time-HSVNs.

4. Evaluate the performance of the proposed embedding mo deIs through simulating differ

ent scenarios.

\\Te note down that the proposed embedding framework for Space-HSVNs is able to

answer Time-HSVNs. But this would result in an excess of cost. Considering the synchrony

time variant nature in Time-HSVNs would result in further sparing of the use of physical

synchronous resources.

Thesis organization

In Chapter 2, we start by building a background about some concepts with hybrid syn

chronous distributed systems, and at the end on Chapter 2, we point some limitations in

hybrid synchronous DSs, and we propose Virtual Networks (VNs) as a possible solution due

to properties guaranteed by the virtualization [CBIO].

In Chapter 3, we provide a background about Virtual Networks (VNs), definition, prop

erties, and we revise the literature on the topic of VN resources allocation, which is named as

mapping or embedding problem in the literature as well. \\Te classify the works on VNs em

bedding according to applications' constraints (e.g., topology, security, and resilience), and

we note the absence of an embedding solution in the literature that considers the synchrony

property in applications, which we need for our work. This gap led us to the development

of an embedding framework that handles applications with hybrid synchrony constraints.

Merging DSs with VNs has resulted in a new architecture for DSs with hybrid synchrony

based on VNs, the new architecture we name: the Hybrid Synchrony Virtual Networks ab

breviated to HSVNs. \\Tith the two types of hybrid synchrony (i.e., in Space and in Time),

we branch our work into two branches detailed in Chapter 4 and Chapter 6.

In Chapter 4 we propose the Hybrid Synchronous Virtual Networks in Space, we name

them the Space-HSVNs, we propose a suitable embedding mo deI for two types of Substrate

Network (SN): i) Settled SN and ii) configurable SN.

In Chapter 5 we evaluate the performance of the proposed embedding model of Space

HSVNs basically regarding the embedding cost, optimization time, and resources load. More-

CHAPTER 1. GENERAL INTRODUCTION 34

over, we provide a study over the topology of the subnetworks composed of the used physical

resources on the SN.

In Chapter 6 we propose the Hybrid Synchronous Virtual Networks in Time, we name

them the Time-HSVNs, as well, we propose a suitable embedding mo deI for the Time-HSVNs

and in Chapter 7 we evaluate it basically for the same formerly mentioned metrics.

In Chapter 8 we conclude the work, and we highlight the work applications, generaliza

tion, limitations, and future steps.

35
CHAPTER

2 Work motivation: Hybrid

synchrony in distributed

systems

T his chapter provides a background about dist. ributed. systems, highlighting mainly

one of its important characteristics, the synchrony, and summarizes the moti

vation and the approaches of hybrid synchrony distributed systems from the

literature.

2.1 Distributed systems

A distributed system consists of a collection of autonomous computers, connected through a

network and distribution middleware, which enables computers to coordinate their activities

and to share the resources of the system, so that users perceive the system as a single,

integrated computing facility [Sch93a]. Figure 2.1 depicts simple diagram for distributed

system architecture.

MachineA MachineB MachineC

Distributed application

Middlewareservice

[LacaiOS 1 [LacaiOS 1 [LocalOS 1

Network

Figure 2.1 Distributed system architecture

Over the years, many interesting solutions based on distributed systems were proposed

and a variety of applications emerged. For instance, by using of replication techniques data

and services become accessible even in occurrence of failures. Overall performance and scala

bility can be increased through load balancing among replicas. Security and safety issues can

also be handled by fault tolerant solutions using distributed processes. In short, distributed

systems offer higher abstraction leveI to system developers and also might increase system

availability, performance and security.

CHAPTER 2. \íVORK MOTIVATION: HYBRID SYNCHRONY IN DISTRIBUTED
SYSTEMS 36

However, the development of distributed systems is not an easy task. Heterogeneity of

system components, unpredictable environments and the concurrency inherent of this kind

of systems are major challenges that must be addressed by distributed system developers.

2.2 Synchrony in distributed systems

The design of DSs is strongly dependent on the assumptions about the environment where

they execute. For instance, different assumptions about process execution speeds and mes

sage delivery delays would require specific design decisions. In this sense, an important

aspect to consider when developing a distributed system is the synchrony leveI offered by

the underlying infrastructure. In an asynchronous system, no assumption about process ex

ecution speed andj or message delivery delays is made. Conversely, in a synchronous system,

relative processing speed or the message delays are bounded [Sch93a].

The synchrony leveI impacts on the reliability and difficulty to build the system. Assum

ing that, underlying infrastructures behaving asynchronously showed to be realistic to a wide

range of applications. Furthermore, it is the weakest model in terms of synchrony. That

means an algorithm that works in an asynchronous model also works in other mo deIs with

stronger synchrony assumptions. The opposite is not valid, i. e. an algorithm that works

in a synchronous mo deI is prone to incorrect behavior if timing constraints are violated.

Although asynchronous mo deIs are very attractive, with them it is impossible to distinguish

a crashed process from an arbitrarily slow process, in which some messages delivery are de

layed [CT96]. As a consequence, many important problems of fault-tolerant computing are

not solvable under the asynchronous assumption. For example, the FLP impossibility result

by Fischer, Lynch and Paterson shows that consensus cannot be solved deterministically in

asynchronous systems where at least one process may crash [FLP85].

By asserting that a system is synchronous, system developers can rely on the timely be

havior of the components. This, in turn, enables one to employ simpler algorithms than those

required to solve the same problem in an asynchronous system [Sch93a]. For instance, pro

cesses can perfectly distinguish faulty from slow processes. However, building synchronous

systems requires infrastructures composed exclusively by timely components, which could be

very expensive or even infeasible. Moreover, synchronous systems demand a priori knowledge

on time bounds, which might not fit with dynamic systems.

The drawback of each of the two extremes (i.e., the synchronous systems and the syn

chronous systems) led to hybridize them both. This gave birth to new class of systems that

is known in the literature as partial synchrony systems [CF99, Ver06].

\íVe assume the existence of certain mechanisms that guarantee building physical network

elements (nodes and links) that behave synchronously. These mechanisms can be related to

CHAPTER 2. \íVORK MOTIVATION: HYBRID SYNCHRONY IN DISTRIBUTED
SYSTEMS 37

the type of physical materiaIs used, or to the procedures followed for configuring them, such

as admission control and Quality of Service policies. The exact mechanisms for building

synchronous resources is out of the scope of our work, but we assume their existence. \íVe

refer the reader to [KR13, GB95, BFY+OO, BBC+98] to learn more details about possible

policies for building synchronous links, and [LiuOO, Her04, LSS87] for configuring nodes with

real-time tasks.

2.3 Hybrid synchrony in distributed systems

Hybrid mo deIs assume intermediate leveIs of synchrony, stronger than asynchronous and

weaker than synchronous. Such systems are also called as partial synchronous. In this

thesis, we will use the terms hybrid synchrony and partial synchrony to refer to the same

concept. Hybrid synchrony was proposed as a solution for some drawbacks of the homo

geneous synchrony mo deIs (i.e., fully synchronous or fully asynchronous). In the next two

subsections, we introduce the two types of hybrid synchrony as in the literature: (a) hybrid

synchrony in space, and (b) hybrid synchrony in time. \íVe will define the hybrid synchrony

in space and in time in the light of classical problems adopted from the literature.

2.3.1 Hybrid Synchrony in space

In [Ver06], Veríssimo presented the wormhole model, that exploits the space dimension to

provide hybrid synchrony. This means that timely guarantees of system components may be

different. For instance, one part of a system would behave synchronously, while other part

would be fully asynchronous.

Once behaviors caused by faults and arbitrary delays are expected in the conventional

infrastructures, hybrid mo deIs become a good option to improve the development of fault

tolerant applications. By enforcing small parts of the system to behave synchronously while

other parts are asynchronous, stronger properties provided by synchronous parts can be

used by the system as a whole. For this reason, hybrid systems overcome limitations of the

homogeneous systems.

Example - Building a perfect failure detector on spatial hybrid synchronous

environment

Failure detectors have attracted interest in the development of reliable DSs, since consen

sus and related problems (e.g., atomic broadcast [CT96]) can be solved with it. The failure

detection approach can also be adapted to solve other relevant problems, such as predicate

detection [GKOO] and election [MIMFOO].

Failure detectors are used to detect faulty processes in a group of processes, and they are

CHAPTER 2. \íVORK MOTIVATION: HYBRID SYNCHRONY IN DISTRIBUTED
SYSTEMS 38

defined in terms of abstract properties, namely accuracy and completeness. Strong accuracy

implies that no process is suspect before it crashes, while weak accuracy means that some

correct process is never suspected. Strong completeness implies that eventually every process

that crashes is permanently suspected by every correct process, while weak completeness

means eventually every process that crashes is permanently suspect by some correct processo

A failure detector that satisfies strong accuracy and strong completeness properties is a

perfect failure detector (P) [CT96]. It means it never makes mistakes (suspects erroneously)

and, eventually detects every crash.

A perfect failure detector P can be implemented on top of a fully synchronous environ

ments. The problem is that implementing P in fully synchronous environments depends on

the existence of an underlying infrastructure with timely guarantees for all its components,

which is too expensive and sometimes even infeasible. On the other hand, implementing a

perfect failure detector on top of a fully asynchronous infrastructure is impossible.

Macédo et aI. [dAMG09] propose an implementation of a failure detector P that runs on

hybrid synchronous environments and provides both strong accuracy and strong complete

ness [CT96] making it a perfect failure detector. They assume the underlying system has

synchronous processes, some channels behave synchronously and others asynchronously.

Basically, each module f di periodically asks to processes Pj if they are alive. U pon receiv

ing a message "are you alive", every correct process replies to the sender with a "I'm alive"

message. Upon receiving the replying message, fd i knows the process Pj is up. However, if a

timeout expires, it means that no answer from Pj was received in the last T time units. If the

channel connecting processes fdi to fd j is synchronous, then it is known that the process

Pj has failed. Process Pj is added to the faulty list in Pi, and a notification informing the

detection is sent to all other processes. Otherwise, if the channel is asynchronous, there is

no way to detect if the process Pj has failed or the reply message is delayed.

\íVe illustrate a failure detector P running in a hybrid synchronous environment in Figure

2.2. It shows a hypothetical topology for an application composed by six processes. All

processes are hosted in synchronous nodes, and they communicate with each other through

payload channels (pai). Further, a failure detector module fdi is attached to each process

Pio Connection between failure detectors modules in a synchronous partition is done by

synchronous channels (solid lines in the figure). Connection between fd modules in different

partitions can be asynchronous (dotted lines). In order to improve legibility, payload channels

pai were omitted in the figure. In this example, the payload channels should be represented

by a complete graph connecting every pair of processes.

Although not all failure detectors are in the same synchronous partition, the P implemen

tation allows every application process to benefit from a perfect detection. Even in cases in

which not all fdi modules belong to a synchronous partition, it is possible to take advantage

CHAPTER 2. WORK MOTIVATION: HYBRID SYNCHRONY IN DISTRIBUTED
SYSTEMS 39

P5

Figure 2.2 - Application topology with failure detector P [HMD13]

of the existing synchrony, provided that some subgraphs are synchronous. In such cases,

assumptions from weaker failure detectors (e.g., OP, OS lCT96j) would be ensured and still

useful for the applications.

Another interesting aspect of the hybrid synchronous system is that application workload

is totally independent of the failure detector modules. Application processes can communi

cate through asynchronous channels and still benefit from stronger properties provided by

the failure detector service.

2.3.2 Hybrid Synchrony in time

AIso namcd timed asynchronous model or, for short, thc timed modelo This modcl was first

proposed by Cristian and Fetzer [CF99], where the system alternates between synchronous

and asynchronous behavior. More specifically, according to [DLS88] partially synchronous

systems can alternate between synchronous and asynchronous behavior, being hybrid in

time. For each execution, there is a time after which the upper bound 6 is respected by the

system. This time is called Global Stabilization Time (GST). Since the upper bound cannot

hold forever, it is accepted that it holds just for a limited time .6..8 • In practical terms, .6..s

is the time needed for consensus to make progress or to be reached. We call these timely

hybrid synchronous systems.

Progress assumptions are similar to the global stabilization requirement of [DLS88] which

postulates that eventually a system must permanently stabilize, in the sense that there

must exist a time beyond which all messages and all non-crashed processes become timely.

However, progress assumption only require that infinitely often there exists a majority set

of processes that for a certain minimum amount of time are timely and can communicate

with each other in a timely manner [GarOl]. In other words, algorithms for this model make

progress when a system has just enough synchrony to make decisions.

Example - solving the consensus problem in timely hybrid synchronous envi

ronment

CHAPTER 2. \íVORK MOTIVATION: HYBRID SYNCHRONY IN DISTRIBUTED
SYSTEMS 40

One of the fundamental problems in distributed systems are agreement problems. They

occur when a set of processes must make a consistent decision. For example, if a database

is replicated, all the processes have to agree whether or not to abort certain transactions.

Many agreement problems have been condensed to one basic problem called consensus. In

general, only system mo deIs where it is possible to solve consensus are really useful for fault

tolerance [GarOl].

An algorithm that solves the consensus problem must guarantee three properties [GarOl]:

• Agreement: no two processes decide on two different values;

• Termination: every correct process eventually decides;

• Validity: the decided value must have been proposed by some processo

The consensus problem can be stated as follows [GdAMR07]: each process proposes a

value, and has to decide a value, unless it crashes (termination), such that there is a single

decided value (uniform agreement), and that value is a proposed value (validity).

The consensus problem is impossible to solve in asynchronous distributed systems prone

to process crashes [GdAMR07]. This impossibility has motivated researchers to develop

distributed computing mo deIs stronger than the asynchronous models, but weaker than the

synchronous models, where the consensus problem can be solved.

Dwork et aI. in [DLS88] proposed an algorithm for solving the consensus problem in

timely hybrid synchronous environment. The algorithm consists of number of rounds that

matches the number of the processes of which the system consists. During each round, one

process becomes coordinator. Each round consists of four phases.

Consider an asynchronous system with three processes PI, P2 and P3 and at most one

process may crash. At any time, each process has an estimate of the value it thinks will

become the decision value.

In the algorithm first round, process PI becomes the coordinator. Figure 2.3 illustrates

the algorithm first round with PI a coordinator. This round works through the following

four phases:

• Phase 1: every process sends its actual estimate to the coordinator;

• Phase 2: PI waits for the estimate of other processes, and then it chooses a new estimate

for itself from the set of received estimates, including its own original estimate. The

value with the highest frequency is the one chosen as the coordinator new estimate;

• Phase 3: every process, other than the coordinator, receives the new estimate and sends

back a positive acknowledgment to the coordinator;

CHAPTER 2. \íVORK MOTIVATION: HYBRID SYNCHRONY IN DISTRIBUTED
SYSTEMS 41

• Phase 4: if the coordinator receives at least one positive acknowledgment (since at

maximum one process can crash in this system), then it can decide on the current

estimate and tell the other processes to do the same.

Pi (vi) :(vi, v2, v3)-> v i (v)
;>t

Pi (v2) (v)
i>t

Pi (v3)
(v)

<>t
Phasei Phase 2 Phase3 Phase4

Figure 2.3 Consensus algorithm-first round with PI coordinator

The timely hybrid synchrony helps in guaranteeing the progress of the algorithm. For

example, we notice that in phase 3, each process waits for the new estimate from the coordi

nator. If the coordinator crashed, then all the processes will wait infinitely. The asynchrony

in this phase needs to be tackled by using some form of timeout to bound the waiting time.

If a process times out, it sends a negative acknowledgment to the coordinator and switches

to the next round of the algorithm when a new process becomes a coordinator. Consider

that the coordinator had not crashed, then it will receive no positive acknowledgment in

phase 4, but instead receives one or two negative ones, in this case, it also switches to the

next round. This means the algorithm keeps safety even if progress is not assured. To assure

progress, this algorithm has to consider the assumption of partial synchrony. In this spe

cific case, it is enough that the subnetwork that consists of the three processes Pl, P2, P3

and the two links (Pl,P2) and (Pl,P3) eventually turns to become synchronous. This will

make the system behave within acceptable delays for enough time to make decision. This

will guarantee the progress of the algorithm. Since the aforementioned subnetwork starts as

asynchronous, then eventually turns to be synchronous, then back to asynchrony; then we

are speaking about a system with hybrid synchrony in time.

2.4 Hybrid synchrony in practice

The research on DSs has longly touched problems that base on the hybrid synchrony prop

erty of the system environment, for example (as previously detailed) the consensus problem

[DLS88] where a minimum leveI of synchrony ensures the progress of several distributed

algorithms; another example is the perfect failure detector [dAMG09] built on a hybrid syn

chrony environment providing strong guarantees for accuracy and completeness [CT96] (i.e.,

strong accuracy does not assume processes will be erroneously suspected to be crashed; and

CHAPTER 2. \íVORK MOTIVATION: HYBRID SYNCHRONY IN DISTRIBUTED
SYSTEMS 42

strong completeness assumes that at some time every failed process will be detected by every

correct processes).

In fact, many applications benefit from consensus and failure detection as building blocks

in the distributed algorithms. Bellow we mention some examples of such applications.

2.4.1 Apache Cassandra

Apache Cassandra is a massively scalable open source NoSQL database [Hewll]. This ap

plication was addressed for managing large amounts of data across multiple data centers and

the cloud. Delivering continuous availability, scalability, and operational simplicity with fast

response times.

Data distribution and replication consensus- Apache Cassandra creates replicas of

the data base (DB) stored by the client on different clusters ofthe data center. Any change on

one replica of the DB should be transparent to the other replicas and eventually considered by

all the replicas to have continuous availability. This agreement between the replicas is realized

though consensus protocol PAXOS [LamOl] which is distinguished as a building block in the

Cassandra's Lightweight transactions algorithms. Paxos consensus protocol allows Cassandra

to support atomic, isolated, and durable transactions with eventual/tunable consistency that

lets the use r decide how strong or eventual they want each transaction's consistency to be.

Failure detection and recovery- Apache Cassandra considers a tunable failure de

tection method for locally determining from gossip state and history if another no de in the

system is up or down. Cassandra uses this information to avoid routing client requests to

unreachable nodes whenever possible.

Node failures can result from various causes such as hardware failures and network out

ages. Nodes outage does not result in an automatically permanent removal of the no de from

the architecture beca use a no de might have a possible recovery. Other nodes periodically try

to re-establish contact with failed nodes to see if they are back up. To permanently change

a node's membership in a cluster, administrators must explicitly add or remove nodes from

a Cassandra cluster. \íVhen a no de comes back online after an outage, it may have missed

writes for the replica data it maintains. Once the failure detector marks a no de as down,

missed writes are stored by other replicas for a period of time (configurable upper bound)

providing Hinted Handoff is enabled. If a no de is down for longer than this upper bound,

hints are no longer saved.

During a write operation, when Hinted Handoff is enabled and consistency can be met,

the coordinator stores a hint about dead replicas in the local system.hints table. A hint

indicates that a write needs to be replayed to one or more unavailable nodes. By default,

hints are saved for three hours (by default, and can be configured) after a replica fails because

CHAPTER 2. \íVORK MOTIVATION: HYBRID SYNCHRONY IN DISTRIBUTED
SYSTEMS 43

if the replica is down longer than that, it is likely permanently dead. After a no de discovers

from gossip that a no de for which it holds hints has recovered, the no de sends the data row

corresponding to each hint to the target. Additionally, the no de checks every ten minutes

(configurable period) for any hints for writes that timed out during an outage too brief for

the failure detector to notice through gossip. For example, in a cluster of three nodes, Figure

2.4, A (the coordinator), B, and C, each row is stored on two nodes in a key space having a

replication factor of 2. Suppose no de C goes down. The client writes row K to no de A. The

coordinator, replicates row K to no de B, and writes the hint for downed no de C to node A.

\íVhen no de C comes back up, no de A reacts to the hint by forwarding the data to no de C.

coord i nator

"Node C is down.
Write a hint in
your table"'

Client - - - - - - - - .. A - - - i Wrile row K Cj)
I Replicale row K

system.hints lable I

G:}-----.!

~
Figure 2.4 Failure detection algorithm in Cassandra: A cluster of three nodes,

replication factor of 2, supposing node C goes down. Figure taken from [Hewll]

2.4.2 Windows Azure

\íVindows Azure Storage (\íVAS) is a cloud storage system that provides customers the ability

to store seemingly limitless amounts of data for any duration of time [eall]. Differently from

Cassandra; in \íVAS data is stored durably using both local and geographic replication to

facilitate disaster recovery. \íVAS is used inside Microsoft for applications such as social

networking search, serving video, music and game content, managing medicaI records, and

more. In addition, there are thousands of customers outside Microsoft using \íVAS, and

anyone can sign up over the Internet to use the system.

Strong consistency- Many customers want strong consistency [H\íV90] especially en

terprise customers moving their line of business applications to the cloud. For this, \íVAS

provides three properties that are claimed to be difficult to achieve at the same time [BreOO]:

strong consistency, high availability, and partition tolerance.

The \íVAS production system consists of Storage Stamps, where a storage stamp is a

cluster of N racks of storage nodes, and each rack is built out as a separate fault domain

with redundant networking and power.

\íVAS has two replication engines, see Figure 2.5:

CHAPTER 2. \íVORK MOTIVATION: HYBRID SYNCHRONY IN DISTRIBUTED
SYSTEMS 44

1. Intra-Stamp Replication: This system provides synchronous replication and is focused

on making sure all the data written into a stamp is kept durable within that stamp. It

keeps enough replicas of the data across different nodes in different fault domains to keep

data durable within the stamp in the face of disk, node, and rack failures. Intra-stamp

replication is done on the criticaI path of the customer's write requests.

2. Inter-Stamp Replication: This system provides asynchronous replication and is focused

on replicating data across stamps. Inter-stamp replication is done in the background

and is off the criticaI path of the customer's request. This replication is at the object

leveI, where either the whole object is replicated or recent delta changes are replicated

for a given account. Inter-stamp replication is used for (a) keeping a copy of an account's

data in two locations for disaster recovery and (b) migrating an account's data between

stamps.

Inter-Stamp Replication

Storage Stamp Storage Stamp

Figure 2.5 WAS High-level architecture. Figure taken from [eall]

Disaster Recovery- \íVAS stores customer data across multiple data centers hundreds

of miles apart from each other. This redundancy provides essential data recovery protection

against disasters such as earthquakes, wild fires, tornadoes, nuclear reactor meltdown, etc.

Intra-stamp replication provides durability against hardware failures, which occur frequently

in large scale systems, whereas inter-stamp replication provides geo-redundancy against geo

disasters, which are rare. It is crucial to provide intra-stamp replication with low latency,

since that is on the criticaI path of use r requests; whereas the focus of inter-stamp replication

is optimal use of network bandwidth between stamps while achieving an acceptable leveI of

replication delay.

CHAPTER 2. \íVORK MOTIVATION: HYBRID SYNCHRONY IN DISTRIBUTED
SYSTEMS 45

2.4.3 Chubby lock service

The purpose of the lock service is to allow its clients to synchronize their activities and

to agree on basic information about their environment. Chubby lock service [Bur06] in

tends to provide coarse-grained locking as well as reliable (though low-volume) storage for a

loosely-coupled distributed system, and in particular to deal with the problem of electing a

leader [MMRT06] from among a set of otherwise equivalent servers. Primary goals include

reliability, availability to a moderately large set of clients; whereas throughput and storage

capacity were considered secondary. The primary goals attributes are easier to achieve when

performance is less important. Because Chubby's database is small, it is possible to store

many copies of it on-line (typically five replicas and a few backups), Figure 2.6. Full back

ups are taken multiple times per day, and via checksums of the database state, replicas are

compared with one another every few hours. The weakening of the normal file system per

formance and storage requirements allows to serve tens of thousands of clients from a single

Chubby master. By providing a central point where many clients can share information and

co-ordinate activities, a class of problems faced by system developers was solved.

Chubby has become Google's primary internaI name service; it is a common rendezvous

mechanism for systems such as MapReduce [DG08]; the storage systems GFS and Bigtable

use Chubby to elect a primary from redundant replicas.

Client
application

Client
application

: chubby
: library

: chubby
: library

Client processes

5 servers of a Chubby cell

master

Figure 2.6 Chubby system structure. Figure taken from [Bur06]

Chubby Asynchronous Consensus - \íVhich describes the behavior of the vast major

ity of real networks, such as Ethernet or the Internet, that allow packets to be lost, delayed,

and reordered. Asynchronous consensus is solved by the Paxos protocol [Lam01].

Failure detection - Chubby provides an event that allows clients to detect when a

master fail-over has taken place. Chubby's default lease time is 12s and KeepAlives are

exchanged every 7s.

CHAPTER 2. \VORK MOTIVATION: HYBRID SYNCHRONY IN DISTRIBUTED
SYSTEMS 46

2.4.4 Observations

Looking back at the aforementioned applications (i.e., Cassandra, \VA, Chubby) we see that

these applications do not force the use of hybrid synchronous environment, although they

need to assure such behavior. These applications run on asynchronous environments sup

ported with algorithms andj or protocols (e.g., PAXOS) to allow progress but not guaranteed.

If these application run on top of hybrid synchronous infrastructure then the progress will

be guaranteed by the provisioning of elements designed to respect time upper bounds. For

example:

• In Cassandra: the failure detection algorithm needs to run on synchronous or hybrid

synchronous subnetworks that communicate the cluster nodes, in order to guarantee

delivering messages within the upper bound specified.

• In \VA: The Intra-stamp replication protocols reed to run on synchronous links that

communicate the replicas on the same storage stamp together, while the Inter-stamp

replication protocols need to run on asynchronous links that communicate the storage

stamps together.

• In Chubby: The failure detection algorithm needs to run on synchronous environment

to adjust perfectly the messages delay time.

The problem is that fully synchronous, or partially synchronous, environment is expen

sive to build, complex to configure, and difficult to controI. This makes the infrastructure

providers escape to asynchronous environments strengthened by algorithms andj or protocols

with time-out specifications.

2.5 Hybrid synchronous DSs and virtualization

After studying the partial synchronous distributed systems, we noted down some of their

constraints that pose difficulties for the service providers, for example, the high building cost

of synchronous resources, the demand of DSs for isolation or resilience, and the complexity

for realizing the hybrid synchronous DSs. In a research for relaxing these constraints; we in

vestigated the space of Virtual Networks (VNs), and we found that virtual networks can offer

a suitable environment for hosting hybrid synchronous distributed systems while optimizing

a set of their constraints due to the properties that virtualization brings, for example:

1. The design of synchronous components in DSs requires fundamental handling mecha

nisms as detailed by [RSK+OO]. The exact mechanisms for building synchronous re

sources is out of the scope of our work, but we assume their existence. Network vir

tualization is defined by the decoupling of the roles of the traditional Internet Service

CHAPTER 2. \íVORK MOTIVATION: HYBRID SYNCHRONY IN DISTRIBUTED
SYSTEMS 47

Providers (ISPs) into two independent entities [TT05]: infrastructure providers (InPs),

who manage the physical infrastructure, and service providers (SPs), who create vir

tual networks by aggregating resources from multiple infrastructure providers and offer

end-to-end services. Considering a new architecture of the DSs based on VNs provides

a new business model that allows sharing tasks: (i) the synchronous resources design is

assigned to the SN provider, and (ii) the resources allocation process is assigned to the

VN provider. Delegating the design of the synchronous resources to the SN provider and

the embedding process to the VN provider results in reducing the system complexity.

2. The building cost of synchronous resources in DSs is considerably high when compared

to the asynchronous resources. The virtual networks environment allow providers to

allocate some physical resources mutually among several clients as long as this multi

use does not violate the performance expected by the client. Considering a new archi

tecture for DSs based on VNs will allow sharing the synchronous portion of the physical

infrastructure between several applications, which will result in reducing the overall cost

for the service providers. It is predictable that sharing resources might affect the system

performance [ABD+13], but we consider studying this effect is out of the scope of our

work.

3. The VNs Embedding process (VNE) [BHKI2, HPN09] allows allocating resources flexi

bly respecting the constraints that serves the applications. For example, DSs resilience

requirements that can be tackled during the VNE process aware of allocating backup

resources or aware of live resources migration as will be detailed later in Chapter 3.

Considering a new architecture for DSs built on top of VNs will allow adopting the

VNE framework that will benefit the providers in supporting constrained applications

in a flexible manner, benefiting from VNE constrained solutions in the literature.

4. Heterogeneity in the context of network virtualization comes mainly from two fronts

[CBIO]: first, heterogeneity of the underlying networking technologies (e.g., optical,

wireless, and senso r); second, each end-to-end VN, created on top of that heterogeneous

combination of underlying networks, can also be heterogeneous. Considering a new ar

chitecture of DSs based on VNs exhibits the system heterogeneity in the hybrid kind of

physical resources required to be synchronous and asynchronous. This allows using the

VNs framework to manage hybrid environment. On the other hand, DSs providers will

be able to implement freely network topology, routing protocol, QoS policies, indepen

dently of the coexisting VNs and independently of the the substrate network.

\íVe argue that VNs and a suitable VN embedding process offer suitable environment for

running distributed applications with partial synchrony. This has led to the abstraction of

new type ofvirtual networks that we name The Hybrid Synchrony Virtual Networks (HSVNs)

which we propose in our work.

CHAPTER 2. \íVORK MOTIVATION: HYBRID SYNCHRONY IN DISTRIBUTED
SYSTEMS 48

Summary

In this section, we provided a short background about distributed systems (DSs), and light

ened an important aspect in the field, the synchrony. \íVhile asynchronous DSs support no

time-bounds for processes execution and message delivery, the synchronous DSs provide time

guarantees for them. Although fully synchronous DSs demand simpler algorithms, and can

provide what asynchronous ones do, yet the undeniable problem of synchronous components

(processes and channels) high cost led to the development of hybrid synchrony DSs.

Two branches of hybrid synchronous DSs are distinguished in the literature: (i) the

hybrid synchronous in space, where subsets of the system components are synchronous while

the others are asynchronous, and (ii) the hybrid synchronous in time, where the system

components alternate between synchrony and asynchrony over time.

\íVe provided examples of applications (i.e., Cassandra, \íVA, Chubby) that may bene

fit from the partial synchrony assumptions, as the progress will become guaranteed by the

provisioning of elements designed to respect time upper bounds. The problem is that fully

synchronous, or partially synchronous, environment is expensive to build, complex to config

ure, and difficult to controI. This makes the infrastructure providers escape to asynchronous

environments strengthened by algorithms andj or protocols with time-out specifications.

In a research for relaxing the ossifications of partial synchronous environment; we inves

tigated the space of Virtual Networks (VNs), and we found that virtual networks can offer

a suitable environment for hosting hybrid synchronous distributed systems while optimizing

a set of their constraints due to the properties that virtualization brings.

In the next chapter, we define network virtualization, then we detail about the central

problem with VNs, that is the problem of resource allocation (named also as mapping or

embedding) from the literature.

49
CHAPTER

Related Work: Network

Virtualization

I
n this section, we start by defining the network virtualization, secondly we highlight the

virtual networks properties as stated in the literature; thirdly we revise the literature

on the topic of VNs resources allocation, which is named as mapping or embedding

problem as well. \Ve classify the works on VNs embedding according to the applications'

constraints (e.g., topology, security, and resilience).

3.1 Network Virtualization

Virtualization is a technology introduced in 1973 [PG73], consists in using a single physi

cal resource to host several virtual machines that share and access concurrently the actual

hardware. The benefits of virtualization include reconfigurability, better resource utilization,

mobility, isolation, and fault tolerance. Since similar benefits can be derived when virtual

izing the network infrastructure, virtualization appeared as a solution to the architectural

issues of the Internet, and this gave birth to the Virtual Networks (VNs).

Network virtualization environments allow the coexistence of multiple VNs, each running

certain applications on top of one shared physical infrastructure, the substrate network (SN).

Network virtualization is defined by the decoupling of the roles of the traditional Internet

Service Provider (ISP) into two independent entities [CBlO]: infrastructure providas (InPs),

who manage the physical infrastructure, and service providas (SPs), who create virtual

networks by aggregating resources from multiple infrastructure providers and create end-to

end services.

A business mo deI for network virtualization was proposed by Schaffrath et aI. [S\VP+09],

where the management and business roles of the service provider (SP) are separated. For this

purpose, the SP was split into three entities as in Figure 3.1: i) the Virtual Network Provider

(VNP), which assembles virtual resources from one or more InPs, ii) the Virtual Network

Operator (VNO), which installs, manages, and operates the VN according to the needs of

the SP, and iii) the Service Provider (SP), which is free of management and concentrates on

business by using the VNs to offer customized services.

CHAPTER 3. RELATED \íVORK: NET\íVORK VIRTUALIZATION 50

Physicallnfrastructre Provider (InP) _ _ _ Physicallnfrastructre Provider (InP)

Figure 3.1 VN Management and Business Roles [SWP+09]

3.2 Virtual Networks properties

Network virtualization is a promlsmg technology for overcoming Internet ossification

[APST05], it was proposed to obtain certain properties and design goals [CB09]. For exam

pIe, virtual networks allow:

1. Revisitation: which means that several virtual nodes andjor links belonging to same

VN can be hosted on same physical no de or link. This means resources sharing, which

leads to a better use of the booked resources and thus reducing the cost;

2. Coexistence: several virtual networks of different service providers can coexist at the

same time, over same infrastructure provider;

3. Recursion: named also nesting in VNs. It refers to the fact that, one virtual network

belonging to a certain service provider, can take the place of a virtual infrastructure

provider to another virtual network belonging to another service provider;

4. Inheritance: a given VN can inherit properties that exist in its parent, be it a physical

infrastructure, or be it a virtual infrastructure;

5. Flexibility: each SP can implement freely network topology, routing protocol, QoS

policies, independently of the coexisting VNs and independently of the the substrate

network;

6. Isolation: network virtualization insures the isolation between the coexisting VNs, i.e.,

a fault existing in one VN does not propagate to any other coexisting VN. \íVe should

distinguish this case from the case when the fault exists in the underlying physical

infrastructure. For example, if a physical no de or link fails, the failure will surely

impact all the virtual nodes and links mapped to it;

7. Heterogeneity: in network virtualization, the heterogeneity can be found on two leveIs, i)

in the underlying infrastructure, which can be a mixture of several technologies, and ii)

CHAPTER 3. RELATED WORK: NETWORK VIRTUALIZATION 51

in the VNs, where SPs can implement VNs different in their requirements (for instance,

security, delay, jitter, ...).

3.3 Resources allocation in Virtual N etworks

Resource allocation is a process formed by the InPs upon receipt of a request to establish

a VN [BHK12]. Virtual networks can be constructed through a suitable deployment of the

virtual routers and links on the SN resources [HPN09]. This process is also known as VN

embedding or VN mapping. The problem of resource allocation has attracted considerable

attention, and since the problem is considered to be an NP-hard problem [Kar72], it has

been addressed in the literature also through optimization methodologies.

In this thesis, we will use three compatible terms referring to the same meaning: mappzng,

embedding and resource allocation.

Figure 3.2 shows an example for embedding two VNs on one SN, links bandwidth and

nodes CPU values are presented for both virtual and substrate networks. This is a simple

example, the only constraint is not to pass the physical nodes and links capacities for CPU

and bandwidth respectively. The embedding output is detailed (written) in the bottom side

of the figure. We notice that nodes c1 and c2 belonging to V N 1 and V N 2 respectively were

mapped on the same physical no de c. The physicallink (j, s) participates in the two physical

paths mapping virtual links, (j2, e2) and (c2 , e2).

VN1 links SN paths VN2 links SN paths

(a1Y) (a, b) (d2 , c2) (d, c)

(bl, c1) (b, t), (t, c) (c2, f2) (c,f)

(al,c1) (a, m), (m, n), (n, c) (p,e2) (j, s), (s, e)

(e2, d2) (e, d)

(c2,e2) (c, f), (j, s), (8, e)

Figure 3.2 - Virtual networks mapping

Commanding the embedding process

In the virtual networks environment, the embedding process can be conducted by one

CHAPTER 3. RELATED \íVORK: NET\íVORK VIRTUALIZATION 52

central entity, or by several ones that interact together to take decisions [BHK12]. The first

approach is named centralized and the second distributed.

Centralized approach: where a single entity in the InP receives VN requests and performs

resource allocation. The limitations for this approach are mainly: (i) this entity requires all

the global knowledge and resources necessary for the allocation process, which is not always

feasible; (ii) if this entity fails, so does the whole process, and c the communication between

the central entity and the other nodes might cause a considerable overhead. Among the

works that followed the centralized approach are [ZA06, LT06, CRB09].

Distributed approach: in which the resource allocation process is distributed over some or

all of the physical nodes in the InP, where each no de has local knowledge. The limitation in

this approach lays in its complexity compared to the centralized approach, because the alloca

tion process is coordinated through the communication and the cooperation protocols among

the nodes. Among the works that followed this approach are [HLZ08, CSB10, HLZ+lO].

Problem complexity

\íVhen mapping VNs, several virtual nodes can be mapped on the same physical node,

and several virtual links can be mapped to the same physical link. This mapping process

should happen without passing the limits of the physical resources available, i.e., the sum

of resources demanded by virtual nodes andj or links should not pass the capacity limits of

resources offered by the physical nodes andjor links to which they are mapped.

In one basic version of the U nsplittable Flow Problem (U F P) [Kle98], we are given a

graph G, an m pairs of vertices each associated with a non-negative demand 1jJ :::; 1, the

problem negotiates the possibility of finding a path, within G, for each pair in a way that

the accumulated demands on each path do not exceed 1, if it is possible then the demands

are realizable.

VNs mapping problem turns to be similar to the U F P, that is a generalization of the

well known Edge Disjoint Paths problem (EDP) [Kle98] which is a central problem in

combinatorial optimization and algorithmic graph theory and is one of the Karp's original

NP-complete problems [Kar72].

NP-complete problems are nondeterministic polynomial time problems [God04] [GJ79],

if L is an NP-complete problem then there is no known efficient solution for it (i.e., no fast

solution), and the time required to solve the problem using any currently known algorithm

increases very quickly as the size of the problem grows. This is a reason why NP-complete

problems are approached normally through optimization approaches, for example heuristics

[MF04].

CHAPTER 3. RELATED \íVORK: NET\íVORK VIRTUALIZATION 53

3.4 Literature review on VNs Embedding

By searching in the field of VNs mapping, we found that the process of virtual networks

mapping comes with different flavours based on the application requirements, which impacts

directly the mapping complexity and the kind of constraints that should be cared for. Here

bellow we summarize several works that handle the problem of VNs embedding. Our state

of the art classifies others works based on the VNs demands considered, in other words, the

embedding constraints.

3.4.1 Topology requirements

\íVhen mapping VNs only with topology requirements; the point that matters is to preserve

the nodes connectivity pattern. For example, let a and d be two virtual nodes on a given

virtual network, connected together through a virtual link (a, d). \íVhen mapping these two

virtual nodes to two distinct physical nodes A and D respectively, then A and D should be

connected together as well, be it direct connection through a physical link (A, D) or be it

through an indirect connection through a physical path that starts with A and ends at D,

like (A, B, C, D).

One of the earliest works on resource allocation in network virtualization is [ZA06]. Only

the VNs topology is considered; there are no constraints on virtual nodes (such as CPU and

nodes location) and virtual links (such as bandwidth). Upon the arrival of a VN request,

its topology is assigned to the substrate network to achieve low and balanced load on both

substrate nodes and links. So, the objective when mapping is to reach load balance on the

SN resources (i.e., physical nodes and links), where the load here can be defined as the

amount of physical resources used by virtual nodes and virtual links in substrate nodes and

substrate links, respectively. The authors in this work defined nodes stress and links stress

for the physical resources, which became metrics adopted by other works later [Cui12].

Node stress measures the number of virtual nodes assigned to each physical node; and

link stress measures the number of virtual links traversing a physical link. To ease the

embedding process, it was proposed to divide the VNs into several smaller networks, then

the embedding phase is conducted by a centralized entity with the objective of reducing the

nodes stress or the links stress, depending on which is more criticaI. The work focuses on two

versions of the VNs assignment problem: VN assignment without reconfiguration (VNA-I)

and VN assignment with reconfiguration (VNA-I1). For the VNA-I problem, where the VN

assignment is fixed throughout the VN lifetime, the authors developed a basic scheme to

achieve near optimal substrate no de performance and used it as a building block for all

other advanced algorithms. Subdividing heuristics and adaptive optimization strategies are

then presented to further improve the performance. For the VNA-I1 problem, the authors

CHAPTER 3. RELATED \íVORK: NET\íVORK VIRTUALIZATION 54

developed a selective VN reconfiguration scheme that prioritizes the reconfiguration for the

most criticaI VNs. In doing so, the authors could achieve most performance benefits of the

reconfiguration without excessively high cost. The results show that: (i) subdividing the VN

topology is more significant when the topology is sparse; (ii) the advantage of the algorithms

is greater when the substrate network is sparsely connected; and (iii) the algorithms can

effectively avoid hot spots or congestion in the substrate network.

In [LT06], authors develop a VN cost-efficient mapping method able to handle VNs traffic

pattern allowed by a general set of traffic constraints. The authors argue that the existing

approaches, like simulated annealling or some similar local search techniques, that aim at

cost-efficient VNs embedding, are not suitable. \íVith such techniques, a given solution for the

mapping is optimized by addingj removing links andj or nodes, then the links of the modified

topology re-dimensioned, so that the cost can be evaluated. The authors find that this

approach has two drawbacks: (i) excessive computing: with any modification to the current

topology, the mapping cost is recomputed, and (ii) the huge space of candidate topologies

makes it difficult to determine which of the large number of possible local modifications to

choose from. To overcome these drawbacks, the authors of this paper propose a mapping

approach that aims at finding the best topology in a family of backbone-star topologies. In

a backbone-star topology, the nodes are designated as backbone nodes, or as access nodes.

Each access no de has a single edge connecting it to a backbone node, meaning that each

backbone no de is at the center of a star formed by its neighboring access nodes. Basically,

the backbone nodes are connected in an arbitrary way, yet in this paper the authors consider

particular topologies for the backbone nodes, such as a complete graph, a ring and a star.

Fig 3.3 depicts a virtual network in a backbone-star topology, where the four backbone nodes

are connected into a complete graph.

access node O O

Backbone O
O O

O

000

Figure 3.3 Example of a virtual network in a backbone-star topology, where the

four backbone nodes are connected into a complete graph [LT06]

The outlines of the mapping method proposed can be summarized in five steps: (i)

Select an initial mapping of backbone nodes onto the substrate, (ii) Connect access nodes to

CHAPTER 3. RELATED \íVORK: NET\íVORK VIRTUALIZATION 55

backbone nodes, (iii) Compute shortest paths, (iv) Determine link capacities (This can be

done using linear programming), and (v) Find best backbone no de mapping. Main findings

of this paper are: (i) as pairwise traffic constraints are relaxed, the least-cost backbone

topology becomes increasingly tree-like. (ii) the quality of solutions improves as the traffic

locality gets weaker.

In [YYRC08b], the authors lighten four main obstacles that make the VNs embedding

problem a difficult one, they are: (i) virtual resources constraints (e.g., nodes CPU and

links delay) where the more the constraints are, the more complex the mapping process

gets; (ii) admission control on the SN leveI, since the SN has limited resources, then certain

requests will be rejected or postponed to avoid violating the successfully mapped VNs;

(iii) online requests, which implies that the VNs demands are not known in advance, and

when a certain request arrives, the period of its remaining is not known as well; and (iv) the

diverse topologies, where handling arbitrary topologies, while efficiently supporting the most

common topologies, introduces an additional challenge for the embedding algorithm. The

research precedent to this work has addressed these computational challenges by restricting

the problem space in one or more dimensions to enable efficient heuristics, at the expense

of limiting the practical applicability of the solutions. For example, the papers used to

either solve an ofRine variant of the problem, consider only bandwidth constraints, or do

not perform admission controI. In this work, the authors advocate a different approach:

rethinking the design of the substrate network to enable simpler embedding algorithms and

more efficient use of resources, without restricting the problem space. In particular, they

extend the virtual links embedding by: (i) allowing the substrate network to split a virtual

link over multiple substrate paths, and (ii) employing path migration to periodically re

optimize the utilization of the substrate network. Flexible path splitting allows mapping

the virtual links to the substrate in polynomial time, while making much more efficient

use of substrate bandwidth and increasing robustness to substrate failures. This solves the

ossification posed by the first three challenges listed above. To handle the fourth challenge,

the work explores node-mapping algorithms that are customized to hub-and-spoke topologies

of the VNs. Nodes with the most available resources are selected as hub nodes while the

spoke nodes are mapped on substrate nodes based on the shortest paths to the nearest hub

node. Simulation experiments show that, path splitting, path migration, and customized

embedding algorithms enable a substrate network to satisfy much larger mix of virtual

networks and makes the embedding problem computationally easier.

In [LZ\íV15] Li e aI. study the virtual networks embedding problem considering dynamic

topologies, where topology dynamicity, according to the authors, comes from two fronts: (i)

the substrate network topology change, which happens when the infrastructure provider may

make some adjustments for more profits or some failure nodes that need to be corrected, and

(ii) the birth and death of virtual networks, in other words, the new arriving virtual network

CHAPTER 3. RELATED \íVORK: NET\íVORK VIRTUALIZATION 56

that need to be mapped and the expiration of VNs that release resources. Remapping the

still existing (alive) VN s might result in better use of the physical resources and thus might

lead to allowing the embedding of VNs that were rejected without the remapping processo

For these two cases, the authors call them the dynamic substrate network and the dynamic

running virtual networks. After researching the dynamic substrate network and running

virtual network, the authors find that they can be divided into resource increase and deletion

while they attribute the resource fragmentation to the resource increase, Figure 3.4. The

authors propose a formal expression of the dynamic remapping problem, but they do not

proceed to validating it.

Figure 3.4 Topology remapping problem [LZW15]

3.4.2 BW and CPU requirements

Among the attributes that were considered by most of the works on the field of VN mapping

are: (i) the links bandwidth (B\íV) , and (ii) the nodes processing power (CPU).

Trinh et aI. [TEAll] propose to analyze the application of careful overbooking concept,

that uses flexible leveIs of availability to provide Service LeveI Agreements (SLA) to users.

Based on this framework, virtual network subscribers are provided with a service that is

more suitable with their tolerability to utilize the soft-guaranteed bandwidths. So, the

system will figure out the actual resources for customers to guaranteeing the quality of

service even when the system is in the most congested time. This helps to save the cost of

subscribers, and to increase the profitability of the provider. The virtual networks which

do not need to have the exclusive service can be offered some other kinds of services whose

quality are specified in three parameters: (i) probability of getting full availability, (ii)

probability of getting limited availability, and (iii) reduction factor. So, each customer,

who wants a service from infrastructure provider will be provided only one SLA proposal

including the percentage of time to get full availability, the percentage of time to get limited

availability and the bandwidth reduction factor from full availability to limited availability.

The problem addressed was formulated in the shape of a Mixed Integer Program, whose

objective is to minimize the cost, where the cost considered was a combination of both

CHAPTER 3. RELATED \íVORK: NET\íVORK VIRTUALIZATION 57

bandwidth consumption and traffic routing cost. Practically, the optimization process pushes

the virtual network demand through their best route for minimizing the cost of building all

virtual networks. Evaluation results show that the cost saving ratio is of mean = 0.748

and variance = 0.0479, which is quite impressive based on reported numerical results. The

infrastructure provider can give part of that obtainable saving to customers with limited

availability, who in their turn will enjoy the reduction in the service price.

Botero et aI. [BHFdM13] raised the importance of considering the capacity of the hidden

hops while the embedding process, where hidden hops are the intermediate nodes on the

physical paths that map the virtual links. The authors argue that, portion of the B\íV is

consumed by the intermediate nodes, beca use they have to be configured to process and

forward the packets passing through that virtual link, thus, it is important to consider the

hidden hops while the VNs mapping phase. The work distinguishes between two types of

the VNs: (i) VNs with specific demands where there can be bandwidth and CPU fixed

demands for some virtual links and nodes, and (ii) VNs with no specific demands where

nodes and links do not ask for any resources. The work mo deIs the problem is the shape of

a Mixed Integer Program, with the objective function of maximizing the sum of the spare

bandwidth and spare CPU in the substrate network. Then, they develop an algorithm that

is based on the MIP. The algorithm is divided in two different steps: firstly, the algorithm

maps the requests of each VN that explicitly ask their demands. In second place, the

remaining resources are distributed equally among the remaining virtual nodes and links.

The second step of the algorithm (i.e., to allocate the resources equally among the requests

without demands) is divided in two parts; the virtual nade mapping, this was treated in

an easy manner by assuming that each virtual no de is already mapped, and the virtual

link mapping, this was treated based on Djikstra algorithm for finding the shortest path

connecting the end points. The proposed heuristic is mainly based on an approximated

greedy algorithm proposed to solve the Unsplittable-Flow problem, the authors make few

modification to adapt the algorithm to the mapping problem. This work does not handle

evaluation for the proposed heuristic.

Hsu et aI. in [HS\íVY12] consider nodes CPU and links B\íV as others, but for them B\íV

is not only a link attribute, it is as well a no de attribute, where no de B\íV is the sum of

links B\íV connected to it. The mapping approach they propose bases on path splitting and

migration technique that aims at maximizing the number of coexisting VNs in a substrate

network and increases the revenue of the Infrastructure Providers (InP). The algorithm

proposed consists of three main blocks, they are: (i) the no de mapping algorithm; ; (ii) the

link mapping algorithm; and (iii) path migration. The nade mapping algarithm working

steps are: (i) choose the first virtual no de with the largest degree, denoted XV for example,

where no de degree is the number of the no de neighbors (i.e., the number of links connected

to the node), then the no de B\íV required is calculated; (ii) choose the subset of SN nodes

CHAPTER 3. RELATED \íVORK: NET\íVORK VIRTUALIZATION 58

that can satisfy the first chosen virtual no de both for its CPU and B\íV, then the substrate

no de with the largest degree is chosen from the candidates, denoted XS for example, to map

XS; (iii) choose the next virtual no de that has the largest number of neighboring nodes

already mapped, denoted yv for example, and let TS be the set of physical nodes that

mapped yv neighbors; (iv) choose the physical nodes that can satisfy yv CPU and B\íV

constraints, and for each no de among the selected candidates, the algorithm calculates the

shortest path between it and each physical no de in T S
, and uses the maximum length of

these computed shortest paths as the shortest distance between yv and TS, and the no de

with shortest distance is selected to map yV; (v) the steps (iii) through (v) are repeated

till alI the virtual nodes are selected. The second block of the proposed heuristic is the

links mapping algorithm, and its working steps are summarized as the folIowing: (i) sort

the virtual links by B\íV requirements in decreasing sequence; (ii) processes the first virtual

link in the ordered set (i.e., the link with the maximum B\íV requirement), let it be the

link lV with B\íV demand BW(lV) connecting the two virtual nodes XV and yv, where these

virtual nodes are already mapped on the physical nodes XS and ys for example; (iii) find the

shortest physical path that connects XS with ys and satisfies lV bandwidth requirement. If

such a path is found then lV is mapped to it, otherwise, the multiple path mapping procedure

is calIed. The main working steps of the aforementioned procedure are: (i) assign the virtual

link that was unable to be mapped on one single physical path, let this link be denoted as

lV for example, with bandwidth requirement BWW); (iii) split BW(lV) in two, BW(lV)j2;

(iii) search two physical shortest paths connecting XS with ys with residual B\íV that alIows

mapping lV, if such paths are found then lV is mapped to them, otherwise step (ii) is repeated;

(iv) maximum number of splitting is alIowed, by passing it, the path migration algorithm is

enabled, which forms the third part of the proposed heuristic. The path migration algorithm

does not consider node-remapping for the VN requests (i.e., does not remap XV and yV),

rather, it migrates a virtuallink already mapped, to free more B\íV on the path under study

and then uses the modified multiple-path algorithm to select one or more new substrate

paths for the current virtual link. Simulation results indicate that the path splitting and

migration offers better performance than existing mapping approaches.

Links B\íV and nodes CPU were among the attributes that were considered by most of

the works on the field of VN mapping beside some other constraints, for example, Zhang et

aI. [Z\íVJYI0] devise a mapping mo deI for delay aware VNs, the mo deI aims at minimizing

both the bandwidth and CPU consumption on both physical links and nodes respectively

(the work is more detailed in 3.4.5). Bay et aI. [BOB+12a] addressed a security-aware VNs

embedding model, which aims at minimizing the bandwidth consumption on physical links

(more details about the work are given in 3.4.3).

CHAPTER 3. RELATED \íVORK: NET\íVORK VIRTUALIZATION 59

3.4.3 Security requirements

Revising the literature, there were several works that devise a framework to provide secure

virtual networks [CDRS07, HAMI0]. These works study providing security to VNs after the

phase of resource allocation.

However, some works consider security aspects while allocating VNs resources. The first

who addressed security-aware VNs embedding were Bays et aI. [BOB+12a]. In this work, the

authors consider three leveIs of security, they are, in the increasing order of security: (i) end

to-end security, where the end points of the virtuallinks are mapped on physical routers that

are able to encrypt and decrypt packets, (ii) point-to-point security, where the virtual links

are mapped on physical paths composed of routers able to decrypt and encrypt the packets

(i.e., be them edge routers of intermediate ones). So, at each point the packets are decrypted

and encrypted again. In both aforementioned types, the encryption is on the leveI of the

packet payload and header. And (iii) non-overlapping networks, which are networks that

don't share the same substrate physical resources, i. e., they are networks mapped on distinct

physical resources. Considering both optimal mapping and security to be equally important,

the authors devise a mapping model in the shape of a Mixed Integer Program, that aims

at minimizing the bandwidth consumption, while considering leveIs of security as detailed

above. The main findings of this paper are: (i) bandwidth usage grows proportionally to the

number of virtual network requests; (ii) raising resource limits on each request also causes

a growth in bandwidth consumption. However, the effect is notably less significant than the

previous factor; (iii) the proposed method avoids loading the physical resources; (iv) there is

a trade-off between running time and optimality, in other words, finding the optimal solution

results requests long computational time, that reached 24h in some scenarios. In order to

investigate the impact of considering security requirements during the VNs embedding phase,

the authors envisage a scenario in which all security related constraints are disabled and all

the security requirements in the VNs are removed. It was stated that the disconsideration

of security assessments results in reducing the bandwidth consumption. The authors refer

this overhead to the following reasons: (i) the routers that provide encryptionj decryption

protocols forms subset of the overall available routers, thus resulting in a more constrained

solution space; (ii) the non-overlapping requirement forces the allocation algorithm to select

detour paths in the substrate network, which results in higher resource consumption. These

reasons also indicate that, in the best case scenario, the bandwidth consumption considering

security-related constraints will be as good as without considering them. This can be an

evidence that minimizing bandwidth consumption is a suitable objective function for the

MIP developed for VNs mapping with security-related constraints.

In [\íV\íVG+16] the authors treat the problem of information leak possible between vir

tual nodes that share the same physical node. This happens because two virtual nodes

CHAPTER 3. RELATED \íVORK: NET\íVORK VIRTUALIZATION 60

can communicate without being monitored or controlled by their underlying system through

a covert channel. The authors propose a method to mitigate the risk of covert channel

attacks in network virtualization. The proposed method was divided into two categories:

heavyweight methods for the SN and lightweight methods for the VN. Heavyweight methods

imply a modification in the underlying physical infrastructure by inserting additional com

ponents resulting in performance overhead and additional cost, whereas lightweight methods

focus on the resources allocation process with no need to physical components change. The

scenario is as the following: a victim virtual no de connected to an adversary virtual no de

through a covert channel, and all other virtual nodes are regarded as bystanders for the first

two nodes. The victim node, the adversary, and the bystanders are virtual nodes mapped

on one physical node. Two novel attributes are associated to each virtual node: an errar

rate and an expected threshold. A bystander virtual no de causes an error rate to the covert

channels between any other two virtual nodes (i.e., the victim and the adversary) in the

same substrate node. The error rate of each virtual no de is considered a parameter that

expresses the noise effect of the bystanders on the transmission quality of a covert channel.

A victim virtual no de leaks information via a covert channel. Higher noise on the covert

channel means less information leak. The victim no de is considered secured if the accumu

lated error rate of the bystanders on the covert channel is no less than the expected threshold

of the victim node. The VNs embedding problem is formulated as an optimization prob

lem with novel constraints that are the risk-tolerant coexistence constraints which consider

proper embedding of the virtual nodes to mitigate information leak. The proposed scheme

was compared to other two schemes suggested in the literature: 1) SAV [LCXX15] which

embeds a VN satisfying security demands; and 2) GRe [G\íVZL14] which aims to maximize

the resource utilization without security consideration. Simulation results show that the

proposed scheme in [\íV\íVG+16] improves the percentage of secure virtual nodes by 40% in

comparison with [LCXX15, G\íVZL14], Figure 3.5 depicts a comparison of Secure Virtual

Node Ratio in the three works.

3.4.4 Resilience requirements

Failures in VNs are mainly related to physical nodes and links. The main two approaches for

minimizing the VNs failures are [Oli13]: (i) backup resources, and (ii) live reconfiguration

and migration.

Backup resources - the idea is that certain physical resources are duplicated, so that

one copy of these resources is considered primary, and the other one (i.e., the backup copy)

as secondary. If the primary resources fail; the backup ones take their place. The simplest

algorithms proposed for nodes backup preserve one single no de as backup for each criticaI

physical node, thus, providing immunity against one failure only. A better approach is

CHAPTER 3. RELATED \íVORK: NET\íVORK VIRTUALIZATION

o~----~------~----~------~------~

o 0.5

Time
1.5 2 2.5

X 104

Figure 3.5 Comparison of Secure Virtual Node Ratio [WWG+16]

61

to request K shared redundant virtual nodes [YAQSll]. This allows any criticaI no de of

a protected VN to sustain up to K consecutive no de disruptions. The authors model the

mapping problem in a Mixed Integer Linear Program (MILP) and propose efficient heuristics

based on the MILP formulations. The work compares the performance through evaluating

the redundancy ratio performance metric, which is the ratio of the total backup resource

cost to the total working resource cost. The redundancy ratio performance metric is studied

in three scenarios: (i) both cross and backup share (labeled as share); (ii) only backup

share (labeled as (bshare)); and (iii) no share (labeled as noshare). As well, the work

compares the performance of the 1-redundant solution and k-redundant solution. This is

done considering the following performance parameters: (i) no de cost ratio (i.e., the ratio of

the no de redundancy cost); (ii) link cost ratio (i.e., the ratio of the link redundancy cost);

and (iii) total cost ratio (i.e., the ratio ofthe total redundancy cost). Simulation results show

that the proposed backup and cross share strategies have a significant impact in conserving

backup resources and improving resource utilization. Furthermore, under majority of the

circumstances, the K-redundant solution is more efficient than the 1-redundant solution

especially when communication costs are higher than the no de computing costs.

In [RB13], the problem of links backup is handled through a detours preallocation mech

anism that tries to protect the connectivity of the endpoints of each physicallink by routing

its traffic to neighboring links, while restoration paths are used to protect an entire virtual

link through links duplication. To improve the efficiency in resource utilization, restoration

paths can be shared by different virtual links. In this work, the authors distinguish between

two types of failures: (i) failures at the physical layer; and (ii) failures at the logical layer.

Logical failures affect the logicallayer only, in contrast, physical failures affect both the phys

ical and logical layers. The main contributions of this paper are: (i) propose a survivability

mechanisms to the VNs embedding phase using efficient restoration and protection policies;

CHAPTER 3. RELATED \íVORK: NET\íVORK VIRTUALIZATION 62

(ii) add service leveI agreement (SLA) assurance to the VNs embedding phase by prioritizing

the restoration of failed virtuallinks while minimizing the failure effect and maximizing the

InP business profit; (iii) formulate the problem stated in the shape of a linear program and

develop heuristic that bases on it; and (iv) introduce path-flow based optimization formula

tions for the different recovery and protection policies. The evaluation results show that the

proposed solution outperforms the baseline solution in InP business profit, acceptance ratio,

bandwidth efficiency, and response time.th efficiency, and response time.

In [CL\íV+lO], another links backup mechanism is used, bases on an on-demand embedding

of restoration paths. This work focuses on the case of one single link failure, assuming that

the probability of two links failing at the same time is small. The authors present an

embedding heuristic that pays simultaneous attention to two missions: (i) assuring a cost

effective usage of physical resources through an intelligent bandwidth sharing technique, and

(ii) protecting VN services against network failures. To determine the restoration paths for

virtual links, we present a state independent and path-based path selection scheme. The

selection of the restoration paths is not dependent on any deterministic failure scenario and

the interrupted virtuallinks are switched from their primary substrate paths to pre-reserved

restoration paths when there occurs any substrate link failure. The restoration paths are

used only when a failure occurs, and are used temporarily till the failure is fixed, thus the

bandwidth reserved for the restoration paths is lower than the one reserved for the primary

paths. Furthermore, the restoration paths share the same bandwidth reserved, as a way

to reduce more the bandwidth consumption. Evaluation results show that the proposed

algorithm outperforms the common algorithms both in terms of network resource usage and

effectiveness of economic revenue over cost. Particularly, the proposed algorithm reduces the

additional restoration bandwidth by over 35% comparing to the traditional algorithms.

In [Y\íVKI0], the authors introduce the concept of fault tolerance at the virtualization

layer. The benefits of this technique are: (i) various leveIs of reliability can be customized

over the same physical infrastructure, and (ii) no need for specialized fault tolerance servers.

This is achieved through an opportunistic redundancy pooling mechanism (ORP), where

backup resources are pooled and shared across multiple virtual infrastructures, and intel

ligently embedded in the physical infrastructure. The leveI of reliability is limited to the

number of failed resources, where this last one should not pass the number of the redundant

resources. For example, by achieving an n:k redundancy architecture, k redundant resources

can be backups for any of the n primary resources, and share the backups across multiple

virtual infrastructures (Vlnfs). Another contribution of this paper is a method to statically

allocate physical resources to the primary and redundant Vlnfs simultaneously, considering

the output of the ORP mechanism. The embedding problem is formulated in this work in the

shape of a Mixed Integer Program with the objective of minimizing the amount of resources

used for a Vlnf. To evaluate their approach, the authors considered three scenarios in their

CHAPTER 3. RELATED \íVORK: NET\íVORK VIRTUALIZATION 63

simulations for allocating resources: (i) with redundancy pooling and redundant bandwidth

reduction (this scenario is labeled share) , (ii) without redundancy pooling and redundant

bandwidth reduction (this scenario is labeled noshare) , and (iii) a system with VInfs that

do not have reliability requirement, i.e., zero redundancy (labeled nonr), this last scenario

is considered as baseline of comparison. The main results of this work are: (i) noshare has

the least acceptance rate and VInf occupancy, and more backup nodes per VInf than share;

(ii) CPU usage per VInf is slightly higher in noshare than share; (iii) the redundant nodes

in share consume less resources than that in noshare (despite admitting more VInfs); and

(iv) the bandwidth usage per VInf is actually smaller for share than noshare.

The drawbacks of the backup approach (be it for nodes or links) are mainly twofolds: (i) it

is costly, because the backup resources are reserved independently of the failure occurrence;

and (ii) the backup resources might become wasted if no failure occurs (i.e., the backup

resources are used only when a failure occurs).

Live reconfiguration and migration- The ide a is to recalculate physical resources and

reallocate virtual nodes andjor links whenever a failure occurs. This approach is considered

cheaper compared to the backup approach. Researchers in this track consider one of two

procedures: (i) a pro-active procedure that bases on migrating virtual nodes andjor links

that are subject to failures (or that are more likely to fail) prior to failure occurrence, and (ii)

reactive procedure that bases on executing the recalculation and migration after the failure

occurs. The first procedure avoids service interruption, while the second one does not, and

researchers in this case (i.e., resources migration after failures) compete in minimizing the

time of service interruption.

Among the works that consider the forme r approach we mention [HLZ+lO]. In this work,

Houidi et aI. argue that it is important, while the VNs mapping process, to consider the

dynamic changes that are induced by the VNs andjor the SN, like: (i) topology changes,

(ii) resources restriction because of the already mapped VNs, and (iii) resource failures, and

resource degradation. In this regard, an adaptive virtual resource provisioning is needed in

order to preserve virtual networks, allocated initially on demand, in response to a virtual

network creation request (i.e., service leveI agreement). More precisely, the authors detail

about the adaptive resources allocation in two cases; (case l-updated virtual demands,)

when the VN user asks for new requirements, like in the VN topology (due to VNs expan

sion) andjor in the service requirements. In this case, an adaptive matching algorithm is

required to identify new physical resources as candidates to handle the updated virtual re

quirements. The matching algorithm starts by searching candidates in the proximity of the

virtual components (i.e., virtual nodes and links) that were subject to the change. So, the

first candidates nominated are necessary parents, children or siblings of prior matching. this

choice avoids returning to the dendrome root [BHK12] unless needed. Case 2-resources

failure or degradation, when physical resources allocated to previously instantiated VNs

CHAPTER 3. RELATED \íVORK: NET\íVORK VIRTUALIZATION 64

suffer from failure or from performance degradation. In this case, the InP maintains the

VNs topologies by searching for new resources to replace the affected ones. The authors

propose an adaptive VNs embedding algorithm only for th the case of resources failures

(which is the second case among the two stated above) since it is the most important case.

Three types of failures are discussed in this paper: (i) virtual nade failure, when a certain

virtual no de fails, it is needed to either re- instantiate another virtual no de in the the same

substrate no de or, if not possible, to call for other substrate nodes. This implies reallocation

of the virtual links associated to the affected virtual node; (ii) substrate nade failure, when

a certain physical no de hosting multiple virtual nodes fails, in this case, every virtual no de

hosted on the crashed physical no de should be reallocated, together with its associated links;

and (iii) substrate link failure ar degradatian, when a physicallink fails (interrupts) or gets

congested or overloaded, then a new physical link or path should be reallocated. 8imulation

results show that, the proposed fault-tolerant embedding algorithm can react quickly and

efficiently to resources failures.

In [GKA+16b], Ghaleb et aI. deal with the problem of multiple linkjnode substrate fail

ures that impact a multicast virtual network (MVN) in which link recovery is not feasible

and no de migration is mandatory (scenarios when backup is not enoughjgood). This work

introduces a recovery algorithm that aims to minimize service downtime while satisfying

the Q08 requirements of the VNs. The proposed approach is based on the following three

pillars: i) Minimizing the search region by using the intermediate (assisting) nodes (ANs)

that interconnects the failed MVN's distribution tree to find a backup node. ii) Performing

nodes ranking and filtering algorithm (NRF); to start the search from nodes that most likely

give faster recovery and minimize the search region further (ranking), and remove nodes that

does not provide any solution (filtering). iii) Performing a shortest-path search from each

no de that enables finding more than one candidate backups (hosts for the failed VMs) with

out repeating the same search. Figure 3.6 illustrates a multicast network with one source

(8) and three terminaIs (tI, t 2 , t 3). The three terminaIs are mapped to the nodes ns, n13,

n26 respectively. A failure is assumed to hit no de ns or link (nI2, ns) disconnecting ns from

the multicast network. The AN set is Therefore formed from nu, n12, n14, n20 and n23. The

search for a backup terminal can start from any no de in the ANs listo However, the search

region for each AN is different, and is determined by the minimum and maximum distances

in terms of delay units allowed, while respecting the original delay variation between the

terminal before the failure occurrence. 8imulation results show that the proposed restora

tion algorithm is highly scalable and achieves a high restoration rate with a much faster

restoration time even with high load and large number of concurrent failures.

The same authors of [GKA+16b] had a former work [GKA+16a] where they considered a

reactive approach for link recovery with end-delay and delay-variation constraints. However,

the approach addressed a single link failure that isolates single or multiple nodes in which

CHAPTER 3. RELATED \íVORK: NET\íVORK VIRTUALIZATION

nll
n12

@ n14

Figure 3.6 Assisting nodes and search regions [GKA + 16b]

65

alternative paths can be constructed to the affected nodes. The recent work [GKA +16b] com

plements [GKA+16a] by providing a comprehensive failure recovery framework, considering

repairing the failed MVNs reactively while maintaining the end-delay and delay-variation

requirements in a failure-prone data center network.

3.4.5 Delay requirements

Zhang et aI. in [Z\íV JYI0] address the problem of mapping virtual multi-cast networks, which

indicates the existence of one sender and several receivers. An application of this kind of

networks is video gaming, video conferencing and similar real-time applications. In this kind

of applications, packets are supposed to be received at the destination within specific delay,

and the delay difference of packets reception at multiple destinations should be minimal.

The authors formulate the mapping problem in the shape of MIP which is composed of: (i)

an objective function that aims at minimizing the use of the total physical resources needed,

and (ii) three mapping constraint, the first C1 to assure not passing the physical resources

capacity (i.e., nodes CPU and links B\íV) , the second C2 is to bound the messages delay

between each pair sender-receiver, and the third C3 is to bound the messages delay variation

between each pair of the receivers. Hereafter, the authors propose a heuristic algorithm

based on the MIP for mapping virtual multi-cast service-oriented networks subject to delay

and delay variation. The algorithm working steps can be summarized by the following

steps: (i) receive a request R denoted by six parameters, the message sender, the list of

the message receivers, the no de CPU, the link B\íV, the maximum delay allowed for each

pair sender-receiver, and the maximum delay variation allowed between each pair of the

receivers; (ii) calculate the k shortest paths between the sender and each receiver, this assures

meeting constraints C1 and C2, the value of k can be defined according to the networks

CHAPTER 3. RELATED \íVORK: NET\íVORK VIRTUALIZATION 66

sizes (the VNs and the SN); (iii) apply sliding window technique to filter the solutions

nominated in the previous step and keep only the ones that meet constraint C3 too (the

sliding window technique will be detailed next); finally (iv) optimize the obtained solution

through comparing the solutions previously obtained (which meet the three constraints C1,

C2, C3) and choose the best solution that minimizes the objective function. \íVe explain the

sliding window technique through an example to improve legibility. Consider a multi-cast

network consists of one sender S and three destinations Dl, D2 and D3. The k shortest

paths are computed for each pair S - Dl, S - D2 and S - D3. The complete set of computed

paths, denoted P, are sorted in an increasing order on an axis, see Figure 3.7, where Tmin

denotes the minimum value in P and Tmax denotes the maximum value in P. A window with

width DV is placed on the axis, where DV is the value of the delay variation allowed and

adjusted in constraint C3, the lower edge of the window is T and the upper edge is T + DV.

The initial value of T is T min, then it is increased gradually with a unit step which causes the

window to sI ide on the axis till the moment when the window upper edge meets Tmax . The

paths that fall within the sliding window are the ones that meet constraint C3. The problem

will be transfered then to find a subnetwork that connects S with all the destinations from

the selected options gained by the sliding window.

T T+DV

Figure 3.7 Illustrative figure for the sliding window technique

Inführ et aI. [IRll] studied the mapping problem of virtual networks with the following

demands: (i) the common properties of bandwidth, supplied by the SN links and demanded

by the VN links; (ii) the common properties of CPU, supplied by the SN nodes and demanded

by the virtual nodes; (iii) communication delay, that each SN link can transfer messages with

a maximum delay, and each virtual link demands maximum delay for messages transfer; (iv)

routing capacity, that the physical routers cannot rout the full B\íV connected to them, and

(v) location constraints, where some/all virtual routers have possible placements constraints

on the SN which limits the set of the candidates of the physical routers able to map them.

The goal when mapping the VNs is to satisfy all the posed constraints while minimizing the

cost of the physical components subsets chosen to map the VNs demands. For generating

the benchmark-instances, the authors used real network topologies to model the physical

networks instead of relaying on random graphs, and they used different classes of virtual

networks to model possible use-cases. Four different categories were used to represent cases

in which VNs have different sets of requirements regarding B\íV, delay, and nodes CPU: (i)

web sI ice for low B\íV requirements, short delays, and no specific CPU requirements, (ii)

CHAPTER 3. RELATED \íVORK: NET\íVORK VIRTUALIZATION 67

stream slice for medium to high B\íV requirements, no delay bounds, and 3 processing units

per routed bandwidth, (iii) Peer-ta-Peer (P2P) slice for medium B\íV and CPU requirements,

and no delay bounds, and (iv) VaIP (Vaice aver Internet Protacal) slice for medium B\íV and

delay requirements, and high CPU requirements. Different topologies were used to simulate

the VNs sI ices mentioned above, for example, the web sI ices were modeled by a star graph,

where the central no de and the leafs nodes represent the web server and the customers

respectively. In the stream slice, the network was modeled with a random tree graph, where

the tree root is the video source, the leafs are the customers and the intermediate leafs

between the root and the leafs split the stream and forward only the stream related to the

channel being watched by the related customer. In the P2P sI ice and the VoIP slice, the

network structure was generated by the small_ world _ iterator of the boost graph library.

An example of the generated topologies in the four sI ices case is illustrated in Figure 3.8, the

example is set for networks of 5 nodes. The mapping problem was formulated in the shape

of a Mixed Integer Program and the MIP was solved using CPLEX [bmc14]. Basic findings

of this work are: (i) finding the optimal solution for more than 74% instances was reachable

in less than one hour; (ii) the biggest influence on the instance hardness was the topology

map chosen to create the instance; and (iii) large problem instances were not harder to solve

than smaller instances.

(a)Web

(c) P2P

(b) Stream

0~

\ .---lJ
~
(d)VoIP

Figure 3.8 ExampIes of generated sI ices of size 5 [IRll]

In [GH16], Ghazisaeedi, et aI. propose a novel energy-efficient embedding method, named

EnergyMap, that maps heterogeneous MapReduce-based virtual networks onto a heteroge

neous data center network, that also controls the incast queuing delay caused by incast

traffic, where MapReduce is a cloud computing paradigm that is widely deployed in many

data centers. According to the authors, the incast problem in Virtual Data Centers (VDCs)

is different from the incast problem in non-virtualized (traditional) data centers. During

a VDC embedding process, a specific amount of bandwidth capacity is allocated to each

CHAPTER 3. RELATED \íVORK: NET\íVORK VIRTUALIZATION 68

virtual link in substrate paths. The traffic flows in the allocated paths are limited to their

assigned bandwidth capacity. Hence, the incast problem might happen when the allocated

substrate paths become congested, resulting in a longer queuing delay in the virtual link.

According to the authors, this problem is significantly different from the case when incast

happens only in a single bottleneck physical link of a non-virtualized data centers. Ener

gyMap method aims at finding a mapping for every VN such that the data center network's

total energy consumption (by physical servers, physical switches/routers, and physicallinks)

is minimized. the method also controls the incast queuing delay according to a given maxi

mum tolerable queuing delay for a virtual link. The embedding approach allows embedding

computation-based virtual nodes on multiple physical servers as they may need parallel pro

cessing, whereas other kind of virtual nodes are mapped on one single physical switch/router.

In order to control the introduced incast queueing delay, it is required to find the end-to-end

queuing delay for incast traffic pattern in the substrate path allocated to every virtuallink,

be it a link that terminates at a splitted or unsplitted virtual node. The authors adopt

the assumption that the physical nodes do not block the traffic, thus the reason for traffic

delay would happen on the links because of limited bandwidth which are defined by the link

bandwidth capacity. The end-to-end incast queuing delay in the substrate path could be

calculated by knowing the amount of allocated traffic capacity to every virtual link that is

mapped to a physical link composing this path. The incast queueing delay is influenced by:

i) the choice for mapping the end virtual nodes, since the amount of bandwidth allocated to

the virtual links are proportional to the assigned capacity of its end virtual nodes. And ii)

the allocated substrate path to each of the virtual links adjacent to the end virtual node.

In order to control the introduced incast queueing delay, it is required to find the end-to

end queuing delay for incast traffic pattern in the substrate path allocated to every virtual

link that terminates at a splitted and mapped reducer virtual node: - Most of today's

switches/routers are internally non- blocking. Therefore, traffic can only be blocked by

limited bandwidths of output ports which are defined earlier by the link bandwidth capacity.

- \íVe model the queue of an allocated bandwidth capacity to a virtuallink in a substrate link

by M/M/I queue. - According to Jackson Networks theorem and because we do not split

the generated traffic of an allocated virtual node, the end-to-end incast queuing delay in the

substrate path could be calculated by knowing the amount of allocated traffic capacity to the

virtual link in each physical link over the substrate path. - Since the amount of bandwidth

we allocate to the virtual links are proportional to the assigned capacity of its end virtual

nodes, the way we split reducer virtual nodes impacts the incast queueing delay. - Besides,

the substrate no de which we map the splitted reducer virtual no de onto, and accordingly the

allocated substrate path to each of the adjacent virtual links, also may influence the incast

queuing delay. Clearly, this limits the leveI of freedom regarding energy-efficient embedding

of the VNs, and may affect the energy saving rate. Following the above discussion, we can .

CHAPTER 3. RELATED \íVORK: NET\íVORK VIRTUALIZATION 69

Detailed formulation is omitted due to the size limitation. The formulated MIDCP is a type

of VN embedding problem. Simulation results show that the proposed approach i) saves

energy more than any existing VNs energy-efficient embedding method that do not allow

virtual no de splitting; ii) controls the incast queueing delay; and iii) illustrates the influence

of controlling the incast queueing delay on energy saving rates.

3.4.6 Miscellaneous requirements

Besides the above mentioned applications requirements, some works were concerned with:

Routing requirements- for example, [TEAll] addresses the problem ofVNs embedding

considering different SLA (the work details are given in 3.4.2). The authors propose a model

in the shape of MIP, whose objective function aims at minimizing both the B\íV consumption

and the routing cost. Another work [IRll] considers the routing capacity of the SN nodes,

i.e., each physical no de is considered with a maximum value ofrouting traffic, and the traffic

passing through it should not pass this value (more details of this work can be found in

3.4.5).

Location requirements- where for certain virtual routers, subsets of the physical nodes

only are candidates for the embedding. For example, virtual router X cannot be mapped

on any of the SN nodes, rather, it can be mapped on one of the nodes of the subset X that

is composed of 10 routers out of the SN nodes. This happens when clients request virtual

networks to provide connectivity between two or more defined geographicallocations. Among

the works that considered location constraints is [BOB+12a] (more detailed in 3.4.3).

Delay variation requirements - Virtual multicast networks are expected to support

many real-time applications, such as video-conferencing, distributed database replication,

and online games. These applications require that packets are received by the destinations

within a specified delay bounds, and the delay difference of packet receipts at multi pIe

destinations should be minimal. An example of a system that is attentive to delay variation

is a multi-cast system studied by [Z\íVJYlO]. This system consists of one sender and several

receivers, where a maximum delay variation is allowed between the times of receiving the

sent message by each pair of receivers. Detailed about this work can be found in 3.4.5.

3.4.7 Synchrony requirements

In our work, we propose and argue that virtual networks and the virtual networks em

bedding process offer both abstractions and techniques to support applications with Hybrid

Synchrony demands, as detailed in Section 2.5. To the authors best knowledge, this is undis

cussed in the VN field and, as detailed in Chapter 2, of paramount importance to host a

prominent class of distributed systems. This has led to the abstraction of new type of VNs,

CHAPTER 3. RELATED \íVORK: NET\íVORK VIRTUALIZATION 70

we name it The Hybrid Synchrony Virtual Networks, abbreviated to HSVNs.

By revising the literature on the topic of VNs embedding; we note the absence of em

bedding solutions in the literature that consider the synchrony property in applications,

which we need for our work to attend DSs with hybrid synchrony. This gap led us to the

development of an embedding framework that handles applications with hybrid synchrony

constraints.

What are HSVNs

They are virtual networks that have subsets of nodes and links that obey time bounds

for processing and communication. This abstraction put us to meet three main aspects

associated: (i) the design of SN suitable for HSVNs, since VNs inherit properties that only

exist in the underlying infrastructure, and (ii) suitable efficient embedding process for the

HSVN.

Although HSVN can run on fully synchronous SN, this decision would have to pay the

excess in an unneeded cost, since even asynchronous virtual nodes and links will be mapped

on synchronous physical ones. \íVe argue that hybrid synchronous SN, combined with a

suitable embedding, is capable to answer the synchrony requirements in an economic manner.

Hybrid synchronous SNs have two classes of nodes: (i) synchronaus nades with functioning

time guarantees, achieved through the implementation of periodical real-time tasks, and (ii)

asynchronaus nades that have no timely guarantees. Analogously, two classes of physical

links are available: (i) synchronaus links that have time-bounded messages transmission

delay, achieved through the implementation of QoS policies and admission control, and (ii)

asynchronaus links that have no timely guarantee.

Two types of HSVNs can be distinguished, inspired by the two types of hybrid DSs (see

2.3.1 and 2.3.2):

1. Space-HSVNs: where the virtual networks are composed of synchronous and asyn

chronous components, where both types of components maintain their synchrony status

during the system functionality. The Space-HSVNs will be discussed in details in a

separated chapter, that is Chapter 4.

2. Time-HSVNs: where the virtual networks are composed of subsets of nodes and links

that change their synchrony status over time (i.e., synchronous resources become asyn

chronous and vice versa). The Time-HSVNs will be discussed in details in a separated

chapter, that is Chapter 6.

CHAPTER 3. RELATED \íVORK: NET\íVORK VIRTUALIZATION 71

Table 3.1 Taxonomy of works on virtual networks mapping

Main constraint work
- Zhu et aI., 2006, Algorithms for assigning
substrate network resources to virtual network components [ZA06]
- Lu et aI., 2006, Efficíent mapping of virtual networks

Topology requirements
onto a shared substrate [LT06]
- Yu at aI., 2008, Rethinking virtual network embedding:
Substrate support for path splítting and migration [YYRC08b]
- Li et aI., 2015, The study of Dynamic Topology
Remapping in Virtual Network Embedding [LZWI5]
- Trinh et aI., 2011, Qualíty of service using careful overbooking for
optimal virtual network resource allocation [TEA 11]

BW and CPU constraints
- Botero et aI., 2013 Optimal mapping of virtual networks
with hidden hops [BHFdMI3]
- Hsu et aI., 2012, Virtual Network Mapping Through Path
Splítting and Migration [HSWYI2]
- Bays et aI., 2012, Security-aware Optimal Resource Allocation

Security requirements
for Virtual Network Embedding [BOB+12a]
- Wang et aI., 2016, Secure virtual network embedding to mitigate
the risk of covert channel attacks [WWG+16]
- Yu et aI., 2011, Cost efficíent design of survivable virtual
infrastructure to recover from facílíty no de faílures [YAQSll]
- Rahman et aI., 2013, SVNE: Survivable Virtual Network Embedding
Algorithms for Network Virtualízation [RBI3]
- Chen et aI., 2010, Resílient virtual network service provision

Resilience requirements in network virtualízation environments [CLW+lO]
- Yeow et aI., 2010, Designing and embedding relíable
virtual infrastructures [YWKI0]
- Houidi et aI., 2010, Adaptive virtual network provisioning [HLZ+lO]
- Ghaleb et aI., 2016, Surviving Multiple Faílures in Multicast
Virtual Networks with Virtual Machines Migration [GKA+16b]
- Zhang et aI., 2010, Mapping multicast service-oriented virtual
networks with delay and delay variation constraints [ZWJYI0]

Delay requirements
- Infuhr et aI., 2011 Introducíng the virtual network mapping problem
with delay,routing and location constraints [IRll]
- Ghazísaeedi et aI., 2016, EnergyMap: Energy-efficíent embedding of
MapReduce-based virtual networks and controllíng incast queuing delay [GHI6]
- Trinh et aI., 2011, Qualíty of service using careful overbooking for optimal

Routing requirements
virtual network resource allocation [TEAll]
- Infuhr at aI., 2011, Introducíng the virtual network mapping problem
with delay, routing and location constraints [IRll]

Location requirements
- Bays et aI., 2012, Security-aware Optimal Resource Allocation
for Virtual Network Embedding [BOB+12a]

Delay variation requirements - Zhang et aI., 2010, Mapping multicast service-oriented virtual networks
with delay and delay variation constraints [ZWJYI0]

3.5 Review on the VNE difficulties

After surveying existing work on VNs resource allocation in the literature, we identify the

following major difficulties (not limited to them):

• problem complexity: which scales with the increment of the problem size, be it with

the increment in the VNS andj or the SN size, or be it the constraints that need to

CHAPTER 3. RELATED \íVORK: NET\íVORK VIRTUALIZATION 72

be considered while the mapping processo For example, mapping virtual networks with

topology constraints alone is less complex than mapping VNs with topology, CPU and

B\íV constraints. The problem complexity affects directly the computational time, mak

ing the process of finding the optimal solution for VNs mapping demands long time. For

example, in [BOB+12a], mapping some VNs demanded time in the order of 24 hours.

This situation motivated the development of heuristics for VNs mapping, for example

[ZA06]. Even though heuristics speed up the embedding computation time, but this is

with the cost of not reaching the optimal solution. Yet, for some applications, a quick

semi-optimal VNs mapping is more preferable than a slow optimal one;

• online VNs mapping: this is when the VNs are born, remain for certain time, then

after they are dead. This cycle demands allocating physical resources for certain time

interval, then after, free these resources once the VNs are dead, in order to be able to

use them again. The complexity of this process increases in case it involved remapping

the alive already mapped VNs according to the currently available resources, which is

changeable with the flow on the VNs arrival online;

• dynamic VNs demands: this is when the VNs demands change over time (and not the

VNs number, which is the previous item). In this case, the initial VNs mapping should

be done considering long-terms characteristics (mapping in worst case), later on, the

initial mapping will be adapted to shorter-terms based on the current requirements.

This adaptive mapping is done in order to minimize the mapping cost, because the

initial mapping (mapping in worst case) might result in reserving resources that become

not used hereafter with the change of the VNs demands. Possible way to achieve this

adaptive mapping is to apply the principIes of the feed-back control theory.

Summary

In this chapter we reviewed the literature on the topic of networks virtualization: the VNs

definition, VNs properties, and the VNs embedding problem (VNE). \íVe classified the works

on the VNE field based on the application constraintsjrequirements, for example, topology,

security, and resilience constraints.

By revising the literature on the topic ofVNE, we note the absence of embedding solutions

in the literature that consider the synchrony property in applications, which is of paramount

importance to host a prominent class of distributed systems, the hybrid synchronous DSs,

as formerly detailed in Chapter 2. This gap led us to the development of an embedding

framework that handles applications with hybrid synchrony constraints, as will be detailed

in the next two chapters.

CHAPTER 3. RELATED \íVORK: NET\íVORK VIRTUALIZATION 73

In Chapter 4, we will address the Space-HSVNs, they are virtual networks with hybrid

synchrony in space, addressed to HSDS in space, and we will propose an embedding model

to handle the resources allocation problem in this kind of VNs. Analogously, in Chapter 6,

we will address the Time-HSVNs, they are virtual networks with hybrid synchrony in time,

addressed to HSDS in time, and we will propose an embedding framework to handle the

resources allocation problem in this kind of VNs.

74

CHAPTER 4
Space-HSVNs embedding

I
n this chapter we define the Hybrid Synchronous Virtual N. etworks in Space (Space

HSVNs), we propose a suitable embedding mo deI for two types of Substrate Network

(SN): i) Settled SN (S-SN) and ii) configurable SN (C-SN). \íVe start this chapter by

defining the Space-HSVNs, then we locate our work among others in the literature, finally

we propose an embedding mo deI for Space-HSVNs on both S-SN and C-SN.

4.1 Space-HSVNs: definition

Formerly in this thesis, Section 2.3.1, we referred to distributed systems that demand syn

chrony in space during the system life, in other words, they demand certain elements (i.e.,

nodes and links) to behave synchronously while others may behave asynchronously during

the system life. \íVe assume that this kind of systems are supported by virtual networks that

reflect the space synchrony nature. \íVe name this type of VNs the Space Hybrid Synchronous

Virtual Networks, abbreviated to Space-HSVNs.

The Space-HSVNs are virtual networks that carry all the common properties of VNs

[CBlO], but in addition, they have subsets of nodes and links that obey time bounds for pro

cessing and communication. Both types of components maintain their synchrony status dur

ing the system functionality, i.e., the synchronous nodes and links remain synchronous during

the system execution time, and the asynchronous nodes and links remain asynchronous (pro

vide no synchrony guarantees). The Space-HSVNs are addressed to host distributed systems

with hybrid synchrony in space.

4.2 Work positioning in the literature

Revising the literature in the topic of VNs mapping, we find that our work is nearer to

those who were concerned with delay constraints, see Section 3.4.5. For example, Zhang et

aI. [Z\íVJYlO] propose a heuristic algorithm for mapping virtual multi-cast service-oriented

networks subject to delay and delay variation. They consider SNs composed of links with

maximum delay. Their work benefits real-time and interactive applications, where packets

CHAPTER 4. SPACE-HSVNS EMBEDDING 75

are supposed to be received at the destination within specific time bounds, and the delay

difference of packets reception at multiple destinations should be minimal, besides the aim

of minimizing the mapping cost, where the cost is defined as the sum of total substrate

resources (e.g. CPU and B\V) allocated to the multi-cast network. A sliding window method

is proposed to construct a set of feasible paths and solve the mapping problem based on the

feasible paths with the goal of minimizing the cost and load balancing, where the cost is

defined as the sum of total substrate resources (e.g. CPU and B\V) allocated to the multi

cast network.

Inführ et aI. [IRll] addressed the VNs mapping problem with delay constraints besides

routing and location constraints. The SN considered is composed of links with maximum

delay, and nodes that have maximum routing capacity and location constraints. Four differ

ent categories were used to represent cases in which VNs have different sets of requirements

regarding B\V, delay, and nodes CPU: (1) web slice for low B\V requirements, short delays,

and no specific CPU requirements, (2) stream slice for medium to high B\V requirements,

no delay bounds, and 3 processing units per routed bandwidth, (3) P2P slice for medium

B\V and CPU requirements and no delay bounds, and (4) VaIP slice for medium B\V and

delay requirements, and high CPU requirements.

The study we present about space-HSVNs is distinct from the aforementioned works

in the following aspects: (1) we consider the delay constraints (or time bounds) on both

links and nodes, not only links, since in the considered class of DSs some links should

have time guarantees in delivering the messages, and some nodes should be performing

real-time tasks; (2) a physical path is considered synchronous not only when its links are

synchronous, rather the path's intermediate nodes should be all synchronous as well, since

they play role in the routing process, impacting the source-destination delay; (3) the mapping

model we propose aims at optimizing the usage of the synchronous resources whose building

cost is high comparatively. For example, some VNs sI ices adopted in [IRll] had no delay

requirements, yet the SN considered had no distinction in kind of resources, which results in

an unneeded cost, and (4) unlike other works, the SN we consider is hybrid in its components

synchrony. Some nodes and links have time bounds and others do not, which is suitable for

DSs applications that have hybrid synchronous requirements.

4.3 The Substrate Network for space-HSVNs

To map VNs with hybrid synchrony requirements, the Substrate Network (SN) should be

hybrid synchronous as well. The reason is that, the VNs cannot reach any functionality

unless exists in the underlaying infrastructure, from where they inherit it [CB09].

\Ve assume the existence of certain mechanisms that guarantee building physical network

CHAPTER 4. SPACE-HSVNS EMBEDDING 76

elements (nodes and links) that behave synchronously. These mechanisms can be related to

the type of physical materiaIs used, or to the procedures followed for configuring them, such

as admission control and Quality of Service (QoS) policies. Studying the exact mechanisms

for building synchronous resources is out of the scope of our work.

\\Te distinguish between two types of SNs that provide hybrid synchrony:

Settled Substrate Network (S-SN): has two classes of nodes; (i) synchronous nodes

with functioning time guarantees, achieved through the implementation of periodical real

time tasks, and (ii) asynchronous-nodes that have no time-bounded guarantees. Analogously,

two classes of physical links are available: (i) synchronous links that have time-bounded

messages transmission delay, achieved through the implementation of Quality of Service

(QoS) policies and (ii) asynchronous links that have no time-bounded guarantee. In a settled

SN, the physical resources synchrony status is static, predefined, independently of the virtual

networks demands. In the embedding mo deI detailed later, the synchrony state of a S-SN

components is an input parameter of the model.

Configurable Substrate Network (C-SN): where the SN components (i.e., nodes

and links) have no synchrony orientation initially, and both can receive configuration process

that turns them to become synchronous or asynchronous. In a configurable SN, the physical

resources synchrony status is dynamic, dependent of the virtual networks demands. In this

case, we consider the synchrony demands on the HSVNs as an input for the embedding model.

\\Tith this information, the embedding mo deI determines a sufficient number of physical

synchronous components, and their location on the SN, so that the VNs requirements are

satisfied.

\\Te don't claim that one type of a SN (i.e., S-SN or C-SN) is more important than the

other type, because both are of equal necessity. In fact, the infrastructure provider is the

player who determines which embedding model is to be adopted, based on the SN type he

built (i.e., settled or configurable).

4.4 Graph based example for Space-HSVNs embedding

After characterizing both the Space-HSVNs and the SN suitable to support the DSs with

hybrid synchrony in space, we drive our effort to the resources allocation problem. How

to map the Space-HSVNs on both (i) a settled substrate network (S-SN) and on (ii) a

configurable substrate network (C-SN)? The rest of this chapter will be about proposing a

suitable embedding mo deI for both cases. Yet, at this stage of the thesis we present a sim pIe

graph-based example to see Space-HSVNs mapped on top of a hybrid synchronous SN in

space (be it S-SN or C-SN). \\Te will just present the illustrative graph, to allow the reader

to grasp the concept, and we will not enter now in details about the way for solving the

CHAPTER 4. SPACE-HSVNS EMBEDDING

embedding problem.

SN ~-.,'~~----+---r-----~~yY~~y~Y~

: " 10°0::~~~,::::L2ã::::~:::~~:::::-/~-;-~-~;-~-/~-~0
1009: " r; ______ d :

I ";-J:, 20'" 20 ' __ ----- c 20 100'" :
, : :40 ' __ ---- 100 ',20,
30: :' _- a - I 30'" :
, : -- 20----- 100 O I O ", :

1001f:;::: ::: ::-______ 19_ _ _ _ _ _ _ _ _ _ _ _ ~ __________ --3~_ - - - - - - - - - - - --@
\V 100 100

VN I links SN path VN2 links SN path

(fdl , fd2) (a, b) (pal,pa2) (d, c)

(fdl , fd3) (a, e), (e, d)

(fdl , fd4) (a, c)

(fd2, fd3) (b,g), (g,d)

(fd2, fd4) (b, h), (h, a), (a, c)

(fd3, fd4) (d, c)

• Sync. nade

O A,~:vnc. nade

Sync. link

A,\ync. link

N Link demand

N CPUdemand

VN3 links

(pal,pa2)

(paI, pa3)

Figure 4.1 - Illustrates figure for Space-HSVNs embedding

4.5 Space-HSVNs embedding model on S-SN

77

SN path

(h,v)

(h, e)

Bellow we introduce the variables definition, followed by the mathematical embedding model.

4.5.1 Variables definition

The substrate network is represented by an undirected graph G(N, L), composed of a finite

set of physical nodes N connected through a finite set of physical links L : N X N. The set

N is given by N s UNa, where N s and Na contain all the synchronous and asynchronous SN

nodes, respectively. Similarly, L is given by Ls U La.

The virtual network number k is given by V N k , belonging to the finite set of virtual

networks VN. VNk will be presented by an undirected graph Gk(Nk, L k), where N k =

N k U N k and L k = L k U L k s asa'

We consider that there is a cost c(i, j) for one unit of traffic going through the physical

link (i, j) E L. Analogously, c(i) is the cost for processing one unit of traffic in no de i E N.

c(i, j) and c(i) are of higher value if the link and no de were synchronous. Synchronous

physical resources are more costly than the asynchronous ones. We turn this trade off in our

CHAPTER 4. SPACE-HSVNS EMBEDDING 78

work such a way that we consider the cost of passing one unit of traffic in a synchronous

link and the cost of processing it in a synchronous no de is ten times more costly than doing

that on asynchronous no de and link.

A binary function sync(i) expresses the SN nodes synchrony: sync(i) = 1 if i E N s ,

otherwise sync(i) = O (i.e., i E Na). Similarly, sync(i,j) expresses the SN links synchrony.

Functions sync(ik) and sync(ik, jk) indicate the virtual nodes and links synchrony respec

tively (ik E N k and (ik,jk) E L k).

Besides synchrony, two other attributes are considered for the SN and VN elements:

nodes CPU, and links bandwidth (BW). The syntax for those attributes on the SN and

VN respectively are: cpu(i), bw(i,j), cpu(ik), and bw(ik,jk).

Finally, we define the output variables for our mathematical model. The values of these

variables illustrate the allocation of the physical resources to the virtual demands, they are:

a binary function J(ik, i) that expresses whether no de i E N maps no de ik E N k, and a

binary function p(ik, jk, i, j) that expresses whether the physical link (i, j) E L is part of the

path that maps the virtual link (ik, j k) E L k.

Table 4.1 provides a list of variables definition for Space-HSVNs embedding model.

4.5.2 Embedding model

\Ve formulate the space-HSVNs mapping problem in the shape of an Integer Program (IP)

[Sie02], consists of two blocks: the objective function and the embedding constraints as

detailed bellow.

Mapping objective: minimize

LVVNkEVN LV(ik)ENk LV(i)EN(J(ik, i) . c(i) . cpu(ik))

+ LVVNkEVN LV(ik,jk)ELk LV(i,j)EL(P(ik,jk, i,j)
,c(i,j)· bw(ik,jk))

(4.1)

The Objective Function (O.F.) we consider is inspired from [Z\VJY10], which is to min

imize the total resources used (e.g., B\V and CPU). \Ve modify the O.F. with the goal of

minimizing the use of synchronous resources besides the B\V and CPU. For this purpose,

c(i) and c(i,j) are inserted as in Equation (4.1). The mapping constraints (detailed next)

will allow mapping the synchronous virtual demands on top of synchronous physical re

sources, and asynchronous virtual demands on top of either synchronous or asynchronous

physical resources prioritizing asynchronous physical resources which is guaranteed by this

O.F. In other words, mapping asynchronous virtual demands on top of synchronous physical

resources will be considered as the last resource invested only before rejecting the demando

Mapping constraints-

CHAPTER 4. SPACE-HSVNS EMBEDDING 79

Table 4.1 List of variables definition for Space-HSVNs embedding model

Variables group symbol deseription
G(N, L) undireeted graph representing the SN

N the set of physieal nodes
N s the set of physieal synehronous node
Na the set of physieal asynehronous no de

L:NXN the set of physieal línks
Ls the set of physieal synehronous línks
La the set of physieal asynehronous línks
i a notation for a physieal no de i E N

(i, j) a notation for a physieal línk (i, j) E L
Substrate Network sync(i) the synehrony of physieal node i

sync(i) = 1 if i E N s
sync(i) = O if i E Na

sync(i, j) the synehrony of physieal línk (i, j)
sync(i,j) = 1 if (i,j) E Ls
sync(i, j) = O if (i, j) E La

cpu(i) the CPU of physieal no de i
bw(i, j) the bandwidth of physieal línk (i, j)

c(i) the eost for proeessing one unit of traffie in node i E N
c(i, j) the eost for one unit of traffie going through the physieal línk (i, j) E L
VN

k
VN"

G"(N", L")
N"
N;
N" a

L": N"XN"
L" s
L"

Virtual Networks a
i"

(i ,j")
sync(i")

sync(i" , j")

cpu(i)

bw(i" ,j")
CY(i", i)

Output variables
p(i", j" , i, j)

- Capacity constraints:

for every (i, j) E L

the set of ali virtual networks
the number of a virtual network that belongs to V N
The virtual network number k
undireeted graph representing V N"
the set of virtual nodes of V N"
the set of virtual synehronous nodes
the set of virtual asynehronous nodes
the set of virtual línks of V N"
the set of virtual synehronous línks
the set of virtual asynehronous línks
a notation for a virtual node i" E N"
a notation for a virtual línk (i ,j") E L"
the synehrony of virtual node i"

sync(ik) = 1 if ik E N:
sync(ik) = O if ik E N:
the synehrony of virtual línk (i", j")
sync(ik,jk) = 1 if (ik,jk) E L~
sync(ik,jk) = O if (ik,jk) E L~
the CPU of virtual node i
the bandwidth of virtual línk (i", j")
CY(i",i) = 1 ; node i E N maps node i" E N"
CY(ik , i) = O ; otherwise
p(i ,j", i, j) = 1 ; (i, j) E L is part of the path mapping (i", j) E L"
p(i k , jk, i, j) = O ; otherwise

p(i k
,/, i,j)' bw(ik,/) ::; bw(i,j) (4.2)

CHAPTER 4. SPACE-HSVNS EMBEDDING

for every i E N

- Nades mapping canstraints:

for everv V N k E V N ik E N k
" ,

for every VNk E VN, i E N

- Links mapping canstraint:

L J(i k
, i) = 1

lfiEN

L J(ik,i)::;l
lfikENk

for everv VNk E VN (ik J"k) E Lk i E N
" " ,

L p(ik,/, i,j) - L p(ik,/,j, i) = J(ik, i) - J(/, i)
IfjEN IfjEN

- Nades synchrony canstraints:

for everv V N k E V N ik E N k i E N " , ,

sync(ik) . J (ik, i) ::; sync(i)

- Links synchrany canstraints:

for every VNk E VN, (ik,jk) E Lk, (i,j) E L

sync(ik,/)· p(ik,/, i,j) ::; sync(i,j);

sync(ik, /) . p(ik, /, i, j) ::; sync(i) * sync(j);

80

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

The capacity constraint (4.2) assures that the total bandwidth of the virtual links,

mapped on paths that include a certain physical link, does not exceed the bandwidth ca

pacity of this physical link. Similarly, constraint (4.3) represents the equivalent restriction

regarding nodes CPU.

The no de mapping constraint (4.4) assures that each virtual no de is mapped, and only

once, on a physical node. \Vithout this constraint, and since the O.F. aims at minimizing

cost, then the optimizer might choose not to map any node, which is against the goal.

Constraint (4.5) assures that virtual nodes belonging to the same V N are not mapped on

the same physical node. This is to achieve load balancing besides improving the reliability,

since the unavailability of a SN no de will impact, at most, one no de on a given VN. This

procedure minimizes the number of virtual nodes prone to failure by a physical no de failure.

CHAPTER 4. SPACE-HSVNS EMBEDDING 81

For any virtual link (a, b), the links mapping constraint (4.6), adopted in [BOB+12a]

and [Z\VJYI0], assures the creation of a valid physical path. Because the right side of the

equation will be 1 and -1 for a and b respectively, meaning a will have an outgoing are and

b an ingoing one. For all other nodes on the SN, the right side of the equation will be zero,

thus the concatenation of ares will form a valid path.

The nodes synchrony constraint (4.7) assures that synchronous virtual nodes are mapped

only on synchronous SN nodes, whereas asynchronous virtual nodes are allowed to be mapped

on synchronous or asynchronous SN nodes. This is acceptable because the synchronous SN

nodes supply what the asynchronous ones do, but the reverse is not valido

Similarly, the links synchrony constraint is presented in (4.8). Note that the allocation of

synchronous physical resources for asynchronous virtual demands is done only if there are no

other possible options (physical asynchronous resources got exhausted). This is achieved via

minimizing the O.F. Finally, constraint (4.9) guarantees that when the intermediate physical

nodes on the synchronous physical path should be also synchronous. This is beca use these

nodes play role in the routing process, thus impacting the source-destination delay. After

solving the mathematical model, each virtual no de is mapped to one physical node, and each

virtual link is mapped to one physical path at maximum, where a physical path can be a

unique physical link or a concatenation of physical links.

4.6 Space-HSVNs embedding model on C-SN

Similarly to S-SN, we introduce the variables definition, followed by the embedding model.

4.6.1 Variables definition

The variables considered are the same detailed for the S-SN (see subsection 4.5.1), but the

SN synchrony is no more an input parameter to the embedding model, it is defined by the

mo deI output. In other words, sync(i) and sync(i, j) are output variables of the embedding

model, besides J(ik, i) and p(ik,jk, i,j). So, after solving the mathematical model, each

virtual no de will be mapped on a physical node, and the synchrony of this physical no de will

be determined, and each virtual link will be mapped on a physical path, and the synchrony

of the physical links that form this physical path will be determined. Determining the

synchrony status ofthe physical nodesjlinks can be achived, for example, by switching onjoff

a configuration technique able to configure the nodes jlinks as synchronous j asynchronous.

CHAPTER 4. SPACE-HSVNS EMBEDDING 82

4.6.2 Embedding model

The mapping constraints are the same ones considered for a S-SN (see subsection 4.5.1),

whereas the objective function is different. As aforementioned, the synchrony demands on

the HSVNs are considered as an input for the embedding processo \\Tith this information,

the embedding process determines a sufficient number of synchronous components, and their

location on the SN, so that the VNs requirements are satisfied. The mapping objective

aims at minimizing the synchronous resources made available by the SN, which is expressed

mathematically by the O.F. in (4.10).

C-SN Objective: minimize

Summary

LVVNkEVN LV(ik,jk)ELk LV(i,j)EL(P(i
k
, jk, i, j)

·bw(ik,jk)) + LViEN sync(i) + LV(i,j)EL sync(i,j)
(4.10)

In this Chapter we defined the Space-HSVNs. They are new kind of VNs that have syn

chronous subsets of nodes and links that obey time bounds for processing and communica

tion. Both types of components maintain their synchrony status during the system function

ality. The Space-HSVNs are addressed to host distributed systems with hybrid synchrony

in space.

The SN that supports Space-HSVNs is hybrid synchronous. \\Te distinguish between two

types of SNs that provide hybrid synchrony: i) Settled Substrate Network (S-SN) where the

physical resources synchrony status is static, predefined, independently of the virtual net

works demands. And ii) Configurable Substrate Network (C-SN): where the SN components

(i.e., nodes and links) have no synchrony orientation initially, and both can receive configu

ration process that turns them to become synchronous or asynchronous. In a configurable

SN, the physical resources synchrony status is dynamic, dependent of the virtual networks

demands.

\\Te treat the embedding problem for Space-HSVNs embedding with the two cases: i)

Space-HSVNs on S-SN, and ii) Space-HSVNs on C-SN. The mapping problem was formu

lated in the shape of an Integer Program for the two aforementioned cases.

In the next Chapter we evaluate the two proposed model for Space-HSVNs embedding.

83
CHAPTER

Performance Evaluation for

Space-HSVN

I
n this section, we run experiments that allow investigating the performance of the

proposed embedding approach of Space-HSVNs over both a settled SN (S-SN) and a

configurable SN (C-SN).

5.1 Space HSVNs over a settled SN

The parameters considered for the analysis of our model are: (i) the embedding cost; (ii)

the physical resources load; and (iii) the embedding time.

5.1.1 Workload and tools

The experiments scenarios were designed as a full factorial [Jai91], exploring all possible

combinations between the network parameters. Such choice of experiments was done by other

works like [BOB+12a]. Similar to [YYRC08a, BOB+12a], physical and virtual networks were

randomly generated. For this we used the BRITE tool (Boston university Representative

Internet Topology gEnerator) [MLMJ14] with \Vaxman mo deI [\Vax88]. \Ve implemented the

mathematical model with the ZIMPL language (Zuse Institute Mathematical Programming

Language) [Koc04], and we used the CPLEX optimizer [bmc14] to solve the Integer Program

(IP), running on a DELL XPS 8500, processor Intel(R) , Core(TM) i5-330P, CPU 3.10 GHZ

(Giga Hertz), Random Access Memory (RAM) 8.00 GB (Giga Byte), and operating system

(OS) \Vindows 8, 64 bits. Table 5.1 details the parameters of the twelve scenarios we

considered, divided into four groups: group A, B, and C.

In all the scenarios, the substrate network size was fixed to 25 nodes. Initially all CPUs

(Central Processing Unit) of SN nodes are free, and links Band \Vidth (B\V) is uniformly

distributed between 1-3 Gbps (Giga bit per second). 33% and 34% of the physical nodes

and links respectively were fixed to be synchronous on the SN.

\Ve ran scenarios divided into three groups, A, B and C, with VNs total size of 12, 24,

and 36 nodes in each group respectively. The VNs were generated with 3, 4, or 5 nodes each,

with CPU demands 10%, 15%, or 25% of the SN nodes CPU capacity, and B\V demands

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 84

Table 5.1 Space-HSVNs with S-SN scenarios parameters

scenario AI I A2 I A3 I A4 BI I B2 I B3 I B4 CI I C2 I C3 I C4
VN size 12 nodes 24 nodes 36 nodes

VN sync. 0% I 30% I 60% I 100% 0% I 30% I 60% I 100% 0% I 30% I 60% I 100%
each VN size 3,4,5 nodes

VNsBW uniforrnly distributed: 100Mbps-1Gbps
VNsCPU 10,15,25 % of SN nodes CPU

SN size 25 nodes
SN sync. 33% of the nodes and 34% of the links
SNBW uniforrnly distributed: 1 Gbps-3 Gbps
SN CPU nodes fully free initially

uniformly distributed between 100 Mbps (Mega bit per second) and 1 Gbps.

The SN and VNs size was chosen of small scale to allow solving the embedding model

during a reasonable time, allowing us to evaluate the model performance.

VNs synchrony demands were increasing from scenario 1 to scenario 4 of each group:

• VNs of 0% synchrony demands in scenario 1 of each group (i.e., experiments AI, B1,

C1);

• VNs of 30% synchrony demands in scenario 2 of each group (i.e., experiments A2, B2,

C2);

• VNs of 60% synchrony demands in scenario 3 of each group (i.e., experiments A3, B3,

C3);

• VNs of 100% synchrony demands in scenario 4 of each group (i.e., experiments A4, B4,

C4).

To perform a suitable analysis, each of the twelve scenarios (AI, ... , A4, B1, ... , B4,

C1, ... , C4) of Table 5.1 had its confidence leveI and interval calculated. Each scenario was

repeated 10 times, randomly generating both the SN and the VNs. For example, scenario

AI was repeated ten times (AIO, A11, A12, ... A19), scenario A2 was repeated ten times

(A20. A21, A22, ... A29). The same logic was applied to scenarios A3, A4, B1, B2, B3, B4,

C1, C2, C3, and C4.

\Vithin the same group (A, B, and C), the SNs and VNs generated were the same, but

the VNs synchrony was different. For example, experiments AIO, A11, ... A19 are with

distinct SN and VNs, whereas AIO, A20, A30, and A40 are with the same SN and VNs

topologies and attributes except for the synchrony demands which are 0%, 30%,60% and

100% in counterparts experiments respectively.

Experiments that reached an optimization gap that is less than 1 % were interrupted. Sim

ilar decision was taken by other researchers, for example in [BOB+12a] researchers stopped

the experiments that took more than 24 hours. For some applications, it might be that

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 85

reaching a semi-optimal embedding solution within a quick optimization time is more in

teresting than reaching an optimal embedding solution during too long time. The kind of

application and/or the clients requirements are the players for determining whether to stop

the optimization process or noto In our work, the majority of experiments reached the op

timal solution, and we interrupted the optimization process for few experiments when the

optimization gap became less than 1%.

\Vith ten readings for every scenario in Table 5.1, we achieved a total of 120 experiments.

During this chapter, we will use the term "scenario" referring to the twelve categories that

are in Table 5.1, and we will use the term "experiment" referring to the 120 experiments that

we ran (AIO, A11, C49).

A 90% confidence interval was then calculated for every scenario of the twelve in Table 5.1.

Equation 5.1 quoted from [LKOO] was used to calculated a 100(1 - 0:) percent of confidence

interval

X(n) =t= (tn - 1,1-a/2)(J(S2(n))/n) (5.1)

\Vhere:

• X (n) is the average reading for n observations;

• (1 - 0:) is the area of a density function for the standard normal distribution, limited

between the two criticaI points;

• t n - 1,1-a/2 is the upper 1-0:/2 criticaI point for the t distribution with n-1 observations.

These criticaI points are given in Table T.1 of the Appendix at the back of the book

[LKOO]. In our study, for 10 observations and with a 90% confidence interval, the value

of the criticaI point tn - 1,1-a/2 is equal to 1.83;

• S2(n) is the sample variance calculated by Equation 5.2

5.1.2 Results

S2(n) = 2]Xi - X(n)j2
n-1

(5.2)

The parameters considered for the analysis of our mo deI are: (i) the embedding cost; (ii)

the embedding time; and (iii) the physical resources load.

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 86

5.1.2.1 Embedding cost

The mapping cost, is a combination of the CPU and B\\T used. It is expressed by the mo deI

objective function, Equation (4.1).

Figure 5.1 depicts the interval of mapping cost for each of the twelve scenarios performed

with 90% confidence leveI. \\Te note down the following main observations:

Embedding cost

250

"<t
• exp.1 <

<:> • exp.2
x 200 D exp.3
~
~ D expA
.!
I::

~ CI)
c.> ISO I::
CI)

"O
;;:::
I::
o

~ c.> .
100 ti)

o
c.>
Cl -.!:

"O
1;1 50 CI)
..Q
E w

o+---~

GroupA Group B Group C

Figure 5.1 Embedding cost - Confidence interval

(i) \\Te do not notice overlaps neither in the intervals of the four scenarios within same

group (e.g., scenarios AI, A2, A3, and A4), nor within the counterpart scenarios in the

groups (e.g., scenarios A2, B2, and C2). This means that the confidence and intervallevels

chosen differentiate well the scenarios and allow to draw conclusions.

(ii) \\Tithin each group, an increment of the VNs synchrony requests results in an incre

ment in the mapping cost, for example, the cost interval for scenario Cl is [20xl04
, 23xl04

],

for C2 is [95xl04
, 1l0xl04

], for C3 is [107xl04
, 153xl04

] and for C4 is [207xl04
, 237xl04

].

This behavior is because the increase in the synchrony demands leads to the increase in the

synchronous physical resources needed to map these demands. And since the cost of the syn

chronous physical resources is higher in comparison with the asynchronous resources, then

the total embedding cost will increase. To define more accurately the increment pattern of

the embedding cost with the increment in VNs synchrony demands, we calculate the average

value of embedding cost for every scenario, see Table 5.2.

Figure 5.2 depicts the average values for the embedding cost versus the VNs synchrony

demands. \\Te note down the following observations:

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN

Table 5.2 Space-HSVNs with S-SN: average of embedding cost

Expe.
Ave. cost x 104

-.:t
<
O 240 'I""

X -U)

O
(J

Cl 180
c: :s
'O
Q)
.Q

120 E
Q)

.....
O
Q)
::J 60 -;;
>
Q)
C)
RI
lo. O Q)

>
<C

Figure 5.2

-...GroupA
.... GroupB

Group C

0% 30% 60% 100% VNS sync.

Space-HSVNs with S-SN: the change of average value for embedding

cost with the change of VNs synchrony demands

87

• In the first three scenarios of each group, the VNs synchrony increases linearly from

0% in exp.l, to 30% in exp.2, and to 60% in exp.3. In group A, the embedding cost

of these scenarios increases 27.7xl04 from AI to A2, and increases 17xl04 from A2 to

A3. Analogously, in group C, the embedding cost increases 80.7xl04 from Cl to C2,

and increases 27.5xl04 from C2 to C3. So, with a linear increment in VNs synchrony

demands, the increment in the cost was nonlinear. A possible interpretation for the

non-linear increment is that, the increase in the synchrony demands implies an increase

in the number of the synchronous virtual nodes and links that need to be mapped, but

the links mapping is not 1:1 mapping since a link can be mapped on a physical path

composed of severallinks. So, a linear increase in the VNs synchrony demands leads to

a quicker increase in the number of resources allocated, thus, in the mapping cost .

• In groups A and C, we notice that the increase in the cost from scenario 1 to scenario

2 is bigger than the increase in cost from scenario 2 to scenario 3. In group A, the cost

increased 27.7xl04 from AI to A2, which is more than the increment value 17xl04 from

A2 to A3. Also, in group C, the embedding cost increases 80.7xl04 from Cl to C2, more

than the increment value 27.5xl04 from C2 to C3. So, we say that, a transition from a

fully asynchronous VNs (i.e., exp.l) to hybrid synchronous VNs (i.e., exp.2) results in a

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 88

bigger increment in the embedding cost than the transition from hybrid asynchronous

VNs (i.e., exp.2) to another hybrid synchronous VNs with higher synchrony demands

(i.e., exp.3). The reason is that the change from fully asynchronous VNs to hybrid VNs

will imply start reserving synchronous resources on the SN, whose cost is bigger when

compared to the asynchronous resources, and this would make the increment in the

embedding cost remarkable.

• Comparing the curve of group A and of group C in Figure 5.2, we notice that curve

group A is with smoother increment than the curve of group C that has higher jumps

from one scenario to another, and between C3 and C4 we notice a slope up. A possible

reason for this behavior is the comparative size of the VNs and the SN of each group. \\Te

remember that the mapping mo deI maps the asynchronous virtual demands on either

synchronous or asynchronous physical resources, prioritizing the asynchronous ones as

long as they are available. In group A, where the VNs were of 12 nodes, smaller than the

SN, there were available asynchronous physical resources for the asynchronous virtual

demands, so, there won't be a need for reserving synchronous SN resources for the

asynchronous VNs demands. Moreover, in group A, the virtuallinks can be mapped on

short physical paths (possibly one physical link) due to the resources availability. This

would make the cost curve of group A increases smoothly. \\Thereas in group C, the

VNs are with 36 nodes, bigger than the SN, this would load the physical resources more,

leading to (i) the unavailability of asynchronous physical resources, pushing to the case

of mapping asynchronous virtual demands over synchronous physical resources, and (ii)

virtuallinks will be mapped on longer physical paths (making routes through available

SN links). These two reasons would make the cost curve of group C increases sharply.

• In group B, the embedding cost increases 49.4xl04 from Bl to B2, and increases 43.5xl04

from B2 to B3, nearly the same values. So, with a linear increment in VNs synchrony

demands, the increment in the cost was linear (or very near to be linear). It calls the

attention that both the SN and the VNs in group B were of proximate size, i.e., SN of

25 nodes and VNs of 24 nodes.

• The three curves representing groups A, B, and C do not cross together, because at a

fixed VNs synchrony demands (i.e., 0% , 30% , 60% ,and 100%), the embedding cost

will be bigger for the VNs of bigger size, making the curve of group A the lowest and

of curve C the highest.

\\Te continue our observations about Figure 5.1.

(iii) By comparing the counterpart scenarios of the three groups, we notice that, with an

increment in the VNs size from 12 nodes to 24 then 36 in groups A, B, and C respectively,

there is an increment in the mapping cost. For example, see the intervals that represent

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 89

the cost for scenarios A3, B3, and C3: [50xl04
, 55xl04

], [100xl04
, 118xl04

], [101xl04
,

153xl04
] respectively. To define more accurately the increment pattern of the embedding

cost with the increment in VNs synchrony demands, we draw Figure 5.3 that depicts the

average values for the embedding cost (taken from Table 5.2) versus the VNs size. \\Te note

down the following observations:

• < o ,- 240
)(-filo
o
u
C'l 180
c
~
"O
cp
.!l
E 120
Gl-
~
O
c»
~

60 'ia
>
G
C'l
m
c»
>

..;

<C

Figure 5.3

-e- exp.l

-e- éXp.2

exp.3

...... exp.4

• • ..
12 24 36 VNs size (nodes)

Space-HSVNs with S-SN: the change of average value for embedding

cost with the change of VN s size

1. In scenarios 1, 3, and 4, the VNs size increases linearly from 12 nodes in group A,

to 24 nodes in group B, to 36 nodes in group C, while the embedding cost increases

non-linearly. For example, the embedding cost increases 8.8xl04 from AI to Bl, and

increases 5.2xl04 from Bl to C1. Analogously, the embedding cost increases 57xl04 from

A3 to B3, and increases 20.5xl04 from B3 to C3. Also, the embedding cost increases

81.3xl04 from A4 to B4, and increases 61.3104 from B4 to C4. A possible interpretation

for the non-linear increment is that, the increase in the VNs size implies an increase in

the number of virtual nodes and links that need to be mapped, but the links mapping

is not 1:1 mapping since a link can be mapped on a physical path composed of several

links. So, a linear increase in the VNs size leads to a quicker increase in the number of

resources allocated, thus, in the mapping cost.

2. In scenario 2, the embedding cost increases 30.5xl04 from A2 to B2, and increases

36.5xl04 from B2 to C2, nearly the same values. So, in scenario 2 of every group, with

a linear increment in VN s size, the increment in the cost was linear (or very near to be

linear). It calls the attention that, in scenario 2, the SN and VNs are with proximate

synchrony percentage (i.e., 33% for the SN and 30% for the VNs).

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 90

\Ve continue our observations about Figure 5.1.

(iv) It is true that hybrid synchronous VNs can be mapped on a fully synchronous SN

(since synchronous physical resources provide what asynchronous resources do), but in our

work we argue that to map hybrid synchronous VNs in an economic manner we need (1)

a hybrid synchronous SN, and (2) a suitable embedding model that considers the hybrid

synchronous nature of both SN and VNs (which we proposed formerly). In our experiments,

if the SN was fully synchronous, then synchronous physical nodes and links will be assigned to

the virtual nodes and links independently of their synchrony requirements, which will result

in un un-needed cost, in other words, in an uneconomic embedding solution. In scenario 4

of every group, the VNs were fully synchronous and the SN was hybrid synchronous. In case

our SN was fully synchronous, then the embedding cost for mapping the VNs in scenarios

1, 2, and 3 will be approximately the embedding cost illustrated in scenario 4, because in

scenario 4 all the VNs nodes and links were embedded on the synchronous subnetwork of

the hybrid SN. Scenario 4 of each group will be the base for cost comparison since it can

simulate the case where all the SN nodes and links provide time bounds. For example, the

SN considered by Zhang et aI. in [Z\VJYI0] can be viewed as a fully synchronous SN since all

its resources provide time bounds (whether the time bounds were high or law). Comparing

the three first scenarios within each group with the fourth one, we can say that our proposal

leads to mapping hybrid synchronous VNs in an economic way. That is, the SN can be used

in an optimized way to allocate these demands, the synchronous demands are mapped on

synchronous physical resources, and the asynchronous demands are mapped on synchronous

or asynchronous physical resources prioritizing the asynchronous ones as long as they are

available. For example, scenarios Cl, C2, and C3 depict the mapping of a hybrid VN with

0%, 30% and 60% synchrony demands respectively on a hybrid SN with 33% synchronous

resources. The mapping cost for these three scenarios were [20xl04
, 23xl04

] for Cl, [95xl04

, 1l0xl04
] for C2, and [107xl04

, 153xl04
] for C3. \Vhereas mapping the same VNs demands

of Cl, C2, and C3 on a fully synchronous SN, scenario C4, is subject to an extra un-needed

cost [207xe4 ,237xe4]. The cost in scenario 4 of each group is independent of the VNs

synchrony demands. Our conclusion is that hybrid VNs do not need fully synchronous SN,

rather a hybrid SN with suitable mapping is enough to allocate the needed demands, and

spares resources for future demands. The question that may rise at this phase is: what is

the minimum subnetwork of the SN that need to be synchronous to map certain given VNs?

The answer for this question led us to propose configurable SN detailed in Section 4.6 and

will be evaluated later during this Chapter.

Conclusions on the embedding cost: \Ve summarize the aforementioned observa

tions about the embedding cost for HSVNs over S-SN as the following: (i) The proposed

embedding mo deI considers the hybrid synchronous nature of VNs, mapping them onto a

hybrid synchronous SN in an economic manner, trying to spare the synchronous physical

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 91

resources whose building cost is expensive when compared to the asynchronous ones. (ii)

\Vith the increase in the problem size (be it through the increase in the VNs size or through

the increase in the synchrony demands), the mapping cost increases. (iii) A linear increase

in the VNs size andjor synchrony demands leads to a nonlinear increment in the embed

ding cost. (iv) \Vhen the VNs and the SN are with approximate size andjor synchrony

percentage, the linear increase in one of these parameters leads to a linear increment in the

embedding cost. \Vith the set of experiments we ran, we could not distract reasons behind

this last behavior (i.e., the behavior in item (iv)) , and investigating this point remains for

our future works.

5.1.2.2 Embedding time

The embedding time is the time needed by CPLEX to find an optimal solution for the

embedding problem. Figure 5.4 depicts the mapping time on a logarithmic scale for each of

the twelve scenarios performed with 90% confidence interval. \Ve note down the following

main observations:

100000

S'
.::

10000 ~
.'E.

~
,SI

IOOO .::

~
=
'" -g

;;:::
= o

100 o

'" E
~
Cl

=
10 :g

'" ..o
E
w

_ Snr.1
_ Snr.2

D Snr.3
D SnrA

Group A

Figure 5.4

Group B Group C

Embedding time - Confidence interval

(i) \Ve notice some overlaps in the embedding time intervals for some scenarios, for

example in group C there are overlaps observed between the three experiments C1, C2 and

C3. It is possible that repeating every scenario for 10 times resulted in a wide confidence

interval for the embedding time, and to have a narrower interval we needed to run every

scenario for a bigger number of times. Yet with the available set, we try to derive some

useful observations over the embedding time.

(ii) The confidence interval for the embedding time for scenario B3 had a negative part

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 92

[-153 , 915]. This is possible numerically, but not physically since we are expressing time.

Looking closely at the 10 experiments for scenario B3, we notice that the experiment B33

demanded an embedding time 2989.49 (sec.) which was much bigger than the other 9

readings that ranged between 21 and 356 seconds. \Ve consider the time value in B33 as

a noise that might distort conclusions, so we disconsider this reading, and calculate the

confidence intervals for B3 to become [29 , 152] seconds.

(iii) \Vithin the same group, the embedding time decreases from scenario 1 to scenario

4. For example, in group A: the embedding time interval was [25.07 - 32.07] seconds in AI,

[6.87 , 10.11] in A2, [3.91 , 7.85] in A3, and [1.77 , 2.93] in A4. Similarly, the embedding

time decreases in groups B and C from scenario 1 to scenario 4. The reason for this is that

the VNs synchrony increases from 0% in scenario 1, to 30% in scenario 2, to 60% in scenario

3, and to 100% in scenario 4. In other words, the VNs asynchrony decreases from 100% in

scenario 1, to 70% in scenario 2, to 40% in scenario 3, and to 0% in scenario 4. Remembering

that the SN adopted for our experiments is with 33% synchronous and 67% asynchronous

resources (the asynchronous physical subnetwork is bigger than the synchronous one), and

remembering that our developed embedding model prioritizes mapping the asynchronous

demands over asynchronous resources, then during the optimization process the space of

possible mapping solutions will decrease from scenario 1 to scenario 4 resulting in decreas

ing the embedding time. In scenario 1, the solutions space is the asynchronous physical

subnetwork which is a 67% of the SN. In scenario 4, the solutions space is the synchronous

physical subnetwork which is only 33% ofthe SN. Experiments 2 and 3 go gradually between

the two extremities. So, as the VNs synchrony increases the solutions space decreases, thus

the model variables decrease, and thus the time needed to find the embedding solution de

creases as well. It is important to mention that if the SN synchrony was chosen to be for

example 33% asynchronous resources and 67% synchronous resources, then the observation

about embedding time will be reversed: the experiments with more synchrony demands will

need more embedding time as the solution space will be wider. This observation drives the

attention to the impact of the SN synchrony not only on the embedding cost, as formerly

detailed, but as well on the embedding time.

(iv) By comparing the counterpart scenarios between the groups, we notice that the

embedding time increases with the increment in the VNs size. For example, the increment

in the VNs size from 12 nodes in scenario A2 to 24 nodes in scenario B2, and to 36 nodes in

scenario C2 results in increasing the embedding time as the following: [6.87 , 10.11] in A2,

[259.63 , 1257.41] in B2, and [9399 , 44230] in C2. The reason is that, bigger VNs means

more nodes and links to be mapped, this generates more variables in the embedding model,

and thus demand more optimization time for finding the embedding solution.

To define more accurately the change pattern of the embedding time with the increment

in VNs synchrony demands and size, we distract the average value (rounded values to the

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 93

neares ones) of embedding cost for every scenario, see Table 5.3.

Table 5.3 Space-HSVNs with S-SN: average of embedding time

Expe.
Ave. time (sec)

Figure 5.5 depicts the average values for the embedding time versus the VNs synchrony

demands, and Figure 5.6 depicts the average values for the embedding time versus the VNs

size. The figures are depicted on a logarithmic scale to improve legibility.

=ti
c:
o
()
q)

.!:2.
q)

E
:::
Ol
c:
1J
1J
(I)
.c
E
q) ... o
q)

::I
(11

>
q)

OI e
(I)

> «

Figure 5.5

•
10000

1000

100

10

0% 30%

_~ ___ . groupA
___ group B

-+ groupC

60% 100% VNS sync.

Space-HSVNs with SSN: the change of average value for embedding

time with the change of VNs synchrony demands

From Figure 5.5 and Figure 5.6 we note down the following observations:

1. \Vith a linear increment of VNs size, Figure 5.6, the curves representing the computa

tional time change in a semi-linear or hyperbolic manner on a logarithmic scale. This

means that on a linear scale these curves would be more sloppy. The reason for this

behavior is that, a small change in the embedding model input (i.e., virtual nodes and

links number) results in a big change in the mo deI variables that need to be computed.

For example, for a SN of 25 nodes, one more virtual no de in the model input would

result in 25 more variables to be computed by the embedding mo deI (CJ(ik, i)).

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN

..-,
"t:7
c:
o
o 100000
q)
(I) -(1)

.5 - 10000
C)

.5
"C
"C
(1)

1000
.o
E
41 - 100
O
Q)
:;,
«J
> 10
ID
Cl
ca
~

41
> «

Figure 5.6

12 24

.... exp.l

.... exp.2
- exp.3

.... exp.4

36 VNs size (nodes)

Space-HSVNs with S-SN: the change of average value for embedding

time with the change of VNs size

94

2. The optimization time for the scenarios in group A are within small range (27 second).

The reason is that in group A the VNs size is small, and the VNs synchrony difference

will not result in a remarkabIe difference in the computational time. Notice that A2

and A3 are nearly with the same computational time.

3. The optimization time for scenarios Cl, C2, and C3 is nearly the same. The reason

is that scenarios of group C are with big VNs size, most of them demanded much

optimization time, and most of them were interrupted at a gap that is Iess than 1%.

4. The optimization time for scenarios Bl and Cl is nearly the same. These scenarios are

with (i) VN s size that is equal or bigger than the SN, and (ii) both with no synchrony

requirements, so the asynchronous physical subnetwork is the space for solutions. For

the two aforementioned reasons, these two scenarios demanded much optimization time,

and most of them were interrupted at a gap that is Iess than 1%.

Conclusions on the embedding time: The computational time is proportional to

the number of the mo deI variabIes, and this Iast one changes with the problem size as the

following: (i) when the VNs size increases, the mo deI variabIes number increases, and thus

the computational time increases, and (ii) when the VNs synchrony demands increases, the

solution space becomes increasingIy within the synchronous physical subnetwork, which is

in our case a small portion of the SN, this means that the model variabIes will become Iess,

and thus the computational time to find the variabIes vaIues would become Iess.

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 95

5.1.2.3 Embedding cost vs. embedding time

Previously we studied the embedding cost and the embedding time separately. In this

subsection we study the relation between both.

Figure 5.7 depicts the mapping cost versus time for all the 40 experiments in Group A:

10 samples for AI + 10 samples for A2 + 10 samples for A3 + 10 samples for A4. The dots

corresponding to the same subgroup form a zone in the figure. \\Te notice that:

1. The four zones are clearly separated, no overlapping zones.

2. The samples are arranged on a hyperbolic curve as a superior envelope of the zones, this

means that for VNs of same size (experiments of Group A are all with VNs of 12 nodes)

the increment in VNs synchrony demands results in: (1) increasing the embedding cost

(axis X), and (2) decreasing the embedding time (axis Y). These two results agree with

our previous observations.

3. \\Te notice that the time values for experiments A2 and A3 are within the same range.

This agrees with our previous observations.

40 •
•
• • A1

- • A2
30

~ D A3
u .A4 \li e ...
\li
E •
; 20

Cl
t:
o.. • o..
(11 • • ::E 10 •

• • • • • •

o
() 20 40 fiO DO 100

Mapping cost X e4

Figure 5.7 Group A - Embedding cost vs. embedding time

Similarly, Figure 5.8 depicts the mapping cost versus time for all the 40 experiments in

Group B. Figure 5.9 is the same as Figure 5.8 with a zoom in to experiments B2, B3, and

B4. \\Te notice that:

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 96

1. The zones show only once an overlap on the horizontal scale (i.e., the embedding cost) ,

that is between B2 and B3. This unique overlap disappeared when calculating the cost

confidence interval for scenarios B2 and B3, see Figure 5.1.

2. All the four zones overlap on the vertical scale (i.e., embedding time). these many

overlaps made it visible even after calculating the time confidence interval, see Figure

5.4.

3. The computational time for one trace within B3 subgroup is out of the B3 zone, this

trace refers to experiment B33, and is the one that was disconsidered when calculating

the time confidence interval for scenario B3.

4. \\Te notice again the hyperbolic pattern as a superior envelope of the region where the

samples are distributed, this means that for VNs of same size (experiments of Group B

are all with VNs of 24 nodes) the increment in VNs synchrony demands results in: (1)

increasing the embedding cost (axis X), and (2) decreasing the embedding time (axis

Y). These two results agree with what was formerly detailed.

80000

10000

60000

U
CII 50000 !!.
CII
E ~oooo :;:;
Ol
I:
c.. 30000

o..
ro

:!E 20000

10000

o
()

•

• •

•
•

•

Figure 5.8

•

- 81 _ 82

D 83
_ 84

• • - -- -- ---r--------i
5 10 20

Mapping cost X e5

Group B - Embedding cost vs. embedding time

In the same way, Figure 5.10 depicts the mapping cost versus time for all the 40 experi

ments in Group C. \\Te notice that:

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 97

3000

•
2500

_ 82

~ D 83
u 2000 I:!:I 84 QI

~
Ql
E 1500 • ..
Cl
t:
C- • C- 1000
ro

:i: • • 500 -. • -• • J • O i i
..

i
O 2 4 6

'"
10 12 14 l~ 16 20

Mapping cost X e5

Figure 5.9 Embedding cost vs. embedding time for experiments B2, B3, and B4

80000

•
70000 •

- C1
60000

_ C2

- • D C3 o
i3)

50000 D C4
~ •
Ql
E 40000 :;:;
Cl
r::

10000 • C-
c.. -til • . - • ::ã: 20000 • •

-.
10000

o •• -- • .I ,
o 5 10 15 20 25

Mapping cost X e5

Figure 5.10 Group C - Embedding cost vs. embedding time

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 98

1. C2 and C3 zones show overlaps on the horizontal scale (i.e., the embedding cost), for

example, C3 contains C2 on the horizontal axis (i.e., the cost axis). This overlap that

appears in Figure 5.10 does not appear after calculating the cost confidence interval,

see Figure 5.1.

2. C1, C2, and C3 zones show overlaps on the vertical scale (i.e., the embedding time).

This overlap that appears in Figure 5.10 appears as well after calculating the time

confidence interval, see Figure 5.4, and the time average values of these scenarios are of

approximate values, see Figure 5.6.

3. All the four zones show overlaps on the vertical scale (i.e., embedding time), these many

overlaps made it visible even after calculating the time confidence interval, see Figure

5.4. \Ve referred this behavior previously to the interruption of these experiments after

reaching a gap less than 1 %.

5.1.2.4 Physical resources load

A. Free resources:

Figure 5.11 and Figure 5.12 depict the confidence interval for unused nodes and links

respectively for all scenarios. \Ve note down the following observations:

1. \Vithin each group, the highest interval was the one of scenario 4. This scenario repre

sents the VNs with full synchrony demands. The physical resources that mapped these

demands were the resources of the synchronous portion of the SN, that is the 33% of

the SN. \Vhereas the remaining 67% physical resources (i.e., the asynchronous portion

of the SN) were unused. In all of the remaining scenarios, the unused resources will be

less due to the existence of asynchronous virtual demands in the other scenarios.

2. \Vithin each group, the second highest interval is the one of scenario 1. This scenario

represents the VNs with full asynchrony demands. \Vith our mo deI that aims at spar

ing the use of synchronous physical resources, the synchronous portion of the SN will

be avoided, resulting in increasing the number of unused resources. But still, the free

resources in scenario 1 remain less than the free resources in scenario 4 because the

avoided portion of the SN in these two scenarios are the asynchronous and the syn

chronous portion of the SN respectively, that form 67% and 33% of our SN respectively.

3. By comparing scenario 2 and scenario 3 within each group, we notice that the unused

resources in scenario 3 are more (except for the free links in C2 and C3 where the two

intervals overlap). Scenario 3 contains VNs with more synchronous demands than in

scenario 2. This makes VNs in scenario 3 that are mapped on the small synchronous

portion of our SN more than the VNs that are mapped on this synchronous portion

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 99

in scenario 2. So, the free asynchronous resources in scenario 3 are more than the free

asynchronous resources in scenario 2. Thus, the total unused resources in scenario 3 are

more.

4. By comparing the counterpart experiments in the three groups, we notice that the

number of free resources decreases with the increment in the VNs size. The reason is

that bigger VNs will demand more physical resources to map them. Thus, the free

resources will become less.

GroupA Group B Group C

Figure 5.11 U nused physical nodes - Confidence interval

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 100

~o

D D
_ exp.1

;;;
_ exp.2

~ o exp.3
CI> ao O exp.4
. !:: .. I CI>

<..>
I::
CI>

EIf@ 'C
:;::
I::
o 10

~ ~ <..> .
11)

.!lo:

.!::
'C
Q)
11)
:::! 60
I::
:::l

50r---~

GroupA Group B Group C

Figure 5.12 U nused physical links - Confidence interval

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 101

B. Used resources:

The following graphs will illustrate the physical resources load (i.e., nodes and links) for

the twelve scenarios in Table 5.1. \\Te divide the resources load into ten intervals, and at

each interval we depict the number of physical resources (nodes and links separately) that

are loaded in correspondence with that interval. For example, the first interval shows the

number of physical nodes and links that are with a load between (0%-10%] of their nominal

capacity (resources at 0% load are excluded at this interval, and resources at 10% load are

included). The second interval shows the number of physical resources that are with a load

between (10%-20%] of their nominal capacity (resources at 10% load are excluded at this

interval, and resources at 20% load are included). The last interval depicts the number of

physical resources that are loaded with (90%-100%] of their nominal capacity.

\\Te are interested in investigating the distribution pattern of the physical resources load.

Figure 5.13 illustrates the accumulative number of physical nodes with their load in the

four scenarios of group A. \\Te see that the horizontal axis is divided into ten intervals,

representing the physical nodes actual load in comparison with their nominal capacity (a

percentage). In the first interval, we see four columns that represent the four scenarios AI,

A2, A3, and A4. For example, in scenario AI, we accumulate the number or resources with

a load (0%-10%] through the ten experiments that represent scenario AI (i.e., experiments

AIO, A11, ... A19). And the accumulative value can be read on the vertical axis of Figure

5.13.

From Figure 5.13 we note that:

1. The distribution patter of the accumulative number of nodes is a gaussian-like curve.

Samples are more frequent on 0% to 30% categories, with an overall dominance on 20%

to 30% range. And categories over 50% are negligibly populated. And no nodes are

fully loaded. This means that the embedding model tends towards distributing the load

over the physical nodes. True that the embedding model aims at minimizing the use of

physical resources (nodes and links), but we have not inserted constraints to make the

mo deI uses the allocated synchronous resources till exhaustion. The load distribution

is an important characteristic because it impacts directly the mapping ratio (i.e., the

number of accepted VNs on a given SN). Heavily or fully loaded nodes make these nodes

reject mapping, and this would influence the number of accepted VNs.

2. Few resources appear at load (70%-80%] in scenarios 3 and 4. These two scenarios

are with more synchronous demands than the other scenarios. \\Tith a SN of 33%

synchronous resources, increasing synchronous demands will more likely start increasing

the load of synchronous resources, which appear in the Figure.

3. At low interval (from 0% to 30%) we notice that the scenario with the smallest ac-

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN

1/1
G)

"C o
I:::
z
r.n -o ...
Q)

..c
E
::::I
I::: -o
E
:;

r.n

Figure 5.13

40

_ exp.1
_ exp.2

30 D exp.3

,.....
D exp.4

20

10

O D.- ["] rr-: ~ n rfl
10·101 UO·'OI (20·301 130·40] (40·S01 (50·601 (60·101 110·801 (80·901 190·1001

SN nodes load

Group A - accumulative number of physical nodes vs. nodes load

102

cumulative number of nodes is scenario 4. This scenario represents the VNs with the

highest synchrony demands, which will be concentratedly mapped on the small portion

of synchronous physical resources (33% of the SN), leading to more heavily loaded nodes

and less lightly loaded nodes in comparison with the other scenarios. If we chose a SN

that is with 33% asynchronous resources, then scenario 1 will appear with the smallest

accumulative number of nodes at low load intervals.

Figure 5.14 depicts the accumulative number of loaded links in scenarios of group A. \\Te

drive similar observations noted regarding the nodes:

1. The distribution pattern of the accumulative number of links is a gaussian-like curve.

2. Samples are more frequent at low load intervals with picks on 10% to 20%.

3. Few number of links appear at high load.

4. with the increment in the VNs synchrony demands (from scenario 1 to scenario 4),

the number of heavily loaded links increases and the number of lightly loaded links

decreases.

Analogously, Figure 5.15 and Figure 5.16 illustrate the accumulative number of used

nodes and links, respectively, in scenarios of group B.

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN

z
Cf)

'õ
(1J
J:I
E
::I s: -o
E
::I

Cf)

70

60

50

40

30

20

10

o

Figure 5.14

_ exp.1
_ exp.2

-
D exp.3
D exp.4

- ~

I ~ (l.-fi rfll [1 n O r l
(O·lIl] nO-201 (20-30] (30-40] (40-50] (50-601 (60-101 170-80] i80-!H)1 190-1001

SN links load

Group A - accumulative number of physical links vs. links load

103

1

I

I

I

I

I

I

I

1. The distribution patter of the accumulative number of resources (nodes and links) is a

gaussian-like curve.

2. The accumulative number of resources at law load intervals is bigger than at high load

intervals. This was previously noticed as well in scenarios A. The reason is as detailed

above regarding the model tendency towards load distribution, avoiding exhausting

resources.

3. Nodes distribution concentrates on up to 40%, more specifically on 20% to 30% cate

gory. Links distribution concentrates more on up to 40% usage, with a pick on 30%

to 40% category. In comparison with scenarios of group A, we notice that the pick

values in scenarios B are shifted upwards on the horizontal axis, this means that with

the increment in VNs size (from 12 nodes in group A to 24 nodes in group B) the accu

mulative number of resources (nodes and links) is increasing at high load intervals and

is decreasing at law load intervals. A possible interpretation for this behavior is that

bigger VNs brings more virtual nodes and links that need to be mapped, this demands

more physical resources, and thus will lead to loading these physical resources more.

4. Comparing the four scenarios of group B together (i.e., Bl, B2, B3, and B4), we notice

that scenario B2 appears with the highest value of accumulative number of resources

at law load intervals. \\Te try to explain this behavior as the following. Scenarios Bl

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN

til
(I)
"C
o
c:;
z
UJ -o ...
(I)
.c
E
:I
c:;

'õ
E
::s

UJ

Figure 5.15

50

40

30

20

10

o

_ exp.1
_ exp.2
D exp.3
D exp.4

r li QJlldD ~D
(0-101 (lO-lO) (10-301 (30-401 (40-501 (50-601 (60-701 (70-801 (80-901 (90-100)

SN nades load

Group B - accumulative number of physical nodes vs. nodes load

104

I

and B4 are with VNs offully asynchronous and fully synchronous demands respectively,

that will be mapped concentrtedly on the asynchronous and synchronous portion of the

SN, respectively, resulting in more heavily loaded resources in comparison with B2. In

B3, VNs are with hybrid synchrony requirements, 40% asynchrony requirements that

will be mapped basically on the asynchronous portion of the SN and 60% synchronous

requirements that will be mapped concentratedly on the synchronous physical resources

(that is only 33% on the SN) resulting in more heavily loaded resources in comparison

with B2 (where VNs of30% synchrony demands will be mapped on the 33% synchronous

portion of the SN). The SN and VNs in scenario B2 are with approximate size (VNs

with 24 nodes and a SN with 25 nodes) and synchrony (VNs with 30% synchronous

demands and a SN with 33% synchronous resources), so 30% synchronous demands will

be mapped on the synchronous 33% part of the SN, and 60% asynchronous demands

will be mapped basically on the asynchronous 67% part of the SN, this provides wider

space of possible embedding solutions in comparison with scenarios Bl, B3, and B4,

and thus leads to choosing a solution that does not need to exhaust resources.

Figure 5.17 and Figure 5.18 illustrate the accumulative number of used nodes and links,

respectively, in scenarios of group C.

From the last two figures, we note down similar observations to those derived for group

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN

Figure 5.16

A and B. \\Te note down:

_ exp.1
_ exp.2
D exp.3
D exp.4

(0·101 (lO·lOI (lO·lOI ClO·401 (40·501 (50·601 160·101 po·aol 180·901 190·1001

SN links load

Group B - accumulative number of physicallinks vs. links load

105

1. The distribution patter of the accumuIative number of resources is a gaussian-like curve.

2. The accumuIative number of resources at Iaw Ioad intervals remains bigger than it is

at high Ioad intervals due to the mo deI tendency towards Ioad distribution. But for

scenario C4 it is the opposite way (i.e., increment of accumuIative number of resources

at high Ioad) , the reason is that scenario C4 represents fully synchronous VNs at big

size in comparison with the SN size, and they will be mapped concentratedly on the

small synchronous portion of the SN resulting in increasing the Ioad of these resources.

3. Comparing scenarios C with scenarios of A and B, we notice that in group C resources

concentrate on a wider range, up to 60%. And we notice the fully Ioaded resources

incremento The reason is that bigger VNs demands more resources, and thus Ioads

resources more.

Conclusions on the resources load:

The number of free resources is a function of VNs size and synchrony demands as the

following: (i) the number of free resources decreases with the increment in the VNs size,

because bigger VNs will demand more resources to map them, and (ii) the number of free

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 106

40

_ exp.1
I/) _ exp.2
(I)

" 30 D exp.3 O
~ D exp.4 z

rJ) -O
~
(I)

20
..Q

E
=>
t: -o
E

10

=>
rJ)

(0-101 00-201 (20-301 (30-401 (<lO-SOl 15()-601 160-101 ao-sol (80-901 (90-tOOI

SN nades load

Figure 5.17 Group C - accumulative number of physical nodes vs. nodes load

resources in homogeneous VNs is more than it is in hybrid synchronous VNs because they

avoid entirely the use of the physical subnetwork that does not match their synchrony nature.

Regarding the used physical resources, we notice that: (i) The model tends towards

load distribution over the physical resources, that is why the number of resources at law

load is bigger than the number of resources at high load. This is an important feature

in the embedding model because few heavily, or fully, loaded resources would increase the

number of accepted VNs on a given SN. (ii) The pattern of the accumulative number of

used resources is a gaussian-like distribution pattern, its pick is at law load value for small

VNs, and it shifts to higher load values with the increment in the VNs size and synchrony

demands.

5.2 Space HSVNs over a configurable SN

The aspects considered during the analysis of our model are: i) economy in the embedding

cost; ii) physical resources load; iii) the kind of physical resources chosen to be synchronous,

and iv) the topology of the subnetwork composed of synchronous resources on the SN.

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 107

100

_ exp.1

til 80 _ exp.2
~ D exp.3 s::
- D exp.4 z
(I)

60
O ...
QJ
.c
E 40 :;I
s::
O

E
:;I 20

(I)

(0-10) (10-201 (20-301 (3C1-401 (40·50J (50-501 (60-70) (70-80J (80-90) (90-100)

SN links load

Figure 5.18 Group C - accumulative number of physical nodes vs. nodes load

5.2.1 Work load and tools

Similarly to HSVNs over S-SN, physical and virtual networks were randomly generated. For

this we used BRITE [MLMJ14] tool with \Vaxman [\Vax88] model. \Vaxman algorithm has

been used by some researchers [GH16] to generate random virtual network topologies, and in

our work we use it. \Vaxman generates random network topologies based on two parameters:

alpha and beta. As the first parameter grows, the probability of having an edge between

any nodes in the topology is increased. As the second parameter grows there is a larger

ratio of long edges to short edges. In [GH16] the researchers chose alpha and beta to be 0.4

and 0.2, and in our work we choose approximate values: 0.15 and 0.2. \Ve implemented the

mathematical mo deI with ZIMPL language [Koc04] and used CPLEX [bmc14] to solve the

IP, running on a compute r with 6 cores Intel Xeon processor, 2x2.66 GHz, 32GB of RAM

memory, and MAC operating system.

Most of the experiments took a considerable time to reach the optimal solution, the

reason is that the IP we propose has four output variables, which leads to considerable set

of variables based on the problem size under analysis. Besides, two of those variables (the

mapping variables) are based on the value of the other two variables (the synchrony variables)

found by the solver, this makes the optimization process long and consumes exponentially

the machine memory. For these reasons, we decided to stop the solver after finding a solution,

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 108

even if the solution is not optimal. This might match some realistic scenarios, in which the

client might prefer a semi-optimal solution in an acceptable computational time, rather than

an optimal solution in too long computational time. Thus, during the discussion of results

the reader should consider that an optimal solution would perform even better in terms of

synchronous resource sharing.

In all the following experiments, the SN size was fixed in 25 nodes. Initially all CPUs

of SN nodes are free, and links B\V is uniformly distributed between 1-3 Gbps. \Ve start

reporting twelve experiments divided into three groups, A, B and C, with VNs total size of

10, 20, and 30 nodes respectively. \Ve refer to these scenarios together as set 1 to facilitate

reference. The VNs were generated with 3, 4, or 5 nodes each, and CPU demands 10%, 15%,

or 25% of the SN nodes CPU capacity, and B\V demands uniformly distributed between 100

Mbps and 1 Gbps.

In scenarios 1, 2, 3 and 4 of each group, the VNs synchrony demand varies between 0%,

30%, 60%, and 100%. The parameters for each experiment in the set 1 are described in

Table 5.4.

Table 5.4 Space-HSVNs with C-SN scenarios parameters set (set 1)

Expe. AI I A2 I A3 I A4 BI I B2 I B3 I B4 CI I C2 I C3 I C4
VN size 10 nodes 20 nodes 30 nodes

VNs sync. 0%. I 30% I 60% I 100% 0% I 30% I 60% I 100% 0% I 30% I 60% I 100%
SN size 25 nodes
SNBW uniforrnly distributed: 1 Gbps-3 Gbps
SN CPU nodes fully free initially

each VN size 3,4,5 nodes
VNsBW uniforrnly distributed: 100Mbps-1Gbps
VNsCPU 10,15,25 % of SN nodes CPU

Earlier in this section (paragraph 5.1.2.1), we argued that for mapping virtual networks

with hybrid synchrony demands over a settled SN, it is a waste of resources to use a fully

synchronous SN. Rather, using a hybrid synchronous SN, together with an economic mapping

process, reduces the cost. The mapping mo deI proposed was aware of sparing the physical

synchronous resources, and using them only when needed.

\Vith a configurable SN (C-SN), we proposed a new approach for mapping HSVNs, with

the goal of minimizing the mapping cost even more. \Ve do not reserve, in advance, the

synchronous resources on the SN. Rather, the SN synchrony is defined as an output of the

IP. Thus, the physical resources chosen to be synchronous are subject to the VNs demands,

and they change if the VN s demands change (i. e., physical synchronous resources are dif

ferent in each scenario in Table 5.4. The model proposed minimizes the number of physical

synchronous resources to the limit enough for a given set of VNs.

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 109

5.2.2 Results

The parameters considered for our analysis are: i) economy in the embedding cost; ii)

physical resources load; iii) the kind of physical resources chosen to be synchronous, and iv)

the topology of the subnetwork composed of synchronous resources on the SN.

5.2.2.1 Economy in the embedding cost

\\Te consider the scenarios of set 1 to be mapped in two cases: (i) on a settled SN with a

predefined synchronous resources (33% synchronous nodes and 34% synchronous links), and

(ii) a configurable SN with no predefined synchronous resources. \\Te compare the number of

used physical synchronous resources in either case. Figure 5.19 depicts the embedding cost

for either case.

The continuous lines and the hashed lines illustrate the synchronous nodes and links

percentage respectively. \\Te notice that in the case of a S-SN the synchronous resources

are fixed, 33% and 34% of the physical nodes and links respectively are predefined to be

synchronous. In the case of a C-SN, we notice that the synchrony of the SN changes with

the VNs synchrony demands.

~ 40
'.)

= -o 3.)
:j5 a----------------a----------------,---------------,
;.., -+- llodes I Group A

- ,. - hnks C-SN

-- nodes I Group B
- • - hnks C-SN

- llodes I Group C
- - - links C-SN

-- nodes I
--.-- links S-SN

.,,:~_:. ______ ---------e
"

, :,..:- - -- -- - -- "'- --------~

0% 30% 600 o 100%
\"Ns syllchron)' dem<lnds

Figure 5.19 Percentage of synchronous nodes and links in SN for scenarios in

set 1 for S-HSVN and C-HSVN

By comparing the case of C-SN with the S-SN, we notice that a C-SN allows a clear

reduction in the amount of SN synchronous resources needed to map the virtual components.

For example, in scenario A4, 16% of synchronous nodes and 6% of synchronous links were

enough to map the demando In comparison with the case of S-SN, this means economizing

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 110

52% and 83% of SN synchronous nodes and links, respectively. Obviously, higher gains are

observed in scenarios AI, Bl, and Cl, where no synchronous resources are required. Since

in the S-SN approach some physical components must be synchronous independently of VNs

demands, with a C-SN the improvement on synchronous resources reservation is of 100%.

The reduction rate in the SN synchronous resources for the complete set of scenarios can be

found in Table 5.5.

Table 5.5 Economy in SN synchrony resources between S-HSVN and C-HSVN

performed for scenarios set 1

SN sync economy in SN sync nodes (%):
resources economy in SN sync links (%)
Scenario 1 2 3 4
Group A 100 : 100 64: 88 64: 88 52: 83
Group B 100 : 100 27: 7l 27: 7l 27: 68
Group C 100 : 100 39: 7l 27: 59 3: 41

In Figure 5.19, we note some observations: i) for each group, synchrony demands on

links and nodes grow compatibly. ii) in some scenarios, even when VNs synchrony de

mands increases, the number of SN synchronous resources does not necessarily increases

(e.g. scenarios B2, B3, and B4). This can be explained by resources sharing provided by

VNs mapping. Several virtual components can be mapped on the same physical resources, as

long as this does not violate the constraints of CPU and B\\T capacities for nodes and links,

constraints 4.2 and 4.3, respectively. (iii) the economy of links is more significant than of

the nodes (see Table 5.5), this can be explained by the fact that virtuallinks can be mapped

on physical paths which can be composed of one physical link or by several physical links.

Thus, sparing one physical path reflects on sparing several physical links.

5.2.2.2 Physical resources load

\\Te study the physical resources load for both S-SN and C-SN. \\Te issue this study for one

scenario only. \\Te chose scenario C3, because within the experiments set, it is one with VNs

of big size and high synchrony demands. In Figure 5.20 and Figure 5.21, we can read the

Cumulative Distributed Function (CDF) for nodes load and links load respectively, for both

S-HSVN and C-HSVN in scenario C3. \\Te note that (i) with S-HSVN, 36% ofthe SN nodes

and 64% of the links had O load (i.e., not used for the mapping), whereas with a C-HSVN,

this number raises up to 60% for the nodes and 74% for the links. (ii) with a S-HSVN, the

maximum nodes load reached was 65%, whereas with C-HSVN, nodes reached higher load,

where 4% of the SN nodes had full charge (i.e., with 100% CPU load). Similar observation

can be seen regarding the links.

Comparing the S-HSVN and C-HSVN used for mapping the same demands, we note that,

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 111

with C-HSVN, there are more free resources (i.e., unused nodes and links), but the drawback

is that, the used resources are more loaded. In other words, with S-HSVN, the load is better

balanced (i.e., more resources used with less load each).

100

80

~50
U

~ I

Jr--'
r-' I

~ - sE!ttler::l SN
40 --.J - cCJlfigLfable SN -

20

o
o 20 40 50 80 100 120

Nodes load (1,'0

Figure 5.20 CDF for nodes usage in experiment C3

100 r-----------::::L.:::::::F==:r---;;;;;;;;O-i
...........::;:

60 b=::::;:::::::::::r:::::::r=~~=::::=---~
~50~
~

U _ Settlecl SNI
40 1------------ . .-

- CCJlflgLfable SN

20 I-------------------~

o L-______ ~--------._-~

o 10 20 30 40 50 50 70 80

Link load (1'0

Figure 5.21 CDF for links usage in experiment C3

Next, we investigate the type of physical resources (the type in sense of synchrony prop

erties) that are highly loaded in both S-HSVN and C-HSVN. For this purpose, the individual

nodes and links load is depicted in Figure 5.22 and Figure 5.23 respectively, ordered in in

creasing order, illustrating as well the synchrony status of each physical node and link. \\Te

notice that, (i) with C-HSVN, the resources (i.e., nodes and links) with high load are the

synchronous ones, whereas the resources with low load are the asynchronous ones, which is

the reversed case in S-HSVN, and (ii) the load balance is clearer with S-HSVN through the

fact that the synchronous and asynchronous resources are not concentrated on one side of

the figure, rather they are used alternatively.

\\Te conclude that, for mapping the same HSVN demands, it is true that the C-HSVN

spares more the number of the synchronous resources used compared to the S-HSVN, but,

the draw back is that, the C-HSVN charges the synchronous resources more, which is the

expensive subset of resources.

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 112

Highlighting the advantages and drawbacks of S-HSVN and C-HSVN is not supposed to

lead us to conclude which among both is more important, because both are of equal necessity.

In fact, the infrastructure provider is the player who determines which HSVN model is to

be adopted, based on the SN type he built (i.e., settled or configurable).

70 ~--~

50 f--
•. 0 • sync. nodes
~ 50 f------. async. nodes
gr. 40 f---------------------------------
U2 = ~ f-----------------------
~
~20 f------
U

10

o
3 10 5 22 O 13 6 16 1 7 9 23 2 8 15 4

Noc1e ID

(a) settled SN %
1~._--_,

100+--
67: • sync. nodes
~ 80+----. async. nodes
Of,
~.

~ 60+---------------------------
~ 40+--------
~
U

20 +--------

0+----,-

5 12 O 8 4 24

Noc1e ID

(b) configurable SN %

1 2 6

Figure 5.22 Individual nodes load in experiment C3

3

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN

100.---~

80 +-___ • sync. bnk
,Q • async. hnk o ... ·
~ 50+-----------------------------------~_.~1~

o::::

B 40+-----------------------__ .-~~~~~_.~1~
~
~ 20+--------=-,,,~~~._ ____ .-~~~~~_.~1~

• • I I I I I I

80

70
.. Q

Q 50

~ 50 o::::
B 40

~ 30
~ 20

10

O

o
'!;fUI t"I ~ "t a'J ao\Or--~~~ N a'J F3 \O =:tF3f3 I I I r I I I I I I I I I I I
N C I fi:! t9('1.1 In~~ I; I I I

In ~ ~~~
Link ID

(a) settled SN %

• sync. bnk

• async. hnk

fD ~ 'If fQ I'l:l 'If N t9 (1'.1 tD G:) fD ~

I I I I ~ I I I I I I I
I/) I N C o ~ ;S ~ fQ l') c

Lin";: ID

(b) configurable SN %

Figure 5.23 Individuallinks load in experiment C3

113

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 114

5.2.2.3 Privilege of synchronous nodes

To perform this kind of evaluation, we increased the problem size under analysis. \\Te increase:

a) the size of each virtual network which became 5 nodes each, b) the CPU demands that

reached up to 50% of the physical nodes capacity, and c) the total size of VNs by adding

Group D' with VNs total size of 40 nodes. The new set of scenarios are named set 2, and

their parameters are shown in Table 5.6. Note that the groups in Table 5.6 are with prim

sign (e.g., A', B', C', and D') to distinguish them from the groups in set 1 in Table 5.4.

Table 5.6 Experiments parameters in set 2

Expe. A'I I A'2 I A'3 I A'4 I A'5 I A'6 B'I I B'2 I B'3 I B'4 I B'5 I B'6
VN size 10 nodes 20 nodes
Expe. C'I I C'2 I C'3 I C'4 I C'5 I C'6 D'I I D'2 I D'3 I D'4 I D'5 I D'6

VN size 30 nodes 40 nodes
VNs sync. 0%. I 20% I 40% I 60% I 80% I 100% 0%. I 20% I 40% I 60% I 80% I 100%

SN size 25 nodes
SNBW uniforrnly distributed: 1 Gbps-3 Gbps
SN CPU nodes fully free initially

each VN size fixed to 5 nodes
VNsBW uniforrnly distributed: 100Mbps-1Gbps
VNsCPU 10,20,30,40,50% of SN nodes CPU

By increasing the problem size (scenarios in set 2), we push the model to allocate more

physical resources (in comparison with set 1), and this allows us to perform our study on

the physical resources chosen. Figures 5.24(a) and 5.24(b) depict a comparison in the SN

synchronous resources needed in the counterparts scenarios in set 1 and set 2, at similar VNs

synchrony demands, i.e. 60% and 100%. The figures illustrate that, the increment in the

problem size has pushed the model to define larger set of synchronous physical nodes and

links. And this justifies our choice of scenarios in Table 5.6 to conduct the study on the kind

and topology of the physical synchronous resources.
,,o ~~ 0 70 ,-----------,---------

[ú ~o ~Il 60

§~o ~)O~------_+-------?
ê 50 § 40 ~-----
§ 40 § lO
~ 3 ;=-

~, 10 ~ 20 +------v
til ~

Z 10 Z 10

r/l o A A' B B' C C' A A' B B' C C' 'JO o /
A A' B B' C C' A A' B B' C C'

VNs wilh 60% S)"Ir. denmnds VNs wilh 1 OO~·o S)l1C. demands 'iNs wilh 600" S)lIC. demands \ Ns wilh 1000'0 S}llC. demands

(a) SN sync nodes % (b) SN sync links %

Figure 5.24 Percentage of SN sync. resources: Comparing groups set! and set2

The SN described in Table 5.6 has nodes that vary in their connectivity degree between

[2-8]. See Figure 5.25, its vertical axis indicates the connectivity degree, and its horizontal

axis starts with the SN (as base of comparison, as we will see), and continues with each

scenario performed in set 2. On the left column of Figure 5.25, we can see the number of

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 115

nodes available on the SN at each connectivity degree in the range [2-8]. For example, on

the figure we can read that the SN has 1 no de with connectivity 8, 1 no de with connectivity

7, 3 nodes with connectivity 6, and so on. The rest of the figure illustrates the total number

of physical synchronous nodes for each scenario in set 2, at each connectivity degree [2-8].

For example, in scenario B6, we note that the model has allocated 19 synchronous nodes, in

a way that 1 was with connectivity 8, 1 with connectivity 7, 3 with connectivity 6, and so

on. In general, we notice that the model tends toward choosing the physical nodes with high

connectivity degree to be synchronous. For example, in scenario C5, the model chose all the

physical nodes with connectivity [6-8] on SN to be synchronous (compare the numbers at

scenario C5 with the base numbers at SN). A possible interpretation for this behavior is that,

nodes with high connectivity degree allow multi-use of the same node, since on one hand,

it is connected to a high number of neighbor nodes which fulfills topology constraints, and

on the other hand, nodes with high connectivity have high bandwidth sum (i. e. the sum of

B\V capacity of all the physicallinks connected to it) which fulfills B\V constraint. Since the

embedding model of HSVNs over C-SN aims at minimizing the number of the synchronous

resources (assured by the mo deI objective function Equation (4.10)), then such nodes are

chosen.

Figure 5.25

81 1111111111111111 l-
I I I I

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l-l-l-
I

3 2 2 "'"I "'"I 3 3 2 3 332 3 3 3 3 3-
- T I I I I I I I I

1 1-1-1 1 "'"I ') 4 334 34 3 3 14444-
I I I T I I

1 1-1-1-1 1 1 2 4 4 1 4 3 3 34444-
I , I I

7- - f-1 1 1 2 3 2 5 "'"I "'"I 5 26 1 7 5 6 7-
I I I I
5 1- - f-1 2-_"'"I "'"I "'"I 1

3 3 I t I)4-

I T - - I - I

I I I I I I I I

Frequency of synchronous nodes vs. nodes connectivity - scenarios

in set 2

The average of the synchronous nodes connectivity chosen by the mo deI is shown in

Figure 5.26, the chart is plotted for each scenario executed. It is clear that, at each scenario,

the connectivity average has exceeded the SN average connectivity, which reflects the mo deI

tendency towards choosing the nodes with high connectivity degree to be synchronous.

5.2.2.4 Topological study

Next, we evaluate the topology of synchronous resources in scenarios set 2 (Table 5.6). Figure

5.27 depicts the topology of the synchronous resources in scenario A'3, A'4, A'6, and B'4 as

an example. Synchronous nodes are plotted as red circles, and synchronous links as hashed

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN

Figure 5.26

O'

~~AAMe~~~~~~~~~~oom~~~

Srll?'ll<Hio

Average connectivity of synchronous nodes for scenarios in set 2

116

lines. \\Te notice that the synchronous resources gather on one subnetwork, no synchronous

islands are observed. Such a gathering allows multi-use of same synchronous nodes and

links to answer given VNs, which fits with the model goal in minimizing the number of

synchronous resources. \\Te noticed that the topology of the synchronous subnetwork starts

by a ring topology for small problem size, and tends towards becoming mesh topology with

the increment in the problem size. This observation confirms the previous one regarding the

synchronous nodes chosen, being the ones with high connectivity degree.

(a) scenario A'3 (b) scenario A'4

(c) scenario A'6 (d) scenario B'4

Figure 5.27 Topology divergence of synchronous resources [HMOD14]

\\Te relate our observations in (5.2.2.2), (5.2.2.3) and (5.2.2.4) with a recent article by

Luizelli et aI. [LBB+16]. In this article, the authors provide consistent insights on how a

physical network topology affects virtual network embedding quality. They note that sub

strate network topologies that are intrinsically more connected tend to reject a lower number

of virtual requests, and consequently, tend to incur comparatively higher resource utilization.

CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 117

In our work with Space-HSVNs over C-SN, the embedding model aims at minimizing the

number of synchronous resources used, thus the physical resources chosen to be synchronous

were: i) highIy Ioaded; ii) nodes with high connectivity degree, iii) forming together a

physical subnetwork that reveal high connectivity.

Summary

In this chapter we evaIuate the embedding models of Space-HSVNs on a settIed SN (S

SN)and a configurable SN (C-SN). The main results show that:

(1) With Space-HSVNs on S-SN:

• The proposed embedding mo deI considers the hybrid synchronous nature of VNs, map

ping them onto a hybrid synchronous SN in an economic manner, trying to spare the

synchronous physical resources whose buiIding cost is expensive when compared to the

asynchronous ones

• The computational time is proportional to the number of the mo deI variabIes, and this

Iast one changes with the VNs size and synchrony demands.

• The mo deI tends towards Ioad distribution over the physical resources. This is an

important feature in the embedding model because few heaviIy, or fully, Ioadde resources

would increase the number of accepted VNs on a given SN.

(2) With Space-HSVNs on C-SN:

• Adopting a C-SN allows a substantial spare of synchronous resources compared to the

case of S-SN.

• \Vith C-SN, there are more free resources than is S-SN, but the drawback is that, the

used resources with C-SN are more Ioaded than with S-SN.

• The mo deI tends towards choosing the physical nodes with high connectivity degree to

be synchronous in order to minimize the number of synchronous nodes used. And the

synchronous resources configured on the SN tend towards gathering in a mesh topology.

After presenting the Space HSVNs, we now address the Time-HSVNs in the next chap

ter. \Ve note down that the proposed embedding framework for Space-HSVNs is abIed to

answer Time-HSVNs. But this would result in an excess of cost. Considering the synchrony

time variant nature in Time-HSVNs would result in further sparing of the use of physical

synchronous resources.

118
CHAPTER

ime-HSVNs embedding

D uring our research, we argued that Virtual Networks (VNs) and a suitable VN

embedding process offer suitable environment for running distributed applica

tions with partial synchrony. This has led to the abstraction of new type of

virtual networks that we name The Hybrid Synchrony Virtual Networks (HSVNs). Theyare

virtual networks that have subsets of nodes and links that obey time bounds for processing

and communication. Our previous contributions treated the Space-HSVNs considering phys

ical resources hybrid in space, i.e. resources behave either synchronously or asynchronously

during all the time. The Space-HSVNs are addressed to the DSs of hybrid synchrony in

space, which we call space hybrid synchronous systems.

In this chapter we discuss hybrid synchrony virtual networks for the "time" dimensiono

\\Te regard the time HSVNs abstractions and techniques as being a refinement of the space

HSVNs, since it further defines repeating time windows of synchrony while allowing the

resource to behave asynchronously for a period of time (as will be detailed through this

chapter). The timely hybrid mo deI leads to the possibility of further sparing synchronous

resources, if compared to the space model, as will be presented in the mo deI performance

evaluation (Chapter 7).

In this chapter we (i) define the assumptions and abstractions needed to characterize

both Substrate Networks (SNs) and Virtual Networks (VNs) suitable for Time-HSVNs, (ii)

locate our work among others in the literature, and (iii) develop an embedding model for

Time-HSVNs that answers the timely synchronous nature of the system and aware of sparing

synchronous resources which are relatively expensive.

6.1 Time-HSVNs: definition

The timed-asynchronous mo deI assumes that the system alternate between synchronous

and asynchronous behavior. More specifically, according to [DLS88] partially synchronous

systems can alternate between synchronous and asynchronous behavior, being hybrid in

time. For each execution, there is a time after which the upper bound 5 is respected by the

system. This time is called Global Stabilization Time (GST). Since the upper bound cannot

CHAPTER 6. TIME-HSVNS EMBEDDING 119

hold forever, it is accepted that it holds just for a limited time ~s. In practical terms, ~s

is the time needed for consensus to make progress or to be reached. \Ve call these timely

hybrid synchronous systems.

Actually, both mo deIs (i.e., hybrid mo deIs in space and in time) are not completely

excludent. If a resource has no ability to behave synchronously, then it offers no time

guarantees at all. However if a resource is able to behave synchronously, the space mo deI

defines that it is always synchronous while the time mo deI defines that it behaves eventually

synchronous as described above.

From the point of view of resources utilization, we can regard the time mo deI as being

a refinement of the space model, since it further defines repeated windows of synchrony

while allowing the resources to behave asynchronously for a period of time. It is possible

to support timely hybrid synchronous systems with Space-HSVNs, adopting the assumption

and embedding model proposed for Space-HSVNs, but this choice would result in wasting

synchronous resources beca use of reserving them for virtual demands that would behave

synchronously only eventually (i.e., only during time windows). \Vith the goal of sparing

synchronous resources, we propose new type of HSVNs, that is the Time-HSVNs suitable

for the timely hybrid synchronous nature of certain DSs.

6.2 Work positioning in the literature

The time-variant nature of networks has attracted considerable attention in the literature.

Xie et aI. [XDH12] observed that during the networking intensive phases of applications,

collision and competition occurs for the network resources, resulting in making the applica

tions running time unpredictable. The uncertainty in execution time further translates into

unpredictable cost, as tenants need to pay for the reserved virtual machines for the entire

duration of their jobs. Xie et aI. [XDH12] propose the design of the first network abstraction

(to the authors' best knowledge), TICV (Time Interleaved Virtual Clusters), that captures

the time-varying nature of cloud applications, and they propose a systematic profiling-based

methodology for making the abstraction practical and readily usable in today's data center

networks. The network abstractions that [XDH12] consider are similar to those proposed in

[GL\V+lO, BKR11], but the last two works overlook the real time variant nature of resource

requirements and simply assume that the customer will specify them somehow.

Zhang et aI. conducted a series of research that considers the bandwidth (B\V) variant

nature of VNs during the process of resources provisioning, [ZQT+11, ZQ\VL12, ZQ\V+14].

The authors modeled the time-variant nature of the VNs demands as the combination of

a basic sub-requirement, which exists all through the VNs lifetime, and a variable sub

requirement, which exists with a probability. For the basic sub-flows, fixed bandwidth is

CHAPTER 6. TIME-HSVNS EMBEDDING 120

allocated (traditional B\\T sharing). But for the variable sub-flows, the authors consider

a specific design of the SN; they assume that the time is partitioned into frames of equal

length, and each frame is further divided into slots of equal length. The authors develop

two first-fit algorithms that map the variable sub-flows to the time slots on the SN. The first

algorithm does not consider the inter-flows collision per slot, whereas the second algorithm

is aware of it. The inter-flows collision per slot is calculated based on the probability of

occurrence of the variable sub-flows.

Our work considers the synchrony time-variant nature of virtual networks, addressed for

timely synchronous distributed systems. The problem raised here (i.e., time-HSVNs embed

ding) could be solved using the mo deIs proposed in our previous works [HMD13, HMOD14,

DODH15] by overlooking the synchrony timely-variant nature of VNs, but this would re

sult is reserving synchronous resources permanently for demands that require synchrony

only during time windows. In this chapter, we argue that, adopting suitable abstractions

and techniques, together with a suitable embedding model, increases the resources usage

efficiency.

6.3 Time-HSVNs characterization

Time-HSVNs carry the common features of typical VNs [CBlO], but in addition, they need

to be further characterized to allow them to reflect the timely synchrony nature. \\Te consider

that the synchrony demands of each VN has a cyclic pattern with the cycle T time units.

During T, each virtual no de and link demands synchrony once, for a certain period of time.

The time windows when the virtual element is provided synchrony is named the synchronous

round, and the time windows when it is not provided synchrony is named the asynchronous

round, see Figure 6.1. \\Te assume that the client is able to define the synchronous round

he needs within T, and he is able to express it to the virtual network provider. The client

needs to be provided synchrony, eventually within T, during the specified time duration he

expresses, without caring for when it will be provided within T. The VNs cyclic pattern

makes them reflect the nature of timely synchronous DSs, which repeatedly demand eventual

synchrony during the system life.

6.4 SN design

Previously in our work, we stated that the exact way of designing the physical synchronous

resources is out of the scope of our work. Yet at this phase of our work (i.e., Time-HSVNs),

the synchrony time variant nature of HSVNs implied taking care of the SN possible design,

because the proposed design of the SN for Time-HSVNs is considered for the embedding

CHAPTER 6. TIME-HSVNS EMBEDDING 121

Asynchronousround ~

Synchronousround ~

-tfW@fd@?@&(§$/'/-Y/§$§§&/,/-,§pa ti me
: :

T
~ :

Figure 6.1 Synchronous and asynchronous rounds for a virtual node or link

mo deI detailed later. In our previous works with Space-HSVNs, we distinguished between

two types of resources; synchronous and asynchronous, where both types maintain their

synchrony status during the system life. In the current step of our work, Time-HSVNs

demand a refinement of the Space-HSVNs abstractions and techniques to suit better the

new view of synchrony (i.e., periodic eventual synchrony).

In [ZQT+ll], Zhang et aI. propose a bandwidth sharing technique that allocates band

width (B\V) in accordance with VNs traffic fluctuation as detailed in the related works

(Section 6.2). The authors consider specific design of the SN as the following: the time is

partitioned into frames of equal length, and each frame is further divided into slots of equal

length, see Figure 6.2. The authors develop an algorithm that maps the variable sub-flows to

the time slots on the SN in a way that the sub-flows mapped to the same slot do not violate

the B\V capacity, neither exceed a collision threshold allowed, where the sub-flows collision

is calculated based on the probability of their occurrence. The proposed methodology allows

an opportunistic bandwidth sharing between the sub-flows.

Synchrony frames

._0'-

_______ ~-.~ .. ~/~/-... ------~~--------~~~--------~. T

ITIJ\ ~D rrTI\ ~D -·E~rrJ\ ~D
Sl1{11 SI2(i) S13(I) SU(iJ 521(1) 522{i) 523(i) S2z{i) Syll') "'Ii) '''(i) '''Ii)

fl(i) fy(i)

~i·-------------------- T "

Figure 6.2 SN synchronous frames and slots proposed in [ZQT+ 11]

In our work, we inspire a suitable SN design from the work of Zhang et aI. [ZQT+ll]

after adapting it in what matches our problem:

1. The virtual flows are of fixed B\V demand during time (not opportunistic demands),

thus, we disconsider collision probability.

2. the HSVNs demand synchrony once during T, see 6.3, so, we need only one time window

during T that applies Zhang et aI. technique. \Ve name this time window synchronous

CHAPTER 6. TIME-HSVNS EMBEDDING 122

frame, see Figure 6.3. The synchronous frame is further partitioned into time slots of

equal size, we name them synchronous slots.

3. the virtual demands mapped to a synchronous slot should not violate the physical B\V

capacity to eliminate competition and assure synchrony. The length of the synchronous

frame and the number of time slots within a frame is related to the VNs number and

demands. \Ve assume that each virtual no de and link do not demand synchrony slots

that exceed the number of slots per synchronous frame.

Synchrony trame

\'\.,. __________________ ~ __ ---------------------+t T

rrb~)0

~.------------------- T "

Figure 6.3 Physical node or link synchrony frame during T

6.5 Time-HSVNs Embedding

The virtualization architecture we adopt is the one proposed by Schaffrath et aI. [S\VP+09].

\Ve assume that the virtual network provider (VNP) has complete information about: i)

the SN topology and its attributes (nodes Central Processing Unit (CPU), links bandwidth

(B\V), and synchronous slots number and length), and ii) the virtual networks topology and

demands (nodes CPU, links B\V, synchrony demands). The VNP receives the synchrony

demands in term of time period, and translates it into number of synchronous slots of

the SN slots. \Ve deal with the case of off-line VNs embedding. The time-HSVNs will be

provided synchrony during the synchronous frame. Out of the synchronous frame, additional

asynchronous demands can be mapped and competition can occur. This does not pose any

problem for demands that do not expect synchrony.

The Time-HSVNs embedding problem can be stated as the following: How to map the

virtual synchronous slots to the physical synchronous slots, with the objective of minimizing

the mapping cost represented by the used BW?

The approach we followed for solving the Time-HSVNs was to benefit from our previous

works on Space-HSVNs [HMD13, HMOD14, DODH15], by refining the proposed mo deI for

Space-HSVNs to a new version that expresses the synchronous slots. Further, we enhanced

the achieved solution to allow more VNs to be mapped on the same SN. So, the Time-HSVNs

mapping would go through two phases. \Ve explain these two phases briefly in this section

and we detail them more later through this chapter.

CHAPTER 6. TIME-HSVNS EMBEDDING 123

1. the macro mapping phase: This phase maps the virtual elements (nodes and links) to

the physical resources that do respect all the embedding constraints. This phase leads to

a mapping solution, that considers minimizing the physical bandwidth consumption. At

the end of this phase, each virtual no de and link will be mapped to a physical no de and

path that can support them. The macro mapping phase model is achieved by refining

the Space-HSVNs mapping mo deI to express synchronous slots.

2. the micro mapping phase: This phase increases the efficiency of the solution achieved

in the macro mapping phase, by allowing embedding possible future VNs demands on

the same given SN. This phase is performed individually for each physical no de and

link used in the macro mapping phase. The micro mapping phase maps the virtual

synchronous demands to the physical synchronous slots. For solving the micro mapping

phase, we adopted an off-the-shelf problem from the literature due to its similarity, that

is the Cutting Stock problem (CSP).

Figure 6.4 depicts a block diagram for the Time-HSVNs embedding phases. The first

phase is the macro mapping phase. Its inputs are the SN and VNs together with their

attributes. This phase maps each virtual no de and link on a physical node and path that

answer all the embedding constraints. The second phase is the micro mapping phase. Its

inputs are every physical no de i with the set of virtual nodes it mapped N k
(i), and every

physicallink (i,j) with the set ofvirtuallinks it mapped Lk(i,j). The micro mapping phase

is performed individually for every physical no de and link. This phase maps the synchronous

demands on the synchronous slots of the physical no de or link. The output of the micro

mapping phase will be indicating the minimum number of synchronous slots enough to map

the synchronous demands of the virtual elements. For example, for the input i and Nk(i),

the micro mapping phase will tell us what is the minimum number of the synchronous slots

of the no de i that are enough to map all the synchronous demands of all the virtual nodes

in Nk(i).

Il ~ SN rlumber of
Macro map. i&N'(i) Micro map. lime slols needed

Model technique

~
Imap nodes&links) (i ,j)& L'(i,j) Imap syne. 510(5)

Il VNs

Figure 6.4 Block diagram for Time-HSVNs embedding phases

Figure 6.5 illustrates a graph based example for Time-HSVNs embedding. The macro

mapping phase is applied on two VNs and a SN, and the micro mapping phase is applied on

the physical no de i and the two virtual nodes it mapped: b1 and d2
.

CHAPTER 6. TIME-HSVNS EMBEDDING

c~y;:~

SN(jiJ!;j\
Sync, (b1) Sync, (d')

1 1 1 1 -c::::;q
--~. .

< - .-:::: •• ---

1 -j' --j- 'í'--/-- I~I~I---r-I -'1 1 1 1 1 1
f1 (i) f, (i) f

n
(i)

Macro mapping phase

Micro mapping phase for node i

Figure 6.5 Graph based example for Time-HSVNs embedding

6.5.1 The Macro Mapping Phase

124

The inputs of this phase are: (i) the SN topology and attributes, and (ii) the VNs topologies

and demands. And the output of this phase will be assigning each virtual node to one physical

no de and each virtual link to a physical path, where a path can be composed of one link or

more. At this phase, the problem turns to be: how to map the VNs on top of the SN with the

least physical bandwidth consumption possible. \Ve formulate the macro mapping problem in

the shape of a Integer Program (IP).

6.5.1.1 Variables definition

The SN is represented by an undirected graph G(N, L), composed of a finite set of physical

nodes N and links L : N X N. Analogously, each virtual network V N k belonging to the set

of virtual networks V N will be presented by an undirected graph Gk(Nk, Lk). The number

of synchronous slots provided by the physical node i and physical link (i, j) are sync(i)

and sync(i, j). Analogously, sync(ik) and sync(ik, jk) are the number of synchronous slots

demanded by the virtual no de ik and link(ik, jk). Besides synchrony, two other attributes

are considered for the SN and VN elements: nodes CPU, and links bandwidth (BW). The

syntax for those attributes on the SN and VN respectively are: cpu(i), bw(i,j), cpu(ik), and

bw(ik, jk).

Finally, we define the model output variables, they are: a binary function (J (i k
, i) that

expresses whether no de i E N maps no de ik E Nk, and a binary function p(ik,jk, i,j) that

expresses whether link (i, k) is part of the physical path that maps the virtual link (ik, /).

After solving the macro mapping model, each physical no de i is mapping a set of virtual

nodes Nk(i), and each physicallink (i,j) on the SN is mapping a set ofvirtuallinks Lk(i,j).

CHAPTER 6. TIME-HSVNS EMBEDDING 125

Table 6.1 provides a list of variables definition for Time-HSVNs embedding model.

Table 6.1 List of variables definition for Space-HSVNs embedding model

Variables group symbol description
G(N, L) undirected graph representing the SN

N the set of physical nodes
L:NXN the set of physical línks

i a notation for a physical no de i E N
Substrate Network (i, j) a notation for a physical línk (i, j) E L

sync(i) the number of synchronous slots provided by i
sync(i, j) the number of synchronous slots provided by (i, j)

cpu(i) the CPU of physical node i
bw(i, j) the bandwidth of physical línk (i, j)

VN the set of ali virtual networks
k the number of a virtual network that belongs to V N

VN" The virtual network number k
G"(N",L") undirected graph representing V N"

N" the set of virtual nodes

Virtual Networks
Lk: NkXNk the set of virtual línks

i" a notation for a virtual node i" E N"
(i", j") a notation for a virtuallínk (i",j") E L"

sync(i") the number of synchronous slots demanded by i"
sync(i",j") the number ofsynchronous slots demanded by (i",j")

cpu(ik) the CPU of virtual node ik

bw(ik , jk) the bandwidth of virtual línk (ik , jk)
CY(ik , i) CY(ik,i) = 1; node i E N maps node ik E N k

CY(i k , i) = O ; otherwise
Output variables

p(ik,jk,i,j) p(ik,jk,i,j) = 1; (i,j) E L is part ofthe path mapping (ik,jk) E Lk

p(ik,jk,i,j) = O; otherwise

6.5.1.2 The Macro mathematical model

It is formulated in the shape of an IP as bellow:

Mapping objective- The Objective Function (6.1), we consider is inspired from our

work on Space-HSVNs, which is to minimize the total bandwidth used.

Objective: minimize

'"' '"' ("k "k " ") ("k "k) b ("k "k)" ~VVNkEVN ~V(ik,jk)ELk P Z ,J ,Z,J . sync Z ,J . w Z ,J ,

Mapping constraints

- Capacity constraints:

for every (i,j) E L and every (ik,jk) E Lk

p(ik,l,i,j)' bw(ik,l) ::; bw(i,j)

for every i E N and every ik E N k

(6.1)

(6.2)

(6.3)

CHAPTER 6. TIME-HSVNS EMBEDDING

- Nades mapping canstraints:

for everv V N k E V N ik E N k
" ,

for every VNk E VN, i E N

- Links mapping canstraint:

L J(i k
, i) = 1

lfiEN

L J(ik,i)::;1
lfikENk

for everv VNk E VN (i k J"k) E L k i E N
" " ,

L p(i k
,/, i,j) - L p(ik,/,j, i) = J(ik, i) - J(/, i)

IfjEN

- Nades synchrony canstraints:

for every i E N

- Links synchrany canstraints:

for every (i, j) E L

IfjEN

L p(ik, /, i, j) . sync(ik, /) ::; sync(i, j)

126

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

The capacity constraint (6.2) assures that the bandwidth of every virtual link does not

exceed the bandwidth of the physicallink mapping it. Similarly, constraint (6.3) represents

the equivalent restriction regarding no de C PU.

The no de mapping constraint (6.4) assures that each virtual no de is mapped once on a

physical node.

Constraint (6.5) assures that virtual nodes belonging to the same V N are not mapped on

the same physical node. This is to achieve load balancing besides improving the reliability.

This procedure minimizes the number of virtual nodes prone to failure by a physical no de

failure.

For any virtuallink (a, b), the links mapping constraint (6.6), adopted from [Z\VJY10],

assures the creation of a valid physical path.

\Vhen mapping a set of virtual nodes Nk(i) on one physical no de i; the nodes synchrony

constraint (6.7) assures that the number of virtual slots mapped on i do not exceed the

number of synchrony slots provided by i. This constraint considers the worst case, when each

virtual slot requires a complete synchrony slot alone without sharing. Similarly, constraint

(6.8) represents the equivalent restriction regarding links synchrony.

CHAPTER 6. TIME-HSVNS EMBEDDING 127

6.5.2 The Micro mapping phase

This phase increases the efficiency of the solution achieved in the macro phase, by allowing

embedding possible future VNs demands on the same SN. This is achieved by scheduling

the synchronous demands efficiently within the synchronous frame. By viewing the problem

at this stage as an optimization problem, the problem turns to be: how to schedule the

virtual demands within a synchronous frame minimizing the number of synchronous slots

used. Revising the literature, we found a very similar problem that is the Cutting Stock

Problem (CSP) [HS91], which is one of the NP-hard problems cited by KARP [Kar72], and

from the cutting stock problem we inspired the solution of the timely HSVNs micro mapping

problem.

6.5.2.1 Revision on the Cutting Stock Problem (CSP)

In operations research, the cutting-stock problem is the problem of cutting standard-sized

pieces of stock material (e.g., paper rolls or sheet metal) into pieces of specified sizes while

minimizing material wasted. \\Te explain the CSP through an example: A factory that

produces rolls of W (c.m.) width, received a demand from a client in four sorts as the

following:

• sort 1: h units ofwidth 0.5 * W (c.m.)

• sort 2: b2 units of width 0.3 * W (c.m.)

• sort 3: b3 units of width 0.3 * W (c.m.)

• sort 4: b4 units of width 0.2 * W (c.m.)

For such a demand of four sorts, a roll of W (c.m.) can be cut into two units of sort 1 (of

width 0.5 * W (c.m.)), for example, or to three units of sort 3 (of width 0.3 * W (c.m.)), or

to one unit of sort 3 (of width 0.3 * W (c.m.)) and three units of sort 4 (of width 0.2 * W

(c.m.)) ... , etc. The possible combinations of cutting patterns of a roll unit of W (c.m.) to

fulfill the aforementioned demand can be tabulated using the Delayed Column Generation

method, detailed in [HS91]. Every pattern j of these patterns tells that, a roll or W (c.m.)

can be cut into aIj units of demand sort 1 + a2j units of demand sort 2 + a3j units of demand

sort 3 + a4j units of demand sort 4. So, in pattern j, we will need X j rolls of W (c.m.)

width to generate aij units for each sort in the demando The solution aims at minimizing

the roll units of width W (c.m.) that are needed to fulfill the demando

By considering SORT is the set of sorts in a given demand, and PATTERNS the set of

possible cutting pattern, the CSP can be formulated in the shape of a linear program as the

following:

CHAPTER 6. TIME-HSVNS EMBEDDING

Objective: minimize

Cutting constraint

for every i E SORT

VjEPATTERNS

6.5.2.2 The Micro mathematical model

Translating the CSP elements into the micro mapping problem:

• the specified sized pieces are the synchronous slots demanded by the VNs;

128

(6.9)

(6.10)

• the standard-sized pieces of stock material is the synchronous slot of physical nodejlink;

• a pattern in the CSP is the set of demands accepted within a stock, and in our problem

a pattern will be the set of virtual slots accepted within the physical slot ;

• the objective of the CSP in to minimizing the stock waste and in our problem it would

be to minimize the number of synchronous slots used within the physical synchronous

frame.

\Ve express the micro mapping model for one physical link, but it goes similarly for

physical nodes.

Consider one physical link (i, j) with a synchronous frame of sync(i, j) slots, that maps

a set of virtual links L k (i, j), where every virtuallink has two attributes: the number of syn

chronous slots demanded sync(ik,jk) and the capacity of B\V demanded bw(ik,jk). \Vithin

each physical slot, the virtual synchronous slots that can be mapped to it form a pattern X j

[HS91]. The patterns are formed based on the B\V of the virtual demands compared with

the physical link B\V. These patterns are the input to the micro model. The micro model

aims at minimizing the number of synchronous slots used within the synchronous frame

which is achieved by minimizing the total number of patterns (Equation (6.11)). Assuming

aij is the number of times order i appears in pattern j [HS91]; constraint (6.12) assures

providing every virtual link with a number of synchronous slots that is at minimum equal to

the number of synchronous slots demanded sync(ik,jk). The output of the micro mapping

mo deI will be telling which are the used patterns, and how many of each pattern is needed.

Table 6.2 stands for variables definition.

Objective: minimize

(6.11)

CHAPTER 6. TIME-HSVNS EMBEDDING

Table 6.2 List of variables definition for Time-HSVNs micro mapping phase

model

varo

Input varo

Output variables

Cutting constraint

for every (ik,jk) E Lk(i,j)

symbol
PATTERNS

Lk(i,j)

j

aij

i
sync(ik , jk)
sync(ik , jk)

X j

IfjEPATTERNS

description
set of possible patterns
set of virtual línks
mapped to (i, j)
a given pattern
in set PATTERNS
number times order i
appears in pattern j
virtuallínk in Lk(i,j)
sync. slots demanded
by (ik ,jk)

number of units
of pattern j

129

(6.12)

After performing the micro mapping phase, the SN is updated (used B\V and CPU is

subtracted from the SN nodes and links capacity), and the macro mapping phase can run

again, allowing more VNs to be mapped on the same SN. The combination on the macro

phase, the micro phase, and the SN updating we name an optimization cycle (Opt_cyc).

Figure 6.6 illustrates two optimization cycles for mapping groups of virtual links on one

physicallink. The physicallink updating happens either by reducing its capacity, or reducing

the number of synchronous slots it supports. Either way, there will be a waste in the physical

bandwidth, we refer to the bandwidth waste resulted by reducing the physical capacity Wh ,

and by reducing the synchronous slots Wv . The updating approach chosen is the one with

the least waste (the smaller value between Wh and Wv is marked with a star * in the figure).

This updating methodology we follow is because the macro mapping phase (at the beginning

of each optimization cycle) considers physical slots of equal capacity and fully empty.

Summary

In this section we define the Time HSVN s as a kind of VN s that has su bsets of nodes and links

that eventually behave synchronously. From the point of view of resources utilization, we

can regard the time mo deI as being a refinement of the space model, since it further defines

repeated windows of synchrony while allowing the resources to behave asynchronously for a

period of time.

CHAPTER 6. TIME-HSVNS EMBEDDING 130

1 st optimization cycle 2nd optimization cycle

VNs demands (12,1) (15,2) (10,1) (15,1) (10,1) (15,1) (10,1)

(bw,slots) - I I I - - - c=:::J -
macro map.

U I U '""00"

phase

I I I -u SN(73,4)

micro map, ;; phase
------- ------ -------

I I I

I I I I

SN updated

I I I I I

Wh=56 •
Wh=150

W\I=148 Wv=23 ..
SN(73,.4) SN(73,,3)

Figure 6.6 An illustrative scheme for the HSVNs optimization cycles

It is possible to support timely hybrid synchronous systems with Space-HSVNs, adopting

the assumption and embedding mo deI proposed for Space-HSVNs, but this choice would

result in wasting synchronous resources beca use of reserving them for virtual demands that

would behave synchronously only eventually

From the literature, we inspire a suitable design for the SN that will support Time

HSVNs. The assumed SN will have nodes and links that can provide synchrony during

pre-defined time windows that we name synchronous frames. The VNs synchrony demands

are supposed to be answered only during these frames.

\\Te develop an embedding framework for the Time-HSVNs that consists of two phases:

1. the macro mapping phase: This phase maps the virtual elements (nodes and links) to

the physical resources that do respect all the embedding constraints. The macro map

ping phase model is achieved by refining the Space-HSVNs mapping mo deI to express

synchronous slots.

2. the micro mapping phase: This phase maps the virtual synchronous demands to the

physical synchronous slots. This phase increases the efficiency of the solution achieved

in the macro mapping phase, by allowing embedding possible future VNs demands on

the same given SN. For solving the micro mapping phase, we adopted a problem from

the literature due to its similarity, that is the Cutting Stock problem (CSP).

In the next Chapter we evaluate proposed model for Time-HSVNs embedding.

131
CHAPTER

Performance Evaluation for

Time-HSVN

T he Time-HSVNs abstractions we considered together with the Time-HSVNs em

bedding mo deI are supposed to lead to further sparing of synchronous resources,

if compared to the space model. \Ve run preliminary experiments that allow

investigating the performance of the proposed embedding approach of Time-HSVNs. The

aspects considered during the analysis of our mo deI are: (i) the embedding cost; (ii) the

physical resources load; (iii) the optimization time; (iv) the topology of the physical sub

network composed of the used resources; and (v) the micro mapping phase efficiency.

7.1 Wor kload and tools

Experiments were designed as a full factorial [Jai91], exploring all possible combinations

between the networks parameters. Such choice of experiments was done by other works like

[BOB+12a]. Similar to [YYRC08a, BOB+12a], physical and virtual networks were randomly

generated. For this we used BRITE tool (Boston university Representative Internet Topology

gEnerator) [MLMJ14] with \Vaxman mo deI [\Vax88]. \Ve implemented the mathematical

mo deI with ZIMPL language (Zuse Institute Mathematical Programming Language) [Koc04],

both for the macro and micro mapping phases, and we used CPLEX [bmc14] to solve the

Integer Program (IP), running on a computer Intel HM75, Core i3-3217U 1.80 GHz (Giga

Hertz), cash 3 MB (Mega Byte) , Random Access Memory (RAM) of 2 GB (Giga Byte) ,

DDR3 and operating system Xubuntu 14.04.

In all the following experiments, the substrate network size was fixed to 15 nodes. Initially

all CPUs (Central Processing Unit) of SN nodes are free, and links Band \Vidth (B\V) is

uniformly distributed between 1-3 Gbps (Giga bit per second). \Ve ran twelve experiments

divided into three groups, A, B and C, with VNs total size of 10, 20, and 30 nodes in each

group respectively.

The SN and VNs size was chosen of small scale to allow solving the embedding mo deI

during a reasonable time, allowing us to evaluate the model performance.

The VNs were generated with 3, 4, or 5 nodes each, and CPU demands 10%, 15%, or

25% of the SN nodes CPU capacity, and B\V demands uniformly distributed between 100

CHAPTER 7. PERFORMANCE EVALUATION FOR TIME-HSVN 132

Mbps (Mega bit per second) and 1 Gbps. VN nodes demand one synchronous slot per

T. In scenarios 1, 2, 3 and 4 of each group, the virtual links synchronous slots demanded

varies between 1, 2 , 3 , and 4 slots. The SN provides periodically, each T = 20 seconds, a

synchronous frame of 4 seconds length, divided into four equal time slots. Table 7.1 details

the experiments parameters.

Table 7.1 Experiments parameters

Expe. AI I A2 I A3 I A4 BI I B2 I B3 I B4 CI I C2 I C3 I C4
VN size 10 nodes 20 nodes 30 nodes

Virtual links sync. slots 1 I 2 I 3 I 4 1 I 2 I 3 I 4 1 I 2 I 3 I 4

Virtual nodes sync. 1 slot per T
each VN size 3,4,5 nodes

VNsBW uniforrnly distributed: 100Mbps-1Gbps
VNsCPU 10,15,25 % of SN nodes CPU

SN size 15 nodes
SNBW uniforrnly distributed: 1 Gbps-3 Gbps
SN CPU nodes fully free initially

7.2 Results

7.2.1 Embedding cost

The mapping cost is represented by the used B\V, which is the model objective function

(Equation (4.1). \Ve evaluate our results by comparing them with the B\V used in case

the experiments in Table 7.1 were mapped using the space mo deI and the SN previously

addressed in 4.6, see Figure 7.1.

160 ... GroupA

-+- Group 6
"'" '" X

~ Group C i 1.20 -J'" / "O
QJ

/./~
'" 30 ::;,

.<;:

i ~ .. "t:l .:
<lo 40 -o

J~~I]j 4~
~ ~ t------t

o
space 2 4

Experiment

Figure 7.1 Used bandwidth

\Vith the time model, the used B\V indicated is the one consumed within the synchrony

frame. To allow just comparison, we calculate the B\V used in the space model during time

CHAPTER 7. PERFORMANCE EVALUATION FOR TIME-HSVN 133

window equal to the frame Iength. \Ve note down the following main observations:

1. \Vithin one experiments group, the used B\V is proportional to the number of syn

chronous slots demanded by the VNs. For exampIe, in scenario A2 the B\V used is

13.624 Mbps/frame, and it is 20.436 in scenario A3, the proportion between the two

figures is the proportion of the number of synchronous slots demanded in each scenario

2/3. SimiIarly, the used B\V in B3 and B4 is 41.37 (Mbps) and 55.16 (Mbps), their pro

portion is 3/4. This means that the used B\V is subject to the VNs synchrony demands

in time, i.e., the more synchronous slots are; the higher used B\V is.

2. By comparing the counterparts experiments of the three groups (e.g., A2, B2, and

C2) we notice that the B\V used increases. This is due to the VNs size increment,

which tends naturally to reserve more resources. For exampIe, the used B\V with the

aforementioned three experiments is 13.624, 27.58, and 60.52 (Mbps/frame)respectiveIy.

The reason is that bigger VNs demands more physical resources to map them, and thus

more B\V.

3. \Vithin each experiment's group, the B\V used with the space mo deI is equal to the

maximum B\V used within the group (i.e., experiment 4 of each group). This is because

the space model does not recognize the VNs synchrony slots demanded. For exampIe,

mapping the VNs in group B with the space mo deI needs B\V of 55,16 (Mbps/frame),

which is the B\V needed when mapping VNs in scenario B4 with the time model.

4. The time mo deI is more efficient as it spares more resources. This is beca use the time

model reserves resources proportionally to the synchrony demands in time, whereas the

space model does noto For exampIe, mapping the VNs in scenario B3 with the time

model spares 33,33% of the resources needed when mapping the same set of VNs with

the space model. And the spared ratio increases when the synchronous demands within

T decreases, e.g. in B2, the time model spares 100% of the resources, and in Bl spares

300%.

7.2.2 Physical resources load

This study is useful when done on a scenario that can possibly Ioad the SN. \Ve chose scenario

C2 (VNs of big size). Figure 7.2 depicts the CumuIative Distributed Function (CDF) for

physical nodes and Iinks in experiment C2.

\Ve note that 80% of the SN nodes had a Ioad that varies between 10% and 60%, only

13.33% had a Ioad between 60% and 80%, and no nodes were highIy Ioaded more than 80%.

And regarding the physicaIIinks, we note that, 41.37% of the SN Iinks had a Ioad that ranges

CHAPTER 7. PERFORMANCE EVALUATION FOR TIME-HSVN 134

between 10% and 60%, and only 14% of the physicaI Iinks had a Ioad that exceeded 60%,

and no Iinks were fully Ioaded.

The SN resources seem to have Ioad distribution which is good, since concentrating the

Ioad in certain eIements will result in congestion, Ieading to bIock mapping certain VNs in

the future. This is achieved because, the proposed mo deI does not push the mapping process

to exhaust the used physicaI resources before allocating new ones, rather, all resources are

given the same chance to be chosen, as Iong as they allow mapping on the shortest path.

100

Figure 7.2 CDF for resource usage in experiment C2

7.2.3 Embedding time

The third parameter evaIuated is the mapping time. The optimization process reached its

end with scenarios A and B. \Vhereas in scenarios C, the optimization was terminated with

optimization gap Iess than 2%. \Ve took this decision when the optimization progressed

slowIy without much gain. For exampIe, in scenario C3, it took 30 minutes to reach a

solution with 4.46% gap, then another 33 minutes to reach another solution with 1.86% gap.

In reaIistic scenarios, the client might prefer a semi-optimal solution in a short computational

time, than an optimal solution after Iong time.

TabIe 7.2 illustrates the optimization time for embedding the scenarios of TabIe7.1 both

with the space and the time models.

Table 7.2 Embedding time (in minutes)

Group. space exp.l exp.2 exp.3 exp.4

A 0.13 0.07 0.08 0.09 0.19
B 0.75 1.46 1.16 5.31 18.13

C 8 15.09 46.55 65.95 38.89

From TabIe 7.2 we notice that:

1. Most of the scenarios demanded optimization time that is Iess than 20 minutes, which

is an acceptabIe computational time.

CHAPTER 7. PERFORMANCE EVALUATION FOR TIME-HSVN 135

2. Solving the embedding model for Time-HSVNs took longer time than Space-HSVNs

model.

3. For a given scenano, the difference in optimization time between Time-HSVNs and

Space-HSVNs rnodels increases with the increment of the problem size (i.e., VNs size

and synchronous slots dernanded) which increases the number of variables that need to

be solved by the optimization processo

7.2.4 Topological study

In this subsection we study the topology of the physical subnetwork composed of the physical

used elements (i.e., nodes and links). Figure 7.3 illustrates this topology for scenarios A1,

A2, and A3. The topologies under study are the ones in red. vVe notice that, even though

all these scenarios with the same VNs size (lO nodes), yet the mo dei tends towards reserving

more physical elements with the increment of the synchronous slots demanded by the VNs.

For example, in scenario A1 the physical subnetwork under study is composed of 6 nodes,

whereas in scenario A3 it is cornposed of 10 nodes. Previously, we noted down that the

model tends towards distributing the BvV load on the physical resources, Figure 7.2. Now

we add that the model tends also towards distributing the synchrony load as well. So, when

the VNs increase their synchrony demands (i.e., number of synchrony slots), the rnodel tends

towards reserving new elements. This behavior avoids congesting the synchronous frames of

the used elements, allowing mapping new arriving VNs. Because the time HSVNs will be

blocked or by exhausting the SN CPU and BvV, or by exhausting the SN synchronous slots.

(a) scenario AI (b) scenario A2 (c) scenario A3

Figure 7.3 - Topology divergence of used physical resources

7.2.5 Micro mapping model efficiency

The micro mapping model efficiency will be represented by the number of VN s accepted.

The goal of this study is to define the parameters that affect the micro mapping efficiency.

vVe run this study on the case of one physical link and an endless queue of virtual

links attended in order. vVe consider five experiment groups with different load range,

Table 7.3. vVe run three experiments per group, with different synchrony demands. In

CHAPTER 7. PERFORMANCE EVALUATION FOR TIME-HSVN 136

each experiment several opt _ cyc are performed till the physical link is exhausted and no

demands are accepted.

Table 7.3 Number of mapped virtual links with different load and synchrony

demands

Scenario VNs load/SN capacity sync(ik , jk)=1,2,3 slots sync(ik ,jk)=1,2 slots sync(ik ,jk)=l slot

K (0-20] % 9 13 16
L (20-40] % 6 8 12
M (40-60] % 5 6 8
N (60-80] % 1 2 4

O (80-100] % 1 2 4

Our main observations:

1. The efficiency decreases when the virtuallinks load increases. For example, the efficiency

in group K was 9, 13, and 16 whereas in group L it was 6, 8, and 12.

2. The efficiency increases when the maximum number of synchronous slots demanded

decreases. For example, in group K, when the maximum number of synchronous slots

demanded decreased from 3 to 1, the mo deI efficiency increased from 9 to 16.

3. The micro mo deI efficiency is the same in group N and O, the reason is that, both

groups are with high virtuallinks load, this does not allow slots sharing between virtual

demands, and the mapping solution achieved in the macro mapping phase cannot be

optimized further with the micro mapping phase.

Summary

In this chapter we evaluate the embedding mo deIs of Time-HSVNs. Simulation results

show that the proposed embedding framework answers the synchrony time-variant demands

efficiently (spares synchronous resources), distributes the load over the physical resources

(nodes and links), and has an acceptable computation time for reaching the embedding

solution. In addition, topological study of the subnetworks composed of the used resources

on the SN showed that, the embedding mo deI is aware of the synchronous demands variation,

and the resulting subnetwork scatters more on top of the SN when the synchronous demands

increase. Further study of the micro-mapping phase showed that its efficiency is a function

of the VNs load and synchrony.

137
CHAPTER

Conclusion

In this thesis, we provided a background about distributed systems (DSs), and lightened

an important aspect in the field, the synchrony. \Vhile asynchronous DSs support no time

bounds for processes execution and message delivery, the synchronous DSs provide time

guarantees for them. Although fully synchronous DSs demand simpler algorithms, and can

provide what asynchronous ones do, yet the undeniable problem of synchronous components

(processes and channels) high cost led to the development of hybrid synchrony DSs.

Two branches of hybrid synchronous DSs are distinguished in the literature: (i) the

hybrid synchronous in space, where subsets of the system components are synchronous while

the others are asynchronous, and (ii) the hybrid synchronous in time, where the system

components alternate between synchrony and asynchrony over time.

\Ve provided examples of applications (i.e., Apache Cassandra, \Vindows Azure, Chubby)

that may benefit from the partial synchrony assumptions, as the progress will become guar

anteed by the provisioning of elements designed to respect time upper bounds. The problem

is that fully synchronous, or partially synchronous, environment is expensive to build, com

plex to configure, and difficult to controI. This makes the infrastructure providers escape

to asynchronous environments strengthened by algorithms andj or protocols with time-out

specifications.

In a research for relaxing the ossifications of partial synchronous environment; we inves

tigated the space of Virtual Networks (VNs), and we found that virtual networks can offer

a suitable environment for hosting hybrid synchronous distributed systems while optimizing

a set of their constraints due to the properties that virtualization brings.

By revising the literature on the topic ofVNE, we note the absence of embedding solutions

in the literature that consider the synchrony property in applications, which is of paramount

importance to host a prominent class of distributed systems, the hybrid synchronous DSs.

This gap led us to the development of an embedding framework that handles applications

with hybrid synchrony constraints.

CHAPTER 8. CONCLUSION 138

In our work, we propose and argue that virtual networks and the virtual networks em

bedding process offer both abstractions and techniques to support applications with Hybrid

Synchrony demands. To our best knowledge, this is undiscussed in the VN field and is of

paramount importance to host a prominent class of distributed systems. This has led to the

abstraction of new type of VNs, we name it The Hybrid Synchrony Virtual Networks,

abbreviated to HSVNs.

What are HSVNs

They are virtual networks that have subsets of nodes and links that obey time bounds

for processing and communication. Although HSVN can run on fully synchronous SN,

this decision would have to pay the excess in an unneeded cost, since even asynchronous

virtual nodes and links will be mapped on synchronous physical ones. \\Te argue that hybrid

synchronous SN, combined with a suitable embedding, is capable to answer the synchrony

requirements in an economic manner. Hybrid synchronous SNs have two classes of nodes: (i)

synchronaus nades with functioning time guarantees, achieved through the implementation

of periodical real-time tasks, and (ii) asynchronaus nades that have no timely guarantees.

Analogously, two classes of physicallinks are available: (i) synchronaus links that have time

bounded messages transmission delay, achieved through the implementation of QoS policies

and admission control, and (ii) asynchranaus links that have no timely guarantee.

Two types of HSVNs can be distinguished, inspired by the two types of hybrid DS:

1. Space-HSVNs: where the virtual networks are composed of synchronous and asyn

chronous components, where both types of components maintain their synchrony status

during the system functionality.

2. Time-HSVNs: where the virtual networks are composed of subsets of nodes and links

that change their synchrony status over time (i.e., synchronous resources become asyn

chronous and vice versa).

By revising the literature on the topic of VNs embedding; we note the absence of em

bedding solutions in the literature that consider the synchrony property in applications,

which we need for our work to attend DSs with hybrid synchrony. This gap led us to the

development of an embedding framework that handles applications with hybrid synchrony

constraints.

8.1 The thesis contributions

The main contributions of this thesis are:

CHAPTER 8. CONCLUSION 139

• Provide a literature review on the topic of virtual networks embedding, classifying the

works based on the embedding constraints.

• Address applications that may benefit from hybrid synchrony feature (namely: Cassan

dra, \VA, and Chubby) and provide a review about each.

• Propose the use of VNs for hybrid synchronous applications, which results in the Hybrid

Synchronous Virtual Networks (HSVNs).

• Define the Space-HSVNs and propose a suitable embedding model to handle the re

sources allocation problem.

• Define the Time-HSVNs and propose a suitable embedding model to handle the re

sources allocation problem.

8.2 Achieved results

The main results achieved with simulations are:

8.2.1 Space-HSVNs over a settled SN (S-SN)

• Embedding cost: (i) The proposed embedding mo deI considers the hybrid syn

chronous nature of VNs, mapping them onto a hybrid synchronous SN in an economic

manner, trying to spare the synchronous physical resources whose building cost is ex

pensive when compared to the asynchronous ones. (ii) \Vith the increase in the problem

size (be it through the increase in the VNs size or through the increase in the synchrony

demands), the mapping cost increases. (iii) A linear increase in the VNs size andjor

synchrony demands leads to a nonlinear increment in the embedding cost.

• Embedding time: The computational time is proportional to the number of the model

variables, and this last one changes with the problem size as the following: (i) when the

VNs size increases, the model variables number increases, and thus the computational

time increases, and (ii) when the VNs synchrony demands increases, the solution space

becomes increasingly within the synchronous physical subnetwork, which is in our case

a small portion of the SN, this means that the mo deI variables used in the solution will

become less, and thus the computational time to find the variables values would become

less.

• Free resources: The number of free resources is a function of VNs size and synchrony

demands as the following: (i) the number of free resources decreases with the increment

in the VNs size, because bigger VNs will demand more resources to map them, and

CHAPTER 8. CONCLUSION 140

(ii) the number of free resources in homogeneous VNs is more than it is in hybrid

synchronous VNs because they avoid entirely the use of the physical subnetwork that

does not match their synchrony nature.

• Resources load: Regarding the used physical resources, we notice that: (i) The model

tends towards load distribution over the physical resources, that is why the number of

resources at law load is bigger than the number of resources at high load. This is

an important feature in the embedding mo deI because few heavily, or fully, loaded

resources would increase the number of accepted VNs on a given SN. (ii) The pattern

of the accumulative number of used resources is a gaussian-like distribution pattern,

its pick is at law load value for small VNs, and it shifts to higher load values with the

increment in the VNs size and synchrony demands.

8.2.2 Space-HSVNs over a configurable SN (C-SN)

• Embedding cost: i) By comparing the case of C-SN with the S-SN, we notice that

a C-SN allows a clear reduction in the amount of SN synchronous resources needed to

map the virtual components. and ii) The economy of links is more significant than

of the nodes which can be explained by the fact that virtual links can be mapped on

physical paths that can be composed of one physical link or by several physical links.

Thus, sparing one physical path reflects on sparing several physical links.

• Resources load: i) Comparing the S-HSVN and C-HSVN used for mapping the same

demands, we note that, with C-HSVN, there are more free resources (i.e., unused nodes

and links), but the drawback is that, the used resources are more loaded. In other

words, with S-HSVN, the load is better balanced (i.e., more resources used with less

load each). ii) \Vith C-HSVN, the resources (i.e., nodes and links) with high load are

the synchronous ones, whereas the resources with low load are the asynchronous ones,

which is the reversed case in S-HSVN. So, the draw back is that, the C-HSVN charges

the synchronous resources more, which is the expensive subset of resources.

• Synchronous nodes privilege: i) \Ve notice that the mo deI tends toward choosing

the physical nodes with high connectivity degree to be synchronous. A possible inter

pretation for this behavior is that, nodes with high connectivity degree allow multi-use

of the same node, since on one hand, it is connected to a high number of neighbor nodes

which fulfills topology constraints, and on the other hand, nodes with high connectivity

have high bandwidth sum (i. e. the sum of B\V capacity of all the physical links con

nected to it) which fulfills B\V constraint. Since the embedding mo deI of HSVNs over

C-SN aims at minimizing the number of the synchronous resources, then such nodes are

chosen.

CHAPTER 8. CONCLUSION 141

• The topology of synchronous physical resources: \Ve noticed that the topology

of the synchronous subnetwork starts by a ring topology for small problem size, and

tends towards becoming mesh topology with the increment in the problem size. This

observation confirms the previous one regarding the synchronous nodes chosen, being

the ones with high connectivity degree.

Highlighting the advantages and drawbacks of S-HSVN and C-HSVN is not supposed to

lead us to conclude which among both is more important, because both are of equal necessity.

In fact, the infrastructure provider is the player who determines which HSVN model is to

be adopted, based on the SN type he built (i.e., settled or configurable).

8.2.3 Time-HSVNs

• Embedding cost: It is possible to support timely hybrid synchronous systems with

Space_HSVNs, adopting the assumption and embedding model proposed for Space

HSVNs, but this choice would result in wasting synchronous resources because of re

serving them for virtual demands that would behave synchronously only eventually (i.e.,

only during time windows).The time model is more efficient than the Space mo deI as it

spares more resources. This is beca use the time mo deI reserves resources proportionally

to the synchrony demands in time, whereas the space model does noto

• Resources load: The SN resources seem to have load distribution which is good, since

concentrating the load in certain elements will result in congestion, leading to block

mapping certain VNs in the future. This is achieved because, the proposed mo deI does

not push the mapping process to exhaust the used physical resources before allocating

new ones, rather, all resources are given the same chance to be chosen, as long as they

allow mapping on the shortest path.

• Embedding time: i) The time mo deI demands more time than the space model. And

ii) For a given scenario, the difference between time and space mo deIs increases with the

increment of the problem size (i.e., VNs size and synchronous slots demanded) which

increases the number of variables that need to be solved by the optimization processo

• The topology of synchronous physical resources: The mo deI tends towards dis

tributing the synchrony load. So, when the VNs increase their synchrony demands (i.e.,

number of synchrony slots), the model tends towards reserving new elements. This be

havior avoids congesting the synchronous frames of the used elements, allowing mapping

new arriving VNs. Because the time HSVNs will be blocked or by exhausting the SN

CPU and B\V, or by exhausting the SN synchronous slots.

CHAPTER 8. CONCLUSION 142

• Micro mapping model efficiency: The micro mapping mo deI efficiency was repre

sented by the number of VNs accepted. i) The micro mo deI efficiency decreases when

the virtual links load increases. ii) The efficiency increases when the maximum num

ber of synchronous slots demanded decreases. iii) The micro model efficiency decreases

when the virtual elements are with high CPU or B\V demands, because this does not

allow slots sharing between virtual demands, and the mapping solution achieved in the

macro mapping phase cannot be optimized further with the micro mapping phase.

\Ve note down that the proposed embedding framework for Space-HSVNs is abled to

answer Time-HSVNs. But this would result in an excess of cost. Considering the synchrony

time variant nature in Time-HSVNs would result in further sparing of the use of physical

synchronous resources.

8.3 Work application

In real life, there are some widely used applications that may benefit from our work. For

example:

1. Apache Cassandra: a massively scalable open source NoSQL database.

2. \Vindows Azure Storage (\VAS): a cloud storage system that provides customers the

ability to store seemingly limitless amounts of data for any duration of time

3. Chubby lock service: The purpose of the lock service is to allow its clients to synchronize

their activities and to agree on basic information about their environment.

These applications do not force the use of hybrid synchronous environment, although

they need. These applications run on asynchronous environments supported with algorithms

andjor protocols (e.g., PAXOS) where safety is assured but not progresso Ifthese applications

run on top of hybrid synchronous infrastructure then progress can be guaranteed by the

provisioning of elements designed to respect time upper bounds. For example:

• In Cassandra: the failure detection algorithm needs to run on synchronous or hybrid

synchronous subnetworks that communicate the cluster nodes, in order to guarantee

delivering messages within the upper bound specified.

• In \VA: The Intra-stamp replication protocols reed to run on synchronous links that com

municate the replicas on the same storage stamp together, while the Inter-stamp repli

cation protocols may run on asynchronous links that communicate the storage stamps

together.

CHAPTER 8. CONCLUSION 143

• In Chubby: The failure detection algorithm needs to run on synchronous environment

to adjust perfectly the messages delay time.

The problem is that fully synchronous, or partially synchronous, environment is expen

sive to build, complex to configure, and difficult to controI. This makes the infrastructure

providers escape to asynchronous environments strengthened by algorithms andj or proto

cols with time-out specifications. These applications may benefit from the partial synchrony

assumptions that we propose in our work, as the progress will become guaranteed by the

provisioning of elements designed to respect time upper bounds.

8.4 Work generalization

In our work, we motivated the abstraction of the HSVNs through the existence of certain

class of distributed systems, namely the fault tolerant distributed systems, that can benefit

from the hybrid synchrony. In fact, the abstraction of HSVN can be seen from a broader

angle, we express this by generalizing the HSVN idea in three dimensions:

• Although we have dedicated enough efforts to illustrate perfect failure detectors and the

consensus problem, a wider set of applications benefit from hybrid synchrony. For in

stance, general purpose applications would communicate mainly through asynchronous

channels and still rely on timely execution triggers. Thus, certain actions would be

executed in a timely fashion (e.g., check pointing [EA\VJ02], election [MIMFOO], or any

round-based agreement).

• The hybrid SN we are proposing, combined with our embedding model, can host not

only hybrid synchrony applications, but also homogeneous ones (fully synchronous or

fully asynchronous).

• \Vhile in this step of our work we are concerned with synchrony, we envisage that similar

mo deIs may, in the future, be used to denote other kinds of specific functionalities

expected from the resources. such as subsets of nodes and links with special security or

resilience features.

8.5 Work limitations

• \Vith HSVNs, we consider that the synchrony pattern of each virtual no de and link is

independent of each other, which is not the case in real applications, e.g, the failure

detector.

CHAPTER 8. CONCLUSION 144

• For evaluating the performance of the embedding model for Time-HSVNs,we need to

run statistical study, similar to that done for Space-HSVNs. This would provide higher

confidence to the observations noted. But, due to time constraints we could not perform

this statistical study.

• The assumptions and techniques we propose for HSVNs embedding are valid for ofRine

mapping only, and not online mapping. For example, with Time-HSVNs we assumed

that the client is able to define in advance the synchronous round he needs within T,

and this may not be the case that a client can always do.

• In order to tackle the problem of resources allocation, we needed to characterize the

HSVN s to reflect the time synchrony behavior, and for this we considered that each

no de and link would express synchrony in a cyclic pattern. This assumption might not

be always valid for as the clients might not need synchrony in a cyclic pattern.

8.6 Future work

• \Vith HSVNs, we consider that the synchrony pattern of each virtual no de and link

is independent of each other. In future works, we intend to consider cases when VNs

elements synchrony is mutually dependent, to reflect better the nature of the time hybrid

synchronous DSs.

• In a recent article by Luizelli et aI. [LBB+16], the authors provide consistent insights on

how a physical network topology affects virtual network embedding quality. They note

that substrate network topologies that are intrinsically more connected tend to reject

a lower number of virtual requests. In our future work we intend to better study the

impact of the physical synchronous subnetworks topology on the SN and the HSVNs

topologies on the embedding quality, basically in terms of embedding cost, time, and

resources load.

• \Vith Time-HSVNs, we scheduled the synchrony demands on the slots assuming that the

synchrony demands exist together (i.e., at the same time), which might not be the case.

This assumption represents the worst case. In our future work we intend to consider

more realistic scenarios, when the synchrony demands might exist with a probability.

145

Bibliography

[AAC+03] I. F. Akyildiz, T. Anjali, L. Chen, J. C. Oliveira, C. Scoglio, A. Sciuto, J. A.

Smith, and G. Uhl. A new traffic engineering manager for diffserv /mpls net

works: design and implementation on an ip qos testbed. Journal of computer

communications, 26:388-403, 2003.

[ABD+13] A. Abel, F. Benz, J. Doerfert, B. Dorr, S. Hahn, F. Haupenthal, M. Jacobs,

A. H. Moin, J. Reineke, B. Schommer, and R. \Vilhelm. Impact of resource

sharing on performance and performance prediction: a survey. In : 24th inter

national conference on concurrency theory (CONCUR) , pages 25-43. Springer,

2013.

[ALRL04] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr. Basic concepts and

taxonomy of dependable and secure computing. Journal of IEEE transactions

on dependability and secure computing, 1 (1), 2004.

[APST05] T. Anderson, L. Peterson, S. Shenker, and J. Turner. Overcoming the internet

impasse through virtualization. Computer journal, 38(4):34-41, 2005.

[BBC+98] S. Blake, D. L. Black, M. A. Carlson, E. Davies, Z. \Vang, and \V. \Veiss. An

architecture for differentiated services. RFC 2475, December 1998.

[Bea96] J. E. Beasley. Advances in linear and integer programming. Oxford science,

1996.

M. Bienkowski, A. Feldmann, D. Hurca, \V. Kellerer, G. Schaffrath, S. SChmid,

and J. \Vidmer. Competitive analysis for service migration in vnets. In:

ACM SIGCOMM workshop on virtual infrastructure systems and architectures

(VISA '10),2010.

[BFY+OO] Y. Bernet, P. Ford, R. Yavatkar, F. Baker, L. Zhang, M. Speer, R. Braden,

B. Davie, J. \Vroclawski, and E. Felstaine. A framework for integrated services

operation over diffserv networks. RFC 2998, November 2000.

BIBLIOGRAPHY 146

[BHFdM13] J. F. Botero, X. Hesselbach, A. Fischer, and H. de Meer. Optimal mapping

of virtual networks with hidden hops. Journal of telecommunications system,

52(3), 2013.

[BHK12]

[Bir12]

[BKR11]

[bmc14]

A. Belbekkouche, M. M. Hasan, and A. Karmouch. Resource discovery and

allocation in network virtualization. Journal of IEEE communication surveys

and tutoriaIs, 14(4):1114-1128,2012.

K. P. Birman. Cuide to reliable distributed systems, chapter 15, pages 457-470.

Springer, 2012.

H. Ballani, T. Karagiannis, and A. I. T. Rowstron. Towards predictable data

center networks. In : 11th ACM SICCOMM conference, pages 242-253, 2011.

International business machines corporation. Ibm ilog cplex optimizer. [online].

available: http:j jwww-01.ibm.comjsoftwarejcommercejoptimizationjcplex

optimizer, October 2014.

[BOB+12a] L. R. Bays, R. R. Oliveira, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary.

Security-aware optimal resource allocation for virtual network embedding. In

: 8th international conference on network and service management (CNSM) ,

Las Vegas, Nevada, USA, 2012.

[BOB+12b] L. R. Bays, R. R. Oliveira, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary. Um

modelo para mapeamento ótimo de redes virtuais com requistos de seguranca.

In : 12th brazilian symposium on information and computa science (SBSeg

2012), 2012.

[BreOO]

[BR\V12]

[Bur06]

[CB09]

[CB10]

Eric A. Brewer. Towards robust distributed systems (invited talk). In : prin

cipIes of distributed computing, 2000.

R. Bless, M. Rohricht, and C. \Verle. Authenticated quality-of-service signaling

for virtual networks. Journal of communications, 7(1):17-27, 2012.

Mike Burrows. The chubby lock service for loosely-coupled distributed systems.

In : 7th symposium on operating system design and implementation, pages 335-

350,2006.

N. M. Chowdhury and R. Boutaba. Network virtualization: state of the art and

research challenges. Journal of IEEE communications magazine, 47(7):20-26,

July 2009.

N. M. Chowdhury and R. Boutaba. A survey of network virtualization. Journal

of computa networks, 54(5):862-876, 2010.

BIBLIOGRAPHY 147

[CDRS07] S. Cabuk, C. I. Dalton, H. Ramasamy, and M. Schunter. Towards automated

provisioning of secure virtualized networks. In: 14th ACM conference on

computa and communications security, New York, NY, USA, 2007.

[CF99] Flaviu Cristian and Christof Fetzer. The timed asynchronous distributed sys

tem model. Journal of IEEE Transactions on parallel and distributed systems,

10(6):642-657, 1999.

[CLW+lO] Y. Chen, J. Li, T. \\To, C. Hu, and \\T. Liu. Resilient virtual network service

provision in network virtualization environments. In : IEEE 16th international

conference on parallel and distributed systems, 2010.

[CN02]

[CRB09]

[CSB10]

B. E. Carpenter and K. Nichols. Differentiated services in the internet. Journal

of proceedings of the IEEE, 90(9), 2002.

N. Chowdhury, M. R Rahman, and R Boutaba. Virtual network embedding

with coordinated no de and link mapping. In : IEEE INFOCOM09, Rio de

Janeiro, Brazil, 2009.

N. Chowdhury, F. Samuel, and R Boutaba. Polivine: Policy-based virtual

network embedding accross multiple domains. In : ACM SICCOMM workshop

on virtual infrastructure systems and architectures (VISA'l O), 2010.

[CT96] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed

systems. Journal of the ACM, 43(2):225-267, 1996.

[Cui12] Hongyan Cui. A new algorithm of virtual network embedding based on mini

mum no de stress and adjacent principIe. In : globecom workshops (CC Wkshps),

pages 792-796, Anaheim, CA, 2012.

[dAMG09] RJ. de Araujo Macedo and S. Gorender. Perfect failure detection in the par

titioned synchronous distributed system model. In : ARES 'Og international

conference on availability, reliability and security, pages 273-280, March 2009.

[DG08] J. Dean and S. Ghemawat. Mapreduce: simpliefied data processing on large

clusters. Journal of ACM communications, 51(1):107-113, 2008.

[DLS88] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial

synchrony. Journal of ACM (JACM), 35(2):288-323, 1988.

[DODH15] R R De Oliveira, F. B. Dotti, and R Hasan. Heuristicas para mapeamento

de redes virtuais de sincronia hibrida. In : 33rd simpósio brasileiro de redes de

computadores e sistemas distribuídos (SERC), pages 291-304, 2015.

BIBLIOGRAPHY 148

[eall] Brad Calder et aI. \Vindows azure storage: a highly avialable cloud storage

service with strong consistency. In : 23rd A CM symposium on operating systems

principIes (SOSPll), pages 143-157. ACM, 2011.

[EA\VJ02] Elmootazbellah Nabil Elnozahy, Lorenzo Alvisi, Yi-Min \Vang, and David B

Johnson. A survey of rollback-recovery protocols in message-passing systems.

Joumal of ACM computing surveys (CSUR), 34(3):375-408, 2002.

[Emm97]

[FLP85]

[Gar01]

[GB95]

\Volfgang Emmerich. Distributed system principIes. Technical report, Depart

ment of compute r science - university college London, 1997.

Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of

distributed consensus with one faulty processo J oumal of the A CM (J A CM),

32(2):374-382, 1985.

F. C. Gartner. A gentle introduction to failure detectors and related subjects.

Technical report, Darmstadt university of technology, department of computer

science, 2001.

T. M. Ghazalie and T. P. Bake. Aperiodic servers in a deadline scheduling

environment. Real-time systems, 9(1):31-67, 1995.

[GdAMR07] S. Gorender, R.J. de Araujo Macedo, and M. RaynaI. An adaptive programming

mo deI for fault-tolerant distributed computing. Joumal of IEEE transactions

on dependable and secure computing, 4(1):18-31, 2007.

[GGS01]

[GH16]

[GJ79]

[GKOO]

G. C. Goodwin, S. F. Graebe, and M. E. Salgado. ContraI system designo

Prentice Hall, 2001.

E. Ghazisaeedi and C. Huang. Energymap: energy-efficient embedding of

mapreduce-based virtual networks and controlling incast queuing delay. In

: 8th IEEE intemational conference on communication software and networks

(ICCSN) , pages 698-702, 2016.

M. Garey and D. Johnson. Computa and contractability: a guide to the theory

of NP-completness. Freeman, New York, 1979.

Felix C Gartner and Sven Kloppenburg. Consistent detection of global pred

icates under a weak fault assumption. In : 1 9th IEEE symposium on reliable

distributed systems. IEEE, 2000.

[GKA +16a] A. M. Ghaleb, T. Khalifa, S. Ayoubi, K. B. Shaban, and C. Assi. Surviving

link failures in multicast vn embedded applications. In : IEEE/IFIP network

operations and management symposium, pages 645-651, 2016.

BIBLIOGRAPHY 149

[GKA +16b] A. M. Ghaleb, T. Khalifa, S. Ayoubi, K. B. Shaban, and C. Assi. Surviving

multiple failures in multicast virtual networks with virtual machines migration.

Journal of IEEE transactions on network and service management, 13(4),2016.

[GL\V+lO] C. Guo, G. Lu, H. J. \Vang, S. Yang, and C. Kong. Secondnet: a data center

network virtualization architecture with bandwidth guarantees. In: A CM

CoNEXT conference, 2010.

[God04] \Vayne Goddard. Introduction to algorithms. Clemson university, 2004.

[G\VZL14] L. Gong, Y. \Ven, Z. Zhu, and T. Lee. Toward profit-seeking virtual network

embedding algorithm via global resource capacity. In : IEEE conference on

computa communications (INFOCOM), pages 1-9, Toronto, Canada, 2014.

IEEE.

[HAM10] D. Huang, S. Ata, and D. Medh. Establishing secure virtual trust routing and

provisioning domains for future internet. In : IEEE global telecommunications

conference (GLOBECOM), 2010.

[Her04] Kopetz Hermann. Real time systems : design principIes for distributed embed

dede applications, page 338. Springer, 2004.

[Hew11] Eben Hewitt. Cassandra: the definitive guide. Oreilly media, 2011.

[HLAZ11] I. Houidi, \V. Louati, \V. B. Ameur, and D. Zeghlache. Virtual network pro

visioning across multiple substrate networks. Journal of computa networks,

55(4):1011-1023,2011.

[HLZ08] I. Houidi, \V. Louati, and D. Zeghlache. A distributed virtual network mapping

algorithm. In : IEEE international conference on communications (ICC08) ,

2008.

I. Houidi, \V. Louati, D. Zeglache, P. Papadimitriou, and L. Mathy. Adap

tive virtual network provisioning. In : ACM SIGCOMM workshop on virtual

infrastructure systems and architectures (VISA'l O), 2010.

[HLZB09] I. Houidi, Louati, D. Zeghlache, and S. Baucke. Virtual resource description

and clustering for virtual network discovery. In: IEEE ICC09 workshops,

Dresden, Germany, 2009.

[HMD13] Rasha Hasan, Odorico Machado Mendizabal, and Fernando Luís Dotti. Hybrid

synchrony virtual networks: definition and embedding. In : 13th international

conference on networks (ICN) , pages 104-110, 2013.

BIBLIOGRAPHY 150

[HMOD14] Rasha Hasan, Odorico Machado Mendizabal, Rômulo Reis De Oliveira, and

Fernando Luís Dotti. A study on substrate network synchrony demands to

support hybrid synchrony virtual networks. In : 32nd simpósio brasileiro de

redes de computadores e sistemas distribuídos (SER C), pages 705-718, 2014.

[HPN09]

[HS91]

A. Haider, R. Potter, and A. Nakao. Challenges in resource allocation in net

work virtualization. In : 20th ITC specialist seminar, October 2009.

Robert \V. Haessler and Paul E. Sweeney. Cutting stock problems and solution

procedures. European journal of operational research, 54:141-150, 1991.

[HS\VY12] \V. H. Hsu, Y. P. Shieh, C. H. \Vang, and S. C. Yeh. Virtual network mapping

through path splitting and migration. In : 26th international conference on

advanced information networking and applications workshops, Fukuoka, Japan,

2012.

[H\V90]

[IR11]

[Jai91]

[Kar72]

[Kle98]

[Koc04]

[KR13]

[Lam01]

M. P. Herlihy and J. M. \VING. Linearizability: a correctness condition for

concurrent objects. ACM transactions on programming languages and systems,

12(3):463-492, 1990.

J. Infuhr and G. R. Raidl. Introducing the virtual network mapping problem

with delay, routing and location constraints. In : 5th international networking

optimization conference (INDC), Hamburg-Germany, 2011.

Raj Jain. Art of computer systems performance analysis techniques for ex

perimental design measurements simulation and modeling, chapter 16. \Viley

computer, 1991.

R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller, J. \V.

Thatcher, and J. D. Bohlinger, editors, : complexity of computer computations,

pages 85-103. Plenum Press, 1972.

J. M. Kleinberg. Decision algorithms for unsplittable flow and the half-disjoint

paths problem. In : 30th annual ACM symposium on theory of computing,

pages 530-539, New York, USA, 1998.

T. Koch. Rapid mathematical programming. PhD thesis, Tichnische universitat

Berlin, 2004.

James F. Kurose and Keith \V. Ross. Computer networking: a top down ap

proach, chapter 7 (Multimedia networking), pages 648-655. Pearson, 2013.

L. Lamport. Paxos made simple. Journal of ACM SIGACT news, 32(4):18-25,

2001.

BIBLIOGRAPHY 151

M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary.

Characterizing the impact of network substrate topologies on virtual network

embedding. In : 9th intemational conference on network and service manage

ment), pages 42-50, 2013.

M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary. How

physical network topologies affect virtual network embedding quality: A char

acterization study based on isp and datacenter networks. Joumal of network

and computer applications, 70:1-16, 2016.

[LCXX15] S. Liu, Z. Cai, H. Xu, and M. Xu. Towards security-aware virtual network

embedding. Joumal of computer network, 91(11):151-163, 2015.

[LiuOO] Jane \\T. S. \\T. Liu. Real-time systems. Prentice Hall PTR, 2000.

[LKOO]

[LSS87]

[LT06]

[LZ\\T15]

Averill M. Law and \\T. David Kelton. Simulation modeling and analysis.

McGraw-Hill, 2000.

J. P. Lehoczky, L. Sha, and J. Strosnider. Enhanced aperiodic responsiveness

in hard real-time environment. In : 8th IEEE real-time systems symposium,

pages 110-123, San Jose, California, 1987. IEEE.

J. Lu and J. Turner. Efficient mapping of virtual networks onto a shared

substrate. Technical Report 35, \\Tashington university in St. Louis, 2006.

H. Li, T. Zhou, and Q. \\Tang. The study of dynamic topology remapping in

virtual network embedding. In : intemational conference on information and

communication technology convergence (ICTC). IEEE, 2015.

[MF04] Zbigniew Michalewicz and David B. Fogel. How to solve it: modem heuristics.

Springer, 2004.

[MIMFOO] Hiroyoshi Matsui, Michiko Inoue, Toshimitsu Masuzawa, and Hideo Fujiwara.

Fault-tolerant and self-stabilizing protocols using an unreliable failure detector.

Joumal of IEICE transactions on information and systems, 83(10):1831-1840,

2000.

[MLMJ14] A. Medina, A. Lakhina, I. Matta, and Byers J. Brite: Boston

university representative internet topology generator [online]. available:

https:jjwww.cs.bu.edujbritej, October 2014.

[MMRT06] A. Mostefaoui, E. Mourgaya, M. Raynal, and C. Travers. A time-free assump

tion to implement eventual leadership. Joumal of parallel processing letters,

16(2):189-207, 2006.

BIBLIOGRAPHY 152

[0Ii13]

[OS03]

[Pad99]

[PG73]

[Pli99]

[RAB10]

[RB13]

Rodrigo Ruas Oliveira. Toward cost efficient, DoS-resilient virtual networks

with ORE: opportunistic resilience embedding. PhD thesis, Institue of infor

matics, Universidade federal do rio grande do sul, 2013.

Eric Osborne and Ajay Simha. Traffic engineering with MPLS: design, configure

and manage MPLSTE to optimize network performance. Cisco Press, 2003.

M. Padberg. Linear optimization and extensions. Springer-Verlag, 1999.

G. J. Popek and R. P. Goldberg. Formal requirements for virtualizable third

generation architectures. In : 4th ACM symposium on operating system prin

cipIes, pages 412-421, 1973.

J.L. Pline. Traffic engineering handbook. Institute of transportation engineer

ing, 1999.

M. R. Rahman, I. Aib, and R. Boutaba. Survivable virtual network embedding.

In : 9th IFIP TC 6 international conference on networking. Springer, 2010.

M. R. Rahman and R. Boutaba. Svne: survivable virtual network embedding

algorithms for network virtualization. volume 10, pages 105-118, 2013.

[RSK+OO] C. O. Ryan, D. C. Schmidt, F. Kuhns, M. Spivak, J. Parsons, I. Pyarali, and

D. L. Levine. Evaluating policies and mechanisms for supporting embedded

real-time applications with corba 3.0. In : real-time technology and applications

symposium, pages 188-197. IEEE, 2000.

[RSK+01] Carlos Ryan, Douglas C. Schmidt, Fred Kuhns, Marina Spivak, Jeff Parsons,

Irfan Pyarali, and David Levine. Evaluating policies and mechanisms to sup

port distributed real-time applications with corba. Journal of practice and

experience, 13(2):1-21, 2001.

[Sch93a]

[Sch93b]

Fred B. Schneider. In Mullender, editor, Distributed systems (2nd Ed.). ACM

pressjAddison-\Vesley publishing co., 1993.

Fred B. Schneider. Distributed systems (2nd Ed.), chapter 2 (\Vhat Good are

Models and \Vhat Models are Good?), pages 17-26. \Vesley publishing co.,

1993.

[Sie02] G. Sierksma. Linear and Integer Programming: Theory and Practice, Second

Edition. MareeI Dekker, 2002.

[S\VP+09] G. Schaffrath, C. \Verle, P. Papadimitriou, A. Feldmann, R. Bless, A. Green

halgh, A. \Vundsam, M. Kind, and O. Maennel. Network virtualization archi

tecture: proposal and initial prototype. In : 1st ACM workshop on virtualized

BIBLIOGRAPHY 153

[Szt12]

[TEA11]

[TT05]

[VC02]

[Ver06]

infrastructre systems and architectures, ser. VISA '09, pages 63-72, New York,

NY, USA, 2009.

J. Sztrik. Basic queueing theory. University of Debrecen, faculty of informatics,

2012.

T. Trinh, H. Esaki, and C. Aswakul. Quality of service using careful over

booking for optimal virtual network resource allocation. In: 8th Thailand

conference on electrical engineering, electronics, computa, telecommunications

and information technology (ECTI) , 2011.

J. Turner and D. Taylor. Diversifying the internet. IEEE global telecommuni

cations conference (GLOBECOM05), 2, 2005.

Paulo Veríssimo and Antônio Casimiro. The timely computing base model and

architecture. Journal of IEEE transactions on computas, 51(8):916-930, 2002.

Paulo E. Verissimo. Travelling through wormholes: a new look at distributed

systems models. Journal of ACM SIGACT News, 37(1):66-81, 2006.

[vsgNwp12] Network virtualization study group (NVSG) white paper. Advanced network

virtualization: definition, benefits, applications, and technical challenges. Tech

nical report, 2012.

[\Vax88] B. M. \Vaxman. Routing of multipoint connections. Journal of selected areas

in communications, 6(9):1617-1622,1988.

[\V\VG+16] Z. \Vang, J. \Vu, Z. Guo, G. Cheng, and H. Hu. Secure virtual network em

bedding to mitigate the risk of covert channel attacks. In : computa commu

nications workshops (INFOCOM WKSHPS). IEEE, 2016.

[XDH12] D. Xie, N. Ding, and R. Hu, Y.C. andKompella. The only constant is change:

incorporating time-varying network reservations in data centers. In: SIG

COMM conference, 2012.

[YAQSll] H. Yu, V. Anada, C. Qiao, and G. Sun. Cost efficient design of survivable virtual

infrastructre to recover from facility no de failures. In : IEEE international

conference on communications, 2011.

[Y\VK10] \V. L. Yeow, C. \Vestphal, and U. C. Kozat. Desigining and embedding re

liable virtual infrastructres. In: ACM SIGCOMM workshop on virtualized

infrastructure systems and architectures (VISA'l O), 2010.

BIBLIOGRAPHY 154

[YYRC08a] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking virtual network embed

ding: substrate support for path splitting and migration. Journal of ACM

SIGCOMM, 38(2):17-29, 2008.

[YYRC08b] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking virtual network embed

ding: Substrate support for path splitting and migrtation. Journal of ACM

SIGCOMM, 38(2):1011-1023, 2008.

[ZA06]

[ZI07]

Y. Zhu and M. Ammar. Algorithms for assigning substrate network resources

to virtual network components. In : IEEE INFOCOM06, 2006.

D. Zhang and D. Ionescu. Qos performance analysis in deployment of diffserv

aware mpls traffic engineering. In: 8th ACIS international conference on

software engineering, artificial intelligence, networking, and parallelj distributed

computing, pages 963-968. IEEE computer society, 2007.

[ZQT+11] S. Zhang, Z. Qian, B. Tang, J. \Vu, and S. Lu. Opportunistic bandwidth sharing

for virtual network mapping. In : global telecommunications conference, pages

1-5, 2011.

[ZQ\V+14] S. Zhang, Z. Qian, J. \Vu, S. Lu, and L. Epstein. Virtuail network embedding

with opportunistic resource sharing. Journal of IEEE transactions on parallel

and distributed systems, 25(3):816-827, 2014.

[ZQ\VL12] S. Zhang, Z. Qian, J. \Vu, and S. Lu. An opportunistic resource sharing and

topology-aware mapping framework for virtual networks. In : IEEE INFOCOM

conference, pages 2408-2416, 2012.

[Z\VJY10] M. Zhang, C. \Vu, M. Jiang, and Q. Yang. Mapping multicast service-oriented

virtual networks with delay and delay variation constraints. In : IEEE global

telecommunication conference (GLOBECOM), Miami, FL, 2010.

