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Resumo 

N
as últimas três décadas de pesquisa em Sistemas Distribuídos (SDs), um aspecto 

central discutido é o de sincronia. Com um sistema assíncrono, não fazemos su

posições sobre velocidades de execução de processos e / ou atrasos de entrega de 

mensagens; Com um sistema síncrono, fazemos suposições sobre esses parâmetros [Sch93b]. 

Sincronismo em SDs impacta diretamente a complexidade e funcionalidade de algoritmos 

tolerantes a falhas. Uma infra-estrutura síncrona contribui para o desenvolvimento de sis

temas mais simples e fiáveis, mas tal infra-estrutura é muito cara e às vezes nem sequer 

viável de implementar. Uma infra-estrutura totalmente assíncrona é mais realista, mas al

guns problemas foram mostrados como insolúveis em tal ambiente através do resultado de 

impossibilidade por Fischer, Lynch e Paterson [FLP85]. As limitaçes tanto em ambientes 

totalmente síncronos como totalmente assíncronos levaram ao desenvolvimento de sistemas 

distribuídos como síncronia parcial [CF99, Ver06]. 

Em um estudo de funcionalidade de sistemas distribuídos síncronos parciais e de pro

priedades de Redes Virtuais (RVs), descobrimos que existem vários desafios para este tipo de 

sistemas que podem ser resolvidos com RVs devido às propriedades que a virtualização traz. 

Por exemplo a) partilha de recursos fornecida por RVs permite diminuir o custo ao partilhar 

a parte síncrona da infra-estrutura física, b) isolamento fornecido por a natureza da RVs, isso 

pode beneficiar os SDs coexistentes na mesma infra-estrutura física que exigem certo nível 

de isolamento,c) resiliência garantido através do processo de alocação de recursos de Redes 

Virtuais, isso permite alocar recursos de reposição ao lado dos primários para redes virtuais 

que exigem garantias de disponibilidade, por exemplo, SDs tolerantes a falhas. Em nosso 

trabalho, argumentamos que as RVs e um adequado processo de alocação de recursos das 

RVs oferecem um ambiente adequado para executar aplicativos distribuídos com sincronia 

parcial. Isto levou à abstração de um novo tipo de RVs: As Redes Virtuais com sincronia 

híbrida (RVSHs). 

Nesta tese, apresentamos a idéia geral das Redes Virtuais com sincronia híbrida motivado 

pelos SDs com síncronia híbrida, e dividimos nosso trabalho em duas partes: a) Espaço

RVSHs propostos pelo SDs com sincronia híbrida em espaço, e b) Tempo-RVSHs propostos 
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pelo SDs com sincronia híbrida em tempo. No SDs com síncronia híbrida em espaço, a infra

estrutura é composta de subconjuntos de componentes síncronos e assíncronos, e cada um 

desses subconjuntos mantém seu status de sincronia através do tempo (i.e., os subconjuntos 

síncronos permanecem síncronos e os assíncronos permanecem assíncronos). No SDs com 

síncronia híbrida em tempo, a infra-estrutura é composta de subconjuntos de nós e laços que 

podem alternar seu status de sincronia através do tempo (i.e., os componentes se comportam 

de forma síncrona durante os intervalos de tempo e de forma assíncrona durante outros 

intervalos de tempo). 

As principais contribuições desta tese são: a) caracterizam os RVSHs em seus dois tipos 

Espaço-RVSHs e Tempo-RVSHs para refletir tanto a natureza de sincronia em espaço e em 

tempo; b) propor uma estrutura adequada para o processo de alocação de recursos para 

ambos Espaço-RVSHs e Tempo-RVSHs, e c) fornecer uma avaliação dos modelos propostos 

para RVSHs. 

Palavras-chave: Sistemas distribuídos, Sincronia, Redes virtuais, alocação de recursos. 



Abstract 

I
n the last three decades of research in Distributed Systems (DSs), one core aspect dis

cussed is the one of synchrony. \Vith an asynchronous system, we make no assumptions 

about process execution speeds andj or message delivery delays; with a synchronous 

system, we do make assumptions about these parameters [Sch93b]. Synchrony in DSs im

pacts directly the complexity and functionality of fault-tolerant algorithms. Although a syn

chronous infrastructure contributes towards the development of simpler and reliable systems, 

yet such an infrastructure is too expensive and sometimes even not feasible to implemento 

On the other hand, a fully asynchronous infrastructure is more realistic, but some problems 

were shown to be unsolvable in such an environment through the impossibility result by 

Fischer, Lynch and Paterson [FLP85]. The limitations in both fully synchronous or fully 

asynchronous environments have led to the development of partial synchronous distributed 

systems [CF99, Ver06]. 

In a study of partial synchronous distributed systems functionality, and of Virtual Net

works (VNs) properties, we found that there are several challenges for this kind of systems 

that can be solved with VNs due to the properties that virtualization brings. For example a) 

resources sharing provided by VNs allows decreasing the cost when sharing the synchronous 

portion of the physical infrastructure, b) isolation provided by the VNs nature can benefit 

the coexistent DSs on same physical infrastructure that demand certain leveI of isolation, c) 

resilience guaranteed through the Virtual Networks Embedding (VNE) process that allows 

allocating spare resources beside the primary ones for virtual networks that require avail

ability guarantees, for example fault tolerant DSs. In our work, we argue that VNs and 

a suitable VN embedding process offer suitable environment for running distributed appli

cations with partial synchrony. This has led to the abstraction of new type of VNs: The 

Hybrid Synchrony Virtual Networks (HSVNs). 

In this thesis, we introduce the general idea of Hybrid Synchrony Virtual Networks 

(HSVNs) motivated by the hybrid synchronous DSs, and we branch our work into two 

branches: a) Space-HSVNs addressed to spatial hybrid synchronous DSs, and b) Time

HSVNs addressed to the time hybrid synchronous DSs. In spatial hybrid synchronous DSs, 
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the hybrid synchronous physical infrastructure is composed of subsets of synchronous and 

asynchronous components, and each of these subsets maintains its synchrony status through 

time (i.e., synchronous subsets remain synchronous and asynchronous ones remain asyn

chronous). In time hybrid synchronous DSs, the hybrid synchronous physical infrastructure 

is composed of subsets of nodes and links that can alternate their synchrony status through 

time (i.e., the components behave synchronously during time intervals, and asynchronously 

during other time intervals). 

The main contributions of this thesis are: a) characterize the HSVNs in its two types 

Space-HSVNs and Time-HSVNs to reflect both the synchrony space-variant and time-variant 

nature ofDSs; b) propose a suitable embedding framework for both Space-HSVNs and Time

HSVNs, and c) provide an evaluation of the embedding mo deIs addressed to the HSVNs. 

Key words: Distributed Systems, Synchrony, Virtual Networks, Embedding. 
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CHAPTER 

1 General Introduction 

A distributed System (DS) consists of a collection of autonomous computers linked 

by a compute r network and equipped with distributed system software that 

enables computers to coordinate their activities and to share the resources of the 

system hardware, software, and data [Sch93a]. Users of distributed systems should perceive a 

single, integrated computing facility even though it may be implemented by many computers 

in different locations. This is in contrast to a network, where the user is aware that there 

are several machines whose locations, storage replications, load balancing, and functionality 

are not transparent. Benefits of distributed systems include bridging geographic distances, 

improving performance and availability, maintaining autonomy, reducing cost, and allowing 

for interaction. 

In the last three decades of research in Distributed Systems (DSs), one core aspect dis

cussed is the one of synchrony. \Vith an asynchronous system, we make no assumptions 

about process execution speeds andj or message delivery delays; with a synchronous system, 

we do make assumptions about these parameters [Sch93b]. In particular, in a synchronous 

system, the relative speeds of processes, as well the delays associated with communication 

channels are assumed to be bounded. The research on DSs has longly touched problems that 

base on the synchrony property of the system environment, for example the consensus prob

lem [DLS88] where synchrony ensures progress of several distributed algorithms; another 

example is failure detection [GarOl]. 

Synchrony in DSs impacts directly the complexity and functionality of fault-tolerant 

algorithms. Although a synchronous infrastructure contributes towards the development 

of simpler and reliable systems; yet such an infrastructure is too expensive and sometimes 

even not feasible to implemento On the other hand; a fully asynchronous infrastructure is 

more realistic, but fundamental agreement problems showed to be unsolvable in such an 

environment, such as the impossibility result by Fischer, Lynch and Paterson [FLP85]. The 

limitations in both fully synchronous or fully asynchronous systems have led researchers to 

the development of partial synchronous distributed systems, which we call in this thesis, as 

well, by Hybrid Synchronous Distributed Systems. 
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There are some applications that may benefit from the hybrid synchronous assumptions, 

for example, Apache Cassandra, \Vindows Azure, and Chubby lock service. These applica

tions do not force the use of hybrid synchronous environment, although they need, rather 

they run on asynchronous environments supported with algorithms andjor protocols (e.g., 

PAXOS protocol) to allow progress but without guarantees. If these application run on top 

of hybrid synchronous infrastructure then the progress will be guaranteed by the provisioning 

of elements designed to respect time upper bounds. The problem is that fully synchronous, or 

partially synchronous, environment is expensive to build, complex to configure, and difficult 

to controI. This makes the infrastructure providers escape to asynchronous environments 

strengthened by algorithms andj or protocols with time-out specifications. 

Virtual Networks (VNs) have attracted considerable attention in the last years, both 

as an experimental environment to evaluate new protocols, as well as a technology to be 

integrated in the current network architectures [CB09]. As can be seen in the literature, the 

diversity of applications pose different requirements on their supporting VNs, e.g., topology, 

security, and resilience requirements. In this context, the process of resources allocation 

(called as well embedding or mapping) is a key aspect that (i) defines how resources of a 

physical network (also called Substrate Network - SN) are used to support VNs, and (ii) 

assumes several variants according to the kinds of applications and respective VNs demands. 

In a study of partial synchronous distributed systems functionality, and of Virtual Net

works (VNs) properties , we found that there are several challenges for this kind of systems 

that can be solved with VNs due to the properties that virtualization brings, for example: 

• Network virtualization is defined by the decoupling of the roles of the traditional In

ternet Service Providers (ISPs) into two independent entities [TT05]: infrastructure 

providers, who manage the physical infrastructure, and service providers, who create 

virtual networks by aggregating resources from multiple infrastructure providers and 

offer end-to-end services. The design of synchronous components in DSs requires fun

damental handling mechanisms [RSK+OO, RSK+01]. Considering a new architecture of 

the DSs based on VNs provides a new business mo deI that allows sharing tasks: (i) the 

synchronous resources design is assigned to the SN provider, and (ii) the resources allo

cation process is assigned to the VN provider. Delegating the design of the synchronous 

resources to the SN provider and the embedding process to the VN provider may result 

in dividing the complexity into more tractable parts. 

• Heterogeneity in the context of network virtualization comes mainly from two fronts 

[CBlO]: first, heterogeneity of the underlying networking technologies (e.g., optical, 

wireless, and senso r ); second, each end-to-end VN, created on top of that heterogeneous 

combination of underlying networks, can also be heterogeneous. Considering a new 

architecture of DSs based on VNs exhibits the system heterogeneity in the hybrid kind 
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of physical resources required to be synchronous and asynchronous, which allows using 

the VNs framework to manage hybrid environment . 

• The building cost of synchronous resources in DSs is considerably high when compared to 

the asynchronous resources. VNs allow sharing the synchronous portion of the physical 

infrastructure between several applications, which will result in reducing the overall 

cost . 

• The VNs Embedding process (VNE) allows allocating resources according to a pattern 

that guarantees resilience. In fault-tolerant DSs, system availability is a requirement. 

In other words, the occurrence of faults should be masked allowing the continuity of 

the system functioning. This can be tackled easily by adopting the VNs embedding 

framework, which allows allocating spare resources beside the primary ones for virtual 

networks that require availability guarantees. 

In our work, we argue that VNs and a suitable VN embedding process offer suitable 

environment for running distributed applications with partial synchrony. This has led to the 

abstraction of new type of virtual networks that we name The Hybrid Synchrony Virtual 

Networks (HSVNs). They are virtual networks that have subsets of nodes and links that 

obey time bounds for processing and communication. Although HSVNs can run on a fully 

synchronous SN, this decision would result in an excess of an unneeded cost, since even 

asynchronous virtual nodes and links will be mapped on synchronous physical ones. \\Te 

argue that a hybrid synchronous SN, combined with a suitable embedding process, is capable 

to answer the synchrony requirements in an economic manner. Furthermore, revising the 

literature on the topic of VNs embedding, we have not found a mapping solution aware of the 

synchrony parameter so it can be adopted for the HSVN resources allocation, this motivated 

us to develop a mathematical mo deI for the HSVNs embedding processo 

Thesis contributions 

The main contributions of this thesis are: 

1. Provide a state of the art for research on VNs embedding, classifying the works based 

on applications requirements. 

2. Introduce the general ide a of HSVNs motivated by the hybrid synchronous DSs. \\Te 

branch our work into two paths: 

• Space-HSVNs: addressed for hybrid synchronous DSs in space, where the applica

tion synchronous and asynchronous components maintain their synchrony status 

during the system execution. \\Tith Space-HSVNs, we consider two types of Sub

strate Network (SN): (a) Settled Substrate network (S-SN), where physical nodes 
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and links are designed to behave synchronously or asynchronously independently 

of the VNs synchrony demands, and (b) Configurable Substrate Network (C-SN), 

where the physical nodes and links are configured to behave synchronously or asyn

chronously dependently on the VNs synchrony demands . 

• Time-HSVNs: addressed for hybrid synchronous DSs in time, where the appli

cation components eventually alternate their synchrony status during the system 

execution. 

3. Develop suitable embedding mo deIs for: a) Space-HSVNs over S-SN, b) Space-HSVNs 

over C-SN, and c Time-HSVNs. 

4. Evaluate the performance of the proposed embedding mo deIs through simulating differ

ent scenarios. 

\\Te note down that the proposed embedding framework for Space-HSVNs is able to 

answer Time-HSVNs. But this would result in an excess of cost. Considering the synchrony 

time variant nature in Time-HSVNs would result in further sparing of the use of physical 

synchronous resources. 

Thesis organization 

In Chapter 2, we start by building a background about some concepts with hybrid syn

chronous distributed systems, and at the end on Chapter 2, we point some limitations in 

hybrid synchronous DSs, and we propose Virtual Networks (VNs) as a possible solution due 

to properties guaranteed by the virtualization [CBIO]. 

In Chapter 3, we provide a background about Virtual Networks (VNs), definition, prop

erties, and we revise the literature on the topic of VN resources allocation, which is named as 

mapping or embedding problem in the literature as well. \\Te classify the works on VNs em

bedding according to applications' constraints (e.g., topology, security, and resilience), and 

we note the absence of an embedding solution in the literature that considers the synchrony 

property in applications, which we need for our work. This gap led us to the development 

of an embedding framework that handles applications with hybrid synchrony constraints. 

Merging DSs with VNs has resulted in a new architecture for DSs with hybrid synchrony 

based on VNs, the new architecture we name: the Hybrid Synchrony Virtual Networks ab

breviated to HSVNs. \\Tith the two types of hybrid synchrony (i.e., in Space and in Time), 

we branch our work into two branches detailed in Chapter 4 and Chapter 6. 

In Chapter 4 we propose the Hybrid Synchronous Virtual Networks in Space, we name 

them the Space-HSVNs, we propose a suitable embedding mo deI for two types of Substrate 

Network (SN): i) Settled SN and ii) configurable SN. 

In Chapter 5 we evaluate the performance of the proposed embedding model of Space

HSVNs basically regarding the embedding cost, optimization time, and resources load. More-
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over, we provide a study over the topology of the subnetworks composed of the used physical 

resources on the SN. 

In Chapter 6 we propose the Hybrid Synchronous Virtual Networks in Time, we name 

them the Time-HSVNs, as well, we propose a suitable embedding mo deI for the Time-HSVNs 

and in Chapter 7 we evaluate it basically for the same formerly mentioned metrics. 

In Chapter 8 we conclude the work, and we highlight the work applications, generaliza

tion, limitations, and future steps. 
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CHAPTER 

2 Work motivation: Hybrid 

synchrony in distributed 

systems 

T his chapter provides a background about dist. ributed. systems, highlighting mainly 

one of its important characteristics, the synchrony, and summarizes the moti

vation and the approaches of hybrid synchrony distributed systems from the 

literature. 

2.1 Distributed systems 

A distributed system consists of a collection of autonomous computers, connected through a 

network and distribution middleware, which enables computers to coordinate their activities 

and to share the resources of the system, so that users perceive the system as a single, 

integrated computing facility [Sch93a]. Figure 2.1 depicts simple diagram for distributed 

system architecture. 

MachineA MachineB MachineC 

Distributed application 

Middlewareservice 

[ LacaiOS 1 [ LacaiOS 1 [ LocalOS 1 

Network 

Figure 2.1 Distributed system architecture 

Over the years, many interesting solutions based on distributed systems were proposed 

and a variety of applications emerged. For instance, by using of replication techniques data 

and services become accessible even in occurrence of failures. Overall performance and scala

bility can be increased through load balancing among replicas. Security and safety issues can 

also be handled by fault tolerant solutions using distributed processes. In short, distributed 

systems offer higher abstraction leveI to system developers and also might increase system 

availability, performance and security. 
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However, the development of distributed systems is not an easy task. Heterogeneity of 

system components, unpredictable environments and the concurrency inherent of this kind 

of systems are major challenges that must be addressed by distributed system developers. 

2.2 Synchrony in distributed systems 

The design of DSs is strongly dependent on the assumptions about the environment where 

they execute. For instance, different assumptions about process execution speeds and mes

sage delivery delays would require specific design decisions. In this sense, an important 

aspect to consider when developing a distributed system is the synchrony leveI offered by 

the underlying infrastructure. In an asynchronous system, no assumption about process ex

ecution speed andj or message delivery delays is made. Conversely, in a synchronous system, 

relative processing speed or the message delays are bounded [Sch93a]. 

The synchrony leveI impacts on the reliability and difficulty to build the system. Assum

ing that, underlying infrastructures behaving asynchronously showed to be realistic to a wide 

range of applications. Furthermore, it is the weakest model in terms of synchrony. That 

means an algorithm that works in an asynchronous model also works in other mo deIs with 

stronger synchrony assumptions. The opposite is not valid, i. e. an algorithm that works 

in a synchronous mo deI is prone to incorrect behavior if timing constraints are violated. 

Although asynchronous mo deIs are very attractive, with them it is impossible to distinguish 

a crashed process from an arbitrarily slow process, in which some messages delivery are de

layed [CT96]. As a consequence, many important problems of fault-tolerant computing are 

not solvable under the asynchronous assumption. For example, the FLP impossibility result 

by Fischer, Lynch and Paterson shows that consensus cannot be solved deterministically in 

asynchronous systems where at least one process may crash [FLP85]. 

By asserting that a system is synchronous, system developers can rely on the timely be

havior of the components. This, in turn, enables one to employ simpler algorithms than those 

required to solve the same problem in an asynchronous system [Sch93a]. For instance, pro

cesses can perfectly distinguish faulty from slow processes. However, building synchronous 

systems requires infrastructures composed exclusively by timely components, which could be 

very expensive or even infeasible. Moreover, synchronous systems demand a priori knowledge 

on time bounds, which might not fit with dynamic systems. 

The drawback of each of the two extremes (i.e., the synchronous systems and the syn

chronous systems) led to hybridize them both. This gave birth to new class of systems that 

is known in the literature as partial synchrony systems [CF99, Ver06]. 

\íVe assume the existence of certain mechanisms that guarantee building physical network 

elements (nodes and links) that behave synchronously. These mechanisms can be related to 
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the type of physical materiaIs used, or to the procedures followed for configuring them, such 

as admission control and Quality of Service policies. The exact mechanisms for building 

synchronous resources is out of the scope of our work, but we assume their existence. \íVe 

refer the reader to [KR13, GB95, BFY+OO, BBC+98] to learn more details about possible 

policies for building synchronous links, and [LiuOO, Her04, LSS87] for configuring nodes with 

real-time tasks. 

2.3 Hybrid synchrony in distributed systems 

Hybrid mo deIs assume intermediate leveIs of synchrony, stronger than asynchronous and 

weaker than synchronous. Such systems are also called as partial synchronous. In this 

thesis, we will use the terms hybrid synchrony and partial synchrony to refer to the same 

concept. Hybrid synchrony was proposed as a solution for some drawbacks of the homo

geneous synchrony mo deIs (i.e., fully synchronous or fully asynchronous). In the next two 

subsections, we introduce the two types of hybrid synchrony as in the literature: (a) hybrid 

synchrony in space, and (b) hybrid synchrony in time. \íVe will define the hybrid synchrony 

in space and in time in the light of classical problems adopted from the literature. 

2.3.1 Hybrid Synchrony in space 

In [Ver06], Veríssimo presented the wormhole model, that exploits the space dimension to 

provide hybrid synchrony. This means that timely guarantees of system components may be 

different. For instance, one part of a system would behave synchronously, while other part 

would be fully asynchronous. 

Once behaviors caused by faults and arbitrary delays are expected in the conventional 

infrastructures, hybrid mo deIs become a good option to improve the development of fault

tolerant applications. By enforcing small parts of the system to behave synchronously while 

other parts are asynchronous, stronger properties provided by synchronous parts can be 

used by the system as a whole. For this reason, hybrid systems overcome limitations of the 

homogeneous systems. 

Example - Building a perfect failure detector on spatial hybrid synchronous 

environment 

Failure detectors have attracted interest in the development of reliable DSs, since consen

sus and related problems (e.g., atomic broadcast [CT96]) can be solved with it. The failure 

detection approach can also be adapted to solve other relevant problems, such as predicate 

detection [GKOO] and election [MIMFOO]. 

Failure detectors are used to detect faulty processes in a group of processes, and they are 
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defined in terms of abstract properties, namely accuracy and completeness. Strong accuracy 

implies that no process is suspect before it crashes, while weak accuracy means that some 

correct process is never suspected. Strong completeness implies that eventually every process 

that crashes is permanently suspected by every correct process, while weak completeness 

means eventually every process that crashes is permanently suspect by some correct processo 

A failure detector that satisfies strong accuracy and strong completeness properties is a 

perfect failure detector (P) [CT96]. It means it never makes mistakes (suspects erroneously) 

and, eventually detects every crash. 

A perfect failure detector P can be implemented on top of a fully synchronous environ

ments. The problem is that implementing P in fully synchronous environments depends on 

the existence of an underlying infrastructure with timely guarantees for all its components, 

which is too expensive and sometimes even infeasible. On the other hand, implementing a 

perfect failure detector on top of a fully asynchronous infrastructure is impossible. 

Macédo et aI. [dAMG09] propose an implementation of a failure detector P that runs on 

hybrid synchronous environments and provides both strong accuracy and strong complete

ness [CT96] making it a perfect failure detector. They assume the underlying system has 

synchronous processes, some channels behave synchronously and others asynchronously. 

Basically, each module f di periodically asks to processes Pj if they are alive. U pon receiv

ing a message "are you alive", every correct process replies to the sender with a "I'm alive" 

message. Upon receiving the replying message, fd i knows the process Pj is up. However, if a 

timeout expires, it means that no answer from Pj was received in the last T time units. If the 

channel connecting processes fdi to fd j is synchronous, then it is known that the process 

Pj has failed. Process Pj is added to the faulty list in Pi, and a notification informing the 

detection is sent to all other processes. Otherwise, if the channel is asynchronous, there is 

no way to detect if the process Pj has failed or the reply message is delayed. 

\íVe illustrate a failure detector P running in a hybrid synchronous environment in Figure 

2.2. It shows a hypothetical topology for an application composed by six processes. All 

processes are hosted in synchronous nodes, and they communicate with each other through 

payload channels (pai). Further, a failure detector module fdi is attached to each process 

Pio Connection between failure detectors modules in a synchronous partition is done by 

synchronous channels (solid lines in the figure). Connection between fd modules in different 

partitions can be asynchronous (dotted lines). In order to improve legibility, payload channels 

pai were omitted in the figure. In this example, the payload channels should be represented 

by a complete graph connecting every pair of processes. 

Although not all failure detectors are in the same synchronous partition, the P implemen

tation allows every application process to benefit from a perfect detection. Even in cases in 

which not all fdi modules belong to a synchronous partition, it is possible to take advantage 
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P5 

Figure 2.2 - Application topology with failure detector P [HMD13] 

of the existing synchrony, provided that some subgraphs are synchronous. In such cases, 

assumptions from weaker failure detectors (e.g., OP, OS lCT96j) would be ensured and still 

useful for the applications. 

Another interesting aspect of the hybrid synchronous system is that application workload 

is totally independent of the failure detector modules. Application processes can communi

cate through asynchronous channels and still benefit from stronger properties provided by 

the failure detector service. 

2.3.2 Hybrid Synchrony in time 

AIso namcd timed asynchronous model or, for short, thc timed modelo This modcl was first 

proposed by Cristian and Fetzer [CF99], where the system alternates between synchronous 

and asynchronous behavior. More specifically, according to [DLS88] partially synchronous 

systems can alternate between synchronous and asynchronous behavior, being hybrid in 

time. For each execution, there is a time after which the upper bound 6 is respected by the 

system. This time is called Global Stabilization Time (GST). Since the upper bound cannot 

hold forever, it is accepted that it holds just for a limited time .6..8 • In practical terms, .6..s 

is the time needed for consensus to make progress or to be reached. We call these timely 

hybrid synchronous systems. 

Progress assumptions are similar to the global stabilization requirement of [DLS88] which 

postulates that eventually a system must permanently stabilize, in the sense that there 

must exist a time beyond which all messages and all non-crashed processes become timely. 

However, progress assumption only require that infinitely often there exists a majority set 

of processes that for a certain minimum amount of time are timely and can communicate 

with each other in a timely manner [GarOl]. In other words, algorithms for this model make 

progress when a system has just enough synchrony to make decisions. 

Example - solving the consensus problem in timely hybrid synchronous envi

ronment 
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One of the fundamental problems in distributed systems are agreement problems. They 

occur when a set of processes must make a consistent decision. For example, if a database 

is replicated, all the processes have to agree whether or not to abort certain transactions. 

Many agreement problems have been condensed to one basic problem called consensus. In 

general, only system mo deIs where it is possible to solve consensus are really useful for fault 

tolerance [GarOl]. 

An algorithm that solves the consensus problem must guarantee three properties [GarOl]: 

• Agreement: no two processes decide on two different values; 

• Termination: every correct process eventually decides; 

• Validity: the decided value must have been proposed by some processo 

The consensus problem can be stated as follows [GdAMR07]: each process proposes a 

value, and has to decide a value, unless it crashes (termination), such that there is a single 

decided value (uniform agreement), and that value is a proposed value (validity). 

The consensus problem is impossible to solve in asynchronous distributed systems prone 

to process crashes [GdAMR07]. This impossibility has motivated researchers to develop 

distributed computing mo deIs stronger than the asynchronous models, but weaker than the 

synchronous models, where the consensus problem can be solved. 

Dwork et aI. in [DLS88] proposed an algorithm for solving the consensus problem in 

timely hybrid synchronous environment. The algorithm consists of number of rounds that 

matches the number of the processes of which the system consists. During each round, one 

process becomes coordinator. Each round consists of four phases. 

Consider an asynchronous system with three processes PI, P2 and P3 and at most one 

process may crash. At any time, each process has an estimate of the value it thinks will 

become the decision value. 

In the algorithm first round, process PI becomes the coordinator. Figure 2.3 illustrates 

the algorithm first round with PI a coordinator. This round works through the following 

four phases: 

• Phase 1: every process sends its actual estimate to the coordinator; 

• Phase 2: PI waits for the estimate of other processes, and then it chooses a new estimate 

for itself from the set of received estimates, including its own original estimate. The 

value with the highest frequency is the one chosen as the coordinator new estimate; 

• Phase 3: every process, other than the coordinator, receives the new estimate and sends 

back a positive acknowledgment to the coordinator; 



CHAPTER 2. \íVORK MOTIVATION: HYBRID SYNCHRONY IN DISTRIBUTED 
SYSTEMS 41 

• Phase 4: if the coordinator receives at least one positive acknowledgment (since at 

maximum one process can crash in this system), then it can decide on the current 

estimate and tell the other processes to do the same. 

Pi (vi) :(vi, v2, v3)-> v i (v) 
;>t 

Pi (v2) (v) 
i>t 

Pi (v3) 
(v) 

<>t 
Phasei Phase 2 Phase3 Phase4 

Figure 2.3 Consensus algorithm-first round with PI coordinator 

The timely hybrid synchrony helps in guaranteeing the progress of the algorithm. For 

example, we notice that in phase 3, each process waits for the new estimate from the coordi

nator. If the coordinator crashed, then all the processes will wait infinitely. The asynchrony 

in this phase needs to be tackled by using some form of timeout to bound the waiting time. 

If a process times out, it sends a negative acknowledgment to the coordinator and switches 

to the next round of the algorithm when a new process becomes a coordinator. Consider 

that the coordinator had not crashed, then it will receive no positive acknowledgment in 

phase 4, but instead receives one or two negative ones, in this case, it also switches to the 

next round. This means the algorithm keeps safety even if progress is not assured. To assure 

progress, this algorithm has to consider the assumption of partial synchrony. In this spe

cific case, it is enough that the subnetwork that consists of the three processes Pl, P2, P3 

and the two links (Pl,P2) and (Pl,P3) eventually turns to become synchronous. This will 

make the system behave within acceptable delays for enough time to make decision. This 

will guarantee the progress of the algorithm. Since the aforementioned subnetwork starts as 

asynchronous, then eventually turns to be synchronous, then back to asynchrony; then we 

are speaking about a system with hybrid synchrony in time. 

2.4 Hybrid synchrony in practice 

The research on DSs has longly touched problems that base on the hybrid synchrony prop

erty of the system environment, for example (as previously detailed) the consensus problem 

[DLS88] where a minimum leveI of synchrony ensures the progress of several distributed 

algorithms; another example is the perfect failure detector [dAMG09] built on a hybrid syn

chrony environment providing strong guarantees for accuracy and completeness [CT96] (i.e., 

strong accuracy does not assume processes will be erroneously suspected to be crashed; and 
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strong completeness assumes that at some time every failed process will be detected by every 

correct processes). 

In fact, many applications benefit from consensus and failure detection as building blocks 

in the distributed algorithms. Bellow we mention some examples of such applications. 

2.4.1 Apache Cassandra 

Apache Cassandra is a massively scalable open source NoSQL database [Hewll]. This ap

plication was addressed for managing large amounts of data across multiple data centers and 

the cloud. Delivering continuous availability, scalability, and operational simplicity with fast 

response times. 

Data distribution and replication consensus- Apache Cassandra creates replicas of 

the data base (DB) stored by the client on different clusters ofthe data center. Any change on 

one replica of the DB should be transparent to the other replicas and eventually considered by 

all the replicas to have continuous availability. This agreement between the replicas is realized 

though consensus protocol PAXOS [LamOl] which is distinguished as a building block in the 

Cassandra's Lightweight transactions algorithms. Paxos consensus protocol allows Cassandra 

to support atomic, isolated, and durable transactions with eventual/tunable consistency that 

lets the use r decide how strong or eventual they want each transaction's consistency to be. 

Failure detection and recovery- Apache Cassandra considers a tunable failure de

tection method for locally determining from gossip state and history if another no de in the 

system is up or down. Cassandra uses this information to avoid routing client requests to 

unreachable nodes whenever possible. 

Node failures can result from various causes such as hardware failures and network out

ages. Nodes outage does not result in an automatically permanent removal of the no de from 

the architecture beca use a no de might have a possible recovery. Other nodes periodically try 

to re-establish contact with failed nodes to see if they are back up. To permanently change 

a node's membership in a cluster, administrators must explicitly add or remove nodes from 

a Cassandra cluster. \íVhen a no de comes back online after an outage, it may have missed 

writes for the replica data it maintains. Once the failure detector marks a no de as down, 

missed writes are stored by other replicas for a period of time (configurable upper bound) 

providing Hinted Handoff is enabled. If a no de is down for longer than this upper bound, 

hints are no longer saved. 

During a write operation, when Hinted Handoff is enabled and consistency can be met, 

the coordinator stores a hint about dead replicas in the local system.hints table. A hint 

indicates that a write needs to be replayed to one or more unavailable nodes. By default, 

hints are saved for three hours (by default, and can be configured) after a replica fails because 
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if the replica is down longer than that, it is likely permanently dead. After a no de discovers 

from gossip that a no de for which it holds hints has recovered, the no de sends the data row 

corresponding to each hint to the target. Additionally, the no de checks every ten minutes 

(configurable period) for any hints for writes that timed out during an outage too brief for 

the failure detector to notice through gossip. For example, in a cluster of three nodes, Figure 

2.4, A (the coordinator), B, and C, each row is stored on two nodes in a key space having a 

replication factor of 2. Suppose no de C goes down. The client writes row K to no de A. The 

coordinator, replicates row K to no de B, and writes the hint for downed no de C to node A. 

\íVhen no de C comes back up, no de A reacts to the hint by forwarding the data to no de C. 

coord i nator 

"Node C is down. 
Write a hint in 
your table"' 

Client - - - - - - - - .. A - - - i Wrile row K Cj) 
I Replicale row K 

system.hints lable I 

G:}-----.! 

~ 
Figure 2.4 Failure detection algorithm in Cassandra: A cluster of three nodes, 

replication factor of 2, supposing node C goes down. Figure taken from [Hewll] 

2.4.2 Windows Azure 

\íVindows Azure Storage (\íVAS) is a cloud storage system that provides customers the ability 

to store seemingly limitless amounts of data for any duration of time [eall]. Differently from 

Cassandra; in \íVAS data is stored durably using both local and geographic replication to 

facilitate disaster recovery. \íVAS is used inside Microsoft for applications such as social 

networking search, serving video, music and game content, managing medicaI records, and 

more. In addition, there are thousands of customers outside Microsoft using \íVAS, and 

anyone can sign up over the Internet to use the system. 

Strong consistency- Many customers want strong consistency [H\íV90] especially en

terprise customers moving their line of business applications to the cloud. For this, \íVAS 

provides three properties that are claimed to be difficult to achieve at the same time [BreOO]: 

strong consistency, high availability, and partition tolerance. 

The \íVAS production system consists of Storage Stamps, where a storage stamp is a 

cluster of N racks of storage nodes, and each rack is built out as a separate fault domain 

with redundant networking and power. 

\íVAS has two replication engines, see Figure 2.5: 
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1. Intra-Stamp Replication: This system provides synchronous replication and is focused 

on making sure all the data written into a stamp is kept durable within that stamp. It 

keeps enough replicas of the data across different nodes in different fault domains to keep 

data durable within the stamp in the face of disk, node, and rack failures. Intra-stamp 

replication is done on the criticaI path of the customer's write requests. 

2. Inter-Stamp Replication: This system provides asynchronous replication and is focused 

on replicating data across stamps. Inter-stamp replication is done in the background 

and is off the criticaI path of the customer's request. This replication is at the object 

leveI, where either the whole object is replicated or recent delta changes are replicated 

for a given account. Inter-stamp replication is used for (a) keeping a copy of an account's 

data in two locations for disaster recovery and (b) migrating an account's data between 

stamps. 

Inter-Stamp Replication 

Storage Stamp Storage Stamp 

Figure 2.5 WAS High-level architecture. Figure taken from [eall] 

Disaster Recovery- \íVAS stores customer data across multiple data centers hundreds 

of miles apart from each other. This redundancy provides essential data recovery protection 

against disasters such as earthquakes, wild fires, tornadoes, nuclear reactor meltdown, etc. 

Intra-stamp replication provides durability against hardware failures, which occur frequently 

in large scale systems, whereas inter-stamp replication provides geo-redundancy against geo

disasters, which are rare. It is crucial to provide intra-stamp replication with low latency, 

since that is on the criticaI path of use r requests; whereas the focus of inter-stamp replication 

is optimal use of network bandwidth between stamps while achieving an acceptable leveI of 

replication delay. 
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2.4.3 Chubby lock service 

The purpose of the lock service is to allow its clients to synchronize their activities and 

to agree on basic information about their environment. Chubby lock service [Bur06] in

tends to provide coarse-grained locking as well as reliable (though low-volume) storage for a 

loosely-coupled distributed system, and in particular to deal with the problem of electing a 

leader [MMRT06] from among a set of otherwise equivalent servers. Primary goals include 

reliability, availability to a moderately large set of clients; whereas throughput and storage 

capacity were considered secondary. The primary goals attributes are easier to achieve when 

performance is less important. Because Chubby's database is small, it is possible to store 

many copies of it on-line (typically five replicas and a few backups), Figure 2.6. Full back

ups are taken multiple times per day, and via checksums of the database state, replicas are 

compared with one another every few hours. The weakening of the normal file system per

formance and storage requirements allows to serve tens of thousands of clients from a single 

Chubby master. By providing a central point where many clients can share information and 

co-ordinate activities, a class of problems faced by system developers was solved. 

Chubby has become Google's primary internaI name service; it is a common rendezvous 

mechanism for systems such as MapReduce [DG08]; the storage systems GFS and Bigtable 

use Chubby to elect a primary from redundant replicas. 

Client 
application 

Client 
application 

: chubby 
: library 

: chubby 
: library 

Client processes 

5 servers of a Chubby cell 

master 

Figure 2.6 Chubby system structure. Figure taken from [Bur06] 

Chubby Asynchronous Consensus - \íVhich describes the behavior of the vast major

ity of real networks, such as Ethernet or the Internet, that allow packets to be lost, delayed, 

and reordered. Asynchronous consensus is solved by the Paxos protocol [Lam01]. 

Failure detection - Chubby provides an event that allows clients to detect when a 

master fail-over has taken place. Chubby's default lease time is 12s and KeepAlives are 

exchanged every 7s. 
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2.4.4 Observations 

Looking back at the aforementioned applications (i.e., Cassandra, \VA, Chubby) we see that 

these applications do not force the use of hybrid synchronous environment, although they 

need to assure such behavior. These applications run on asynchronous environments sup

ported with algorithms andj or protocols (e.g., PAXOS) to allow progress but not guaranteed. 

If these application run on top of hybrid synchronous infrastructure then the progress will 

be guaranteed by the provisioning of elements designed to respect time upper bounds. For 

example: 

• In Cassandra: the failure detection algorithm needs to run on synchronous or hybrid 

synchronous subnetworks that communicate the cluster nodes, in order to guarantee 

delivering messages within the upper bound specified. 

• In \VA: The Intra-stamp replication protocols reed to run on synchronous links that 

communicate the replicas on the same storage stamp together, while the Inter-stamp 

replication protocols need to run on asynchronous links that communicate the storage 

stamps together. 

• In Chubby: The failure detection algorithm needs to run on synchronous environment 

to adjust perfectly the messages delay time. 

The problem is that fully synchronous, or partially synchronous, environment is expen

sive to build, complex to configure, and difficult to controI. This makes the infrastructure 

providers escape to asynchronous environments strengthened by algorithms andj or protocols 

with time-out specifications. 

2.5 Hybrid synchronous DSs and virtualization 

After studying the partial synchronous distributed systems, we noted down some of their 

constraints that pose difficulties for the service providers, for example, the high building cost 

of synchronous resources, the demand of DSs for isolation or resilience, and the complexity 

for realizing the hybrid synchronous DSs. In a research for relaxing these constraints; we in

vestigated the space of Virtual Networks (VNs), and we found that virtual networks can offer 

a suitable environment for hosting hybrid synchronous distributed systems while optimizing 

a set of their constraints due to the properties that virtualization brings, for example: 

1. The design of synchronous components in DSs requires fundamental handling mecha

nisms as detailed by [RSK+OO]. The exact mechanisms for building synchronous re

sources is out of the scope of our work, but we assume their existence. Network vir

tualization is defined by the decoupling of the roles of the traditional Internet Service 
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Providers (ISPs) into two independent entities [TT05]: infrastructure providers (InPs), 

who manage the physical infrastructure, and service providers (SPs), who create vir

tual networks by aggregating resources from multiple infrastructure providers and offer 

end-to-end services. Considering a new architecture of the DSs based on VNs provides 

a new business model that allows sharing tasks: (i) the synchronous resources design is 

assigned to the SN provider, and (ii) the resources allocation process is assigned to the 

VN provider. Delegating the design of the synchronous resources to the SN provider and 

the embedding process to the VN provider results in reducing the system complexity. 

2. The building cost of synchronous resources in DSs is considerably high when compared 

to the asynchronous resources. The virtual networks environment allow providers to 

allocate some physical resources mutually among several clients as long as this multi 

use does not violate the performance expected by the client. Considering a new archi

tecture for DSs based on VNs will allow sharing the synchronous portion of the physical 

infrastructure between several applications, which will result in reducing the overall cost 

for the service providers. It is predictable that sharing resources might affect the system 

performance [ABD+13], but we consider studying this effect is out of the scope of our 

work. 

3. The VNs Embedding process (VNE) [BHKI2, HPN09] allows allocating resources flexi

bly respecting the constraints that serves the applications. For example, DSs resilience 

requirements that can be tackled during the VNE process aware of allocating backup 

resources or aware of live resources migration as will be detailed later in Chapter 3. 

Considering a new architecture for DSs built on top of VNs will allow adopting the 

VNE framework that will benefit the providers in supporting constrained applications 

in a flexible manner, benefiting from VNE constrained solutions in the literature. 

4. Heterogeneity in the context of network virtualization comes mainly from two fronts 

[CBIO]: first, heterogeneity of the underlying networking technologies (e.g., optical, 

wireless, and senso r ); second, each end-to-end VN, created on top of that heterogeneous 

combination of underlying networks, can also be heterogeneous. Considering a new ar

chitecture of DSs based on VNs exhibits the system heterogeneity in the hybrid kind of 

physical resources required to be synchronous and asynchronous. This allows using the 

VNs framework to manage hybrid environment. On the other hand, DSs providers will 

be able to implement freely network topology, routing protocol, QoS policies, indepen

dently of the coexisting VNs and independently of the the substrate network. 

\íVe argue that VNs and a suitable VN embedding process offer suitable environment for 

running distributed applications with partial synchrony. This has led to the abstraction of 

new type ofvirtual networks that we name The Hybrid Synchrony Virtual Networks (HSVNs) 

which we propose in our work. 
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Summary 

In this section, we provided a short background about distributed systems (DSs), and light

ened an important aspect in the field, the synchrony. \íVhile asynchronous DSs support no 

time-bounds for processes execution and message delivery, the synchronous DSs provide time 

guarantees for them. Although fully synchronous DSs demand simpler algorithms, and can 

provide what asynchronous ones do, yet the undeniable problem of synchronous components 

(processes and channels) high cost led to the development of hybrid synchrony DSs. 

Two branches of hybrid synchronous DSs are distinguished in the literature: (i) the 

hybrid synchronous in space, where subsets of the system components are synchronous while 

the others are asynchronous, and (ii) the hybrid synchronous in time, where the system 

components alternate between synchrony and asynchrony over time. 

\íVe provided examples of applications (i.e., Cassandra, \íVA, Chubby) that may bene

fit from the partial synchrony assumptions, as the progress will become guaranteed by the 

provisioning of elements designed to respect time upper bounds. The problem is that fully 

synchronous, or partially synchronous, environment is expensive to build, complex to config

ure, and difficult to controI. This makes the infrastructure providers escape to asynchronous 

environments strengthened by algorithms andj or protocols with time-out specifications. 

In a research for relaxing the ossifications of partial synchronous environment; we inves

tigated the space of Virtual Networks (VNs), and we found that virtual networks can offer 

a suitable environment for hosting hybrid synchronous distributed systems while optimizing 

a set of their constraints due to the properties that virtualization brings. 

In the next chapter, we define network virtualization, then we detail about the central 

problem with VNs, that is the problem of resource allocation (named also as mapping or 

embedding) from the literature. 
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CHAPTER 

Related Work: Network 

Virtualization 

I
n this section, we start by defining the network virtualization, secondly we highlight the 

virtual networks properties as stated in the literature; thirdly we revise the literature 

on the topic of VNs resources allocation, which is named as mapping or embedding 

problem as well. \Ve classify the works on VNs embedding according to the applications' 

constraints (e.g., topology, security, and resilience). 

3.1 Network Virtualization 

Virtualization is a technology introduced in 1973 [PG73], consists in using a single physi

cal resource to host several virtual machines that share and access concurrently the actual 

hardware. The benefits of virtualization include reconfigurability, better resource utilization, 

mobility, isolation, and fault tolerance. Since similar benefits can be derived when virtual

izing the network infrastructure, virtualization appeared as a solution to the architectural 

issues of the Internet, and this gave birth to the Virtual Networks (VNs). 

Network virtualization environments allow the coexistence of multiple VNs, each running 

certain applications on top of one shared physical infrastructure, the substrate network (SN). 

Network virtualization is defined by the decoupling of the roles of the traditional Internet 

Service Provider (ISP) into two independent entities [CBlO]: infrastructure providas (InPs), 

who manage the physical infrastructure, and service providas (SPs), who create virtual 

networks by aggregating resources from multiple infrastructure providers and create end-to

end services. 

A business mo deI for network virtualization was proposed by Schaffrath et aI. [S\VP+09], 

where the management and business roles of the service provider (SP) are separated. For this 

purpose, the SP was split into three entities as in Figure 3.1: i) the Virtual Network Provider 

(VNP), which assembles virtual resources from one or more InPs, ii) the Virtual Network 

Operator (VNO), which installs, manages, and operates the VN according to the needs of 

the SP, and iii) the Service Provider (SP), which is free of management and concentrates on 

business by using the VNs to offer customized services. 
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Physicallnfrastructre Provider (InP) _ _ _ Physicallnfrastructre Provider (InP) 

Figure 3.1 VN Management and Business Roles [SWP+09] 

3.2 Virtual Networks properties 

Network virtualization is a promlsmg technology for overcoming Internet ossification 

[APST05], it was proposed to obtain certain properties and design goals [CB09]. For exam

pIe, virtual networks allow: 

1. Revisitation: which means that several virtual nodes andjor links belonging to same 

VN can be hosted on same physical no de or link. This means resources sharing, which 

leads to a better use of the booked resources and thus reducing the cost; 

2. Coexistence: several virtual networks of different service providers can coexist at the 

same time, over same infrastructure provider; 

3. Recursion: named also nesting in VNs. It refers to the fact that, one virtual network 

belonging to a certain service provider, can take the place of a virtual infrastructure 

provider to another virtual network belonging to another service provider; 

4. Inheritance: a given VN can inherit properties that exist in its parent, be it a physical 

infrastructure, or be it a virtual infrastructure; 

5. Flexibility: each SP can implement freely network topology, routing protocol, QoS 

policies, independently of the coexisting VNs and independently of the the substrate 

network; 

6. Isolation: network virtualization insures the isolation between the coexisting VNs, i.e., 

a fault existing in one VN does not propagate to any other coexisting VN. \íVe should 

distinguish this case from the case when the fault exists in the underlying physical 

infrastructure. For example, if a physical no de or link fails, the failure will surely 

impact all the virtual nodes and links mapped to it; 

7. Heterogeneity: in network virtualization, the heterogeneity can be found on two leveIs, i) 

in the underlying infrastructure, which can be a mixture of several technologies, and ii) 
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in the VNs, where SPs can implement VNs different in their requirements (for instance, 

security, delay, jitter, ... ). 

3.3 Resources allocation in Virtual N etworks 

Resource allocation is a process formed by the InPs upon receipt of a request to establish 

a VN [BHK12]. Virtual networks can be constructed through a suitable deployment of the 

virtual routers and links on the SN resources [HPN09]. This process is also known as VN 

embedding or VN mapping. The problem of resource allocation has attracted considerable 

attention, and since the problem is considered to be an NP-hard problem [Kar72], it has 

been addressed in the literature also through optimization methodologies. 

In this thesis, we will use three compatible terms referring to the same meaning: mappzng, 

embedding and resource allocation. 

Figure 3.2 shows an example for embedding two VNs on one SN, links bandwidth and 

nodes CPU values are presented for both virtual and substrate networks. This is a simple 

example, the only constraint is not to pass the physical nodes and links capacities for CPU 

and bandwidth respectively. The embedding output is detailed (written) in the bottom side 

of the figure. We notice that nodes c1 and c2 belonging to V N 1 and V N 2 respectively were 

mapped on the same physical no de c. The physicallink (j, s) participates in the two physical 

paths mapping virtual links, (j2, e2 ) and (c2 , e2 ). 

VN1 links SN paths VN2 links SN paths 

(a1Y) (a, b) (d2 , c2 ) (d, c) 

(bl, c1 ) (b, t), (t, c) (c2, f2) (c,f) 

(al,c1 ) (a, m), (m, n), (n, c) (p,e2) (j, s), (s, e) 

(e2, d2) (e, d) 

(c2,e2 ) (c, f), (j, s), (8, e) 

Figure 3.2 - Virtual networks mapping 

Commanding the embedding process 

In the virtual networks environment, the embedding process can be conducted by one 
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central entity, or by several ones that interact together to take decisions [BHK12]. The first 

approach is named centralized and the second distributed. 

Centralized approach: where a single entity in the InP receives VN requests and performs 

resource allocation. The limitations for this approach are mainly: (i) this entity requires all 

the global knowledge and resources necessary for the allocation process, which is not always 

feasible; (ii) if this entity fails, so does the whole process, and c the communication between 

the central entity and the other nodes might cause a considerable overhead. Among the 

works that followed the centralized approach are [ZA06, LT06, CRB09]. 

Distributed approach: in which the resource allocation process is distributed over some or 

all of the physical nodes in the InP, where each no de has local knowledge. The limitation in 

this approach lays in its complexity compared to the centralized approach, because the alloca

tion process is coordinated through the communication and the cooperation protocols among 

the nodes. Among the works that followed this approach are [HLZ08, CSB10, HLZ+lO]. 

Problem complexity 

\íVhen mapping VNs, several virtual nodes can be mapped on the same physical node, 

and several virtual links can be mapped to the same physical link. This mapping process 

should happen without passing the limits of the physical resources available, i.e., the sum 

of resources demanded by virtual nodes andj or links should not pass the capacity limits of 

resources offered by the physical nodes andjor links to which they are mapped. 

In one basic version of the U nsplittable Flow Problem (U F P) [Kle98], we are given a 

graph G, an m pairs of vertices each associated with a non-negative demand 1jJ :::; 1, the 

problem negotiates the possibility of finding a path, within G, for each pair in a way that 

the accumulated demands on each path do not exceed 1, if it is possible then the demands 

are realizable. 

VNs mapping problem turns to be similar to the U F P, that is a generalization of the 

well known Edge Disjoint Paths problem (EDP) [Kle98] which is a central problem in 

combinatorial optimization and algorithmic graph theory and is one of the Karp's original 

NP-complete problems [Kar72]. 

NP-complete problems are nondeterministic polynomial time problems [God04] [GJ79], 

if L is an NP-complete problem then there is no known efficient solution for it (i.e., no fast 

solution), and the time required to solve the problem using any currently known algorithm 

increases very quickly as the size of the problem grows. This is a reason why NP-complete 

problems are approached normally through optimization approaches, for example heuristics 

[MF04]. 
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3.4 Literature review on VNs Embedding 

By searching in the field of VNs mapping, we found that the process of virtual networks 

mapping comes with different flavours based on the application requirements, which impacts 

directly the mapping complexity and the kind of constraints that should be cared for. Here 

bellow we summarize several works that handle the problem of VNs embedding. Our state 

of the art classifies others works based on the VNs demands considered, in other words, the 

embedding constraints. 

3.4.1 Topology requirements 

\íVhen mapping VNs only with topology requirements; the point that matters is to preserve 

the nodes connectivity pattern. For example, let a and d be two virtual nodes on a given 

virtual network, connected together through a virtual link (a, d). \íVhen mapping these two 

virtual nodes to two distinct physical nodes A and D respectively, then A and D should be 

connected together as well, be it direct connection through a physical link (A, D) or be it 

through an indirect connection through a physical path that starts with A and ends at D, 

like (A, B, C, D). 

One of the earliest works on resource allocation in network virtualization is [ZA06]. Only 

the VNs topology is considered; there are no constraints on virtual nodes (such as CPU and 

nodes location) and virtual links (such as bandwidth). Upon the arrival of a VN request, 

its topology is assigned to the substrate network to achieve low and balanced load on both 

substrate nodes and links. So, the objective when mapping is to reach load balance on the 

SN resources (i.e., physical nodes and links), where the load here can be defined as the 

amount of physical resources used by virtual nodes and virtual links in substrate nodes and 

substrate links, respectively. The authors in this work defined nodes stress and links stress 

for the physical resources, which became metrics adopted by other works later [Cui12]. 

Node stress measures the number of virtual nodes assigned to each physical node; and 

link stress measures the number of virtual links traversing a physical link. To ease the 

embedding process, it was proposed to divide the VNs into several smaller networks, then 

the embedding phase is conducted by a centralized entity with the objective of reducing the 

nodes stress or the links stress, depending on which is more criticaI. The work focuses on two 

versions of the VNs assignment problem: VN assignment without reconfiguration (VNA-I) 

and VN assignment with reconfiguration (VNA-I1). For the VNA-I problem, where the VN 

assignment is fixed throughout the VN lifetime, the authors developed a basic scheme to 

achieve near optimal substrate no de performance and used it as a building block for all 

other advanced algorithms. Subdividing heuristics and adaptive optimization strategies are 

then presented to further improve the performance. For the VNA-I1 problem, the authors 
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developed a selective VN reconfiguration scheme that prioritizes the reconfiguration for the 

most criticaI VNs. In doing so, the authors could achieve most performance benefits of the 

reconfiguration without excessively high cost. The results show that: (i) subdividing the VN 

topology is more significant when the topology is sparse; (ii) the advantage of the algorithms 

is greater when the substrate network is sparsely connected; and (iii) the algorithms can 

effectively avoid hot spots or congestion in the substrate network. 

In [LT06], authors develop a VN cost-efficient mapping method able to handle VNs traffic 

pattern allowed by a general set of traffic constraints. The authors argue that the existing 

approaches, like simulated annealling or some similar local search techniques, that aim at 

cost-efficient VNs embedding, are not suitable. \íVith such techniques, a given solution for the 

mapping is optimized by addingj removing links andj or nodes, then the links of the modified 

topology re-dimensioned, so that the cost can be evaluated. The authors find that this 

approach has two drawbacks: (i) excessive computing: with any modification to the current 

topology, the mapping cost is recomputed, and (ii) the huge space of candidate topologies 

makes it difficult to determine which of the large number of possible local modifications to 

choose from. To overcome these drawbacks, the authors of this paper propose a mapping 

approach that aims at finding the best topology in a family of backbone-star topologies. In 

a backbone-star topology, the nodes are designated as backbone nodes, or as access nodes. 

Each access no de has a single edge connecting it to a backbone node, meaning that each 

backbone no de is at the center of a star formed by its neighboring access nodes. Basically, 

the backbone nodes are connected in an arbitrary way, yet in this paper the authors consider 

particular topologies for the backbone nodes, such as a complete graph, a ring and a star. 

Fig 3.3 depicts a virtual network in a backbone-star topology, where the four backbone nodes 

are connected into a complete graph. 

access node O O 

Backbone O 
O O 

O 

000 

Figure 3.3 Example of a virtual network in a backbone-star topology, where the 

four backbone nodes are connected into a complete graph [LT06] 

The outlines of the mapping method proposed can be summarized in five steps: (i) 

Select an initial mapping of backbone nodes onto the substrate, (ii) Connect access nodes to 
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backbone nodes, (iii) Compute shortest paths, (iv) Determine link capacities (This can be 

done using linear programming), and (v) Find best backbone no de mapping. Main findings 

of this paper are: (i) as pairwise traffic constraints are relaxed, the least-cost backbone 

topology becomes increasingly tree-like. (ii) the quality of solutions improves as the traffic 

locality gets weaker. 

In [YYRC08b], the authors lighten four main obstacles that make the VNs embedding 

problem a difficult one, they are: (i) virtual resources constraints (e.g., nodes CPU and 

links delay) where the more the constraints are, the more complex the mapping process 

gets; (ii) admission control on the SN leveI, since the SN has limited resources, then certain 

requests will be rejected or postponed to avoid violating the successfully mapped VNs; 

(iii) online requests, which implies that the VNs demands are not known in advance, and 

when a certain request arrives, the period of its remaining is not known as well; and (iv) the 

diverse topologies, where handling arbitrary topologies, while efficiently supporting the most 

common topologies, introduces an additional challenge for the embedding algorithm. The 

research precedent to this work has addressed these computational challenges by restricting 

the problem space in one or more dimensions to enable efficient heuristics, at the expense 

of limiting the practical applicability of the solutions. For example, the papers used to 

either solve an ofRine variant of the problem, consider only bandwidth constraints, or do 

not perform admission controI. In this work, the authors advocate a different approach: 

rethinking the design of the substrate network to enable simpler embedding algorithms and 

more efficient use of resources, without restricting the problem space. In particular, they 

extend the virtual links embedding by: (i) allowing the substrate network to split a virtual 

link over multiple substrate paths, and (ii) employing path migration to periodically re

optimize the utilization of the substrate network. Flexible path splitting allows mapping 

the virtual links to the substrate in polynomial time, while making much more efficient 

use of substrate bandwidth and increasing robustness to substrate failures. This solves the 

ossification posed by the first three challenges listed above. To handle the fourth challenge, 

the work explores node-mapping algorithms that are customized to hub-and-spoke topologies 

of the VNs. Nodes with the most available resources are selected as hub nodes while the 

spoke nodes are mapped on substrate nodes based on the shortest paths to the nearest hub 

node. Simulation experiments show that, path splitting, path migration, and customized 

embedding algorithms enable a substrate network to satisfy much larger mix of virtual 

networks and makes the embedding problem computationally easier. 

In [LZ\íV15] Li e aI. study the virtual networks embedding problem considering dynamic 

topologies, where topology dynamicity, according to the authors, comes from two fronts: (i) 

the substrate network topology change, which happens when the infrastructure provider may 

make some adjustments for more profits or some failure nodes that need to be corrected, and 

(ii) the birth and death of virtual networks, in other words, the new arriving virtual network 
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that need to be mapped and the expiration of VNs that release resources. Remapping the 

still existing (alive) VN s might result in better use of the physical resources and thus might 

lead to allowing the embedding of VNs that were rejected without the remapping processo 

For these two cases, the authors call them the dynamic substrate network and the dynamic 

running virtual networks. After researching the dynamic substrate network and running 

virtual network, the authors find that they can be divided into resource increase and deletion 

while they attribute the resource fragmentation to the resource increase, Figure 3.4. The 

authors propose a formal expression of the dynamic remapping problem, but they do not 

proceed to validating it. 

Figure 3.4 Topology remapping problem [LZW15] 

3.4.2 BW and CPU requirements 

Among the attributes that were considered by most of the works on the field of VN mapping 

are: (i) the links bandwidth (B\íV) , and (ii) the nodes processing power (CPU). 

Trinh et aI. [TEAll] propose to analyze the application of careful overbooking concept, 

that uses flexible leveIs of availability to provide Service LeveI Agreements (SLA) to users. 

Based on this framework, virtual network subscribers are provided with a service that is 

more suitable with their tolerability to utilize the soft-guaranteed bandwidths. So, the 

system will figure out the actual resources for customers to guaranteeing the quality of 

service even when the system is in the most congested time. This helps to save the cost of 

subscribers, and to increase the profitability of the provider. The virtual networks which 

do not need to have the exclusive service can be offered some other kinds of services whose 

quality are specified in three parameters: (i) probability of getting full availability, (ii) 

probability of getting limited availability, and (iii) reduction factor. So, each customer, 

who wants a service from infrastructure provider will be provided only one SLA proposal 

including the percentage of time to get full availability, the percentage of time to get limited 

availability and the bandwidth reduction factor from full availability to limited availability. 

The problem addressed was formulated in the shape of a Mixed Integer Program, whose 

objective is to minimize the cost, where the cost considered was a combination of both 
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bandwidth consumption and traffic routing cost. Practically, the optimization process pushes 

the virtual network demand through their best route for minimizing the cost of building all 

virtual networks. Evaluation results show that the cost saving ratio is of mean = 0.748 

and variance = 0.0479, which is quite impressive based on reported numerical results. The 

infrastructure provider can give part of that obtainable saving to customers with limited 

availability, who in their turn will enjoy the reduction in the service price. 

Botero et aI. [BHFdM13] raised the importance of considering the capacity of the hidden 

hops while the embedding process, where hidden hops are the intermediate nodes on the 

physical paths that map the virtual links. The authors argue that, portion of the B\íV is 

consumed by the intermediate nodes, beca use they have to be configured to process and 

forward the packets passing through that virtual link, thus, it is important to consider the 

hidden hops while the VNs mapping phase. The work distinguishes between two types of 

the VNs: (i) VNs with specific demands where there can be bandwidth and CPU fixed 

demands for some virtual links and nodes, and (ii) VNs with no specific demands where 

nodes and links do not ask for any resources. The work mo deIs the problem is the shape of 

a Mixed Integer Program, with the objective function of maximizing the sum of the spare 

bandwidth and spare CPU in the substrate network. Then, they develop an algorithm that 

is based on the MIP. The algorithm is divided in two different steps: firstly, the algorithm 

maps the requests of each VN that explicitly ask their demands. In second place, the 

remaining resources are distributed equally among the remaining virtual nodes and links. 

The second step of the algorithm (i.e., to allocate the resources equally among the requests 

without demands) is divided in two parts; the virtual nade mapping, this was treated in 

an easy manner by assuming that each virtual no de is already mapped, and the virtual 

link mapping, this was treated based on Djikstra algorithm for finding the shortest path 

connecting the end points. The proposed heuristic is mainly based on an approximated 

greedy algorithm proposed to solve the Unsplittable-Flow problem, the authors make few 

modification to adapt the algorithm to the mapping problem. This work does not handle 

evaluation for the proposed heuristic. 

Hsu et aI. in [HS\íVY12] consider nodes CPU and links B\íV as others, but for them B\íV 

is not only a link attribute, it is as well a no de attribute, where no de B\íV is the sum of 

links B\íV connected to it. The mapping approach they propose bases on path splitting and 

migration technique that aims at maximizing the number of coexisting VNs in a substrate 

network and increases the revenue of the Infrastructure Providers (InP). The algorithm 

proposed consists of three main blocks, they are: (i) the no de mapping algorithm; ; (ii) the 

link mapping algorithm; and (iii) path migration. The nade mapping algarithm working 

steps are: (i) choose the first virtual no de with the largest degree, denoted XV for example, 

where no de degree is the number of the no de neighbors (i.e., the number of links connected 

to the node), then the no de B\íV required is calculated; (ii) choose the subset of SN nodes 
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that can satisfy the first chosen virtual no de both for its CPU and B\íV, then the substrate 

no de with the largest degree is chosen from the candidates, denoted XS for example, to map 

XS; (iii) choose the next virtual no de that has the largest number of neighboring nodes 

already mapped, denoted yv for example, and let TS be the set of physical nodes that 

mapped yv neighbors; (iv) choose the physical nodes that can satisfy yv CPU and B\íV 

constraints, and for each no de among the selected candidates, the algorithm calculates the 

shortest path between it and each physical no de in T S
, and uses the maximum length of 

these computed shortest paths as the shortest distance between yv and TS, and the no de 

with shortest distance is selected to map yV; (v) the steps (iii) through (v) are repeated 

till alI the virtual nodes are selected. The second block of the proposed heuristic is the 

links mapping algorithm, and its working steps are summarized as the folIowing: (i) sort 

the virtual links by B\íV requirements in decreasing sequence; (ii) processes the first virtual 

link in the ordered set (i.e., the link with the maximum B\íV requirement), let it be the 

link lV with B\íV demand BW(lV) connecting the two virtual nodes XV and yv, where these 

virtual nodes are already mapped on the physical nodes XS and ys for example; (iii) find the 

shortest physical path that connects XS with ys and satisfies lV bandwidth requirement. If 

such a path is found then lV is mapped to it, otherwise, the multiple path mapping procedure 

is calIed. The main working steps of the aforementioned procedure are: (i) assign the virtual 

link that was unable to be mapped on one single physical path, let this link be denoted as 

lV for example, with bandwidth requirement BWW); (iii) split BW(lV) in two, BW(lV)j2; 

(iii) search two physical shortest paths connecting XS with ys with residual B\íV that alIows 

mapping lV, if such paths are found then lV is mapped to them, otherwise step (ii) is repeated; 

(iv) maximum number of splitting is alIowed, by passing it, the path migration algorithm is 

enabled, which forms the third part of the proposed heuristic. The path migration algorithm 

does not consider node-remapping for the VN requests (i.e., does not remap XV and yV), 

rather, it migrates a virtuallink already mapped, to free more B\íV on the path under study 

and then uses the modified multiple-path algorithm to select one or more new substrate 

paths for the current virtual link. Simulation results indicate that the path splitting and 

migration offers better performance than existing mapping approaches. 

Links B\íV and nodes CPU were among the attributes that were considered by most of 

the works on the field of VN mapping beside some other constraints, for example, Zhang et 

aI. [Z\íVJYI0] devise a mapping mo deI for delay aware VNs, the mo deI aims at minimizing 

both the bandwidth and CPU consumption on both physical links and nodes respectively 

(the work is more detailed in 3.4.5). Bay et aI. [BOB+12a] addressed a security-aware VNs 

embedding model, which aims at minimizing the bandwidth consumption on physical links 

(more details about the work are given in 3.4.3). 
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3.4.3 Security requirements 

Revising the literature, there were several works that devise a framework to provide secure 

virtual networks [CDRS07, HAMI0]. These works study providing security to VNs after the 

phase of resource allocation. 

However, some works consider security aspects while allocating VNs resources. The first 

who addressed security-aware VNs embedding were Bays et aI. [BOB+12a]. In this work, the 

authors consider three leveIs of security, they are, in the increasing order of security: (i) end

to-end security, where the end points of the virtuallinks are mapped on physical routers that 

are able to encrypt and decrypt packets, (ii) point-to-point security, where the virtual links 

are mapped on physical paths composed of routers able to decrypt and encrypt the packets 

(i.e., be them edge routers of intermediate ones). So, at each point the packets are decrypted 

and encrypted again. In both aforementioned types, the encryption is on the leveI of the 

packet payload and header. And (iii) non-overlapping networks, which are networks that 

don't share the same substrate physical resources, i. e., they are networks mapped on distinct 

physical resources. Considering both optimal mapping and security to be equally important, 

the authors devise a mapping model in the shape of a Mixed Integer Program, that aims 

at minimizing the bandwidth consumption, while considering leveIs of security as detailed 

above. The main findings of this paper are: (i) bandwidth usage grows proportionally to the 

number of virtual network requests; (ii) raising resource limits on each request also causes 

a growth in bandwidth consumption. However, the effect is notably less significant than the 

previous factor; (iii) the proposed method avoids loading the physical resources; (iv) there is 

a trade-off between running time and optimality, in other words, finding the optimal solution 

results requests long computational time, that reached 24h in some scenarios. In order to 

investigate the impact of considering security requirements during the VNs embedding phase, 

the authors envisage a scenario in which all security related constraints are disabled and all 

the security requirements in the VNs are removed. It was stated that the disconsideration 

of security assessments results in reducing the bandwidth consumption. The authors refer 

this overhead to the following reasons: (i) the routers that provide encryptionj decryption 

protocols forms subset of the overall available routers, thus resulting in a more constrained 

solution space; (ii) the non-overlapping requirement forces the allocation algorithm to select 

detour paths in the substrate network, which results in higher resource consumption. These 

reasons also indicate that, in the best case scenario, the bandwidth consumption considering 

security-related constraints will be as good as without considering them. This can be an 

evidence that minimizing bandwidth consumption is a suitable objective function for the 

MIP developed for VNs mapping with security-related constraints. 

In [\íV\íVG+16] the authors treat the problem of information leak possible between vir

tual nodes that share the same physical node. This happens because two virtual nodes 
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can communicate without being monitored or controlled by their underlying system through 

a covert channel. The authors propose a method to mitigate the risk of covert channel 

attacks in network virtualization. The proposed method was divided into two categories: 

heavyweight methods for the SN and lightweight methods for the VN. Heavyweight methods 

imply a modification in the underlying physical infrastructure by inserting additional com

ponents resulting in performance overhead and additional cost, whereas lightweight methods 

focus on the resources allocation process with no need to physical components change. The 

scenario is as the following: a victim virtual no de connected to an adversary virtual no de 

through a covert channel, and all other virtual nodes are regarded as bystanders for the first 

two nodes. The victim node, the adversary, and the bystanders are virtual nodes mapped 

on one physical node. Two novel attributes are associated to each virtual node: an errar 

rate and an expected threshold. A bystander virtual no de causes an error rate to the covert 

channels between any other two virtual nodes (i.e., the victim and the adversary) in the 

same substrate node. The error rate of each virtual no de is considered a parameter that 

expresses the noise effect of the bystanders on the transmission quality of a covert channel. 

A victim virtual no de leaks information via a covert channel. Higher noise on the covert 

channel means less information leak. The victim no de is considered secured if the accumu

lated error rate of the bystanders on the covert channel is no less than the expected threshold 

of the victim node. The VNs embedding problem is formulated as an optimization prob

lem with novel constraints that are the risk-tolerant coexistence constraints which consider 

proper embedding of the virtual nodes to mitigate information leak. The proposed scheme 

was compared to other two schemes suggested in the literature: 1) SAV [LCXX15] which 

embeds a VN satisfying security demands; and 2) GRe [G\íVZL14] which aims to maximize 

the resource utilization without security consideration. Simulation results show that the 

proposed scheme in [\íV\íVG+16] improves the percentage of secure virtual nodes by 40% in 

comparison with [LCXX15, G\íVZL14], Figure 3.5 depicts a comparison of Secure Virtual 

Node Ratio in the three works. 

3.4.4 Resilience requirements 

Failures in VNs are mainly related to physical nodes and links. The main two approaches for 

minimizing the VNs failures are [Oli13]: (i) backup resources, and (ii) live reconfiguration 

and migration. 

Backup resources - the idea is that certain physical resources are duplicated, so that 

one copy of these resources is considered primary, and the other one (i.e., the backup copy) 

as secondary. If the primary resources fail; the backup ones take their place. The simplest 

algorithms proposed for nodes backup preserve one single no de as backup for each criticaI 

physical node, thus, providing immunity against one failure only. A better approach is 
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to request K shared redundant virtual nodes [YAQSll]. This allows any criticaI no de of 

a protected VN to sustain up to K consecutive no de disruptions. The authors model the 

mapping problem in a Mixed Integer Linear Program (MILP) and propose efficient heuristics 

based on the MILP formulations. The work compares the performance through evaluating 

the redundancy ratio performance metric, which is the ratio of the total backup resource 

cost to the total working resource cost. The redundancy ratio performance metric is studied 

in three scenarios: (i) both cross and backup share (labeled as share); (ii) only backup 

share (labeled as (bshare)); and (iii) no share ( labeled as noshare). As well, the work 

compares the performance of the 1-redundant solution and k-redundant solution. This is 

done considering the following performance parameters: (i) no de cost ratio (i.e., the ratio of 

the no de redundancy cost); (ii) link cost ratio (i.e., the ratio of the link redundancy cost); 

and (iii) total cost ratio (i.e., the ratio ofthe total redundancy cost). Simulation results show 

that the proposed backup and cross share strategies have a significant impact in conserving 

backup resources and improving resource utilization. Furthermore, under majority of the 

circumstances, the K-redundant solution is more efficient than the 1-redundant solution 

especially when communication costs are higher than the no de computing costs. 

In [RB13], the problem of links backup is handled through a detours preallocation mech

anism that tries to protect the connectivity of the endpoints of each physicallink by routing 

its traffic to neighboring links, while restoration paths are used to protect an entire virtual 

link through links duplication. To improve the efficiency in resource utilization, restoration 

paths can be shared by different virtual links. In this work, the authors distinguish between 

two types of failures: (i) failures at the physical layer; and (ii) failures at the logical layer. 

Logical failures affect the logicallayer only, in contrast, physical failures affect both the phys

ical and logical layers. The main contributions of this paper are: (i) propose a survivability 

mechanisms to the VNs embedding phase using efficient restoration and protection policies; 
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(ii) add service leveI agreement (SLA) assurance to the VNs embedding phase by prioritizing 

the restoration of failed virtuallinks while minimizing the failure effect and maximizing the 

InP business profit; (iii) formulate the problem stated in the shape of a linear program and 

develop heuristic that bases on it; and (iv) introduce path-flow based optimization formula

tions for the different recovery and protection policies. The evaluation results show that the 

proposed solution outperforms the baseline solution in InP business profit, acceptance ratio, 

bandwidth efficiency, and response time.th efficiency, and response time. 

In [CL\íV+lO], another links backup mechanism is used, bases on an on-demand embedding 

of restoration paths. This work focuses on the case of one single link failure, assuming that 

the probability of two links failing at the same time is small. The authors present an 

embedding heuristic that pays simultaneous attention to two missions: (i) assuring a cost

effective usage of physical resources through an intelligent bandwidth sharing technique, and 

(ii) protecting VN services against network failures. To determine the restoration paths for 

virtual links, we present a state independent and path-based path selection scheme. The 

selection of the restoration paths is not dependent on any deterministic failure scenario and 

the interrupted virtuallinks are switched from their primary substrate paths to pre-reserved 

restoration paths when there occurs any substrate link failure. The restoration paths are 

used only when a failure occurs, and are used temporarily till the failure is fixed, thus the 

bandwidth reserved for the restoration paths is lower than the one reserved for the primary 

paths. Furthermore, the restoration paths share the same bandwidth reserved, as a way 

to reduce more the bandwidth consumption. Evaluation results show that the proposed 

algorithm outperforms the common algorithms both in terms of network resource usage and 

effectiveness of economic revenue over cost. Particularly, the proposed algorithm reduces the 

additional restoration bandwidth by over 35% comparing to the traditional algorithms. 

In [Y\íVKI0], the authors introduce the concept of fault tolerance at the virtualization 

layer. The benefits of this technique are: (i) various leveIs of reliability can be customized 

over the same physical infrastructure, and (ii) no need for specialized fault tolerance servers. 

This is achieved through an opportunistic redundancy pooling mechanism (ORP), where 

backup resources are pooled and shared across multiple virtual infrastructures, and intel

ligently embedded in the physical infrastructure. The leveI of reliability is limited to the 

number of failed resources, where this last one should not pass the number of the redundant 

resources. For example, by achieving an n:k redundancy architecture, k redundant resources 

can be backups for any of the n primary resources, and share the backups across multiple 

virtual infrastructures ( Vlnfs). Another contribution of this paper is a method to statically 

allocate physical resources to the primary and redundant Vlnfs simultaneously, considering 

the output of the ORP mechanism. The embedding problem is formulated in this work in the 

shape of a Mixed Integer Program with the objective of minimizing the amount of resources 

used for a Vlnf. To evaluate their approach, the authors considered three scenarios in their 
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simulations for allocating resources: (i) with redundancy pooling and redundant bandwidth 

reduction (this scenario is labeled share) , (ii) without redundancy pooling and redundant 

bandwidth reduction (this scenario is labeled noshare) , and (iii) a system with VInfs that 

do not have reliability requirement, i.e., zero redundancy (labeled nonr), this last scenario 

is considered as baseline of comparison. The main results of this work are: (i) noshare has 

the least acceptance rate and VInf occupancy, and more backup nodes per VInf than share; 

(ii) CPU usage per VInf is slightly higher in noshare than share; (iii) the redundant nodes 

in share consume less resources than that in noshare (despite admitting more VInfs); and 

(iv) the bandwidth usage per VInf is actually smaller for share than noshare. 

The drawbacks of the backup approach (be it for nodes or links) are mainly twofolds: (i) it 

is costly, because the backup resources are reserved independently of the failure occurrence; 

and (ii) the backup resources might become wasted if no failure occurs (i.e., the backup 

resources are used only when a failure occurs). 

Live reconfiguration and migration- The ide a is to recalculate physical resources and 

reallocate virtual nodes andjor links whenever a failure occurs. This approach is considered 

cheaper compared to the backup approach. Researchers in this track consider one of two 

procedures: (i) a pro-active procedure that bases on migrating virtual nodes andjor links 

that are subject to failures (or that are more likely to fail) prior to failure occurrence, and (ii) 

reactive procedure that bases on executing the recalculation and migration after the failure 

occurs. The first procedure avoids service interruption, while the second one does not, and 

researchers in this case (i.e., resources migration after failures) compete in minimizing the 

time of service interruption. 

Among the works that consider the forme r approach we mention [HLZ+lO]. In this work, 

Houidi et aI. argue that it is important, while the VNs mapping process, to consider the 

dynamic changes that are induced by the VNs andjor the SN, like: (i) topology changes, 

(ii) resources restriction because of the already mapped VNs, and (iii) resource failures, and 

resource degradation. In this regard, an adaptive virtual resource provisioning is needed in 

order to preserve virtual networks, allocated initially on demand, in response to a virtual 

network creation request (i.e., service leveI agreement). More precisely, the authors detail 

about the adaptive resources allocation in two cases; (case l-updated virtual demands,) 

when the VN user asks for new requirements, like in the VN topology (due to VNs expan

sion) andjor in the service requirements. In this case, an adaptive matching algorithm is 

required to identify new physical resources as candidates to handle the updated virtual re

quirements. The matching algorithm starts by searching candidates in the proximity of the 

virtual components (i.e., virtual nodes and links) that were subject to the change. So, the 

first candidates nominated are necessary parents, children or siblings of prior matching. this 

choice avoids returning to the dendrome root [BHK12] unless needed. Case 2-resources 

failure or degradation, when physical resources allocated to previously instantiated VNs 
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suffer from failure or from performance degradation. In this case, the InP maintains the 

VNs topologies by searching for new resources to replace the affected ones. The authors 

propose an adaptive VNs embedding algorithm only for th the case of resources failures 

(which is the second case among the two stated above) since it is the most important case. 

Three types of failures are discussed in this paper: (i) virtual nade failure, when a certain 

virtual no de fails, it is needed to either re- instantiate another virtual no de in the the same 

substrate no de or, if not possible, to call for other substrate nodes. This implies reallocation 

of the virtual links associated to the affected virtual node; (ii) substrate nade failure, when 

a certain physical no de hosting multiple virtual nodes fails, in this case, every virtual no de 

hosted on the crashed physical no de should be reallocated, together with its associated links; 

and (iii) substrate link failure ar degradatian, when a physicallink fails (interrupts) or gets 

congested or overloaded, then a new physical link or path should be reallocated. 8imulation 

results show that, the proposed fault-tolerant embedding algorithm can react quickly and 

efficiently to resources failures. 

In [GKA+16b], Ghaleb et aI. deal with the problem of multiple linkjnode substrate fail

ures that impact a multicast virtual network (MVN) in which link recovery is not feasible 

and no de migration is mandatory (scenarios when backup is not enoughjgood). This work 

introduces a recovery algorithm that aims to minimize service downtime while satisfying 

the Q08 requirements of the VNs. The proposed approach is based on the following three 

pillars: i) Minimizing the search region by using the intermediate (assisting) nodes (ANs) 

that interconnects the failed MVN's distribution tree to find a backup node. ii) Performing 

nodes ranking and filtering algorithm (NRF); to start the search from nodes that most likely 

give faster recovery and minimize the search region further (ranking), and remove nodes that 

does not provide any solution (filtering). iii) Performing a shortest-path search from each 

no de that enables finding more than one candidate backups (hosts for the failed VMs) with

out repeating the same search. Figure 3.6 illustrates a multicast network with one source 

(8) and three terminaIs (tI, t 2 , t 3 ). The three terminaIs are mapped to the nodes ns, n13, 

n26 respectively. A failure is assumed to hit no de ns or link (nI2, ns) disconnecting ns from 

the multicast network. The AN set is Therefore formed from nu, n12, n14, n20 and n23. The 

search for a backup terminal can start from any no de in the ANs listo However, the search 

region for each AN is different, and is determined by the minimum and maximum distances 

in terms of delay units allowed, while respecting the original delay variation between the 

terminal before the failure occurrence. 8imulation results show that the proposed restora

tion algorithm is highly scalable and achieves a high restoration rate with a much faster 

restoration time even with high load and large number of concurrent failures. 

The same authors of [GKA+16b] had a former work [GKA+16a] where they considered a 

reactive approach for link recovery with end-delay and delay-variation constraints. However, 

the approach addressed a single link failure that isolates single or multiple nodes in which 
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alternative paths can be constructed to the affected nodes. The recent work [GKA +16b] com

plements [GKA+16a] by providing a comprehensive failure recovery framework, considering 

repairing the failed MVNs reactively while maintaining the end-delay and delay-variation 

requirements in a failure-prone data center network. 

3.4.5 Delay requirements 

Zhang et aI. in [Z\íV JYI0] address the problem of mapping virtual multi-cast networks, which 

indicates the existence of one sender and several receivers. An application of this kind of 

networks is video gaming, video conferencing and similar real-time applications. In this kind 

of applications, packets are supposed to be received at the destination within specific delay, 

and the delay difference of packets reception at multiple destinations should be minimal. 

The authors formulate the mapping problem in the shape of MIP which is composed of: (i) 

an objective function that aims at minimizing the use of the total physical resources needed, 

and (ii) three mapping constraint, the first C1 to assure not passing the physical resources 

capacity (i.e., nodes CPU and links B\íV) , the second C2 is to bound the messages delay 

between each pair sender-receiver, and the third C3 is to bound the messages delay variation 

between each pair of the receivers. Hereafter, the authors propose a heuristic algorithm 

based on the MIP for mapping virtual multi-cast service-oriented networks subject to delay 

and delay variation. The algorithm working steps can be summarized by the following 

steps: (i) receive a request R denoted by six parameters, the message sender, the list of 

the message receivers, the no de CPU, the link B\íV, the maximum delay allowed for each 

pair sender-receiver, and the maximum delay variation allowed between each pair of the 

receivers; (ii) calculate the k shortest paths between the sender and each receiver, this assures 

meeting constraints C1 and C2, the value of k can be defined according to the networks 
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sizes (the VNs and the SN); (iii) apply sliding window technique to filter the solutions 

nominated in the previous step and keep only the ones that meet constraint C3 too (the 

sliding window technique will be detailed next); finally (iv) optimize the obtained solution 

through comparing the solutions previously obtained (which meet the three constraints C1, 

C2, C3) and choose the best solution that minimizes the objective function. \íVe explain the 

sliding window technique through an example to improve legibility. Consider a multi-cast 

network consists of one sender S and three destinations Dl, D2 and D3. The k shortest 

paths are computed for each pair S - Dl, S - D2 and S - D3. The complete set of computed 

paths, denoted P, are sorted in an increasing order on an axis, see Figure 3.7, where Tmin 

denotes the minimum value in P and Tmax denotes the maximum value in P. A window with 

width DV is placed on the axis, where DV is the value of the delay variation allowed and 

adjusted in constraint C3, the lower edge of the window is T and the upper edge is T + DV. 

The initial value of T is T min, then it is increased gradually with a unit step which causes the 

window to sI ide on the axis till the moment when the window upper edge meets Tmax . The 

paths that fall within the sliding window are the ones that meet constraint C3. The problem 

will be transfered then to find a subnetwork that connects S with all the destinations from 

the selected options gained by the sliding window. 

T T+DV 

Figure 3.7 Illustrative figure for the sliding window technique 

Inführ et aI. [IRll] studied the mapping problem of virtual networks with the following 

demands: (i) the common properties of bandwidth, supplied by the SN links and demanded 

by the VN links; (ii) the common properties of CPU, supplied by the SN nodes and demanded 

by the virtual nodes; (iii) communication delay, that each SN link can transfer messages with 

a maximum delay, and each virtual link demands maximum delay for messages transfer; (iv) 

routing capacity, that the physical routers cannot rout the full B\íV connected to them, and 

(v) location constraints, where some/all virtual routers have possible placements constraints 

on the SN which limits the set of the candidates of the physical routers able to map them. 

The goal when mapping the VNs is to satisfy all the posed constraints while minimizing the 

cost of the physical components subsets chosen to map the VNs demands. For generating 

the benchmark-instances, the authors used real network topologies to model the physical 

networks instead of relaying on random graphs, and they used different classes of virtual 

networks to model possible use-cases. Four different categories were used to represent cases 

in which VNs have different sets of requirements regarding B\íV, delay, and nodes CPU: (i) 

web sI ice for low B\íV requirements, short delays, and no specific CPU requirements, (ii) 
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stream slice for medium to high B\íV requirements, no delay bounds, and 3 processing units 

per routed bandwidth, (iii) Peer-ta-Peer (P2P) slice for medium B\íV and CPU requirements, 

and no delay bounds, and (iv) VaIP (Vaice aver Internet Protacal) slice for medium B\íV and 

delay requirements, and high CPU requirements. Different topologies were used to simulate 

the VNs sI ices mentioned above, for example, the web sI ices were modeled by a star graph, 

where the central no de and the leafs nodes represent the web server and the customers 

respectively. In the stream slice, the network was modeled with a random tree graph, where 

the tree root is the video source, the leafs are the customers and the intermediate leafs 

between the root and the leafs split the stream and forward only the stream related to the 

channel being watched by the related customer. In the P2P sI ice and the VoIP slice, the 

network structure was generated by the small_ world _ iterator of the boost graph library. 

An example of the generated topologies in the four sI ices case is illustrated in Figure 3.8, the 

example is set for networks of 5 nodes. The mapping problem was formulated in the shape 

of a Mixed Integer Program and the MIP was solved using CPLEX [bmc14]. Basic findings 

of this work are: (i) finding the optimal solution for more than 74% instances was reachable 

in less than one hour; (ii) the biggest influence on the instance hardness was the topology 

map chosen to create the instance; and (iii) large problem instances were not harder to solve 

than smaller instances. 

(a)Web 

(c) P2P 

(b) Stream 

0~ 

\ .---lJ 
~ 
(d)VoIP 

Figure 3.8 ExampIes of generated sI ices of size 5 [IRll] 

In [GH16], Ghazisaeedi, et aI. propose a novel energy-efficient embedding method, named 

EnergyMap, that maps heterogeneous MapReduce-based virtual networks onto a heteroge

neous data center network, that also controls the incast queuing delay caused by incast 

traffic, where MapReduce is a cloud computing paradigm that is widely deployed in many 

data centers. According to the authors, the incast problem in Virtual Data Centers (VDCs) 

is different from the incast problem in non-virtualized (traditional) data centers. During 

a VDC embedding process, a specific amount of bandwidth capacity is allocated to each 
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virtual link in substrate paths. The traffic flows in the allocated paths are limited to their 

assigned bandwidth capacity. Hence, the incast problem might happen when the allocated 

substrate paths become congested, resulting in a longer queuing delay in the virtual link. 

According to the authors, this problem is significantly different from the case when incast 

happens only in a single bottleneck physical link of a non-virtualized data centers. Ener

gyMap method aims at finding a mapping for every VN such that the data center network's 

total energy consumption (by physical servers, physical switches/routers, and physicallinks) 

is minimized. the method also controls the incast queuing delay according to a given maxi

mum tolerable queuing delay for a virtual link. The embedding approach allows embedding 

computation-based virtual nodes on multiple physical servers as they may need parallel pro

cessing, whereas other kind of virtual nodes are mapped on one single physical switch/router. 

In order to control the introduced incast queueing delay, it is required to find the end-to-end 

queuing delay for incast traffic pattern in the substrate path allocated to every virtuallink, 

be it a link that terminates at a splitted or unsplitted virtual node. The authors adopt 

the assumption that the physical nodes do not block the traffic, thus the reason for traffic 

delay would happen on the links because of limited bandwidth which are defined by the link 

bandwidth capacity. The end-to-end incast queuing delay in the substrate path could be 

calculated by knowing the amount of allocated traffic capacity to every virtual link that is 

mapped to a physical link composing this path. The incast queueing delay is influenced by: 

i) the choice for mapping the end virtual nodes, since the amount of bandwidth allocated to 

the virtual links are proportional to the assigned capacity of its end virtual nodes. And ii) 

the allocated substrate path to each of the virtual links adjacent to the end virtual node. 

In order to control the introduced incast queueing delay, it is required to find the end-to

end queuing delay for incast traffic pattern in the substrate path allocated to every virtual 

link that terminates at a splitted and mapped reducer virtual node: - Most of today's 

switches/routers are internally non- blocking. Therefore, traffic can only be blocked by 

limited bandwidths of output ports which are defined earlier by the link bandwidth capacity. 

- \íVe model the queue of an allocated bandwidth capacity to a virtuallink in a substrate link 

by M/M/I queue. - According to Jackson Networks theorem and because we do not split 

the generated traffic of an allocated virtual node, the end-to-end incast queuing delay in the 

substrate path could be calculated by knowing the amount of allocated traffic capacity to the 

virtual link in each physical link over the substrate path. - Since the amount of bandwidth 

we allocate to the virtual links are proportional to the assigned capacity of its end virtual 

nodes, the way we split reducer virtual nodes impacts the incast queueing delay. - Besides, 

the substrate no de which we map the splitted reducer virtual no de onto, and accordingly the 

allocated substrate path to each of the adjacent virtual links, also may influence the incast 

queuing delay. Clearly, this limits the leveI of freedom regarding energy-efficient embedding 

of the VNs, and may affect the energy saving rate. Following the above discussion, we can . 
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Detailed formulation is omitted due to the size limitation. The formulated MIDCP is a type 

of VN embedding problem. Simulation results show that the proposed approach i) saves 

energy more than any existing VNs energy-efficient embedding method that do not allow 

virtual no de splitting; ii) controls the incast queueing delay; and iii) illustrates the influence 

of controlling the incast queueing delay on energy saving rates. 

3.4.6 Miscellaneous requirements 

Besides the above mentioned applications requirements, some works were concerned with: 

Routing requirements- for example, [TEAll] addresses the problem ofVNs embedding 

considering different SLA (the work details are given in 3.4.2). The authors propose a model 

in the shape of MIP, whose objective function aims at minimizing both the B\íV consumption 

and the routing cost. Another work [IRll] considers the routing capacity of the SN nodes, 

i.e., each physical no de is considered with a maximum value ofrouting traffic, and the traffic 

passing through it should not pass this value (more details of this work can be found in 

3.4.5). 

Location requirements- where for certain virtual routers, subsets of the physical nodes 

only are candidates for the embedding. For example, virtual router X cannot be mapped 

on any of the SN nodes, rather, it can be mapped on one of the nodes of the subset X that 

is composed of 10 routers out of the SN nodes. This happens when clients request virtual 

networks to provide connectivity between two or more defined geographicallocations. Among 

the works that considered location constraints is [BOB+12a] (more detailed in 3.4.3). 

Delay variation requirements - Virtual multicast networks are expected to support 

many real-time applications, such as video-conferencing, distributed database replication, 

and online games. These applications require that packets are received by the destinations 

within a specified delay bounds, and the delay difference of packet receipts at multi pIe 

destinations should be minimal. An example of a system that is attentive to delay variation 

is a multi-cast system studied by [Z\íVJYlO]. This system consists of one sender and several 

receivers, where a maximum delay variation is allowed between the times of receiving the 

sent message by each pair of receivers. Detailed about this work can be found in 3.4.5. 

3.4.7 Synchrony requirements 

In our work, we propose and argue that virtual networks and the virtual networks em

bedding process offer both abstractions and techniques to support applications with Hybrid 

Synchrony demands, as detailed in Section 2.5. To the authors best knowledge, this is undis

cussed in the VN field and, as detailed in Chapter 2, of paramount importance to host a 

prominent class of distributed systems. This has led to the abstraction of new type of VNs, 
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we name it The Hybrid Synchrony Virtual Networks, abbreviated to HSVNs. 

By revising the literature on the topic of VNs embedding; we note the absence of em

bedding solutions in the literature that consider the synchrony property in applications, 

which we need for our work to attend DSs with hybrid synchrony. This gap led us to the 

development of an embedding framework that handles applications with hybrid synchrony 

constraints. 

What are HSVNs 

They are virtual networks that have subsets of nodes and links that obey time bounds 

for processing and communication. This abstraction put us to meet three main aspects 

associated: (i) the design of SN suitable for HSVNs, since VNs inherit properties that only 

exist in the underlying infrastructure, and (ii) suitable efficient embedding process for the 

HSVN. 

Although HSVN can run on fully synchronous SN, this decision would have to pay the 

excess in an unneeded cost, since even asynchronous virtual nodes and links will be mapped 

on synchronous physical ones. \íVe argue that hybrid synchronous SN, combined with a 

suitable embedding, is capable to answer the synchrony requirements in an economic manner. 

Hybrid synchronous SNs have two classes of nodes: (i) synchronaus nades with functioning 

time guarantees, achieved through the implementation of periodical real-time tasks, and (ii) 

asynchronaus nades that have no timely guarantees. Analogously, two classes of physical 

links are available: (i) synchronaus links that have time-bounded messages transmission 

delay, achieved through the implementation of QoS policies and admission control, and (ii) 

asynchronaus links that have no timely guarantee. 

Two types of HSVNs can be distinguished, inspired by the two types of hybrid DSs (see 

2.3.1 and 2.3.2): 

1. Space-HSVNs: where the virtual networks are composed of synchronous and asyn

chronous components, where both types of components maintain their synchrony status 

during the system functionality. The Space-HSVNs will be discussed in details in a 

separated chapter, that is Chapter 4. 

2. Time-HSVNs: where the virtual networks are composed of subsets of nodes and links 

that change their synchrony status over time (i.e., synchronous resources become asyn

chronous and vice versa). The Time-HSVNs will be discussed in details in a separated 

chapter, that is Chapter 6. 
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Table 3.1 Taxonomy of works on virtual networks mapping 

Main constraint work 
- Zhu et aI., 2006, Algorithms for assigning 
substrate network resources to virtual network components [ZA06] 
- Lu et aI., 2006, Efficíent mapping of virtual networks 

Topology requirements 
onto a shared substrate [LT06] 
- Yu at aI., 2008, Rethinking virtual network embedding: 
Substrate support for path splítting and migration [YYRC08b] 
- Li et aI., 2015, The study of Dynamic Topology 
Remapping in Virtual Network Embedding [LZWI5] 
- Trinh et aI., 2011, Qualíty of service using careful overbooking for 
optimal virtual network resource allocation [TEA 11] 

BW and CPU constraints 
- Botero et aI., 2013 Optimal mapping of virtual networks 
with hidden hops [BHFdMI3] 
- Hsu et aI., 2012, Virtual Network Mapping Through Path 
Splítting and Migration [HSWYI2] 
- Bays et aI., 2012, Security-aware Optimal Resource Allocation 

Security requirements 
for Virtual Network Embedding [BOB+12a] 
- Wang et aI., 2016, Secure virtual network embedding to mitigate 
the risk of covert channel attacks [WWG+16] 
- Yu et aI., 2011, Cost efficíent design of survivable virtual 
infrastructure to recover from facílíty no de faílures [YAQSll] 
- Rahman et aI., 2013, SVNE: Survivable Virtual Network Embedding 
Algorithms for Network Virtualízation [RBI3] 
- Chen et aI., 2010, Resílient virtual network service provision 

Resilience requirements in network virtualízation environments [CLW+lO] 
- Yeow et aI., 2010, Designing and embedding relíable 
virtual infrastructures [YWKI0] 
- Houidi et aI., 2010, Adaptive virtual network provisioning [HLZ+lO] 
- Ghaleb et aI., 2016, Surviving Multiple Faílures in Multicast 
Virtual Networks with Virtual Machines Migration [GKA+16b] 
- Zhang et aI., 2010, Mapping multicast service-oriented virtual 
networks with delay and delay variation constraints [ZWJYI0] 

Delay requirements 
- Infuhr et aI., 2011 Introducíng the virtual network mapping problem 
with delay,routing and location constraints [IRll] 
- Ghazísaeedi et aI., 2016, EnergyMap: Energy-efficíent embedding of 
MapReduce-based virtual networks and controllíng incast queuing delay [GHI6] 
- Trinh et aI., 2011, Qualíty of service using careful overbooking for optimal 

Routing requirements 
virtual network resource allocation [TEAll] 
- Infuhr at aI., 2011, Introducíng the virtual network mapping problem 
with delay, routing and location constraints [IRll] 

Location requirements 
- Bays et aI., 2012, Security-aware Optimal Resource Allocation 
for Virtual Network Embedding [BOB+12a] 

Delay variation requirements - Zhang et aI., 2010, Mapping multicast service-oriented virtual networks 
with delay and delay variation constraints [ZWJYI0] 

3.5 Review on the VNE difficulties 

After surveying existing work on VNs resource allocation in the literature, we identify the 

following major difficulties (not limited to them): 

• problem complexity: which scales with the increment of the problem size, be it with 

the increment in the VNS andj or the SN size, or be it the constraints that need to 
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be considered while the mapping processo For example, mapping virtual networks with 

topology constraints alone is less complex than mapping VNs with topology, CPU and 

B\íV constraints. The problem complexity affects directly the computational time, mak

ing the process of finding the optimal solution for VNs mapping demands long time. For 

example, in [BOB+12a], mapping some VNs demanded time in the order of 24 hours. 

This situation motivated the development of heuristics for VNs mapping, for example 

[ZA06]. Even though heuristics speed up the embedding computation time, but this is 

with the cost of not reaching the optimal solution. Yet, for some applications, a quick 

semi-optimal VNs mapping is more preferable than a slow optimal one; 

• online VNs mapping: this is when the VNs are born, remain for certain time, then 

after they are dead. This cycle demands allocating physical resources for certain time 

interval, then after, free these resources once the VNs are dead, in order to be able to 

use them again. The complexity of this process increases in case it involved remapping 

the alive already mapped VNs according to the currently available resources, which is 

changeable with the flow on the VNs arrival online; 

• dynamic VNs demands: this is when the VNs demands change over time (and not the 

VNs number, which is the previous item). In this case, the initial VNs mapping should 

be done considering long-terms characteristics (mapping in worst case), later on, the 

initial mapping will be adapted to shorter-terms based on the current requirements. 

This adaptive mapping is done in order to minimize the mapping cost, because the 

initial mapping (mapping in worst case) might result in reserving resources that become 

not used hereafter with the change of the VNs demands. Possible way to achieve this 

adaptive mapping is to apply the principIes of the feed-back control theory. 

Summary 

In this chapter we reviewed the literature on the topic of networks virtualization: the VNs 

definition, VNs properties, and the VNs embedding problem (VNE). \íVe classified the works 

on the VNE field based on the application constraintsjrequirements, for example, topology, 

security, and resilience constraints. 

By revising the literature on the topic ofVNE, we note the absence of embedding solutions 

in the literature that consider the synchrony property in applications, which is of paramount 

importance to host a prominent class of distributed systems, the hybrid synchronous DSs, 

as formerly detailed in Chapter 2. This gap led us to the development of an embedding 

framework that handles applications with hybrid synchrony constraints, as will be detailed 

in the next two chapters. 
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In Chapter 4, we will address the Space-HSVNs, they are virtual networks with hybrid 

synchrony in space, addressed to HSDS in space, and we will propose an embedding model 

to handle the resources allocation problem in this kind of VNs. Analogously, in Chapter 6, 

we will address the Time-HSVNs, they are virtual networks with hybrid synchrony in time, 

addressed to HSDS in time, and we will propose an embedding framework to handle the 

resources allocation problem in this kind of VNs. 
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CHAPTER 4 
Space-HSVNs embedding 

I
n this chapter we define the Hybrid Synchronous Virtual N. etworks in Space (Space

HSVNs), we propose a suitable embedding mo deI for two types of Substrate Network 

(SN): i) Settled SN (S-SN) and ii) configurable SN (C-SN). \íVe start this chapter by 

defining the Space-HSVNs, then we locate our work among others in the literature, finally 

we propose an embedding mo deI for Space-HSVNs on both S-SN and C-SN. 

4.1 Space-HSVNs: definition 

Formerly in this thesis, Section 2.3.1, we referred to distributed systems that demand syn

chrony in space during the system life, in other words, they demand certain elements (i.e., 

nodes and links) to behave synchronously while others may behave asynchronously during 

the system life. \íVe assume that this kind of systems are supported by virtual networks that 

reflect the space synchrony nature. \íVe name this type of VNs the Space Hybrid Synchronous 

Virtual Networks, abbreviated to Space-HSVNs. 

The Space-HSVNs are virtual networks that carry all the common properties of VNs 

[CBlO], but in addition, they have subsets of nodes and links that obey time bounds for pro

cessing and communication. Both types of components maintain their synchrony status dur

ing the system functionality, i.e., the synchronous nodes and links remain synchronous during 

the system execution time, and the asynchronous nodes and links remain asynchronous (pro

vide no synchrony guarantees). The Space-HSVNs are addressed to host distributed systems 

with hybrid synchrony in space. 

4.2 Work positioning in the literature 

Revising the literature in the topic of VNs mapping, we find that our work is nearer to 

those who were concerned with delay constraints, see Section 3.4.5. For example, Zhang et 

aI. [Z\íVJYlO] propose a heuristic algorithm for mapping virtual multi-cast service-oriented 

networks subject to delay and delay variation. They consider SNs composed of links with 

maximum delay. Their work benefits real-time and interactive applications, where packets 
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are supposed to be received at the destination within specific time bounds, and the delay 

difference of packets reception at multiple destinations should be minimal, besides the aim 

of minimizing the mapping cost, where the cost is defined as the sum of total substrate 

resources (e.g. CPU and B\V) allocated to the multi-cast network. A sliding window method 

is proposed to construct a set of feasible paths and solve the mapping problem based on the 

feasible paths with the goal of minimizing the cost and load balancing, where the cost is 

defined as the sum of total substrate resources (e.g. CPU and B\V) allocated to the multi

cast network. 

Inführ et aI. [IRll] addressed the VNs mapping problem with delay constraints besides 

routing and location constraints. The SN considered is composed of links with maximum 

delay, and nodes that have maximum routing capacity and location constraints. Four differ

ent categories were used to represent cases in which VNs have different sets of requirements 

regarding B\V, delay, and nodes CPU: (1) web slice for low B\V requirements, short delays, 

and no specific CPU requirements, (2) stream slice for medium to high B\V requirements, 

no delay bounds, and 3 processing units per routed bandwidth, (3) P2P slice for medium 

B\V and CPU requirements and no delay bounds, and (4) VaIP slice for medium B\V and 

delay requirements, and high CPU requirements. 

The study we present about space-HSVNs is distinct from the aforementioned works 

in the following aspects: (1) we consider the delay constraints (or time bounds) on both 

links and nodes, not only links, since in the considered class of DSs some links should 

have time guarantees in delivering the messages, and some nodes should be performing 

real-time tasks; (2) a physical path is considered synchronous not only when its links are 

synchronous, rather the path's intermediate nodes should be all synchronous as well, since 

they play role in the routing process, impacting the source-destination delay; (3) the mapping 

model we propose aims at optimizing the usage of the synchronous resources whose building 

cost is high comparatively. For example, some VNs sI ices adopted in [IRll] had no delay 

requirements, yet the SN considered had no distinction in kind of resources, which results in 

an unneeded cost, and (4) unlike other works, the SN we consider is hybrid in its components 

synchrony. Some nodes and links have time bounds and others do not, which is suitable for 

DSs applications that have hybrid synchronous requirements. 

4.3 The Substrate Network for space-HSVNs 

To map VNs with hybrid synchrony requirements, the Substrate Network (SN) should be 

hybrid synchronous as well. The reason is that, the VNs cannot reach any functionality 

unless exists in the underlaying infrastructure, from where they inherit it [CB09]. 

\Ve assume the existence of certain mechanisms that guarantee building physical network 
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elements (nodes and links) that behave synchronously. These mechanisms can be related to 

the type of physical materiaIs used, or to the procedures followed for configuring them, such 

as admission control and Quality of Service (QoS) policies. Studying the exact mechanisms 

for building synchronous resources is out of the scope of our work. 

\\Te distinguish between two types of SNs that provide hybrid synchrony: 

Settled Substrate Network (S-SN): has two classes of nodes; (i) synchronous nodes 

with functioning time guarantees, achieved through the implementation of periodical real

time tasks, and (ii) asynchronous-nodes that have no time-bounded guarantees. Analogously, 

two classes of physical links are available: (i) synchronous links that have time-bounded 

messages transmission delay, achieved through the implementation of Quality of Service 

(QoS) policies and (ii) asynchronous links that have no time-bounded guarantee. In a settled 

SN, the physical resources synchrony status is static, predefined, independently of the virtual 

networks demands. In the embedding mo deI detailed later, the synchrony state of a S-SN 

components is an input parameter of the model. 

Configurable Substrate Network (C-SN): where the SN components (i.e., nodes 

and links) have no synchrony orientation initially, and both can receive configuration process 

that turns them to become synchronous or asynchronous. In a configurable SN, the physical 

resources synchrony status is dynamic, dependent of the virtual networks demands. In this 

case, we consider the synchrony demands on the HSVNs as an input for the embedding model. 

\\Tith this information, the embedding mo deI determines a sufficient number of physical 

synchronous components, and their location on the SN, so that the VNs requirements are 

satisfied. 

\\Te don't claim that one type of a SN (i.e., S-SN or C-SN) is more important than the 

other type, because both are of equal necessity. In fact, the infrastructure provider is the 

player who determines which embedding model is to be adopted, based on the SN type he 

built (i.e., settled or configurable). 

4.4 Graph based example for Space-HSVNs embedding 

After characterizing both the Space-HSVNs and the SN suitable to support the DSs with 

hybrid synchrony in space, we drive our effort to the resources allocation problem. How 

to map the Space-HSVNs on both (i) a settled substrate network (S-SN) and on (ii) a 

configurable substrate network (C-SN)? The rest of this chapter will be about proposing a 

suitable embedding mo deI for both cases. Yet, at this stage of the thesis we present a sim pIe 

graph-based example to see Space-HSVNs mapped on top of a hybrid synchronous SN in 

space (be it S-SN or C-SN). \\Te will just present the illustrative graph, to allow the reader 

to grasp the concept, and we will not enter now in details about the way for solving the 
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embedding problem. 
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Figure 4.1 - Illustrates figure for Space-HSVNs embedding 

4.5 Space-HSVNs embedding model on S-SN 
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Bellow we introduce the variables definition, followed by the mathematical embedding model. 

4.5.1 Variables definition 

The substrate network is represented by an undirected graph G(N, L), composed of a finite 

set of physical nodes N connected through a finite set of physical links L : N X N. The set 

N is given by N s UNa, where N s and Na contain all the synchronous and asynchronous SN 

nodes, respectively. Similarly, L is given by Ls U La. 

The virtual network number k is given by V N k , belonging to the finite set of virtual 

networks VN. VNk will be presented by an undirected graph Gk(Nk, L k), where N k = 

N k U N k and L k = L k U L k s asa' 

We consider that there is a cost c( i, j) for one unit of traffic going through the physical 

link (i, j) E L. Analogously, c( i) is the cost for processing one unit of traffic in no de i E N. 

c( i, j) and c( i) are of higher value if the link and no de were synchronous. Synchronous 

physical resources are more costly than the asynchronous ones. We turn this trade off in our 
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work such a way that we consider the cost of passing one unit of traffic in a synchronous 

link and the cost of processing it in a synchronous no de is ten times more costly than doing 

that on asynchronous no de and link. 

A binary function sync( i) expresses the SN nodes synchrony: sync( i) = 1 if i E N s , 

otherwise sync(i) = O (i.e., i E Na). Similarly, sync(i,j) expresses the SN links synchrony. 

Functions sync( ik) and sync( ik, jk) indicate the virtual nodes and links synchrony respec

tively (ik E N k and (ik,jk) E L k). 

Besides synchrony, two other attributes are considered for the SN and VN elements: 

nodes CPU, and links bandwidth (BW). The syntax for those attributes on the SN and 

VN respectively are: cpu(i), bw(i,j), cpu(ik), and bw(ik,jk). 

Finally, we define the output variables for our mathematical model. The values of these 

variables illustrate the allocation of the physical resources to the virtual demands, they are: 

a binary function J( ik, i) that expresses whether no de i E N maps no de ik E N k, and a 

binary function p( ik, jk, i, j) that expresses whether the physical link (i, j) E L is part of the 

path that maps the virtual link (ik, j k) E L k. 

Table 4.1 provides a list of variables definition for Space-HSVNs embedding model. 

4.5.2 Embedding model 

\Ve formulate the space-HSVNs mapping problem in the shape of an Integer Program (IP) 

[Sie02], consists of two blocks: the objective function and the embedding constraints as 

detailed bellow. 

Mapping objective: minimize 

LVVNkEVN LV(ik)ENk LV(i)EN(J(ik, i) . c(i) . cpu(ik)) 

+ LVVNkEVN LV(ik,jk)ELk LV(i,j)EL(P(ik,jk, i,j) 
,c(i,j)· bw(ik,jk)) 

(4.1) 

The Objective Function (O.F.) we consider is inspired from [Z\VJY10], which is to min

imize the total resources used (e.g., B\V and CPU). \Ve modify the O.F. with the goal of 

minimizing the use of synchronous resources besides the B\V and CPU. For this purpose, 

c(i) and c(i,j) are inserted as in Equation (4.1). The mapping constraints (detailed next) 

will allow mapping the synchronous virtual demands on top of synchronous physical re

sources, and asynchronous virtual demands on top of either synchronous or asynchronous 

physical resources prioritizing asynchronous physical resources which is guaranteed by this 

O.F. In other words, mapping asynchronous virtual demands on top of synchronous physical 

resources will be considered as the last resource invested only before rejecting the demando 

Mapping constraints-
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Table 4.1 List of variables definition for Space-HSVNs embedding model 

Variables group symbol deseription 
G(N, L) undireeted graph representing the SN 

N the set of physieal nodes 
N s the set of physieal synehronous node 
Na the set of physieal asynehronous no de 

L:NXN the set of physieal línks 
Ls the set of physieal synehronous línks 
La the set of physieal asynehronous línks 
i a notation for a physieal no de i E N 

(i, j) a notation for a physieal línk (i, j) E L 
Substrate Network sync(i) the synehrony of physieal node i 

sync(i) = 1 if i E N s 
sync(i) = O if i E Na 

sync(i, j) the synehrony of physieal línk (i, j) 
sync(i,j) = 1 if (i,j) E Ls 
sync( i, j) = O if (i, j) E La 

cpu( i) the CPU of physieal no de i 
bw( i, j) the bandwidth of physieal línk (i, j) 

c( i) the eost for proeessing one unit of traffie in node i E N 
c( i, j) the eost for one unit of traffie going through the physieal línk (i, j) E L 
VN 

k 
VN" 

G"(N", L") 
N" 
N; 
N" a 

L": N"XN" 
L" s 
L" 

Virtual Networks a 
i" 

(i ,j") 
sync(i") 

sync( i" , j" ) 

cpu( i ) 

bw(i" ,j") 
CY(i", i) 

Output variables 
p( i", j" , i, j) 

- Capacity constraints: 

for every (i, j) E L 

the set of ali virtual networks 
the number of a virtual network that belongs to V N 
The virtual network number k 
undireeted graph representing V N" 
the set of virtual nodes of V N" 
the set of virtual synehronous nodes 
the set of virtual asynehronous nodes 
the set of virtual línks of V N" 
the set of virtual synehronous línks 
the set of virtual asynehronous línks 
a notation for a virtual node i" E N" 
a notation for a virtual línk (i ,j") E L" 
the synehrony of virtual node i" 

sync(ik) = 1 if ik E N: 
sync(ik) = O if ik E N: 
the synehrony of virtual línk (i", j") 
sync(ik,jk) = 1 if (ik,jk) E L~ 
sync(ik,jk) = O if (ik,jk) E L~ 
the CPU of virtual node i 
the bandwidth of virtual línk (i", j") 
CY(i",i) = 1 ; node i E N maps node i" E N" 
CY( ik , i) = O ; otherwise 
p( i ,j", i, j) = 1 ; (i, j) E L is part of the path mapping (i", j ) E L" 
p( i k , jk, i, j) = O ; otherwise 

p(i k
,/, i,j)' bw(ik,/) ::; bw(i,j) (4.2) 
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for every i E N 

- Nades mapping canstraints: 

for everv V N k E V N ik E N k 
" , 

for every VNk E VN, i E N 

- Links mapping canstraint: 

L J(i k
, i) = 1 

lfiEN 

L J(ik,i)::;l 
lfikENk 

for everv VNk E VN (ik J"k) E Lk i E N 
" " , 

L p(ik,/, i,j) - L p(ik,/,j, i) = J(ik, i) - J(/, i) 
IfjEN IfjEN 

- Nades synchrony canstraints: 

for everv V N k E V N ik E N k i E N " , , 

sync( ik) . J (ik, i) ::; sync( i) 

- Links synchrany canstraints: 

for every VNk E VN, (ik,jk) E Lk, (i,j) E L 

sync(ik,/)· p(ik,/, i,j) ::; sync(i,j); 

sync( ik, /) . p( ik, /, i, j) ::; sync( i) * sync(j); 
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(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

The capacity constraint (4.2) assures that the total bandwidth of the virtual links, 

mapped on paths that include a certain physical link, does not exceed the bandwidth ca

pacity of this physical link. Similarly, constraint (4.3) represents the equivalent restriction 

regarding nodes CPU. 

The no de mapping constraint (4.4) assures that each virtual no de is mapped, and only 

once, on a physical node. \Vithout this constraint, and since the O.F. aims at minimizing 

cost, then the optimizer might choose not to map any node, which is against the goal. 

Constraint (4.5) assures that virtual nodes belonging to the same V N are not mapped on 

the same physical node. This is to achieve load balancing besides improving the reliability, 

since the unavailability of a SN no de will impact, at most, one no de on a given VN. This 

procedure minimizes the number of virtual nodes prone to failure by a physical no de failure. 
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For any virtual link (a, b), the links mapping constraint (4.6), adopted in [BOB+12a] 

and [Z\VJYI0], assures the creation of a valid physical path. Because the right side of the 

equation will be 1 and -1 for a and b respectively, meaning a will have an outgoing are and 

b an ingoing one. For all other nodes on the SN, the right side of the equation will be zero, 

thus the concatenation of ares will form a valid path. 

The nodes synchrony constraint (4.7) assures that synchronous virtual nodes are mapped 

only on synchronous SN nodes, whereas asynchronous virtual nodes are allowed to be mapped 

on synchronous or asynchronous SN nodes. This is acceptable because the synchronous SN 

nodes supply what the asynchronous ones do, but the reverse is not valido 

Similarly, the links synchrony constraint is presented in (4.8). Note that the allocation of 

synchronous physical resources for asynchronous virtual demands is done only if there are no 

other possible options (physical asynchronous resources got exhausted). This is achieved via 

minimizing the O.F. Finally, constraint (4.9) guarantees that when the intermediate physical 

nodes on the synchronous physical path should be also synchronous. This is beca use these 

nodes play role in the routing process, thus impacting the source-destination delay. After 

solving the mathematical model, each virtual no de is mapped to one physical node, and each 

virtual link is mapped to one physical path at maximum, where a physical path can be a 

unique physical link or a concatenation of physical links. 

4.6 Space-HSVNs embedding model on C-SN 

Similarly to S-SN, we introduce the variables definition, followed by the embedding model. 

4.6.1 Variables definition 

The variables considered are the same detailed for the S-SN (see subsection 4.5.1), but the 

SN synchrony is no more an input parameter to the embedding model, it is defined by the 

mo deI output. In other words, sync( i) and sync( i, j) are output variables of the embedding 

model, besides J(ik, i) and p(ik,jk, i,j). So, after solving the mathematical model, each 

virtual no de will be mapped on a physical node, and the synchrony of this physical no de will 

be determined, and each virtual link will be mapped on a physical path, and the synchrony 

of the physical links that form this physical path will be determined. Determining the 

synchrony status ofthe physical nodesjlinks can be achived, for example, by switching onjoff 

a configuration technique able to configure the nodes jlinks as synchronous j asynchronous. 
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4.6.2 Embedding model 

The mapping constraints are the same ones considered for a S-SN (see subsection 4.5.1), 

whereas the objective function is different. As aforementioned, the synchrony demands on 

the HSVNs are considered as an input for the embedding processo \\Tith this information, 

the embedding process determines a sufficient number of synchronous components, and their 

location on the SN, so that the VNs requirements are satisfied. The mapping objective 

aims at minimizing the synchronous resources made available by the SN, which is expressed 

mathematically by the O.F. in (4.10). 

C-SN Objective: minimize 

Summary 

LVVNkEVN LV(ik,jk)ELk LV(i,j)EL(P( i
k
, jk, i, j) 

·bw(ik,jk)) + LViEN sync(i) + LV(i,j)EL sync(i,j) 
(4.10) 

In this Chapter we defined the Space-HSVNs. They are new kind of VNs that have syn

chronous subsets of nodes and links that obey time bounds for processing and communica

tion. Both types of components maintain their synchrony status during the system function

ality. The Space-HSVNs are addressed to host distributed systems with hybrid synchrony 

in space. 

The SN that supports Space-HSVNs is hybrid synchronous. \\Te distinguish between two 

types of SNs that provide hybrid synchrony: i) Settled Substrate Network (S-SN) where the 

physical resources synchrony status is static, predefined, independently of the virtual net

works demands. And ii) Configurable Substrate Network (C-SN): where the SN components 

(i.e., nodes and links) have no synchrony orientation initially, and both can receive configu

ration process that turns them to become synchronous or asynchronous. In a configurable 

SN, the physical resources synchrony status is dynamic, dependent of the virtual networks 

demands. 

\\Te treat the embedding problem for Space-HSVNs embedding with the two cases: i) 

Space-HSVNs on S-SN, and ii) Space-HSVNs on C-SN. The mapping problem was formu

lated in the shape of an Integer Program for the two aforementioned cases. 

In the next Chapter we evaluate the two proposed model for Space-HSVNs embedding. 
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CHAPTER 

Performance Evaluation for 

Space-HSVN 

I
n this section, we run experiments that allow investigating the performance of the 

proposed embedding approach of Space-HSVNs over both a settled SN (S-SN) and a 

configurable SN (C-SN). 

5.1 Space HSVNs over a settled SN 

The parameters considered for the analysis of our model are: (i) the embedding cost; (ii) 

the physical resources load; and (iii) the embedding time. 

5.1.1 Workload and tools 

The experiments scenarios were designed as a full factorial [Jai91], exploring all possible 

combinations between the network parameters. Such choice of experiments was done by other 

works like [BOB+12a]. Similar to [YYRC08a, BOB+12a], physical and virtual networks were 

randomly generated. For this we used the BRITE tool (Boston university Representative 

Internet Topology gEnerator) [MLMJ14] with \Vaxman mo deI [\Vax88]. \Ve implemented the 

mathematical model with the ZIMPL language (Zuse Institute Mathematical Programming 

Language) [Koc04], and we used the CPLEX optimizer [bmc14] to solve the Integer Program 

(IP), running on a DELL XPS 8500, processor Intel(R) , Core(TM) i5-330P, CPU 3.10 GHZ 

(Giga Hertz), Random Access Memory (RAM) 8.00 GB (Giga Byte), and operating system 

(OS) \Vindows 8, 64 bits. Table 5.1 details the parameters of the twelve scenarios we 

considered, divided into four groups: group A, B, and C. 

In all the scenarios, the substrate network size was fixed to 25 nodes. Initially all CPUs 

(Central Processing Unit) of SN nodes are free, and links Band \Vidth (B\V) is uniformly 

distributed between 1-3 Gbps (Giga bit per second). 33% and 34% of the physical nodes 

and links respectively were fixed to be synchronous on the SN. 

\Ve ran scenarios divided into three groups, A, B and C, with VNs total size of 12, 24, 

and 36 nodes in each group respectively. The VNs were generated with 3, 4, or 5 nodes each, 

with CPU demands 10%, 15%, or 25% of the SN nodes CPU capacity, and B\V demands 
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Table 5.1 Space-HSVNs with S-SN scenarios parameters 

scenario AI I A2 I A3 I A4 BI I B2 I B3 I B4 CI I C2 I C3 I C4 
VN size 12 nodes 24 nodes 36 nodes 

VN sync. 0% I 30% I 60% I 100% 0% I 30% I 60% I 100% 0% I 30% I 60% I 100% 
each VN size 3,4,5 nodes 

VNsBW uniforrnly distributed: 100Mbps-1Gbps 
VNsCPU 10,15,25 % of SN nodes CPU 

SN size 25 nodes 
SN sync. 33% of the nodes and 34% of the links 
SNBW uniforrnly distributed: 1 Gbps-3 Gbps 
SN CPU nodes fully free initially 

uniformly distributed between 100 Mbps (Mega bit per second) and 1 Gbps. 

The SN and VNs size was chosen of small scale to allow solving the embedding model 

during a reasonable time, allowing us to evaluate the model performance. 

VNs synchrony demands were increasing from scenario 1 to scenario 4 of each group: 

• VNs of 0% synchrony demands in scenario 1 of each group (i.e., experiments AI, B1, 

C1); 

• VNs of 30% synchrony demands in scenario 2 of each group (i.e., experiments A2, B2, 

C2); 

• VNs of 60% synchrony demands in scenario 3 of each group (i.e., experiments A3, B3, 

C3); 

• VNs of 100% synchrony demands in scenario 4 of each group (i.e., experiments A4, B4, 

C4). 

To perform a suitable analysis, each of the twelve scenarios (AI, ... , A4, B1, ... , B4, 

C1, ... , C4) of Table 5.1 had its confidence leveI and interval calculated. Each scenario was 

repeated 10 times, randomly generating both the SN and the VNs. For example, scenario 

AI was repeated ten times (AIO, A11, A12, ... A19), scenario A2 was repeated ten times 

(A20. A21, A22, ... A29). The same logic was applied to scenarios A3, A4, B1, B2, B3, B4, 

C1, C2, C3, and C4. 

\Vithin the same group (A, B, and C), the SNs and VNs generated were the same, but 

the VNs synchrony was different. For example, experiments AIO, A11, ... A19 are with 

distinct SN and VNs, whereas AIO, A20, A30, and A40 are with the same SN and VNs 

topologies and attributes except for the synchrony demands which are 0%, 30%,60% and 

100% in counterparts experiments respectively. 

Experiments that reached an optimization gap that is less than 1 % were interrupted. Sim

ilar decision was taken by other researchers, for example in [BOB+12a] researchers stopped 

the experiments that took more than 24 hours. For some applications, it might be that 
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reaching a semi-optimal embedding solution within a quick optimization time is more in

teresting than reaching an optimal embedding solution during too long time. The kind of 

application and/or the clients requirements are the players for determining whether to stop 

the optimization process or noto In our work, the majority of experiments reached the op

timal solution, and we interrupted the optimization process for few experiments when the 

optimization gap became less than 1%. 

\Vith ten readings for every scenario in Table 5.1, we achieved a total of 120 experiments. 

During this chapter, we will use the term "scenario" referring to the twelve categories that 

are in Table 5.1, and we will use the term "experiment" referring to the 120 experiments that 

we ran (AIO, A11, ...... C49). 

A 90% confidence interval was then calculated for every scenario of the twelve in Table 5.1. 

Equation 5.1 quoted from [LKOO] was used to calculated a 100(1 - 0:) percent of confidence 

interval 

X(n) =t= (tn - 1,1-a/2)( J(S2(n))/n) (5.1) 

\Vhere: 

• X (n) is the average reading for n observations; 

• (1 - 0:) is the area of a density function for the standard normal distribution, limited 

between the two criticaI points; 

• t n - 1,1-a/2 is the upper 1-0:/2 criticaI point for the t distribution with n-1 observations. 

These criticaI points are given in Table T.1 of the Appendix at the back of the book 

[LKOO]. In our study, for 10 observations and with a 90% confidence interval, the value 

of the criticaI point tn - 1,1-a/2 is equal to 1.83; 

• S2(n) is the sample variance calculated by Equation 5.2 

5.1.2 Results 

S2(n) = 2]Xi - X(n)j2 
n-1 

(5.2) 

The parameters considered for the analysis of our mo deI are: (i) the embedding cost; (ii) 

the embedding time; and (iii) the physical resources load. 
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5.1.2.1 Embedding cost 

The mapping cost, is a combination of the CPU and B\\T used. It is expressed by the mo deI 

objective function, Equation (4.1). 

Figure 5.1 depicts the interval of mapping cost for each of the twelve scenarios performed 

with 90% confidence leveI. \\Te note down the following main observations: 

Embedding cost 
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Figure 5.1 Embedding cost - Confidence interval 

(i) \\Te do not notice overlaps neither in the intervals of the four scenarios within same 

group (e.g., scenarios AI, A2, A3, and A4), nor within the counterpart scenarios in the 

groups (e.g., scenarios A2, B2, and C2). This means that the confidence and intervallevels 

chosen differentiate well the scenarios and allow to draw conclusions. 

(ii) \\Tithin each group, an increment of the VNs synchrony requests results in an incre

ment in the mapping cost, for example, the cost interval for scenario Cl is [20xl04 
, 23xl04 

], 

for C2 is [95xl04 
, 1l0xl04 

], for C3 is [107xl04 
, 153xl04

] and for C4 is [207xl04 
, 237xl04

]. 

This behavior is because the increase in the synchrony demands leads to the increase in the 

synchronous physical resources needed to map these demands. And since the cost of the syn

chronous physical resources is higher in comparison with the asynchronous resources, then 

the total embedding cost will increase. To define more accurately the increment pattern of 

the embedding cost with the increment in VNs synchrony demands, we calculate the average 

value of embedding cost for every scenario, see Table 5.2. 

Figure 5.2 depicts the average values for the embedding cost versus the VNs synchrony 

demands. \\Te note down the following observations: 
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Table 5.2 Space-HSVNs with S-SN: average of embedding cost 
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• In the first three scenarios of each group, the VNs synchrony increases linearly from 

0% in exp.l, to 30% in exp.2, and to 60% in exp.3. In group A, the embedding cost 

of these scenarios increases 27.7xl04 from AI to A2, and increases 17xl04 from A2 to 

A3. Analogously, in group C, the embedding cost increases 80.7xl04 from Cl to C2, 

and increases 27.5xl04 from C2 to C3. So, with a linear increment in VNs synchrony 

demands, the increment in the cost was nonlinear. A possible interpretation for the 

non-linear increment is that, the increase in the synchrony demands implies an increase 

in the number of the synchronous virtual nodes and links that need to be mapped, but 

the links mapping is not 1:1 mapping since a link can be mapped on a physical path 

composed of severallinks. So, a linear increase in the VNs synchrony demands leads to 

a quicker increase in the number of resources allocated, thus, in the mapping cost . 

• In groups A and C, we notice that the increase in the cost from scenario 1 to scenario 

2 is bigger than the increase in cost from scenario 2 to scenario 3. In group A, the cost 

increased 27.7xl04 from AI to A2, which is more than the increment value 17xl04 from 

A2 to A3. Also, in group C, the embedding cost increases 80.7xl04 from Cl to C2, more 

than the increment value 27.5xl04 from C2 to C3. So, we say that, a transition from a 

fully asynchronous VNs (i.e., exp.l) to hybrid synchronous VNs (i.e., exp.2) results in a 
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bigger increment in the embedding cost than the transition from hybrid asynchronous 

VNs (i.e., exp.2) to another hybrid synchronous VNs with higher synchrony demands 

(i.e., exp.3). The reason is that the change from fully asynchronous VNs to hybrid VNs 

will imply start reserving synchronous resources on the SN, whose cost is bigger when 

compared to the asynchronous resources, and this would make the increment in the 

embedding cost remarkable. 

• Comparing the curve of group A and of group C in Figure 5.2, we notice that curve 

group A is with smoother increment than the curve of group C that has higher jumps 

from one scenario to another, and between C3 and C4 we notice a slope up. A possible 

reason for this behavior is the comparative size of the VNs and the SN of each group. \\Te 

remember that the mapping mo deI maps the asynchronous virtual demands on either 

synchronous or asynchronous physical resources, prioritizing the asynchronous ones as 

long as they are available. In group A, where the VNs were of 12 nodes, smaller than the 

SN, there were available asynchronous physical resources for the asynchronous virtual 

demands, so, there won't be a need for reserving synchronous SN resources for the 

asynchronous VNs demands. Moreover, in group A, the virtuallinks can be mapped on 

short physical paths (possibly one physical link) due to the resources availability. This 

would make the cost curve of group A increases smoothly. \\Thereas in group C, the 

VNs are with 36 nodes, bigger than the SN, this would load the physical resources more, 

leading to (i) the unavailability of asynchronous physical resources, pushing to the case 

of mapping asynchronous virtual demands over synchronous physical resources, and (ii) 

virtuallinks will be mapped on longer physical paths (making routes through available 

SN links). These two reasons would make the cost curve of group C increases sharply. 

• In group B, the embedding cost increases 49.4xl04 from Bl to B2, and increases 43.5xl04 

from B2 to B3, nearly the same values. So, with a linear increment in VNs synchrony 

demands, the increment in the cost was linear (or very near to be linear). It calls the 

attention that both the SN and the VNs in group B were of proximate size, i.e., SN of 

25 nodes and VNs of 24 nodes. 

• The three curves representing groups A, B, and C do not cross together, because at a 

fixed VNs synchrony demands (i.e., 0% , 30% , 60% ,and 100%), the embedding cost 

will be bigger for the VNs of bigger size, making the curve of group A the lowest and 

of curve C the highest. 

\\Te continue our observations about Figure 5.1. 

(iii) By comparing the counterpart scenarios of the three groups, we notice that, with an 

increment in the VNs size from 12 nodes to 24 then 36 in groups A, B, and C respectively, 

there is an increment in the mapping cost. For example, see the intervals that represent 



CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 89 

the cost for scenarios A3, B3, and C3: [50xl04 
, 55xl04

], [100xl04 
, 118xl04

], [101xl04 
, 

153xl04
] respectively. To define more accurately the increment pattern of the embedding 

cost with the increment in VNs synchrony demands, we draw Figure 5.3 that depicts the 

average values for the embedding cost (taken from Table 5.2) versus the VNs size. \\Te note 

down the following observations: 
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1. In scenarios 1, 3, and 4, the VNs size increases linearly from 12 nodes in group A, 

to 24 nodes in group B, to 36 nodes in group C, while the embedding cost increases 

non-linearly. For example, the embedding cost increases 8.8xl04 from AI to Bl, and 

increases 5.2xl04 from Bl to C1. Analogously, the embedding cost increases 57xl04 from 

A3 to B3, and increases 20.5xl04 from B3 to C3. Also, the embedding cost increases 

81.3xl04 from A4 to B4, and increases 61.3104 from B4 to C4. A possible interpretation 

for the non-linear increment is that, the increase in the VNs size implies an increase in 

the number of virtual nodes and links that need to be mapped, but the links mapping 

is not 1:1 mapping since a link can be mapped on a physical path composed of several 

links. So, a linear increase in the VNs size leads to a quicker increase in the number of 

resources allocated, thus, in the mapping cost. 

2. In scenario 2, the embedding cost increases 30.5xl04 from A2 to B2, and increases 

36.5xl04 from B2 to C2, nearly the same values. So, in scenario 2 of every group, with 

a linear increment in VN s size, the increment in the cost was linear (or very near to be 

linear). It calls the attention that, in scenario 2, the SN and VNs are with proximate 

synchrony percentage (i.e., 33% for the SN and 30% for the VNs). 
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\Ve continue our observations about Figure 5.1. 

(iv) It is true that hybrid synchronous VNs can be mapped on a fully synchronous SN 

(since synchronous physical resources provide what asynchronous resources do), but in our 

work we argue that to map hybrid synchronous VNs in an economic manner we need (1) 

a hybrid synchronous SN, and (2) a suitable embedding model that considers the hybrid 

synchronous nature of both SN and VNs (which we proposed formerly). In our experiments, 

if the SN was fully synchronous, then synchronous physical nodes and links will be assigned to 

the virtual nodes and links independently of their synchrony requirements, which will result 

in un un-needed cost, in other words, in an uneconomic embedding solution. In scenario 4 

of every group, the VNs were fully synchronous and the SN was hybrid synchronous. In case 

our SN was fully synchronous, then the embedding cost for mapping the VNs in scenarios 

1, 2, and 3 will be approximately the embedding cost illustrated in scenario 4, because in 

scenario 4 all the VNs nodes and links were embedded on the synchronous subnetwork of 

the hybrid SN. Scenario 4 of each group will be the base for cost comparison since it can 

simulate the case where all the SN nodes and links provide time bounds. For example, the 

SN considered by Zhang et aI. in [Z\VJYI0] can be viewed as a fully synchronous SN since all 

its resources provide time bounds (whether the time bounds were high or law). Comparing 

the three first scenarios within each group with the fourth one, we can say that our proposal 

leads to mapping hybrid synchronous VNs in an economic way. That is, the SN can be used 

in an optimized way to allocate these demands, the synchronous demands are mapped on 

synchronous physical resources, and the asynchronous demands are mapped on synchronous 

or asynchronous physical resources prioritizing the asynchronous ones as long as they are 

available. For example, scenarios Cl, C2, and C3 depict the mapping of a hybrid VN with 

0%, 30% and 60% synchrony demands respectively on a hybrid SN with 33% synchronous 

resources. The mapping cost for these three scenarios were [20xl04 
, 23xl04

] for Cl, [95xl04 

, 1l0xl04
] for C2, and [107xl04 

, 153xl04
] for C3. \Vhereas mapping the same VNs demands 

of Cl, C2, and C3 on a fully synchronous SN, scenario C4, is subject to an extra un-needed 

cost [207xe4 ,237xe4]. The cost in scenario 4 of each group is independent of the VNs 

synchrony demands. Our conclusion is that hybrid VNs do not need fully synchronous SN, 

rather a hybrid SN with suitable mapping is enough to allocate the needed demands, and 

spares resources for future demands. The question that may rise at this phase is: what is 

the minimum subnetwork of the SN that need to be synchronous to map certain given VNs? 

The answer for this question led us to propose configurable SN detailed in Section 4.6 and 

will be evaluated later during this Chapter. 

Conclusions on the embedding cost: \Ve summarize the aforementioned observa

tions about the embedding cost for HSVNs over S-SN as the following: (i) The proposed 

embedding mo deI considers the hybrid synchronous nature of VNs, mapping them onto a 

hybrid synchronous SN in an economic manner, trying to spare the synchronous physical 
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resources whose building cost is expensive when compared to the asynchronous ones. (ii) 

\Vith the increase in the problem size (be it through the increase in the VNs size or through 

the increase in the synchrony demands), the mapping cost increases. (iii) A linear increase 

in the VNs size andjor synchrony demands leads to a nonlinear increment in the embed

ding cost. (iv) \Vhen the VNs and the SN are with approximate size andjor synchrony 

percentage, the linear increase in one of these parameters leads to a linear increment in the 

embedding cost. \Vith the set of experiments we ran, we could not distract reasons behind 

this last behavior (i.e., the behavior in item (iv)) , and investigating this point remains for 

our future works. 

5.1.2.2 Embedding time 

The embedding time is the time needed by CPLEX to find an optimal solution for the 

embedding problem. Figure 5.4 depicts the mapping time on a logarithmic scale for each of 

the twelve scenarios performed with 90% confidence interval. \Ve note down the following 

main observations: 
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(i) \Ve notice some overlaps in the embedding time intervals for some scenarios, for 

example in group C there are overlaps observed between the three experiments C1, C2 and 

C3. It is possible that repeating every scenario for 10 times resulted in a wide confidence 

interval for the embedding time, and to have a narrower interval we needed to run every 

scenario for a bigger number of times. Yet with the available set, we try to derive some 

useful observations over the embedding time. 

(ii) The confidence interval for the embedding time for scenario B3 had a negative part 
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[-153 , 915]. This is possible numerically, but not physically since we are expressing time. 

Looking closely at the 10 experiments for scenario B3, we notice that the experiment B33 

demanded an embedding time 2989.49 (sec.) which was much bigger than the other 9 

readings that ranged between 21 and 356 seconds. \Ve consider the time value in B33 as 

a noise that might distort conclusions, so we disconsider this reading, and calculate the 

confidence intervals for B3 to become [29 , 152] seconds. 

(iii) \Vithin the same group, the embedding time decreases from scenario 1 to scenario 

4. For example, in group A: the embedding time interval was [25.07 - 32.07] seconds in AI, 

[6.87 , 10.11] in A2, [3.91 , 7.85] in A3, and [1.77 , 2.93] in A4. Similarly, the embedding 

time decreases in groups B and C from scenario 1 to scenario 4. The reason for this is that 

the VNs synchrony increases from 0% in scenario 1, to 30% in scenario 2, to 60% in scenario 

3, and to 100% in scenario 4. In other words, the VNs asynchrony decreases from 100% in 

scenario 1, to 70% in scenario 2, to 40% in scenario 3, and to 0% in scenario 4. Remembering 

that the SN adopted for our experiments is with 33% synchronous and 67% asynchronous 

resources (the asynchronous physical subnetwork is bigger than the synchronous one), and 

remembering that our developed embedding model prioritizes mapping the asynchronous 

demands over asynchronous resources, then during the optimization process the space of 

possible mapping solutions will decrease from scenario 1 to scenario 4 resulting in decreas

ing the embedding time. In scenario 1, the solutions space is the asynchronous physical 

subnetwork which is a 67% of the SN. In scenario 4, the solutions space is the synchronous 

physical subnetwork which is only 33% ofthe SN. Experiments 2 and 3 go gradually between 

the two extremities. So, as the VNs synchrony increases the solutions space decreases, thus 

the model variables decrease, and thus the time needed to find the embedding solution de

creases as well. It is important to mention that if the SN synchrony was chosen to be for 

example 33% asynchronous resources and 67% synchronous resources, then the observation 

about embedding time will be reversed: the experiments with more synchrony demands will 

need more embedding time as the solution space will be wider. This observation drives the 

attention to the impact of the SN synchrony not only on the embedding cost, as formerly 

detailed, but as well on the embedding time. 

(iv) By comparing the counterpart scenarios between the groups, we notice that the 

embedding time increases with the increment in the VNs size. For example, the increment 

in the VNs size from 12 nodes in scenario A2 to 24 nodes in scenario B2, and to 36 nodes in 

scenario C2 results in increasing the embedding time as the following: [6.87 , 10.11] in A2, 

[259.63 , 1257.41] in B2, and [9399 , 44230] in C2. The reason is that, bigger VNs means 

more nodes and links to be mapped, this generates more variables in the embedding model, 

and thus demand more optimization time for finding the embedding solution. 

To define more accurately the change pattern of the embedding time with the increment 

in VNs synchrony demands and size, we distract the average value (rounded values to the 
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neares ones) of embedding cost for every scenario, see Table 5.3. 

Table 5.3 Space-HSVNs with S-SN: average of embedding time 

Expe. 
Ave. time (sec) 

Figure 5.5 depicts the average values for the embedding time versus the VNs synchrony 

demands, and Figure 5.6 depicts the average values for the embedding time versus the VNs 

size. The figures are depicted on a logarithmic scale to improve legibility. 
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From Figure 5.5 and Figure 5.6 we note down the following observations: 

1. \Vith a linear increment of VNs size, Figure 5.6, the curves representing the computa

tional time change in a semi-linear or hyperbolic manner on a logarithmic scale. This 

means that on a linear scale these curves would be more sloppy. The reason for this 

behavior is that, a small change in the embedding model input (i.e., virtual nodes and 

links number) results in a big change in the mo deI variables that need to be computed. 

For example, for a SN of 25 nodes, one more virtual no de in the model input would 

result in 25 more variables to be computed by the embedding mo deI (CJ(ik, i)). 
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2. The optimization time for the scenarios in group A are within small range (27 second). 

The reason is that in group A the VNs size is small, and the VNs synchrony difference 

will not result in a remarkabIe difference in the computational time. Notice that A2 

and A3 are nearly with the same computational time. 

3. The optimization time for scenarios Cl, C2, and C3 is nearly the same. The reason 

is that scenarios of group C are with big VNs size, most of them demanded much 

optimization time, and most of them were interrupted at a gap that is Iess than 1%. 

4. The optimization time for scenarios Bl and Cl is nearly the same. These scenarios are 

with (i) VN s size that is equal or bigger than the SN, and (ii) both with no synchrony 

requirements, so the asynchronous physical subnetwork is the space for solutions. For 

the two aforementioned reasons, these two scenarios demanded much optimization time, 

and most of them were interrupted at a gap that is Iess than 1%. 

Conclusions on the embedding time: The computational time is proportional to 

the number of the mo deI variabIes, and this Iast one changes with the problem size as the 

following: (i) when the VNs size increases, the mo deI variabIes number increases, and thus 

the computational time increases, and (ii) when the VNs synchrony demands increases, the 

solution space becomes increasingIy within the synchronous physical subnetwork, which is 

in our case a small portion of the SN, this means that the model variabIes will become Iess, 

and thus the computational time to find the variabIes vaIues would become Iess. 
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5.1.2.3 Embedding cost vs. embedding time 

Previously we studied the embedding cost and the embedding time separately. In this 

subsection we study the relation between both. 

Figure 5.7 depicts the mapping cost versus time for all the 40 experiments in Group A: 

10 samples for AI + 10 samples for A2 + 10 samples for A3 + 10 samples for A4. The dots 

corresponding to the same subgroup form a zone in the figure. \\Te notice that: 

1. The four zones are clearly separated, no overlapping zones. 

2. The samples are arranged on a hyperbolic curve as a superior envelope of the zones, this 

means that for VNs of same size (experiments of Group A are all with VNs of 12 nodes) 

the increment in VNs synchrony demands results in: (1) increasing the embedding cost 

(axis X), and (2) decreasing the embedding time (axis Y). These two results agree with 

our previous observations. 

3. \\Te notice that the time values for experiments A2 and A3 are within the same range. 

This agrees with our previous observations. 
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Figure 5.7 Group A - Embedding cost vs. embedding time 

Similarly, Figure 5.8 depicts the mapping cost versus time for all the 40 experiments in 

Group B. Figure 5.9 is the same as Figure 5.8 with a zoom in to experiments B2, B3, and 

B4. \\Te notice that: 
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1. The zones show only once an overlap on the horizontal scale (i.e., the embedding cost) , 

that is between B2 and B3. This unique overlap disappeared when calculating the cost 

confidence interval for scenarios B2 and B3, see Figure 5.1. 

2. All the four zones overlap on the vertical scale (i.e., embedding time). these many 

overlaps made it visible even after calculating the time confidence interval, see Figure 

5.4. 

3. The computational time for one trace within B3 subgroup is out of the B3 zone, this 

trace refers to experiment B33, and is the one that was disconsidered when calculating 

the time confidence interval for scenario B3. 

4. \\Te notice again the hyperbolic pattern as a superior envelope of the region where the 

samples are distributed, this means that for VNs of same size (experiments of Group B 

are all with VNs of 24 nodes) the increment in VNs synchrony demands results in: (1) 

increasing the embedding cost (axis X), and (2) decreasing the embedding time (axis 

Y). These two results agree with what was formerly detailed. 
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In the same way, Figure 5.10 depicts the mapping cost versus time for all the 40 experi

ments in Group C. \\Te notice that: 
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Figure 5.10 Group C - Embedding cost vs. embedding time 
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1. C2 and C3 zones show overlaps on the horizontal scale (i.e., the embedding cost), for 

example, C3 contains C2 on the horizontal axis (i.e., the cost axis). This overlap that 

appears in Figure 5.10 does not appear after calculating the cost confidence interval, 

see Figure 5.1. 

2. C1, C2, and C3 zones show overlaps on the vertical scale (i.e., the embedding time). 

This overlap that appears in Figure 5.10 appears as well after calculating the time 

confidence interval, see Figure 5.4, and the time average values of these scenarios are of 

approximate values, see Figure 5.6. 

3. All the four zones show overlaps on the vertical scale (i.e., embedding time), these many 

overlaps made it visible even after calculating the time confidence interval, see Figure 

5.4. \Ve referred this behavior previously to the interruption of these experiments after 

reaching a gap less than 1 %. 

5.1.2.4 Physical resources load 

A. Free resources: 

Figure 5.11 and Figure 5.12 depict the confidence interval for unused nodes and links 

respectively for all scenarios. \Ve note down the following observations: 

1. \Vithin each group, the highest interval was the one of scenario 4. This scenario repre

sents the VNs with full synchrony demands. The physical resources that mapped these 

demands were the resources of the synchronous portion of the SN, that is the 33% of 

the SN. \Vhereas the remaining 67% physical resources (i.e., the asynchronous portion 

of the SN) were unused. In all of the remaining scenarios, the unused resources will be 

less due to the existence of asynchronous virtual demands in the other scenarios. 

2. \Vithin each group, the second highest interval is the one of scenario 1. This scenario 

represents the VNs with full asynchrony demands. \Vith our mo deI that aims at spar

ing the use of synchronous physical resources, the synchronous portion of the SN will 

be avoided, resulting in increasing the number of unused resources. But still, the free 

resources in scenario 1 remain less than the free resources in scenario 4 because the 

avoided portion of the SN in these two scenarios are the asynchronous and the syn

chronous portion of the SN respectively, that form 67% and 33% of our SN respectively. 

3. By comparing scenario 2 and scenario 3 within each group, we notice that the unused 

resources in scenario 3 are more (except for the free links in C2 and C3 where the two 

intervals overlap). Scenario 3 contains VNs with more synchronous demands than in 

scenario 2. This makes VNs in scenario 3 that are mapped on the small synchronous 

portion of our SN more than the VNs that are mapped on this synchronous portion 
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in scenario 2. So, the free asynchronous resources in scenario 3 are more than the free 

asynchronous resources in scenario 2. Thus, the total unused resources in scenario 3 are 

more. 

4. By comparing the counterpart experiments in the three groups, we notice that the 

number of free resources decreases with the increment in the VNs size. The reason is 

that bigger VNs will demand more physical resources to map them. Thus, the free 

resources will become less. 

GroupA Group B Group C 

Figure 5.11 U nused physical nodes - Confidence interval 
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B. Used resources: 

The following graphs will illustrate the physical resources load (i.e., nodes and links) for 

the twelve scenarios in Table 5.1. \\Te divide the resources load into ten intervals, and at 

each interval we depict the number of physical resources (nodes and links separately) that 

are loaded in correspondence with that interval. For example, the first interval shows the 

number of physical nodes and links that are with a load between (0%-10%] of their nominal 

capacity (resources at 0% load are excluded at this interval, and resources at 10% load are 

included). The second interval shows the number of physical resources that are with a load 

between (10%-20%] of their nominal capacity (resources at 10% load are excluded at this 

interval, and resources at 20% load are included). The last interval depicts the number of 

physical resources that are loaded with (90%-100%] of their nominal capacity. 

\\Te are interested in investigating the distribution pattern of the physical resources load. 

Figure 5.13 illustrates the accumulative number of physical nodes with their load in the 

four scenarios of group A. \\Te see that the horizontal axis is divided into ten intervals, 

representing the physical nodes actual load in comparison with their nominal capacity (a 

percentage). In the first interval, we see four columns that represent the four scenarios AI, 

A2, A3, and A4. For example, in scenario AI, we accumulate the number or resources with 

a load (0%-10%] through the ten experiments that represent scenario AI (i.e., experiments 

AIO, A11, ... A19). And the accumulative value can be read on the vertical axis of Figure 

5.13. 

From Figure 5.13 we note that: 

1. The distribution patter of the accumulative number of nodes is a gaussian-like curve. 

Samples are more frequent on 0% to 30% categories, with an overall dominance on 20% 

to 30% range. And categories over 50% are negligibly populated. And no nodes are 

fully loaded. This means that the embedding model tends towards distributing the load 

over the physical nodes. True that the embedding model aims at minimizing the use of 

physical resources (nodes and links), but we have not inserted constraints to make the 

mo deI uses the allocated synchronous resources till exhaustion. The load distribution 

is an important characteristic because it impacts directly the mapping ratio (i.e., the 

number of accepted VNs on a given SN). Heavily or fully loaded nodes make these nodes 

reject mapping, and this would influence the number of accepted VNs. 

2. Few resources appear at load (70%-80%] in scenarios 3 and 4. These two scenarios 

are with more synchronous demands than the other scenarios. \\Tith a SN of 33% 

synchronous resources, increasing synchronous demands will more likely start increasing 

the load of synchronous resources, which appear in the Figure. 

3. At low interval (from 0% to 30%) we notice that the scenario with the smallest ac-
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cumulative number of nodes is scenario 4. This scenario represents the VNs with the 

highest synchrony demands, which will be concentratedly mapped on the small portion 

of synchronous physical resources (33% of the SN), leading to more heavily loaded nodes 

and less lightly loaded nodes in comparison with the other scenarios. If we chose a SN 

that is with 33% asynchronous resources, then scenario 1 will appear with the smallest 

accumulative number of nodes at low load intervals. 

Figure 5.14 depicts the accumulative number of loaded links in scenarios of group A. \\Te 

drive similar observations noted regarding the nodes: 

1. The distribution pattern of the accumulative number of links is a gaussian-like curve. 

2. Samples are more frequent at low load intervals with picks on 10% to 20%. 

3. Few number of links appear at high load. 

4. with the increment in the VNs synchrony demands (from scenario 1 to scenario 4), 

the number of heavily loaded links increases and the number of lightly loaded links 

decreases. 

Analogously, Figure 5.15 and Figure 5.16 illustrate the accumulative number of used 

nodes and links, respectively, in scenarios of group B. 
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1. The distribution patter of the accumulative number of resources (nodes and links) is a 

gaussian-like curve. 

2. The accumulative number of resources at law load intervals is bigger than at high load 

intervals. This was previously noticed as well in scenarios A. The reason is as detailed 

above regarding the model tendency towards load distribution, avoiding exhausting 

resources. 

3. Nodes distribution concentrates on up to 40%, more specifically on 20% to 30% cate

gory. Links distribution concentrates more on up to 40% usage, with a pick on 30% 

to 40% category. In comparison with scenarios of group A, we notice that the pick 

values in scenarios B are shifted upwards on the horizontal axis, this means that with 

the increment in VNs size (from 12 nodes in group A to 24 nodes in group B) the accu

mulative number of resources (nodes and links) is increasing at high load intervals and 

is decreasing at law load intervals. A possible interpretation for this behavior is that 

bigger VNs brings more virtual nodes and links that need to be mapped, this demands 

more physical resources, and thus will lead to loading these physical resources more. 

4. Comparing the four scenarios of group B together (i.e., Bl, B2, B3, and B4), we notice 

that scenario B2 appears with the highest value of accumulative number of resources 

at law load intervals. \\Te try to explain this behavior as the following. Scenarios Bl 
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I 

and B4 are with VNs offully asynchronous and fully synchronous demands respectively, 

that will be mapped concentrtedly on the asynchronous and synchronous portion of the 

SN, respectively, resulting in more heavily loaded resources in comparison with B2. In 

B3, VNs are with hybrid synchrony requirements, 40% asynchrony requirements that 

will be mapped basically on the asynchronous portion of the SN and 60% synchronous 

requirements that will be mapped concentratedly on the synchronous physical resources 

(that is only 33% on the SN) resulting in more heavily loaded resources in comparison 

with B2 (where VNs of30% synchrony demands will be mapped on the 33% synchronous 

portion of the SN). The SN and VNs in scenario B2 are with approximate size (VNs 

with 24 nodes and a SN with 25 nodes) and synchrony (VNs with 30% synchronous 

demands and a SN with 33% synchronous resources), so 30% synchronous demands will 

be mapped on the synchronous 33% part of the SN, and 60% asynchronous demands 

will be mapped basically on the asynchronous 67% part of the SN, this provides wider 

space of possible embedding solutions in comparison with scenarios Bl, B3, and B4, 

and thus leads to choosing a solution that does not need to exhaust resources. 

Figure 5.17 and Figure 5.18 illustrate the accumulative number of used nodes and links, 

respectively, in scenarios of group C. 

From the last two figures, we note down similar observations to those derived for group 
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1. The distribution patter of the accumuIative number of resources is a gaussian-like curve. 

2. The accumuIative number of resources at Iaw Ioad intervals remains bigger than it is 

at high Ioad intervals due to the mo deI tendency towards Ioad distribution. But for 

scenario C4 it is the opposite way (i.e., increment of accumuIative number of resources 

at high Ioad) , the reason is that scenario C4 represents fully synchronous VNs at big 

size in comparison with the SN size, and they will be mapped concentratedly on the 

small synchronous portion of the SN resulting in increasing the Ioad of these resources. 

3. Comparing scenarios C with scenarios of A and B, we notice that in group C resources 

concentrate on a wider range, up to 60%. And we notice the fully Ioaded resources 

incremento The reason is that bigger VNs demands more resources, and thus Ioads 

resources more. 

Conclusions on the resources load: 

The number of free resources is a function of VNs size and synchrony demands as the 

following: (i) the number of free resources decreases with the increment in the VNs size, 

because bigger VNs will demand more resources to map them, and (ii) the number of free 
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Figure 5.17 Group C - accumulative number of physical nodes vs. nodes load 

resources in homogeneous VNs is more than it is in hybrid synchronous VNs because they 

avoid entirely the use of the physical subnetwork that does not match their synchrony nature. 

Regarding the used physical resources, we notice that: (i) The model tends towards 

load distribution over the physical resources, that is why the number of resources at law 

load is bigger than the number of resources at high load. This is an important feature 

in the embedding model because few heavily, or fully, loaded resources would increase the 

number of accepted VNs on a given SN. (ii) The pattern of the accumulative number of 

used resources is a gaussian-like distribution pattern, its pick is at law load value for small 

VNs, and it shifts to higher load values with the increment in the VNs size and synchrony 

demands. 

5.2 Space HSVNs over a configurable SN 

The aspects considered during the analysis of our model are: i) economy in the embedding 

cost; ii) physical resources load; iii) the kind of physical resources chosen to be synchronous, 

and iv) the topology of the subnetwork composed of synchronous resources on the SN. 
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Figure 5.18 Group C - accumulative number of physical nodes vs. nodes load 

5.2.1 Work load and tools 

Similarly to HSVNs over S-SN, physical and virtual networks were randomly generated. For 

this we used BRITE [MLMJ14] tool with \Vaxman [\Vax88] model. \Vaxman algorithm has 

been used by some researchers [GH16] to generate random virtual network topologies, and in 

our work we use it. \Vaxman generates random network topologies based on two parameters: 

alpha and beta. As the first parameter grows, the probability of having an edge between 

any nodes in the topology is increased. As the second parameter grows there is a larger 

ratio of long edges to short edges. In [GH16] the researchers chose alpha and beta to be 0.4 

and 0.2, and in our work we choose approximate values: 0.15 and 0.2. \Ve implemented the 

mathematical mo deI with ZIMPL language [Koc04] and used CPLEX [bmc14] to solve the 

IP, running on a compute r with 6 cores Intel Xeon processor, 2x2.66 GHz, 32GB of RAM 

memory, and MAC operating system. 

Most of the experiments took a considerable time to reach the optimal solution, the 

reason is that the IP we propose has four output variables, which leads to considerable set 

of variables based on the problem size under analysis. Besides, two of those variables (the 

mapping variables) are based on the value of the other two variables (the synchrony variables) 

found by the solver, this makes the optimization process long and consumes exponentially 

the machine memory. For these reasons, we decided to stop the solver after finding a solution, 
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even if the solution is not optimal. This might match some realistic scenarios, in which the 

client might prefer a semi-optimal solution in an acceptable computational time, rather than 

an optimal solution in too long computational time. Thus, during the discussion of results 

the reader should consider that an optimal solution would perform even better in terms of 

synchronous resource sharing. 

In all the following experiments, the SN size was fixed in 25 nodes. Initially all CPUs 

of SN nodes are free, and links B\V is uniformly distributed between 1-3 Gbps. \Ve start 

reporting twelve experiments divided into three groups, A, B and C, with VNs total size of 

10, 20, and 30 nodes respectively. \Ve refer to these scenarios together as set 1 to facilitate 

reference. The VNs were generated with 3, 4, or 5 nodes each, and CPU demands 10%, 15%, 

or 25% of the SN nodes CPU capacity, and B\V demands uniformly distributed between 100 

Mbps and 1 Gbps. 

In scenarios 1, 2, 3 and 4 of each group, the VNs synchrony demand varies between 0%, 

30%, 60%, and 100%. The parameters for each experiment in the set 1 are described in 

Table 5.4. 

Table 5.4 Space-HSVNs with C-SN scenarios parameters set (set 1) 

Expe. AI I A2 I A3 I A4 BI I B2 I B3 I B4 CI I C2 I C3 I C4 
VN size 10 nodes 20 nodes 30 nodes 

VNs sync. 0%. I 30% I 60% I 100% 0% I 30% I 60% I 100% 0% I 30% I 60% I 100% 
SN size 25 nodes 
SNBW uniforrnly distributed: 1 Gbps-3 Gbps 
SN CPU nodes fully free initially 

each VN size 3,4,5 nodes 
VNsBW uniforrnly distributed: 100Mbps-1Gbps 
VNsCPU 10,15,25 % of SN nodes CPU 

Earlier in this section (paragraph 5.1.2.1), we argued that for mapping virtual networks 

with hybrid synchrony demands over a settled SN, it is a waste of resources to use a fully 

synchronous SN. Rather, using a hybrid synchronous SN, together with an economic mapping 

process, reduces the cost. The mapping mo deI proposed was aware of sparing the physical 

synchronous resources, and using them only when needed. 

\Vith a configurable SN (C-SN), we proposed a new approach for mapping HSVNs, with 

the goal of minimizing the mapping cost even more. \Ve do not reserve, in advance, the 

synchronous resources on the SN. Rather, the SN synchrony is defined as an output of the 

IP. Thus, the physical resources chosen to be synchronous are subject to the VNs demands, 

and they change if the VN s demands change (i. e., physical synchronous resources are dif

ferent in each scenario in Table 5.4. The model proposed minimizes the number of physical 

synchronous resources to the limit enough for a given set of VNs. 
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5.2.2 Results 

The parameters considered for our analysis are: i) economy in the embedding cost; ii) 

physical resources load; iii) the kind of physical resources chosen to be synchronous, and iv) 

the topology of the subnetwork composed of synchronous resources on the SN. 

5.2.2.1 Economy in the embedding cost 

\\Te consider the scenarios of set 1 to be mapped in two cases: (i) on a settled SN with a 

predefined synchronous resources (33% synchronous nodes and 34% synchronous links), and 

(ii) a configurable SN with no predefined synchronous resources. \\Te compare the number of 

used physical synchronous resources in either case. Figure 5.19 depicts the embedding cost 

for either case. 

The continuous lines and the hashed lines illustrate the synchronous nodes and links 

percentage respectively. \\Te notice that in the case of a S-SN the synchronous resources 

are fixed, 33% and 34% of the physical nodes and links respectively are predefined to be 

synchronous. In the case of a C-SN, we notice that the synchrony of the SN changes with 

the VNs synchrony demands. 
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Figure 5.19 Percentage of synchronous nodes and links in SN for scenarios in 

set 1 for S-HSVN and C-HSVN 

By comparing the case of C-SN with the S-SN, we notice that a C-SN allows a clear 

reduction in the amount of SN synchronous resources needed to map the virtual components. 

For example, in scenario A4, 16% of synchronous nodes and 6% of synchronous links were 

enough to map the demando In comparison with the case of S-SN, this means economizing 
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52% and 83% of SN synchronous nodes and links, respectively. Obviously, higher gains are 

observed in scenarios AI, Bl, and Cl, where no synchronous resources are required. Since 

in the S-SN approach some physical components must be synchronous independently of VNs 

demands, with a C-SN the improvement on synchronous resources reservation is of 100%. 

The reduction rate in the SN synchronous resources for the complete set of scenarios can be 

found in Table 5.5. 

Table 5.5 Economy in SN synchrony resources between S-HSVN and C-HSVN

performed for scenarios set 1 

SN sync economy in SN sync nodes (%): 
resources economy in SN sync links (%) 
Scenario 1 2 3 4 
Group A 100 : 100 64: 88 64: 88 52: 83 
Group B 100 : 100 27: 7l 27: 7l 27: 68 
Group C 100 : 100 39: 7l 27: 59 3: 41 

In Figure 5.19, we note some observations: i) for each group, synchrony demands on 

links and nodes grow compatibly. ii) in some scenarios, even when VNs synchrony de

mands increases, the number of SN synchronous resources does not necessarily increases 

(e.g. scenarios B2, B3, and B4). This can be explained by resources sharing provided by 

VNs mapping. Several virtual components can be mapped on the same physical resources, as 

long as this does not violate the constraints of CPU and B\\T capacities for nodes and links, 

constraints 4.2 and 4.3, respectively. (iii) the economy of links is more significant than of 

the nodes (see Table 5.5), this can be explained by the fact that virtuallinks can be mapped 

on physical paths which can be composed of one physical link or by several physical links. 

Thus, sparing one physical path reflects on sparing several physical links. 

5.2.2.2 Physical resources load 

\\Te study the physical resources load for both S-SN and C-SN. \\Te issue this study for one 

scenario only. \\Te chose scenario C3, because within the experiments set, it is one with VNs 

of big size and high synchrony demands. In Figure 5.20 and Figure 5.21, we can read the 

Cumulative Distributed Function (CDF) for nodes load and links load respectively, for both 

S-HSVN and C-HSVN in scenario C3. \\Te note that (i) with S-HSVN, 36% ofthe SN nodes 

and 64% of the links had O load (i.e., not used for the mapping), whereas with a C-HSVN, 

this number raises up to 60% for the nodes and 74% for the links. (ii) with a S-HSVN, the 

maximum nodes load reached was 65%, whereas with C-HSVN, nodes reached higher load, 

where 4% of the SN nodes had full charge (i.e., with 100% CPU load). Similar observation 

can be seen regarding the links. 

Comparing the S-HSVN and C-HSVN used for mapping the same demands, we note that, 
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with C-HSVN, there are more free resources (i.e., unused nodes and links), but the drawback 

is that, the used resources are more loaded. In other words, with S-HSVN, the load is better 

balanced (i.e., more resources used with less load each). 
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Figure 5.20 CDF for nodes usage in experiment C3 
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Figure 5.21 CDF for links usage in experiment C3 

Next, we investigate the type of physical resources (the type in sense of synchrony prop

erties) that are highly loaded in both S-HSVN and C-HSVN. For this purpose, the individual 

nodes and links load is depicted in Figure 5.22 and Figure 5.23 respectively, ordered in in

creasing order, illustrating as well the synchrony status of each physical node and link. \\Te 

notice that, (i) with C-HSVN, the resources (i.e., nodes and links) with high load are the 

synchronous ones, whereas the resources with low load are the asynchronous ones, which is 

the reversed case in S-HSVN, and (ii) the load balance is clearer with S-HSVN through the 

fact that the synchronous and asynchronous resources are not concentrated on one side of 

the figure, rather they are used alternatively. 

\\Te conclude that, for mapping the same HSVN demands, it is true that the C-HSVN 

spares more the number of the synchronous resources used compared to the S-HSVN, but, 

the draw back is that, the C-HSVN charges the synchronous resources more, which is the 

expensive subset of resources. 
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Highlighting the advantages and drawbacks of S-HSVN and C-HSVN is not supposed to 

lead us to conclude which among both is more important, because both are of equal necessity. 

In fact, the infrastructure provider is the player who determines which HSVN model is to 

be adopted, based on the SN type he built (i.e., settled or configurable). 
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5.2.2.3 Privilege of synchronous nodes 

To perform this kind of evaluation, we increased the problem size under analysis. \\Te increase: 

a) the size of each virtual network which became 5 nodes each, b) the CPU demands that 

reached up to 50% of the physical nodes capacity, and c) the total size of VNs by adding 

Group D' with VNs total size of 40 nodes. The new set of scenarios are named set 2, and 

their parameters are shown in Table 5.6. Note that the groups in Table 5.6 are with prim 

sign (e.g., A', B', C', and D') to distinguish them from the groups in set 1 in Table 5.4. 

Table 5.6 Experiments parameters in set 2 

Expe. A'I I A'2 I A'3 I A'4 I A'5 I A'6 B'I I B'2 I B'3 I B'4 I B'5 I B'6 
VN size 10 nodes 20 nodes 
Expe. C'I I C'2 I C'3 I C'4 I C'5 I C'6 D'I I D'2 I D'3 I D'4 I D'5 I D'6 

VN size 30 nodes 40 nodes 
VNs sync. 0%. I 20% I 40% I 60% I 80% I 100% 0%. I 20% I 40% I 60% I 80% I 100% 

SN size 25 nodes 
SNBW uniforrnly distributed: 1 Gbps-3 Gbps 
SN CPU nodes fully free initially 

each VN size fixed to 5 nodes 
VNsBW uniforrnly distributed: 100Mbps-1Gbps 
VNsCPU 10,20,30,40,50% of SN nodes CPU 

By increasing the problem size (scenarios in set 2), we push the model to allocate more 

physical resources (in comparison with set 1), and this allows us to perform our study on 

the physical resources chosen. Figures 5.24(a) and 5.24(b) depict a comparison in the SN 

synchronous resources needed in the counterparts scenarios in set 1 and set 2, at similar VNs 

synchrony demands, i.e. 60% and 100%. The figures illustrate that, the increment in the 

problem size has pushed the model to define larger set of synchronous physical nodes and 

links. And this justifies our choice of scenarios in Table 5.6 to conduct the study on the kind 

and topology of the physical synchronous resources. 
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Figure 5.24 Percentage of SN sync. resources: Comparing groups set! and set2 

The SN described in Table 5.6 has nodes that vary in their connectivity degree between 

[2-8]. See Figure 5.25, its vertical axis indicates the connectivity degree, and its horizontal 

axis starts with the SN (as base of comparison, as we will see), and continues with each 

scenario performed in set 2. On the left column of Figure 5.25, we can see the number of 



CHAPTER 5. PERFORMANCE EVALUATION FOR SPACE-HSVN 115 

nodes available on the SN at each connectivity degree in the range [2-8]. For example, on 

the figure we can read that the SN has 1 no de with connectivity 8, 1 no de with connectivity 

7, 3 nodes with connectivity 6, and so on. The rest of the figure illustrates the total number 

of physical synchronous nodes for each scenario in set 2, at each connectivity degree [2-8]. 

For example, in scenario B6, we note that the model has allocated 19 synchronous nodes, in 

a way that 1 was with connectivity 8, 1 with connectivity 7, 3 with connectivity 6, and so 

on. In general, we notice that the model tends toward choosing the physical nodes with high 

connectivity degree to be synchronous. For example, in scenario C5, the model chose all the 

physical nodes with connectivity [6-8] on SN to be synchronous (compare the numbers at 

scenario C5 with the base numbers at SN). A possible interpretation for this behavior is that, 

nodes with high connectivity degree allow multi-use of the same node, since on one hand, 

it is connected to a high number of neighbor nodes which fulfills topology constraints, and 

on the other hand, nodes with high connectivity have high bandwidth sum (i. e. the sum of 

B\V capacity of all the physicallinks connected to it) which fulfills B\V constraint. Since the 

embedding model of HSVNs over C-SN aims at minimizing the number of the synchronous 

resources (assured by the mo deI objective function Equation (4.10)), then such nodes are 

chosen. 

Figure 5.25 
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in set 2 

The average of the synchronous nodes connectivity chosen by the mo deI is shown in 

Figure 5.26, the chart is plotted for each scenario executed. It is clear that, at each scenario, 

the connectivity average has exceeded the SN average connectivity, which reflects the mo deI 

tendency towards choosing the nodes with high connectivity degree to be synchronous. 

5.2.2.4 Topological study 

Next, we evaluate the topology of synchronous resources in scenarios set 2 (Table 5.6). Figure 

5.27 depicts the topology of the synchronous resources in scenario A'3, A'4, A'6, and B'4 as 

an example. Synchronous nodes are plotted as red circles, and synchronous links as hashed 
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lines. \\Te notice that the synchronous resources gather on one subnetwork, no synchronous 

islands are observed. Such a gathering allows multi-use of same synchronous nodes and 

links to answer given VNs, which fits with the model goal in minimizing the number of 

synchronous resources. \\Te noticed that the topology of the synchronous subnetwork starts 

by a ring topology for small problem size, and tends towards becoming mesh topology with 

the increment in the problem size. This observation confirms the previous one regarding the 

synchronous nodes chosen, being the ones with high connectivity degree. 

(a) scenario A'3 (b) scenario A'4 

(c) scenario A'6 (d) scenario B'4 

Figure 5.27 Topology divergence of synchronous resources [HMOD14] 

\\Te relate our observations in (5.2.2.2), (5.2.2.3) and (5.2.2.4) with a recent article by 

Luizelli et aI. [LBB+16]. In this article, the authors provide consistent insights on how a 

physical network topology affects virtual network embedding quality. They note that sub

strate network topologies that are intrinsically more connected tend to reject a lower number 

of virtual requests, and consequently, tend to incur comparatively higher resource utilization. 
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In our work with Space-HSVNs over C-SN, the embedding model aims at minimizing the 

number of synchronous resources used, thus the physical resources chosen to be synchronous 

were: i) highIy Ioaded; ii) nodes with high connectivity degree, iii) forming together a 

physical subnetwork that reveal high connectivity. 

Summary 

In this chapter we evaIuate the embedding models of Space-HSVNs on a settIed SN (S

SN)and a configurable SN (C-SN). The main results show that: 

(1) With Space-HSVNs on S-SN: 

• The proposed embedding mo deI considers the hybrid synchronous nature of VNs, map

ping them onto a hybrid synchronous SN in an economic manner, trying to spare the 

synchronous physical resources whose buiIding cost is expensive when compared to the 

asynchronous ones 

• The computational time is proportional to the number of the mo deI variabIes, and this 

Iast one changes with the VNs size and synchrony demands. 

• The mo deI tends towards Ioad distribution over the physical resources. This is an 

important feature in the embedding model because few heaviIy, or fully, Ioadde resources 

would increase the number of accepted VNs on a given SN. 

(2) With Space-HSVNs on C-SN: 

• Adopting a C-SN allows a substantial spare of synchronous resources compared to the 

case of S-SN. 

• \Vith C-SN, there are more free resources than is S-SN, but the drawback is that, the 

used resources with C-SN are more Ioaded than with S-SN. 

• The mo deI tends towards choosing the physical nodes with high connectivity degree to 

be synchronous in order to minimize the number of synchronous nodes used. And the 

synchronous resources configured on the SN tend towards gathering in a mesh topology. 

After presenting the Space HSVNs, we now address the Time-HSVNs in the next chap

ter. \Ve note down that the proposed embedding framework for Space-HSVNs is abIed to 

answer Time-HSVNs. But this would result in an excess of cost. Considering the synchrony 

time variant nature in Time-HSVNs would result in further sparing of the use of physical 

synchronous resources. 
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ime-HSVNs embedding 

D uring our research, we argued that Virtual Networks (VNs) and a suitable VN 

embedding process offer suitable environment for running distributed applica

tions with partial synchrony. This has led to the abstraction of new type of 

virtual networks that we name The Hybrid Synchrony Virtual Networks (HSVNs). Theyare 

virtual networks that have subsets of nodes and links that obey time bounds for processing 

and communication. Our previous contributions treated the Space-HSVNs considering phys

ical resources hybrid in space, i.e. resources behave either synchronously or asynchronously 

during all the time. The Space-HSVNs are addressed to the DSs of hybrid synchrony in 

space, which we call space hybrid synchronous systems. 

In this chapter we discuss hybrid synchrony virtual networks for the "time" dimensiono 

\\Te regard the time HSVNs abstractions and techniques as being a refinement of the space 

HSVNs, since it further defines repeating time windows of synchrony while allowing the 

resource to behave asynchronously for a period of time (as will be detailed through this 

chapter). The timely hybrid mo deI leads to the possibility of further sparing synchronous 

resources, if compared to the space model, as will be presented in the mo deI performance 

evaluation (Chapter 7). 

In this chapter we (i) define the assumptions and abstractions needed to characterize 

both Substrate Networks (SNs) and Virtual Networks (VNs) suitable for Time-HSVNs, (ii) 

locate our work among others in the literature, and (iii) develop an embedding model for 

Time-HSVNs that answers the timely synchronous nature of the system and aware of sparing 

synchronous resources which are relatively expensive. 

6.1 Time-HSVNs: definition 

The timed-asynchronous mo deI assumes that the system alternate between synchronous 

and asynchronous behavior. More specifically, according to [DLS88] partially synchronous 

systems can alternate between synchronous and asynchronous behavior, being hybrid in 

time. For each execution, there is a time after which the upper bound 5 is respected by the 

system. This time is called Global Stabilization Time (GST). Since the upper bound cannot 
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hold forever, it is accepted that it holds just for a limited time ~s. In practical terms, ~s 

is the time needed for consensus to make progress or to be reached. \Ve call these timely 

hybrid synchronous systems. 

Actually, both mo deIs (i.e., hybrid mo deIs in space and in time) are not completely 

excludent. If a resource has no ability to behave synchronously, then it offers no time 

guarantees at all. However if a resource is able to behave synchronously, the space mo deI 

defines that it is always synchronous while the time mo deI defines that it behaves eventually 

synchronous as described above. 

From the point of view of resources utilization, we can regard the time mo deI as being 

a refinement of the space model, since it further defines repeated windows of synchrony 

while allowing the resources to behave asynchronously for a period of time. It is possible 

to support timely hybrid synchronous systems with Space-HSVNs, adopting the assumption 

and embedding model proposed for Space-HSVNs, but this choice would result in wasting 

synchronous resources beca use of reserving them for virtual demands that would behave 

synchronously only eventually (i.e., only during time windows). \Vith the goal of sparing 

synchronous resources, we propose new type of HSVNs, that is the Time-HSVNs suitable 

for the timely hybrid synchronous nature of certain DSs. 

6.2 Work positioning in the literature 

The time-variant nature of networks has attracted considerable attention in the literature. 

Xie et aI. [XDH12] observed that during the networking intensive phases of applications, 

collision and competition occurs for the network resources, resulting in making the applica

tions running time unpredictable. The uncertainty in execution time further translates into 

unpredictable cost, as tenants need to pay for the reserved virtual machines for the entire 

duration of their jobs. Xie et aI. [XDH12] propose the design of the first network abstraction 

(to the authors' best knowledge), TICV (Time Interleaved Virtual Clusters), that captures 

the time-varying nature of cloud applications, and they propose a systematic profiling-based 

methodology for making the abstraction practical and readily usable in today's data center 

networks. The network abstractions that [XDH12] consider are similar to those proposed in 

[GL\V+lO, BKR11], but the last two works overlook the real time variant nature of resource 

requirements and simply assume that the customer will specify them somehow. 

Zhang et aI. conducted a series of research that considers the bandwidth (B\V) variant 

nature of VNs during the process of resources provisioning, [ZQT+11, ZQ\VL12, ZQ\V+14]. 

The authors modeled the time-variant nature of the VNs demands as the combination of 

a basic sub-requirement, which exists all through the VNs lifetime, and a variable sub

requirement, which exists with a probability. For the basic sub-flows, fixed bandwidth is 
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allocated (traditional B\\T sharing). But for the variable sub-flows, the authors consider 

a specific design of the SN; they assume that the time is partitioned into frames of equal 

length, and each frame is further divided into slots of equal length. The authors develop 

two first-fit algorithms that map the variable sub-flows to the time slots on the SN. The first 

algorithm does not consider the inter-flows collision per slot, whereas the second algorithm 

is aware of it. The inter-flows collision per slot is calculated based on the probability of 

occurrence of the variable sub-flows. 

Our work considers the synchrony time-variant nature of virtual networks, addressed for 

timely synchronous distributed systems. The problem raised here (i.e., time-HSVNs embed

ding) could be solved using the mo deIs proposed in our previous works [HMD13, HMOD14, 

DODH15] by overlooking the synchrony timely-variant nature of VNs, but this would re

sult is reserving synchronous resources permanently for demands that require synchrony 

only during time windows. In this chapter, we argue that, adopting suitable abstractions 

and techniques, together with a suitable embedding model, increases the resources usage 

efficiency. 

6.3 Time-HSVNs characterization 

Time-HSVNs carry the common features of typical VNs [CBlO], but in addition, they need 

to be further characterized to allow them to reflect the timely synchrony nature. \\Te consider 

that the synchrony demands of each VN has a cyclic pattern with the cycle T time units. 

During T, each virtual no de and link demands synchrony once, for a certain period of time. 

The time windows when the virtual element is provided synchrony is named the synchronous 

round, and the time windows when it is not provided synchrony is named the asynchronous 

round, see Figure 6.1. \\Te assume that the client is able to define the synchronous round 

he needs within T, and he is able to express it to the virtual network provider. The client 

needs to be provided synchrony, eventually within T, during the specified time duration he 

expresses, without caring for when it will be provided within T. The VNs cyclic pattern 

makes them reflect the nature of timely synchronous DSs, which repeatedly demand eventual 

synchrony during the system life. 

6.4 SN design 

Previously in our work, we stated that the exact way of designing the physical synchronous 

resources is out of the scope of our work. Yet at this phase of our work (i.e., Time-HSVNs), 

the synchrony time variant nature of HSVNs implied taking care of the SN possible design, 

because the proposed design of the SN for Time-HSVNs is considered for the embedding 
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Figure 6.1 Synchronous and asynchronous rounds for a virtual node or link 

mo deI detailed later. In our previous works with Space-HSVNs, we distinguished between 

two types of resources; synchronous and asynchronous, where both types maintain their 

synchrony status during the system life. In the current step of our work, Time-HSVNs 

demand a refinement of the Space-HSVNs abstractions and techniques to suit better the 

new view of synchrony (i.e., periodic eventual synchrony). 

In [ZQT+ll], Zhang et aI. propose a bandwidth sharing technique that allocates band

width (B\V) in accordance with VNs traffic fluctuation as detailed in the related works 

(Section 6.2). The authors consider specific design of the SN as the following: the time is 

partitioned into frames of equal length, and each frame is further divided into slots of equal 

length, see Figure 6.2. The authors develop an algorithm that maps the variable sub-flows to 

the time slots on the SN in a way that the sub-flows mapped to the same slot do not violate 

the B\V capacity, neither exceed a collision threshold allowed, where the sub-flows collision 

is calculated based on the probability of their occurrence. The proposed methodology allows 

an opportunistic bandwidth sharing between the sub-flows. 

Synchrony frames 
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Figure 6.2 SN synchronous frames and slots proposed in [ZQT+ 11] 

In our work, we inspire a suitable SN design from the work of Zhang et aI. [ZQT+ll] 

after adapting it in what matches our problem: 

1. The virtual flows are of fixed B\V demand during time (not opportunistic demands), 

thus, we disconsider collision probability. 

2. the HSVNs demand synchrony once during T, see 6.3, so, we need only one time window 

during T that applies Zhang et aI. technique. \Ve name this time window synchronous 
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frame, see Figure 6.3. The synchronous frame is further partitioned into time slots of 

equal size, we name them synchronous slots. 

3. the virtual demands mapped to a synchronous slot should not violate the physical B\V 

capacity to eliminate competition and assure synchrony. The length of the synchronous 

frame and the number of time slots within a frame is related to the VNs number and 

demands. \Ve assume that each virtual no de and link do not demand synchrony slots 

that exceed the number of slots per synchronous frame. 

Synchrony trame 

\'\.,. __________________ ~ __ ---------------------+t T 

rrb~ )0 

~.------------------- T " 

Figure 6.3 Physical node or link synchrony frame during T 

6.5 Time-HSVNs Embedding 

The virtualization architecture we adopt is the one proposed by Schaffrath et aI. [S\VP+09]. 

\Ve assume that the virtual network provider (VNP) has complete information about: i) 

the SN topology and its attributes (nodes Central Processing Unit (CPU), links bandwidth 

(B\V), and synchronous slots number and length), and ii) the virtual networks topology and 

demands (nodes CPU, links B\V, synchrony demands). The VNP receives the synchrony 

demands in term of time period, and translates it into number of synchronous slots of 

the SN slots. \Ve deal with the case of off-line VNs embedding. The time-HSVNs will be 

provided synchrony during the synchronous frame. Out of the synchronous frame, additional 

asynchronous demands can be mapped and competition can occur. This does not pose any 

problem for demands that do not expect synchrony. 

The Time-HSVNs embedding problem can be stated as the following: How to map the 

virtual synchronous slots to the physical synchronous slots, with the objective of minimizing 

the mapping cost represented by the used BW? 

The approach we followed for solving the Time-HSVNs was to benefit from our previous 

works on Space-HSVNs [HMD13, HMOD14, DODH15], by refining the proposed mo deI for 

Space-HSVNs to a new version that expresses the synchronous slots. Further, we enhanced 

the achieved solution to allow more VNs to be mapped on the same SN. So, the Time-HSVNs 

mapping would go through two phases. \Ve explain these two phases briefly in this section 

and we detail them more later through this chapter. 
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1. the macro mapping phase: This phase maps the virtual elements (nodes and links) to 

the physical resources that do respect all the embedding constraints. This phase leads to 

a mapping solution, that considers minimizing the physical bandwidth consumption. At 

the end of this phase, each virtual no de and link will be mapped to a physical no de and 

path that can support them. The macro mapping phase model is achieved by refining 

the Space-HSVNs mapping mo deI to express synchronous slots. 

2. the micro mapping phase: This phase increases the efficiency of the solution achieved 

in the macro mapping phase, by allowing embedding possible future VNs demands on 

the same given SN. This phase is performed individually for each physical no de and 

link used in the macro mapping phase. The micro mapping phase maps the virtual 

synchronous demands to the physical synchronous slots. For solving the micro mapping 

phase, we adopted an off-the-shelf problem from the literature due to its similarity, that 

is the Cutting Stock problem (CSP). 

Figure 6.4 depicts a block diagram for the Time-HSVNs embedding phases. The first 

phase is the macro mapping phase. Its inputs are the SN and VNs together with their 

attributes. This phase maps each virtual no de and link on a physical node and path that 

answer all the embedding constraints. The second phase is the micro mapping phase. Its 

inputs are every physical no de i with the set of virtual nodes it mapped N k
( i), and every 

physicallink (i,j) with the set ofvirtuallinks it mapped Lk(i,j). The micro mapping phase 

is performed individually for every physical no de and link. This phase maps the synchronous 

demands on the synchronous slots of the physical no de or link. The output of the micro 

mapping phase will be indicating the minimum number of synchronous slots enough to map 

the synchronous demands of the virtual elements. For example, for the input i and Nk(i), 

the micro mapping phase will tell us what is the minimum number of the synchronous slots 

of the no de i that are enough to map all the synchronous demands of all the virtual nodes 

in Nk(i). 

Il ~ SN rlumber of 
Macro map. i&N'(i) Micro map. lime slols needed 

Model technique 

~ 
Imap nodes&links) (i ,j)& L'(i,j) Imap syne. 510(5) 

Il VNs 

Figure 6.4 Block diagram for Time-HSVNs embedding phases 

Figure 6.5 illustrates a graph based example for Time-HSVNs embedding. The macro 

mapping phase is applied on two VNs and a SN, and the micro mapping phase is applied on 

the physical no de i and the two virtual nodes it mapped: b1 and d2
. 
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Figure 6.5 Graph based example for Time-HSVNs embedding 

6.5.1 The Macro Mapping Phase 
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The inputs of this phase are: (i) the SN topology and attributes, and (ii) the VNs topologies 

and demands. And the output of this phase will be assigning each virtual node to one physical 

no de and each virtual link to a physical path, where a path can be composed of one link or 

more. At this phase, the problem turns to be: how to map the VNs on top of the SN with the 

least physical bandwidth consumption possible. \Ve formulate the macro mapping problem in 

the shape of a Integer Program (IP). 

6.5.1.1 Variables definition 

The SN is represented by an undirected graph G(N, L), composed of a finite set of physical 

nodes N and links L : N X N. Analogously, each virtual network V N k belonging to the set 

of virtual networks V N will be presented by an undirected graph Gk(Nk, Lk). The number 

of synchronous slots provided by the physical node i and physical link (i, j) are sync( i) 

and sync( i, j). Analogously, sync( ik) and sync( ik, jk) are the number of synchronous slots 

demanded by the virtual no de ik and link( ik, jk). Besides synchrony, two other attributes 

are considered for the SN and VN elements: nodes CPU, and links bandwidth (BW). The 

syntax for those attributes on the SN and VN respectively are: cpu(i), bw(i,j), cpu(ik), and 

bw( ik, jk). 

Finally, we define the model output variables, they are: a binary function (J (i k
, i) that 

expresses whether no de i E N maps no de ik E Nk, and a binary function p(ik,jk, i,j) that 

expresses whether link (i, k) is part of the physical path that maps the virtual link (ik, /). 

After solving the macro mapping model, each physical no de i is mapping a set of virtual 

nodes Nk(i), and each physicallink (i,j) on the SN is mapping a set ofvirtuallinks Lk(i,j). 
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Table 6.1 provides a list of variables definition for Time-HSVNs embedding model. 

Table 6.1 List of variables definition for Space-HSVNs embedding model 

Variables group symbol description 
G(N, L) undirected graph representing the SN 

N the set of physical nodes 
L:NXN the set of physical línks 

i a notation for a physical no de i E N 
Substrate Network (i, j) a notation for a physical línk (i, j) E L 

sync(i) the number of synchronous slots provided by i 
sync(i, j) the number of synchronous slots provided by (i, j) 

cpu( i) the CPU of physical node i 
bw(i, j) the bandwidth of physical línk (i, j) 

VN the set of ali virtual networks 
k the number of a virtual network that belongs to V N 

VN" The virtual network number k 
G"(N",L") undirected graph representing V N" 

N" the set of virtual nodes 

Virtual Networks 
Lk: NkXNk the set of virtual línks 

i" a notation for a virtual node i" E N" 
(i", j") a notation for a virtuallínk (i",j") E L" 

sync(i") the number of synchronous slots demanded by i" 
sync(i",j") the number ofsynchronous slots demanded by (i",j") 

cpu( ik) the CPU of virtual node ik 

bw( ik , jk) the bandwidth of virtual línk (ik , jk) 
CY(ik , i) CY(ik,i) = 1; node i E N maps node ik E N k 

CY( i k , i) = O ; otherwise 
Output variables 

p(ik,jk,i,j) p(ik,jk,i,j) = 1; (i,j) E L is part ofthe path mapping (ik,jk) E Lk 

p(ik,jk,i,j) = O; otherwise 

6.5.1.2 The Macro mathematical model 

It is formulated in the shape of an IP as bellow: 

Mapping objective- The Objective Function (6.1), we consider is inspired from our 

work on Space-HSVNs, which is to minimize the total bandwidth used. 

Objective: minimize 

'"' '"' ("k "k " ") ("k "k) b ("k "k)" ~VVNkEVN ~V(ik,jk)ELk P Z ,J ,Z,J . sync Z ,J . w Z ,J , 

Mapping constraints

- Capacity constraints: 

for every (i,j) E L and every (ik,jk) E Lk 

p(ik,l,i,j)' bw(ik,l) ::; bw(i,j) 

for every i E N and every ik E N k 

(6.1) 

(6.2) 

(6.3) 
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- Nades mapping canstraints: 

for everv V N k E V N ik E N k 
" , 

for every VNk E VN, i E N 

- Links mapping canstraint: 

L J(i k
, i) = 1 

lfiEN 

L J(ik,i)::;1 
lfikENk 

for everv VNk E VN (i k J"k) E L k i E N 
" " , 

L p(i k
,/, i,j) - L p(ik,/,j, i) = J(ik, i) - J(/, i) 

IfjEN 

- Nades synchrony canstraints: 

for every i E N 

- Links synchrany canstraints: 

for every (i, j) E L 

IfjEN 

L p( ik, /, i, j) . sync( ik, /) ::; sync( i, j) 
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(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

The capacity constraint (6.2) assures that the bandwidth of every virtual link does not 

exceed the bandwidth of the physicallink mapping it. Similarly, constraint (6.3) represents 

the equivalent restriction regarding no de C PU. 

The no de mapping constraint (6.4) assures that each virtual no de is mapped once on a 

physical node. 

Constraint (6.5) assures that virtual nodes belonging to the same V N are not mapped on 

the same physical node. This is to achieve load balancing besides improving the reliability. 

This procedure minimizes the number of virtual nodes prone to failure by a physical no de 

failure. 

For any virtuallink (a, b), the links mapping constraint (6.6), adopted from [Z\VJY10], 

assures the creation of a valid physical path. 

\Vhen mapping a set of virtual nodes Nk(i) on one physical no de i; the nodes synchrony 

constraint (6.7) assures that the number of virtual slots mapped on i do not exceed the 

number of synchrony slots provided by i. This constraint considers the worst case, when each 

virtual slot requires a complete synchrony slot alone without sharing. Similarly, constraint 

(6.8) represents the equivalent restriction regarding links synchrony. 
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6.5.2 The Micro mapping phase 

This phase increases the efficiency of the solution achieved in the macro phase, by allowing 

embedding possible future VNs demands on the same SN. This is achieved by scheduling 

the synchronous demands efficiently within the synchronous frame. By viewing the problem 

at this stage as an optimization problem, the problem turns to be: how to schedule the 

virtual demands within a synchronous frame minimizing the number of synchronous slots 

used. Revising the literature, we found a very similar problem that is the Cutting Stock 

Problem (CSP) [HS91], which is one of the NP-hard problems cited by KARP [Kar72], and 

from the cutting stock problem we inspired the solution of the timely HSVNs micro mapping 

problem. 

6.5.2.1 Revision on the Cutting Stock Problem (CSP) 

In operations research, the cutting-stock problem is the problem of cutting standard-sized 

pieces of stock material (e.g., paper rolls or sheet metal) into pieces of specified sizes while 

minimizing material wasted. \\Te explain the CSP through an example: A factory that 

produces rolls of W (c.m.) width, received a demand from a client in four sorts as the 

following: 

• sort 1: h units ofwidth 0.5 * W (c.m.) 

• sort 2: b2 units of width 0.3 * W (c.m.) 

• sort 3: b3 units of width 0.3 * W (c.m.) 

• sort 4: b4 units of width 0.2 * W (c.m.) 

For such a demand of four sorts, a roll of W (c.m.) can be cut into two units of sort 1 (of 

width 0.5 * W (c.m.)), for example, or to three units of sort 3 (of width 0.3 * W (c.m.)), or 

to one unit of sort 3 (of width 0.3 * W (c.m.)) and three units of sort 4 (of width 0.2 * W 

(c.m.)) ... , etc. The possible combinations of cutting patterns of a roll unit of W (c.m.) to 

fulfill the aforementioned demand can be tabulated using the Delayed Column Generation 

method, detailed in [HS91]. Every pattern j of these patterns tells that, a roll or W (c.m.) 

can be cut into aIj units of demand sort 1 + a2j units of demand sort 2 + a3j units of demand 

sort 3 + a4j units of demand sort 4. So, in pattern j, we will need X j rolls of W (c.m.) 

width to generate aij units for each sort in the demando The solution aims at minimizing 

the roll units of width W (c.m.) that are needed to fulfill the demando 

By considering SORT is the set of sorts in a given demand, and PATTERNS the set of 

possible cutting pattern, the CSP can be formulated in the shape of a linear program as the 

following: 
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Objective: minimize 

Cutting constraint 

for every i E SORT 

VjEPATTERNS 

6.5.2.2 The Micro mathematical model 

Translating the CSP elements into the micro mapping problem: 

• the specified sized pieces are the synchronous slots demanded by the VNs; 
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(6.9) 

(6.10) 

• the standard-sized pieces of stock material is the synchronous slot of physical nodejlink; 

• a pattern in the CSP is the set of demands accepted within a stock, and in our problem 

a pattern will be the set of virtual slots accepted within the physical slot ; 

• the objective of the CSP in to minimizing the stock waste and in our problem it would 

be to minimize the number of synchronous slots used within the physical synchronous 

frame. 

\Ve express the micro mapping model for one physical link, but it goes similarly for 

physical nodes. 

Consider one physical link (i, j) with a synchronous frame of sync( i, j) slots, that maps 

a set of virtual links L k (i, j), where every virtuallink has two attributes: the number of syn

chronous slots demanded sync(ik,jk) and the capacity of B\V demanded bw(ik,jk). \Vithin 

each physical slot, the virtual synchronous slots that can be mapped to it form a pattern X j 

[HS91]. The patterns are formed based on the B\V of the virtual demands compared with 

the physical link B\V. These patterns are the input to the micro model. The micro model 

aims at minimizing the number of synchronous slots used within the synchronous frame 

which is achieved by minimizing the total number of patterns (Equation (6.11)). Assuming 

aij is the number of times order i appears in pattern j [HS91]; constraint (6.12) assures 

providing every virtual link with a number of synchronous slots that is at minimum equal to 

the number of synchronous slots demanded sync(ik,jk). The output of the micro mapping 

mo deI will be telling which are the used patterns, and how many of each pattern is needed. 

Table 6.2 stands for variables definition. 

Objective: minimize 

(6.11) 
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Table 6.2 List of variables definition for Time-HSVNs micro mapping phase 

model 

varo 

Input varo 

Output variables 

Cutting constraint 

for every (ik,jk) E Lk(i,j) 

symbol 
PATTERNS 

Lk(i,j) 

j 

aij 

i 
sync( ik , jk) 
sync( ik , jk) 

X j 

IfjEPATTERNS 

description 
set of possible patterns 
set of virtual línks 
mapped to (i, j) 
a given pattern 
in set PATTERNS 
number times order i 
appears in pattern j 
virtuallínk in Lk(i,j) 
sync. slots demanded 
by (ik ,jk) 

number of units 
of pattern j 
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(6.12) 

After performing the micro mapping phase, the SN is updated (used B\V and CPU is 

subtracted from the SN nodes and links capacity), and the macro mapping phase can run 

again, allowing more VNs to be mapped on the same SN. The combination on the macro 

phase, the micro phase, and the SN updating we name an optimization cycle (Opt_cyc). 

Figure 6.6 illustrates two optimization cycles for mapping groups of virtual links on one 

physicallink. The physicallink updating happens either by reducing its capacity, or reducing 

the number of synchronous slots it supports. Either way, there will be a waste in the physical 

bandwidth, we refer to the bandwidth waste resulted by reducing the physical capacity Wh , 

and by reducing the synchronous slots Wv . The updating approach chosen is the one with 

the least waste (the smaller value between Wh and Wv is marked with a star * in the figure). 

This updating methodology we follow is because the macro mapping phase (at the beginning 

of each optimization cycle) considers physical slots of equal capacity and fully empty. 

Summary 

In this section we define the Time HSVN s as a kind of VN s that has su bsets of nodes and links 

that eventually behave synchronously. From the point of view of resources utilization, we 

can regard the time mo deI as being a refinement of the space model, since it further defines 

repeated windows of synchrony while allowing the resources to behave asynchronously for a 

period of time. 
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1 st optimization cycle 2nd optimization cycle 

VNs demands (12,1) (15,2) (10,1) (15,1) (10,1) (15,1) (10,1) 

(bw,slots) - I I I - - - c=:::J -
macro map. 

U I U '""00" 

phase 

I I I -u SN(73,4) 

micro map, ;; phase 
------- ------ -------

I I I 

I I I I 

SN updated 

I I I I I 

Wh=56 • 
Wh=150 

W\I=148 Wv=23 .. 
SN(73,.4) SN(73,,3) 

Figure 6.6 An illustrative scheme for the HSVNs optimization cycles 

It is possible to support timely hybrid synchronous systems with Space-HSVNs, adopting 

the assumption and embedding mo deI proposed for Space-HSVNs, but this choice would 

result in wasting synchronous resources beca use of reserving them for virtual demands that 

would behave synchronously only eventually 

From the literature, we inspire a suitable design for the SN that will support Time

HSVNs. The assumed SN will have nodes and links that can provide synchrony during 

pre-defined time windows that we name synchronous frames. The VNs synchrony demands 

are supposed to be answered only during these frames. 

\\Te develop an embedding framework for the Time-HSVNs that consists of two phases: 

1. the macro mapping phase: This phase maps the virtual elements (nodes and links) to 

the physical resources that do respect all the embedding constraints. The macro map

ping phase model is achieved by refining the Space-HSVNs mapping mo deI to express 

synchronous slots. 

2. the micro mapping phase: This phase maps the virtual synchronous demands to the 

physical synchronous slots. This phase increases the efficiency of the solution achieved 

in the macro mapping phase, by allowing embedding possible future VNs demands on 

the same given SN. For solving the micro mapping phase, we adopted a problem from 

the literature due to its similarity, that is the Cutting Stock problem (CSP). 

In the next Chapter we evaluate proposed model for Time-HSVNs embedding. 
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Performance Evaluation for 

Time-HSVN 

T he Time-HSVNs abstractions we considered together with the Time-HSVNs em

bedding mo deI are supposed to lead to further sparing of synchronous resources, 

if compared to the space model. \Ve run preliminary experiments that allow 

investigating the performance of the proposed embedding approach of Time-HSVNs. The 

aspects considered during the analysis of our mo deI are: (i) the embedding cost; (ii) the 

physical resources load; (iii) the optimization time; (iv) the topology of the physical sub

network composed of the used resources; and (v) the micro mapping phase efficiency. 

7.1 Wor kload and tools 

Experiments were designed as a full factorial [Jai91], exploring all possible combinations 

between the networks parameters. Such choice of experiments was done by other works like 

[BOB+12a]. Similar to [YYRC08a, BOB+12a], physical and virtual networks were randomly 

generated. For this we used BRITE tool (Boston university Representative Internet Topology 

gEnerator) [MLMJ14] with \Vaxman mo deI [\Vax88]. \Ve implemented the mathematical 

mo deI with ZIMPL language (Zuse Institute Mathematical Programming Language) [Koc04], 

both for the macro and micro mapping phases, and we used CPLEX [bmc14] to solve the 

Integer Program (IP), running on a computer Intel HM75, Core i3-3217U 1.80 GHz (Giga 

Hertz), cash 3 MB (Mega Byte) , Random Access Memory (RAM) of 2 GB (Giga Byte) , 

DDR3 and operating system Xubuntu 14.04. 

In all the following experiments, the substrate network size was fixed to 15 nodes. Initially 

all CPUs (Central Processing Unit) of SN nodes are free, and links Band \Vidth (B\V) is 

uniformly distributed between 1-3 Gbps (Giga bit per second). \Ve ran twelve experiments 

divided into three groups, A, B and C, with VNs total size of 10, 20, and 30 nodes in each 

group respectively. 

The SN and VNs size was chosen of small scale to allow solving the embedding mo deI 

during a reasonable time, allowing us to evaluate the model performance. 

The VNs were generated with 3, 4, or 5 nodes each, and CPU demands 10%, 15%, or 

25% of the SN nodes CPU capacity, and B\V demands uniformly distributed between 100 
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Mbps (Mega bit per second) and 1 Gbps. VN nodes demand one synchronous slot per 

T. In scenarios 1, 2, 3 and 4 of each group, the virtual links synchronous slots demanded 

varies between 1, 2 , 3 , and 4 slots. The SN provides periodically, each T = 20 seconds, a 

synchronous frame of 4 seconds length, divided into four equal time slots. Table 7.1 details 

the experiments parameters. 

Table 7.1 Experiments parameters 

Expe. AI I A2 I A3 I A4 BI I B2 I B3 I B4 CI I C2 I C3 I C4 
VN size 10 nodes 20 nodes 30 nodes 

Virtual links sync. slots 1 I 2 I 3 I 4 1 I 2 I 3 I 4 1 I 2 I 3 I 4 

Virtual nodes sync. 1 slot per T 
each VN size 3,4,5 nodes 

VNsBW uniforrnly distributed: 100Mbps-1Gbps 
VNsCPU 10,15,25 % of SN nodes CPU 

SN size 15 nodes 
SNBW uniforrnly distributed: 1 Gbps-3 Gbps 
SN CPU nodes fully free initially 

7.2 Results 

7.2.1 Embedding cost 

The mapping cost is represented by the used B\V, which is the model objective function 

(Equation (4.1). \Ve evaluate our results by comparing them with the B\V used in case 

the experiments in Table 7.1 were mapped using the space mo deI and the SN previously 

addressed in 4.6, see Figure 7.1. 
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Figure 7.1 Used bandwidth 

\Vith the time model, the used B\V indicated is the one consumed within the synchrony 

frame. To allow just comparison, we calculate the B\V used in the space model during time 
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window equal to the frame Iength. \Ve note down the following main observations: 

1. \Vithin one experiments group, the used B\V is proportional to the number of syn

chronous slots demanded by the VNs. For exampIe, in scenario A2 the B\V used is 

13.624 Mbps/frame, and it is 20.436 in scenario A3, the proportion between the two 

figures is the proportion of the number of synchronous slots demanded in each scenario 

2/3. SimiIarly, the used B\V in B3 and B4 is 41.37 (Mbps) and 55.16 (Mbps), their pro

portion is 3/4. This means that the used B\V is subject to the VNs synchrony demands 

in time, i.e., the more synchronous slots are; the higher used B\V is. 

2. By comparing the counterparts experiments of the three groups (e.g., A2, B2, and 

C2) we notice that the B\V used increases. This is due to the VNs size increment, 

which tends naturally to reserve more resources. For exampIe, the used B\V with the 

aforementioned three experiments is 13.624, 27.58, and 60.52 (Mbps/frame )respectiveIy. 

The reason is that bigger VNs demands more physical resources to map them, and thus 

more B\V. 

3. \Vithin each experiment's group, the B\V used with the space mo deI is equal to the 

maximum B\V used within the group (i.e., experiment 4 of each group). This is because 

the space model does not recognize the VNs synchrony slots demanded. For exampIe, 

mapping the VNs in group B with the space mo deI needs B\V of 55,16 (Mbps/frame), 

which is the B\V needed when mapping VNs in scenario B4 with the time model. 

4. The time mo deI is more efficient as it spares more resources. This is beca use the time 

model reserves resources proportionally to the synchrony demands in time, whereas the 

space model does noto For exampIe, mapping the VNs in scenario B3 with the time 

model spares 33,33% of the resources needed when mapping the same set of VNs with 

the space model. And the spared ratio increases when the synchronous demands within 

T decreases, e.g. in B2, the time model spares 100% of the resources, and in Bl spares 

300%. 

7.2.2 Physical resources load 

This study is useful when done on a scenario that can possibly Ioad the SN. \Ve chose scenario 

C2 (VNs of big size). Figure 7.2 depicts the CumuIative Distributed Function (CDF) for 

physical nodes and Iinks in experiment C2. 

\Ve note that 80% of the SN nodes had a Ioad that varies between 10% and 60%, only 

13.33% had a Ioad between 60% and 80%, and no nodes were highIy Ioaded more than 80%. 

And regarding the physicaIIinks, we note that, 41.37% of the SN Iinks had a Ioad that ranges 
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between 10% and 60%, and only 14% of the physicaI Iinks had a Ioad that exceeded 60%, 

and no Iinks were fully Ioaded. 

The SN resources seem to have Ioad distribution which is good, since concentrating the 

Ioad in certain eIements will result in congestion, Ieading to bIock mapping certain VNs in 

the future. This is achieved because, the proposed mo deI does not push the mapping process 

to exhaust the used physicaI resources before allocating new ones, rather, all resources are 

given the same chance to be chosen, as Iong as they allow mapping on the shortest path. 

100 

Figure 7.2 CDF for resource usage in experiment C2 

7.2.3 Embedding time 

The third parameter evaIuated is the mapping time. The optimization process reached its 

end with scenarios A and B. \Vhereas in scenarios C, the optimization was terminated with 

optimization gap Iess than 2%. \Ve took this decision when the optimization progressed 

slowIy without much gain. For exampIe, in scenario C3, it took 30 minutes to reach a 

solution with 4.46% gap, then another 33 minutes to reach another solution with 1.86% gap. 

In reaIistic scenarios, the client might prefer a semi-optimal solution in a short computational 

time, than an optimal solution after Iong time. 

TabIe 7.2 illustrates the optimization time for embedding the scenarios of TabIe7.1 both 

with the space and the time models. 

Table 7.2 Embedding time (in minutes) 

Group. space exp.l exp.2 exp.3 exp.4 

A 0.13 0.07 0.08 0.09 0.19 
B 0.75 1.46 1.16 5.31 18.13 

C 8 15.09 46.55 65.95 38.89 

From TabIe 7.2 we notice that: 

1. Most of the scenarios demanded optimization time that is Iess than 20 minutes, which 

is an acceptabIe computational time. 
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2. Solving the embedding model for Time-HSVNs took longer time than Space-HSVNs 

model. 

3. For a given scenano, the difference in optimization time between Time-HSVNs and 

Space-HSVNs rnodels increases with the increment of the problem size (i.e., VNs size 

and synchronous slots dernanded) which increases the number of variables that need to 

be solved by the optimization processo 

7.2.4 Topological study 

In this subsection we study the topology of the physical subnetwork composed of the physical 

used elements (i.e., nodes and links). Figure 7.3 illustrates this topology for scenarios A1, 

A2, and A3. The topologies under study are the ones in red. vVe notice that, even though 

all these scenarios with the same VNs size (lO nodes), yet the mo dei tends towards reserving 

more physical elements with the increment of the synchronous slots demanded by the VNs. 

For example, in scenario A1 the physical subnetwork under study is composed of 6 nodes, 

whereas in scenario A3 it is cornposed of 10 nodes. Previously, we noted down that the 

model tends towards distributing the BvV load on the physical resources, Figure 7.2. Now 

we add that the model tends also towards distributing the synchrony load as well. So, when 

the VNs increase their synchrony demands (i.e., number of synchrony slots), the rnodel tends 

towards reserving new elements. This behavior avoids congesting the synchronous frames of 

the used elements, allowing mapping new arriving VNs. Because the time HSVNs will be 

blocked or by exhausting the SN CPU and BvV, or by exhausting the SN synchronous slots. 

(a) scenario AI (b) scenario A2 ( c) scenario A3 

Figure 7.3 - Topology divergence of used physical resources 

7.2.5 Micro mapping model efficiency 

The micro mapping model efficiency will be represented by the number of VN s accepted. 

The goal of this study is to define the parameters that affect the micro mapping efficiency. 

vVe run this study on the case of one physical link and an endless queue of virtual 

links attended in order. vVe consider five experiment groups with different load range, 

Table 7.3. vVe run three experiments per group, with different synchrony demands. In 
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each experiment several opt _ cyc are performed till the physical link is exhausted and no 

demands are accepted. 

Table 7.3 Number of mapped virtual links with different load and synchrony 

demands 

Scenario VNs load/SN capacity sync(ik , jk)=1,2,3 slots sync(ik ,jk)=1,2 slots sync(ik ,jk)=l slot 

K (0-20] % 9 13 16 
L (20-40] % 6 8 12 
M (40-60] % 5 6 8 
N (60-80] % 1 2 4 

O (80-100] % 1 2 4 

Our main observations: 

1. The efficiency decreases when the virtuallinks load increases. For example, the efficiency 

in group K was 9, 13, and 16 whereas in group L it was 6, 8, and 12. 

2. The efficiency increases when the maximum number of synchronous slots demanded 

decreases. For example, in group K, when the maximum number of synchronous slots 

demanded decreased from 3 to 1, the mo deI efficiency increased from 9 to 16. 

3. The micro mo deI efficiency is the same in group N and O, the reason is that, both 

groups are with high virtuallinks load, this does not allow slots sharing between virtual 

demands, and the mapping solution achieved in the macro mapping phase cannot be 

optimized further with the micro mapping phase. 

Summary 

In this chapter we evaluate the embedding mo deIs of Time-HSVNs. Simulation results 

show that the proposed embedding framework answers the synchrony time-variant demands 

efficiently (spares synchronous resources), distributes the load over the physical resources 

(nodes and links), and has an acceptable computation time for reaching the embedding 

solution. In addition, topological study of the subnetworks composed of the used resources 

on the SN showed that, the embedding mo deI is aware of the synchronous demands variation, 

and the resulting subnetwork scatters more on top of the SN when the synchronous demands 

increase. Further study of the micro-mapping phase showed that its efficiency is a function 

of the VNs load and synchrony. 
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Conclusion 

In this thesis, we provided a background about distributed systems (DSs), and lightened 

an important aspect in the field, the synchrony. \Vhile asynchronous DSs support no time

bounds for processes execution and message delivery, the synchronous DSs provide time 

guarantees for them. Although fully synchronous DSs demand simpler algorithms, and can 

provide what asynchronous ones do, yet the undeniable problem of synchronous components 

(processes and channels) high cost led to the development of hybrid synchrony DSs. 

Two branches of hybrid synchronous DSs are distinguished in the literature: (i) the 

hybrid synchronous in space, where subsets of the system components are synchronous while 

the others are asynchronous, and (ii) the hybrid synchronous in time, where the system 

components alternate between synchrony and asynchrony over time. 

\Ve provided examples of applications (i.e., Apache Cassandra, \Vindows Azure, Chubby) 

that may benefit from the partial synchrony assumptions, as the progress will become guar

anteed by the provisioning of elements designed to respect time upper bounds. The problem 

is that fully synchronous, or partially synchronous, environment is expensive to build, com

plex to configure, and difficult to controI. This makes the infrastructure providers escape 

to asynchronous environments strengthened by algorithms andj or protocols with time-out 

specifications. 

In a research for relaxing the ossifications of partial synchronous environment; we inves

tigated the space of Virtual Networks (VNs), and we found that virtual networks can offer 

a suitable environment for hosting hybrid synchronous distributed systems while optimizing 

a set of their constraints due to the properties that virtualization brings. 

By revising the literature on the topic ofVNE, we note the absence of embedding solutions 

in the literature that consider the synchrony property in applications, which is of paramount 

importance to host a prominent class of distributed systems, the hybrid synchronous DSs. 

This gap led us to the development of an embedding framework that handles applications 

with hybrid synchrony constraints. 
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In our work, we propose and argue that virtual networks and the virtual networks em

bedding process offer both abstractions and techniques to support applications with Hybrid 

Synchrony demands. To our best knowledge, this is undiscussed in the VN field and is of 

paramount importance to host a prominent class of distributed systems. This has led to the 

abstraction of new type of VNs, we name it The Hybrid Synchrony Virtual Networks, 

abbreviated to HSVNs. 

What are HSVNs 

They are virtual networks that have subsets of nodes and links that obey time bounds 

for processing and communication. Although HSVN can run on fully synchronous SN, 

this decision would have to pay the excess in an unneeded cost, since even asynchronous 

virtual nodes and links will be mapped on synchronous physical ones. \\Te argue that hybrid 

synchronous SN, combined with a suitable embedding, is capable to answer the synchrony 

requirements in an economic manner. Hybrid synchronous SNs have two classes of nodes: (i) 

synchronaus nades with functioning time guarantees, achieved through the implementation 

of periodical real-time tasks, and (ii) asynchronaus nades that have no timely guarantees. 

Analogously, two classes of physicallinks are available: (i) synchronaus links that have time

bounded messages transmission delay, achieved through the implementation of QoS policies 

and admission control, and (ii) asynchranaus links that have no timely guarantee. 

Two types of HSVNs can be distinguished, inspired by the two types of hybrid DS: 

1. Space-HSVNs: where the virtual networks are composed of synchronous and asyn

chronous components, where both types of components maintain their synchrony status 

during the system functionality. 

2. Time-HSVNs: where the virtual networks are composed of subsets of nodes and links 

that change their synchrony status over time (i.e., synchronous resources become asyn

chronous and vice versa). 

By revising the literature on the topic of VNs embedding; we note the absence of em

bedding solutions in the literature that consider the synchrony property in applications, 

which we need for our work to attend DSs with hybrid synchrony. This gap led us to the 

development of an embedding framework that handles applications with hybrid synchrony 

constraints. 

8.1 The thesis contributions 

The main contributions of this thesis are: 
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• Provide a literature review on the topic of virtual networks embedding, classifying the 

works based on the embedding constraints. 

• Address applications that may benefit from hybrid synchrony feature (namely: Cassan

dra, \VA, and Chubby) and provide a review about each. 

• Propose the use of VNs for hybrid synchronous applications, which results in the Hybrid 

Synchronous Virtual Networks (HSVNs). 

• Define the Space-HSVNs and propose a suitable embedding model to handle the re

sources allocation problem. 

• Define the Time-HSVNs and propose a suitable embedding model to handle the re

sources allocation problem. 

8.2 Achieved results 

The main results achieved with simulations are: 

8.2.1 Space-HSVNs over a settled SN (S-SN) 

• Embedding cost: (i) The proposed embedding mo deI considers the hybrid syn

chronous nature of VNs, mapping them onto a hybrid synchronous SN in an economic 

manner, trying to spare the synchronous physical resources whose building cost is ex

pensive when compared to the asynchronous ones. (ii) \Vith the increase in the problem 

size (be it through the increase in the VNs size or through the increase in the synchrony 

demands), the mapping cost increases. (iii) A linear increase in the VNs size andjor 

synchrony demands leads to a nonlinear increment in the embedding cost. 

• Embedding time: The computational time is proportional to the number of the model 

variables, and this last one changes with the problem size as the following: (i) when the 

VNs size increases, the model variables number increases, and thus the computational 

time increases, and (ii) when the VNs synchrony demands increases, the solution space 

becomes increasingly within the synchronous physical subnetwork, which is in our case 

a small portion of the SN, this means that the mo deI variables used in the solution will 

become less, and thus the computational time to find the variables values would become 

less. 

• Free resources: The number of free resources is a function of VNs size and synchrony 

demands as the following: (i) the number of free resources decreases with the increment 

in the VNs size, because bigger VNs will demand more resources to map them, and 
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(ii) the number of free resources in homogeneous VNs is more than it is in hybrid 

synchronous VNs because they avoid entirely the use of the physical subnetwork that 

does not match their synchrony nature. 

• Resources load: Regarding the used physical resources, we notice that: (i) The model 

tends towards load distribution over the physical resources, that is why the number of 

resources at law load is bigger than the number of resources at high load. This is 

an important feature in the embedding mo deI because few heavily, or fully, loaded 

resources would increase the number of accepted VNs on a given SN. (ii) The pattern 

of the accumulative number of used resources is a gaussian-like distribution pattern, 

its pick is at law load value for small VNs, and it shifts to higher load values with the 

increment in the VNs size and synchrony demands. 

8.2.2 Space-HSVNs over a configurable SN (C-SN) 

• Embedding cost: i) By comparing the case of C-SN with the S-SN, we notice that 

a C-SN allows a clear reduction in the amount of SN synchronous resources needed to 

map the virtual components. and ii) The economy of links is more significant than 

of the nodes which can be explained by the fact that virtual links can be mapped on 

physical paths that can be composed of one physical link or by several physical links. 

Thus, sparing one physical path reflects on sparing several physical links. 

• Resources load: i) Comparing the S-HSVN and C-HSVN used for mapping the same 

demands, we note that, with C-HSVN, there are more free resources (i.e., unused nodes 

and links), but the drawback is that, the used resources are more loaded. In other 

words, with S-HSVN, the load is better balanced (i.e., more resources used with less 

load each). ii) \Vith C-HSVN, the resources (i.e., nodes and links) with high load are 

the synchronous ones, whereas the resources with low load are the asynchronous ones, 

which is the reversed case in S-HSVN. So, the draw back is that, the C-HSVN charges 

the synchronous resources more, which is the expensive subset of resources. 

• Synchronous nodes privilege: i) \Ve notice that the mo deI tends toward choosing 

the physical nodes with high connectivity degree to be synchronous. A possible inter

pretation for this behavior is that, nodes with high connectivity degree allow multi-use 

of the same node, since on one hand, it is connected to a high number of neighbor nodes 

which fulfills topology constraints, and on the other hand, nodes with high connectivity 

have high bandwidth sum (i. e. the sum of B\V capacity of all the physical links con

nected to it) which fulfills B\V constraint. Since the embedding mo deI of HSVNs over 

C-SN aims at minimizing the number of the synchronous resources, then such nodes are 

chosen. 
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• The topology of synchronous physical resources: \Ve noticed that the topology 

of the synchronous subnetwork starts by a ring topology for small problem size, and 

tends towards becoming mesh topology with the increment in the problem size. This 

observation confirms the previous one regarding the synchronous nodes chosen, being 

the ones with high connectivity degree. 

Highlighting the advantages and drawbacks of S-HSVN and C-HSVN is not supposed to 

lead us to conclude which among both is more important, because both are of equal necessity. 

In fact, the infrastructure provider is the player who determines which HSVN model is to 

be adopted, based on the SN type he built (i.e., settled or configurable). 

8.2.3 Time-HSVNs 

• Embedding cost: It is possible to support timely hybrid synchronous systems with 

Space_HSVNs, adopting the assumption and embedding model proposed for Space

HSVNs, but this choice would result in wasting synchronous resources because of re

serving them for virtual demands that would behave synchronously only eventually (i.e., 

only during time windows).The time model is more efficient than the Space mo deI as it 

spares more resources. This is beca use the time mo deI reserves resources proportionally 

to the synchrony demands in time, whereas the space model does noto 

• Resources load: The SN resources seem to have load distribution which is good, since 

concentrating the load in certain elements will result in congestion, leading to block 

mapping certain VNs in the future. This is achieved because, the proposed mo deI does 

not push the mapping process to exhaust the used physical resources before allocating 

new ones, rather, all resources are given the same chance to be chosen, as long as they 

allow mapping on the shortest path. 

• Embedding time: i) The time mo deI demands more time than the space model. And 

ii) For a given scenario, the difference between time and space mo deIs increases with the 

increment of the problem size (i.e., VNs size and synchronous slots demanded) which 

increases the number of variables that need to be solved by the optimization processo 

• The topology of synchronous physical resources: The mo deI tends towards dis

tributing the synchrony load. So, when the VNs increase their synchrony demands (i.e., 

number of synchrony slots), the model tends towards reserving new elements. This be

havior avoids congesting the synchronous frames of the used elements, allowing mapping 

new arriving VNs. Because the time HSVNs will be blocked or by exhausting the SN 

CPU and B\V, or by exhausting the SN synchronous slots. 
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• Micro mapping model efficiency: The micro mapping mo deI efficiency was repre

sented by the number of VNs accepted. i) The micro mo deI efficiency decreases when 

the virtual links load increases. ii) The efficiency increases when the maximum num

ber of synchronous slots demanded decreases. iii) The micro model efficiency decreases 

when the virtual elements are with high CPU or B\V demands, because this does not 

allow slots sharing between virtual demands, and the mapping solution achieved in the 

macro mapping phase cannot be optimized further with the micro mapping phase. 

\Ve note down that the proposed embedding framework for Space-HSVNs is abled to 

answer Time-HSVNs. But this would result in an excess of cost. Considering the synchrony 

time variant nature in Time-HSVNs would result in further sparing of the use of physical 

synchronous resources. 

8.3 Work application 

In real life, there are some widely used applications that may benefit from our work. For 

example: 

1. Apache Cassandra: a massively scalable open source NoSQL database. 

2. \Vindows Azure Storage (\VAS): a cloud storage system that provides customers the 

ability to store seemingly limitless amounts of data for any duration of time 

3. Chubby lock service: The purpose of the lock service is to allow its clients to synchronize 

their activities and to agree on basic information about their environment. 

These applications do not force the use of hybrid synchronous environment, although 

they need. These applications run on asynchronous environments supported with algorithms 

andjor protocols (e.g., PAXOS) where safety is assured but not progresso Ifthese applications 

run on top of hybrid synchronous infrastructure then progress can be guaranteed by the 

provisioning of elements designed to respect time upper bounds. For example: 

• In Cassandra: the failure detection algorithm needs to run on synchronous or hybrid 

synchronous subnetworks that communicate the cluster nodes, in order to guarantee 

delivering messages within the upper bound specified. 

• In \VA: The Intra-stamp replication protocols reed to run on synchronous links that com

municate the replicas on the same storage stamp together, while the Inter-stamp repli

cation protocols may run on asynchronous links that communicate the storage stamps 

together. 
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• In Chubby: The failure detection algorithm needs to run on synchronous environment 

to adjust perfectly the messages delay time. 

The problem is that fully synchronous, or partially synchronous, environment is expen

sive to build, complex to configure, and difficult to controI. This makes the infrastructure 

providers escape to asynchronous environments strengthened by algorithms andj or proto

cols with time-out specifications. These applications may benefit from the partial synchrony 

assumptions that we propose in our work, as the progress will become guaranteed by the 

provisioning of elements designed to respect time upper bounds. 

8.4 Work generalization 

In our work, we motivated the abstraction of the HSVNs through the existence of certain 

class of distributed systems, namely the fault tolerant distributed systems, that can benefit 

from the hybrid synchrony. In fact, the abstraction of HSVN can be seen from a broader 

angle, we express this by generalizing the HSVN idea in three dimensions: 

• Although we have dedicated enough efforts to illustrate perfect failure detectors and the 

consensus problem, a wider set of applications benefit from hybrid synchrony. For in

stance, general purpose applications would communicate mainly through asynchronous 

channels and still rely on timely execution triggers. Thus, certain actions would be 

executed in a timely fashion (e.g., check pointing [EA\VJ02], election [MIMFOO], or any 

round-based agreement). 

• The hybrid SN we are proposing, combined with our embedding model, can host not 

only hybrid synchrony applications, but also homogeneous ones (fully synchronous or 

fully asynchronous). 

• \Vhile in this step of our work we are concerned with synchrony, we envisage that similar 

mo deIs may, in the future, be used to denote other kinds of specific functionalities 

expected from the resources. such as subsets of nodes and links with special security or 

resilience features. 

8.5 Work limitations 

• \Vith HSVNs, we consider that the synchrony pattern of each virtual no de and link is 

independent of each other, which is not the case in real applications, e.g, the failure 

detector. 
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• For evaluating the performance of the embedding model for Time-HSVNs,we need to 

run statistical study, similar to that done for Space-HSVNs. This would provide higher 

confidence to the observations noted. But, due to time constraints we could not perform 

this statistical study. 

• The assumptions and techniques we propose for HSVNs embedding are valid for ofRine 

mapping only, and not online mapping. For example, with Time-HSVNs we assumed 

that the client is able to define in advance the synchronous round he needs within T, 

and this may not be the case that a client can always do. 

• In order to tackle the problem of resources allocation, we needed to characterize the 

HSVN s to reflect the time synchrony behavior, and for this we considered that each 

no de and link would express synchrony in a cyclic pattern. This assumption might not 

be always valid for as the clients might not need synchrony in a cyclic pattern. 

8.6 Future work 

• \Vith HSVNs, we consider that the synchrony pattern of each virtual no de and link 

is independent of each other. In future works, we intend to consider cases when VNs 

elements synchrony is mutually dependent, to reflect better the nature of the time hybrid 

synchronous DSs. 

• In a recent article by Luizelli et aI. [LBB+16], the authors provide consistent insights on 

how a physical network topology affects virtual network embedding quality. They note 

that substrate network topologies that are intrinsically more connected tend to reject 

a lower number of virtual requests. In our future work we intend to better study the 

impact of the physical synchronous subnetworks topology on the SN and the HSVNs 

topologies on the embedding quality, basically in terms of embedding cost, time, and 

resources load. 

• \Vith Time-HSVNs, we scheduled the synchrony demands on the slots assuming that the 

synchrony demands exist together (i.e., at the same time), which might not be the case. 

This assumption represents the worst case. In our future work we intend to consider 

more realistic scenarios, when the synchrony demands might exist with a probability. 
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