
FACULTY OF INFORMATICS

GRADUATE PROGRAM IN COMPUTER SCIENCE

MASTER IN COMPUTER SCIENCE

ALAN DIEGO DOS SANTOS

RANKING LIGANDS IN STRUCTURE-BASED VIRTUAL SCREENING
USING SIAMESE NEURAL NETWORKS

Porto Alegre

2017

1

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL

FACULTY OF INFORMATICS

GRADUATE PROGRAM IN COMPUTER SCIENCE

RANKING LIGANDS IN
STRUCTURE-BASED VIRTUAL
SCREENING USING SIAMESE

NEURAL NETWORKS

ALAN DIEGO DOS SANTOS

Dissertation is submitted in partial fulfillment
of requirements for the degree of Master in
Computer Science at Pontifical Catholic
University of Rio Grande do Sul.

Advisor: Prof. Duncan Dubugras Ruiz

Porto Alegre

2017

Alan Diego dos Santos

Ranking Ligands in Structure-based Virtual Screening Using

Siamese Neural Networks

This Dissertation/Thesis has been submitted in

partial fulfillment of the requirements for the

degree of Doctor/Master of Computer Science, of

the Graduate Program in Computer Science, School

of Computer Science of the Pontifícia Universidade

Católica do Rio Grande do Sul.

Sanctioned on March 29th, 2017.

COMMITTEE MEMBERS:

Prof. Dr. Rafael Andrade Cáceres (UFCSPA)

Prof. Dr. Rodrigo Coelho Barros (PPGCC/PUCRS)

Prof. Dr. Duncan Dubugras Alcoba Ruiz (PPGCC/PUCRS - Advisor)

I dedicate this work to my family. A special feeling of gratitude to my parents, José and

Clair Santos, who supported me in achieving this goal with words of encouragements, and to my

brother, who helped me with the text revision. I also dedicate this dissertation to my uncles and

aunts, that supported me in during this program, and my friends, specially Rodrigo Silveira and

Henrique Rodenbusch, that invited me to bars when I was locked in home studying. And, special

feelings to my teachers, who have taught me almost everything I know and forced me into objectives

that I thought were impossible to reach.

“Everybody is a genius. But if you judge a fish by

its ability to climb a tree, it will live its whole life

believing that it is stupid.”

(Unknown)

RANQUEANDO LIGANTES EM TRIAGEM VIRTUAL USANDO

REDES NEURAIS SIAMESAS

RESUMO

Triagem virtual de bancos de dados de ligantes é amplamente utilizada nos estágios iniciais

do processo de descoberta de fármacos. Abordagens computacionais ’docam’ uma pequena molé-

cula dentro do sítio ativo de um estrutura biológica alvo e avaliam a afinidade das interações entre

a molécula e a estrutura. Todavia, os custos envolvidos ao aplicar algoritmos de docagem molecu-

lar em grandes bancos de ligantes são proibitivos, dado a quantidade de recursos computacionais

necessários para essa execução. Nesse contexto, estratégias de aprendizagem de máquina podem

ser aplicadas para ranquear ligantes baseadas na afinidade com determinada estrutura biológica e,

dessa forma, reduzir o número de compostos químicos a serem testados. Nesse trabalho, propomos

um modelo para ranquear ligantes baseados na arquitetura de redes neurais siamesas. Esse modelo

calcula a compatibilidade entre receptor e ligante usando grades de propriedades bioquímicas. Nós

também mostramos que esse modelo pode aprender a identificar interações moleculares importan-

tes entre ligante e receptor. A compatibilidade é calculada baseada em relação à conformação do

ligante, independente de sua posição e orientação em relação ao receptor. O modelo proposto foi

treinado usando ligantes ativos previamente conhecidos e moléculas chamarizes (decoys) em um

modelo de receptor totalmente flexível (Fully Flexible Receptor - FFR) do complexo InhA-NADH da

Mycobacterium tuberculosis, encontrando ótimos resultados.

Palavras Chave: Triagem Virtual, Redes Neurais Siameses, Funções de Escore, Docagem Molecu-

lar.

RANKING LIGANDS IN STRUCTURE-BASED VIRTUAL SCREENING

USING SIAMESE NEURAL NETWORKS

ABSTRACT

Structure-based virtual screening (SBVS) on compounds databases has been widely applied

in early stage of the drug discovery on drug target with known 3D structure. In SBVS, computational

approaches usually ’dock’ small molecules into binding site of drug target and ’score’ their binding

affinity. However, the costs involved in applying docking algorithms into huge compounds databases

are prohibitive, due to the computational resources required by this operation. In this context,

different types of machine learning strategies can be applied to rank ligands, based on binding affinity,

and to reduce the number of compounds to be tested. In this work, we propose a deep learning

energy-based model using siamese neural networks to rank ligands. This model takes as inputs grids

of biochemical properties of ligands and receptors and calculates their compatibility. We show that

the model can learn to identify important biochemical interactions between ligands and receptors.

Besides, we demonstrate that the compatibility score is computed based only on conformation of

small molecule, independent of its position and orientation in relation to the receptor. The proposed

model was trained using known ligands and decoys in a Fully Flexible Receptor model of InhA-NADH

complex (PDB ID: 1ENY), having achieved outstanding results.

Keywords: Virtual Screening, Siamese Neural Network, Scoring Function, Molecular Docking.

LIST OF FIGURES

Figure 2.1 The structure of a 3D grid map using cartesian coordinates 24

Figure 2.2 The InhA structure, represented as cartoon, with co-enzyme NADH (blue).

In red, the ligand THT, which mimics the fatty acid molecule involved in function of

InhA. 26

Figure 3.1 The basic architecture of a neuron . 27

Figure 3.2 Different organizations of neurons showing the numerical path from the input

nodes to the output node. 29

Figure 3.3 The right and left sides of processing unit . 30

Figure 3.4 A single neuron network that computes its own loss 30

Figure 3.5 Diagram of a Siamese Neural Network to calculate E(X1, X2) 33

Figure 3.6 Diagram of Siamese Neural Network that computes the loss 35

Figure 3.7 Computational graph of loss function ζ . 35

Figure 3.8 Receiver operating characteristic (ROC) curve of an arbitrary classifier C1 and

a random binary classifier C2. 37

Figure 4.1 Diagram of the SNN to calculate E(Xr, Xl) . 40

Figure 4.2 Bounding box of 3D grid is centered at center of mass of small molecule 1TN

(PDB ID: 4OXY) . 41

Figure 4.3 Bounding box of 3D grid is centered at binding site of InhA-NADH complex

(PDB ID: 1ENY). InhA is represented as cartoon and NADH, as sticks. 42

Figure 4.4 Receiver operating characteristic curve of both tested models. 47

Figure 4.5 Representation of interactions between small molecule 8PC (PDB ID: 3FNE)

and binding site of InhA-NADH complex (PDB ID: 1ENY). 48

Figure 4.6 Conformation of small molecule 8PC (PDB ID: 3FNE). The atom CL1 is labelled 48

Figure 4.7 Electrostatic surfaces used to verify the influence of a hydrogen bond in

compatibility calculated by the proposed model. Blue areas represent positive elec-

trostatic potential and red areas, negative electrostatic potential. White areas show

potential close to 0 volts. 49

Figure 4.8 Electrostatic surface of binding site of InhA-NADH complex. InhA is repre-

sented as cartoon and NADH is represented as stick, using CPK color scheme. Blue

areas represent positive electrostatic potential and red areas, negative electrostatic

potential. White areas show potential close to 0 volts. 49

LIST OF ACRONYMS

ANN – Artificial Neural Network

AUC – Area Under the Curve

APBS – Automatic Poisson-Boltzmann Solver

CAD – Computer Aided Drug Design

CNN – Convolutional Neural Network

DCNN – Deep Convolutional Neural Network

DUD-E – Directory of Useful Decoys - Enhanced

FEB – Free Energy of Binding

FFR – Fully Flexible Receptor

HTS – High-Throughput Screening

MD – Molecular Dynamics

MTNN – Multi-Task Neural Network

PDB – Protein Data Bank

PINN – Pairwise Input Neural Network

ROC – Receiver Operating Characteristic

SNN – Siamese Neural Network

VS – Virtual Screening

CONTENTS

1 INTRODUCTION . 21

1.1 PROBLEM STATEMENT AND OBJECTIVES . 22

1.2 ORGANIZATION . 22

2 CHEMOINFORMATICS . 23

2.1 VIRTUAL SCREENING . 23

2.2 ELECTROSTATIC PROPERTIES GRIDS . 24

2.3 INHA OF MYCOBACTERIUM TUBERCULOSIS . 25

2.4 FULLY FLEXIBLE RECEPTOR MODEL . 25

3 MACHINE LEARNING . 27

3.1 ARTIFICIAL NEURAL NETWORKS . 27

3.2 TRAINING AN ANN . 29

3.3 CONVOLUTIONAL NEURAL NETWORKS . 31

3.4 SIAMESE NEURAL NETWORK . 32

3.4.1 TRAINING DATA . 33

3.4.2 DEFINING A LOSS FUNCTION TO TRAIN A SNN . 34

3.5 EVALUATING A MACHINE LEARNING MODEL . 35

4 VIRTUAL SCREENING USING SIAMESE NEURAL NETWORKS 39

4.1 PROPOSED ARCHITECTURE . 39

4.1.1 DISTANCE METRIC . 39

4.1.2 MAP FUNCTION . 40

4.1.3 DATA ENCODING . 41

4.2 EXPERIMENTS . 41

4.2.1 DATASET . 42

4.2.2 TRAINING AND RESULTS . 44

4.2.3 COMPARING THE RESULTS . 47

4.3 UNDERSTANDING THE MODEL . 48

5 RELATED WORK . 51

6 CONCLUSION . 53

REFERENCES . 55

APPENDIX A – Autodock Parameters used in docking . 59

21

1. INTRODUCTION

The identification of compounds that show particular pharmacological activity and the

optimization of the pharmacological properties of these compounds are the main focus of early-stage

drug discovery. To this end, industry has been adopting high-throughput screening (HTS) approach,

which consists of experimental screening of large libraries of compounds against a biological target.

Despite the applicability of this method and potential improvements in drug research, its high cost

continues to be a huge drawback [25].

This drawback of experimental HTS has led to the increasing employment of Computer

Aided Drug Design (CADD) methods. Among many available computational methods, Structure-

Based Drug Design (SBDD) is central to the efficient development of drug compounds and to the

understanding of processes involved in molecular recognition [25]. SBDD focus on understanding

the molecular basis behind the diseases and uses this knowledge in the process of drug identification.

By using the 3D structural information about target, it is possible to computationally simulate the

target’s environment and investigate underlying interactions involved in molecular recognition.

One of most used techniques of SBDD is Structured-Based Virtual Screening (SBVS),

which serves as an alternative approach to experimental screening. In SBVS, large libraries of

compounds are computationally screened against drug targets. SBVS usually relies on molecular

docking to screen chemical compounds [6]. Molecular docking predicts where and how a small

molecule binds to target binding site [19]. In order to predict the best pose of molecule, docking

techniques focus on generate different poses and evaluate each one to identify the best pose [1].

For each docked ligand, thousands of different poses are generated and evaluated during docking

execution, which require too much computational resources. So, the application of this technique in

huge compound libraries, like ZINC [16], which, nowadays, contains over 35 million of compounds,

are prohibited without any approach to reduce the number of compounds.

In this context, machine learning methods could be used to reduce the total size of these

libraries, selecting the most promising compounds based on molecular features. These models could

analyze libraries of compounds, identify important molecular features and use this information to

calculate a score based on binding affinity with a specific drug target. This score could be used

to rank molecules in huge libraries, prioritizing compounds with greater chance of high-affinity

binding. These scoring functions (SFs) can effectively exploit very large volumes of structural and

interaction data and learn, based on these experiences, to calculate the score of each compound

[1]. Similar to scoring functions used in molecular docking, this machine learning SFs evaluate

the match between ligand and receptor. These ML scoring functions could also learn to identify

important molecular features from raw-data [1]. The learning of new features from raw-data is the

focus of a branch of machine learning algorithms known as Deep Learning. Deep Learning models

uses a deep graph of multiple processing units to learn low-level features and combine them to

create high-level representations based on training data. Indeed, the analysis of learned features

could clarify some aspects involved in molecular recognition [1].

22

1.1 Problem Statement and Objectives

Structure-Based Virtual Screening relies on molecular docking to screen huge libraries of

compounds against a molecular target. The significant cost of SBVS is computational time, even

with advances in high-performance computing [48]. In order to reduce this cost, a machine learning

model could rank the compounds based on their affinity with a drug target, making possible to

reduce the size of library. This model should take as input a chemical compound and a biological

structure and outputs a score based on the match of chemical structures with a little or no human

intervention. In order to save computational resources used to predict the pose of ligand, this model

should compute the score without the knowledge of position and orientation of molecule in target

binding site.

So, to address these requirements, in this work, we propose the use of siamese neural

networks in structure-based virtual screening. Siamese neural networks takes pairs of samples as

input and outputs the compatibility between them. In addition, the proposed SNN can learn to

identify important chemical features without human intervention, as shown in this work.

1.2 Organization

This work is organized into 6 chapters:

Chapter 2 - Chemoinformatics Detailed topics of chemoinformatics required to a better under-

standing of this work.

Chapter 3 - Machine Learning Presents machine learning models, how they are trained and eval-

uated. This chapter focuses on describing the architecture and training of artificial neural

networks, focusing on siamese neural networks.

Chapter 4 - Virtual Screening using Siamese Neural Networks This chapter describes the pro-

posed approach to rank ligands, the dataset used for training and testing, the results obtained

and a comparison with other ML methods.

Chapter 5 - Related Work Enumerate and discuss related work on machine learning models ap-

plied in context of virtual screening. This chapter compares the results obtained by deep

learning models and as well as the restrictions and applicability of each described approach.

Chapter 6 - Conclusions This chapter concludes the work and discuss some improvements to the

proposed approach.

23

2. CHEMOINFORMATICS

This chapter describes some concepts of bioinformatics and drug development fundamental

to a better understanding of this work. The first section describes topics of virtual screening, focused

on structure-based virtual screening. The second section addresses about electrostatic potential

grids. The third section details some aspects of the enzyme studied in this work, the InhA of

Mycobacterium tuberculosis. And, the fourth and last section of this chapter deals about Fully

Flexible Receptor (FFR) models and their use in molecular docking.

2.1 Virtual screening

Virtual screening (VS) is a computational technique to search for small molecules in huge

libraries and select those structures which are most likely to bind to a drug target [37]. There are

two main approaches of VS: ligand-based virtual screening and structure-based virtual screening.

In ligand-based VS approaches, candidates molecules are selected based on similarity with

known active ligands on target. This approach is most employed when the 3D structure of the

receptor is not available [27]. Structure-based VS techniques use information about target to search

for candidate molecules that show potentially favorable interactions with the target [26]. In this

work, we focus on structure-based virtual screening.

Structure-Based Virtual Screening relies on molecular docking to screen libraries of com-

pounds against a drug target. Molecular docking is a computational approach that predicts the

pose of small molecule (ligand) inside a drug target binding site (receptor) and evaluate interactions

between them [46]. The docking process involves two building blocks: a search algorithm, which

generate conformations of small molecule (also referred as pose), and a scoring function, that mea-

sures the binding affinity of each generated pose. The search algorithm generate poses by altering

torsion angles, orientation and position of molecule in target’s binding site. The scoring function

estimates the binding affinity by observing the physical interactions between ligand and receptor. For

the sake of efficiency, scoring functions do not fully account for certain physical processes involved in

molecular recognition, which limit their ability to rank order and select small molecules. Nowadays,

despite the existence of robust and accurate search algorithms for pose generation, the performance

of scoring function is a major limiting factor for reliability of molecular docking [1]. Usually, docking

approaches consider the structure of receptor as a rigid body, while the small molecule shows a par-

tial flexibility [36]. During docking execution, the ligand assumes different conformations in different

positions of the receptor binding site. Each one of these poses is evaluated by the scoring function.

Due this iterative method of pose generation and pose evaluation, the computational time required

by docking approaches is high [36] and its applicability in very large chemical libraries is prohibited.

Nowadays, there are more than 30 molecular docking programs available. In this work, we

focus on Autodock 4.2.5 [30], due to its highly acceptance in scientific community and its free avail-

24

x
y

z

Figure 2.1: The structure of a 3D grid map using cartesian coordinates

ability to use. Autodock’s results are sorted based on Estimated Free Energy of Binding (EFEB),

calculated by an empirical scoring function [29]. The EFEB is calculated based on interactions be-

tween small molecule and receptor and smaller values means high affinity [24]. In case of existence

of multiple poses with same energy, the results are sorted based on RMSD (Root Square Mean De-

viation). The RMSD is calculated using mean of squared distance between atoms of pose generated

by Autodock and a reference structure previously informed.

2.2 Electrostatic Properties Grids

Biological macromolecules, as proteins and enzymes, are composed of multiple atoms

carrying a partial charge that interacts with each other. This interaction plays an important role in

macromolecular function and molecular recognition. Due to the importance of these interactions in

molecular systems, the study of electrostatic properties is well established [2]

In computational methods, electrostatic properties can be represented using grid maps.

Using this approach, n points are equally distributed along each 3D coordinates, creating a grid.

Figure 2.1 shows a square grid in Cartesian coordinates. The electrostatic potential is calculated on

each purple point and is stored in a 3D matrix.

One of the most widespread models for the evaluation of electrostatic properties is the

Poisson-Boltzmann equation (PBE) [9] [47], shown in equation 2.1, a second-order nonlinear elliptic

partial differential equation that relates the electrostatic potential (φ) to dielectric properties of

the solute and solvent (ε), the ionic strength of the solution and the accessibility of ions to the

solute interior (κ−2), and the distribution of solute atomic partial charges (f). The x refers to the

coordinates of the grid point where electrostatic potential is calculated.

▽ · ε(x)▽φ + κ−2sinh φ(x) = f(x) (2.1)

25

2.3 InhA of Mycobacterium Tuberculosis

The tuberculosis, also known as TB, is an infectious disease caused by Mycobacterium

tuberculosis (Mtb). Tuberculosis generally affects the lungs, but also affects other body parts. TB

is considered a neglected disease due to the lack of development of new drugs. According to World

Health Organization [33], there were 10.4 million new TB cases worldwide in 2015. In this same

year, an estimated 1.8 million people died from TB, added to the 0.4 million deaths from TB disease

among HIV-positive people. According to same report, 480 000 new cases of multidrug-resistant

TB and 100 000 new cases of rifampicin-resistance TB were observed in 2015. From the combined

total of 580 000 cases, India, China and Russia accounted for 45% of these new cases. Although

the observed fell of 22% in the number of TB deaths between 2000 and 2015, TB remains as one

of top 10 causes of death worldwide in 2015.

The observed new cases of drug-resistance TB evidence the necessity of the development

of new drugs. Among Mtb internal structures, the InhA enzyme is a promising drug target, due

to its importance in bacterial metabolism. This enzyme is involved in type II fatty acid synthesis

(FAS-II) [41]. This fatty acid plays an important role as structural components of cell wall. So, the

inhibition of this enzyme affects the cell wall formation, leading to a posterior death of the bacillus.

The InhA enzyme is composed by 268 aminoacids, which, when folded, create a structure

with 7 β-sheet and 8 α-helices. The first 3D structure of InhA (PDB ID: 1ENY) was release in

PDB site [4] by Dessen [10]. The binding site of InhA enzyme is localized between two helices that

are sustained by protein loops. Inside the binding size, there is the co-enzyme NADH [10]. Figure

2.2 shows the 3D structure of InhA, represented as cartoon, and the co-enzyme NADH (PDB ID:

1BVR), highlighted in blue. Inside the binding site, along with NADH, is the ligand THT (PDB ID:

1BVR), which mimics the molecule involved in FAS-II.

2.4 Fully Flexible Receptor Model

During molecular docking, the receptor is treated as a rigid structure, due to the compu-

tational resources required to compute the flexibility of receptor using search algorithms. However,

proteins and enzymes are inherently flexible in their environment and this flexibility is essential to

perform their function [8]. In addition, macromolecules change their shape upon ligand binding,

molding themselves to be complementary to ligand. This change in shape minimize the total Free

Energy of Binding (FEB) of the complex, due to the increase of favorable contacts and to the reduce

the adverse interactions [8].

There are a number of alternative ways to incorporate receptor flexibility in molecular

docking experiments [42]. There are approaches that use a set of receptor conformations in docking

simulations. These conformations can be determined experimentally either by X-ray diffraction or

26

Figure 2.2: The InhA structure, represented as cartoon, with co-enzyme NADH (blue). In red, the
ligand THT, which mimics the fatty acid molecule involved in function of InhA.

NMR experiments, or generated by computational methods, like molecular dynamic (MD) simula-

tions [42].

Molecular dynamics (MD) is a computational method for studying the temporal evolution

of coordinates and momentum of a macromolecular system [34]. A MD simulation can reproduce

the flexibility of a macromolecular system in their environment, if the conditions are known. So,

it is possible to obtain a set of observable conformations of the receptor, which shows different

conformations of binding site. Each obtained state can be used in molecular docking. This set of

states derived from an MD simulation is called Fully Flexible Receptor (FFR) model.

27

3. MACHINE LEARNING

According to Mitchell [28], "a computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P if its performance at tasks in T, as

measured by P, improves with experience E". Machine learning is the field of study of algorithms

that can learn from and make predictions on data based on experience [20], instead of following

strictly static program instructions. The main objective of a machine learning model is to generalize

from experience, i.e., build a generalization model, using experience learned from training examples,

that performs accurately on new and unseen data.

The performance of these models is highly dependent of data representation. Research in

this area attempts to create better representations or create models that can learn representations

from raw-data based on task. In this context, deep learning models can learn to identify low-level

features in raw-data and combine these features to create high-level features [3], which are used in

decision making.

These models are based on a deep graph of multiple processing units, similar to artificial

neural networks (ANN). Due this similarity, algorithms used to train ANNs are used in training of

deep learning models. During training, the weights of each processing unit is updated based on

backwards propagated error of the model, leading to the reduction of loss of the model. This loss

represents the performance P of the model in task T. In following sections, we detail the organization

of ANNs and the algorithms used to train. In addition, we also detail some ANNs architectures, like

convolutional neural networks and siamese neural networks.

3.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational approaches of machine learning that

are highly based on the human brain architecture. A general definition of artificial neural network

is a computational graph whose nodes are processing units and directed edges describe the path of

numerical information from node to node.

x1

x2 f y

x2

Figure 3.1: The basic architecture of a neuron

28

Consider the input X as a n-dimensional vector, i.e., X ∈ R
n and the output Y as a

m-dimensional vector - Y ∈ R
m. Neural networks consists of a chain of function compositions that

transform the input X into Y . Figure 3.1 shows the basic architecture of a single neuron, which

consists of input Xi = [x1, x2, x3], the activation function f and the output y. The activation

function f is responsible for the non-linearity behaviour of ANNs. The choice of the activation

function depends on the connection pattern between neurons and the performance on cross-validation

data, between other variables.

A neural network consists of multiple neurons stacked both horizontally (next to each

other - Figure 3.2a) and vertically (on top of each other - Figure 3.2b). The numerical path is then

followed from input layer to output layer. For multiple neurons, the output activation ai of neuron i

is computed by the inner product between neuron’s input Xi and weights Wi followed by an addition

with its bias bi and the application of an activation function f , as demonstrated below:

ai = f(XT
i · Wi + bi), (3.1)

where Wi ∈ R
n. Considering m neurons stacked horizontally, the multiplication and the non-linearity

can be disentangled and written as a matrix multiplication, as shown below:

z = W · X + b (3.2)

a = f(z), (3.3)

where W ∈ R
m×n, b ∈ R

m, X ∈ R
n, a ∈ R

m and the activation function f is element-wise:

f(z) = f([z1, z2, ..., zn]) = [f(z1), f(z2), ..., f(zn)] (3.4)

Many of these layers can be stacked on top of each other. In this case, the input of layer l

is the output of layer l − 1. So, we denote the multiple matrix operations to compute the predicted

output Y ′, taking the input X, using n layers, where we denote W (i) and b(i) as the weight matrix

and the bias matrix of layer i:

z(1) = W (1) · X + b(1)

a(1) = f(z(1))

z(2) = W (2) · a(1) + b(2)

a(2) = f(z(2))

· · ·

z(n) = W (n) · a(n−1) + b(n)

Y ′ = f(z(n))

29

neurons

inputs

output

(a) Horizontally stacked neurons

neuron

neuron

output

input

(b) Vertically stacked neurons

Figure 3.2: Different organizations of neurons showing the numerical path from the input nodes to
the output node.

In this example, activation functions of all layers are the same. However, it is possible to

use different activation functions in each layer. In classification tasks, the output layer usually uses

the softmax function combined with cross-entropy loss function. This normalization of output shows

good results in these tasks, due to the minimization of cross-entropy between the true distribution

in data and estimated distribution of the trained model [17]. In following sections, we describe

different architectures of ANNs and their applicability. For more information about neural networks,

refer to [39].

3.2 Training an ANN

Once an artificial neural network has been structured, the training can be started. In the

beginning of the training, all weights are randomly initialized, following different approaches, like

[12] or [14]. So, an iterative process is started. At each step, a number of samples, which we called

batch, is processed and the predicted output is compared against the desired output. The error is

propagated backwards and is used to adjust all weights. This step is repeated over and over until a

stop condition is reached. During training, the same set of data is processed many times as weights

are continuously refined.

To train a multilayer neural network, the backpropagation algorithm [38] is used to compute

∆w, that updates each weight w. This algorithm follows the inverse direction of numerical path in

an ANN and computes the gradient of all network parameters. It is an efficient way to re-use some

parts of gradients computating that are equal to different parameters, as shown later in this work.

To compute these gradients, first we change the target architecture of ANN, adding an

extra layer at the end. This final layer is responsible for computing the loss of the model. So, instead

of returning Y ′, the altered network outputs its own loss. If we follow backwards the numerical path,

starting at this extra layer and ending at input, we can compute the partial gradient of loss with

respect to any weight in ANN. So, in order to illustrate this process, we assume that each node is

30

f ′ f

Figure 3.3: The right and left sides of processing unit

x1 y

x2 f ζ loss

x2

Figure 3.4: A single neuron network that computes its own loss

composed of two parts, as shown in Figure 3.3. The right side of this node computes the function

associated with the node while the left side calculates the derivative of this function [38].

Now, considering a network composed of one single neuron, as shown in Figure 3.1, and

as first step, the addition of the loss layer ζ, resulting in network shown in Figure 3.4. It is observed

that the loss layer takes as input the output of network and desired output y and outputs a real

value. The derivative of loss ζ with respect to weight wi of input xi is computed in two stages [38]:

Feed-forward the input X is fed into input neurons. The output of each node is evaluated and

propagates through network. The derivative is stored in each node.

Backpropagation the constant 1 is fed into loss layer and the network is followed backwards.

Incoming information is multiplied, due the chain rule of derivative, by the derivative stored in

left part of the unit. The result in each node is the derivative of the loss function with respect

to its weights and inputs.

Since we computed the gradient of loss function w.r.t. any parameter in ANN, we can

update each parameter. For instance, we focus our attention on a weight wij that associates the

node i with node j. To calculate ∆wij, we can treat node i as an input node of sub-network made

of all paths starting at wij and ending at the output of loss layer. The input of sub-network is oi,

which is the stored output of node i. The input of node j is oiwij. The backpropagation computes

the gradient of ζ with respect to this input, i.e, ∂ζ/∂oiwij. Since, during backpropagation, oi is

treated as a constant, we have:

∂ζ

∂wij

= oi

∂ζ

∂oiwij

(3.5)

31

So, using the calculated gradient, it is possible to update wij using gradient descent by

adding the complement

∆wij = −γ
∂ζ

∂wij

, (3.6)

where γ refers to learning rate, i.e, how much of gradient is used to update each weight. This pa-

rameter needs to be defined by the specialist. There are approaches to update the learning rate using

different heuristics, like adadelta [49] and adam [18]. For more information about backpropagation

and gradient descent, please refer to [38].

3.3 Convolutional Neural Networks

Convolutional Neural Network (CNN) is a type of ANN in which the connectivity pattern

between neurons favors the identification of local correlations on input [23]. CNNs take advantage

on the fact that the input X is a multidimensional matrix, like images (2D matrices) or grid maps

(3D matrices). These networks process these raw data matrices and use the extracted features to

calculate the output y. A CNN consists of multiple layers of small neurons collections which process

portions of input matrix. These processed portions are tiled so that their input regions overlap,

in order to obtain better representations of data. Convolutional networks are usually composed of

three main types of layers: convolutional layer, pooling layer and fully connected layer.

A convolutional neural network expects a specific organization of these multidimensional

matrices in its input layer. To better explain this organization, let us consider a RGB image of width

w and height h. This image actually consists of 3 different matrices w×h, which one containing the

pixel values for each color. In this case, this RGB image really is 3×w ×h matrix, once RGB images

show 3 independent channels, one for each color. The same idea can be applied in biochemical grid

maps. We can define each channel as a specific biochemical property. In this work, we also call this

multidimensional matrix as input volume.

Convolutional Layer

The convolutional layer is the core building block of CNNs. Units in this layer are respon-

sible for process the input matrix with a filter, which is spatially small but extends the full depth of

channels. During the forward pass, each filter is slid across the spatial dimension of input volume

and computes the dot product between filter and input at each position. The application of a filter

in an input volume creates a feature map. Each convolution layer has an entire set of filter and each

of them produces a separate and different feature map. These feature maps form a new volume,

where each feature map corresponds to a single channel.

The size of output volume is controlled by three hyperparameters: channels, stride and

padding. Channels refers to the number of filters in convolutional layers, which defines the number of

32

feature maps. The size of each feature map depends on the stride with filter is slid. And sometimes,

to enable the application of filter on border of feature map, the input volume can be padded with

real values, controlled by hyperparameter padding.

These filters can deal with high-dimensional inputs without leading to an impractical num-

bers of free parameters. Besides, they can exploit local correlation by enforcing a local connectivity

pattern between layers. It is important to emphasize that connections between layers are local in

space, but always extend along all channels of the input volume. Such architecture ensures that

filters produce a strong response to a spatial local pattern.

Pooling Layer

The objective of pooling layers is to progressively reduce the spatial size of input volume.

Units in these layers operates independently in each channel performing a down sampling operation

along spatial dimensional of input, using max or average functions. This down sampling is done

with filters of fixed size, which are applied in portions of input with no overlap.

Fully Connected Layer

The high level reasoning of convolutional networks is done using the fully connected layers,

which combines the features of all feature maps to calculate the output y. Unlike convolution units,

the input of each neuron in layer m consists of output of all neurons in layer m−1, similar to regular

neural networks.

3.4 Siamese Neural Network

Traditional approaches to classification using neural networks generally require that all the

categories be known in advance and that exist training examples for all classes. These approaches

are intrinsically limited to a fairly number of categories (on the order of 1000). Furthermore, as

these models learn parameters that best distinguish examples of different classes, they require a

fair number of samples per category [13]. Those methods are unsuitable for applications where the

number of categories is very large, the number of samples per category is small or only a subset of

categories is known a priori [22].

Usually, approaches to this kind of problems, with huge number of categories or small

samples per categories, are distance-based methods, which consist in creating a similarity metric

that can be used to compare elements of data [13]. These methods can also be used to compare

samples of previously unseen-categories. The idea behind a similarity measure is to map the input

patterns into a target space where distance measures (such as Euclidean distance) can be applied.

Similarity metric can be seen as a function E(X1, X2) = ||G(W, X1) − G(W, X2)|| where

G(W, X) is the function parametrized by W , that maps the input X into the target space. In

33

this target space, the distance between representations can be seen as similarity. So, the value of

E(X1, X2) must be small if X1 and X2 belong to same category, and large, otherwise.

The architecture of a siamese neural network is shown in Figure 3.5, where X1 and X2 is a

pair of inputs, G(W, X) is the map function and E(X1, X2) is the calculated similarity between X1

and X2. In this architecture, the map function G(W, X) is a model that can learn representations

of data, like deep learning models. This kind of network was used to compute similarity between

human faces [7], using a convolutional neural network as G(W, X).

G(W, X2)G(W, X1)

E(X1, X2) = ||G(W, X1) − G(W, X2)||

X1 X2

Similarity

Figure 3.5: Diagram of a Siamese Neural Network to calculate E(X1, X2)

3.4.1 Training data

A siamese neural network computes the energy between two samples by calculating the

distance between low-dimensional representations of these samples. To learn the best parametriza-

tion W of map function G(W, x), a label to each pair is required. Due to this requirement, SNN

is considered a supervised approach, i.e., approaches of machine learning that require a label or

classification of samples in learning phase.

To train a SNN, we are given a set of training samples S = {(Xi, Xj), c : i = 1..N, j =

1..N}, where Xi and Xj refer to ith and jth samples of training data, respectively, N refers to total

size of training data and c is the classification of each pair (c = 1 for compatible pair, c = 0, for

non-compatible pair). The approach used to generate these pairs is highly dependent of nature,

origin and organization training data.

34

3.4.2 Defining a loss function to train a SNN

In order to learn the parametrization W , an objective function must be defined. In this

work, we use the contrastive loss function described by Hadsell et al in [13], shown in equation 3.7,

where c refers to label assignment of pair (c = 1 if pair is compatible, c = 0, otherwise) and the

constant m is the margin, which define an radius around G(W, x) where dissimilar pairs contribute

to loss functions. This loss function is composed by a sum of two terms: the first term is the

partial loss for compatible pairs and the second, for non-compatible pairs. The minimization of this

function decreases the energy of compatible pairs and increases the energy of non-compatible ones.

L(W, c, Xi, Xj) =c
1

2
(E(W, Xi, Xj))

2 + (1 − c){max(0, m − E(W, Xi, Xj))} (3.7)

An efficient way of performing the minimization of contractive loss consists in using gradi-

ent descent combined with backpropagation [22], that calculates the gradient of ζ(W, c, Xi, Xj) with

respect to an arbitrary weight wij, corresponding to weight of input i on neuron j. This approach

uses the computational graph to compute relations between weights, for the correct calculation of

gradient. To evaluate the applicability of contrastive loss and verify that propagated gradient leads

to a improvement in SNN performance, we applied the backpropagation algorithm to this function.

To calculate the gradient, let us consider an arbitrary siamese neural network. In this case,

the merge layer computes the euclidean distance between low-dimensional vectors. At the end of

network, a cost layer, that computes ζ(W, c, Xi, Xj), is inserted. So, the neural network is now

computing the loss of input pair (Xi, Xj) with label c. This architecture is shown in Figure 3.6.

Firstly, the computational graph of contrastive loss function (equation 3.7) is shown in

Figure 3.7. The inputs c and E(Xi, Xj), which, for simplicity, we call E, are, respectively, the

classification and the output energy of an arbitrary pair of training data. Using the graph, the

gradient of ζ with respect to an arbitrary weight wi,j is

∂ζ

∂wij

=
1

2

∂cE2

∂wij

+
∂(1 − c)max(0, m − E)

∂wij

(3.8)

Splitting both terms and applying the multiplication rule, we have

∂cE2

∂wij

= 2c
∂E

∂wij

+ E2 ∂c

∂wij

(3.9)

∂(1 − c)max(0, m − E)

∂wij

= (1 − c)
∂E2

∂wij

+ max(0, m − E)
∂(1 − c)

∂wij

(3.10)

Since the input c is not dependent of wij, the gradients ∂c/∂wij and ∂(1 − c)/∂wij are

both equal to 0. The output of max function is defined by the sign of m − E: if m − E > 0,

the gradient −∂E/∂wij is propagated, and, otherwise, the gradient ∂0/∂wij = 0 is propagated. In

35

G(W, Xj)G(W, Xi)

E(Xi, Xj)

W

Xi Xj

ζ(W, c, Xi, Xj)

loss

Figure 3.6: Diagram of Siamese Neural Network that computes the loss

E2 ×

+

1
2

loss

m − E max(0, m − E) ×

E

c

1 − c

Figure 3.7: Computational graph of loss function ζ

this example, we assume that m is sufficiently large to guarantee that m − E > 0. So, we can

demonstrate that

∂ζ

∂wij

= c
∂E

∂wij

−
1

2
(1 − c)

∂E

∂wij

= [c − (1 − c)]
∂E

∂wij

, (3.11)

This derivative shows the desirable behavior of our loss function: if c = 1, i.e, a compatible

pair, the gradient ∂ζ/∂wij is the same sign of ∂E/∂wij, so, the minimization of E leads to a

minimization of ζ; if c = 0, the maximization of E leads to a minimization of ζ.

3.5 Evaluating a Machine Learning Model

One of the most important tasks in building and training a machine learning model is the

evaluation of its performance. The performance metrics used in this evaluation are highly dependent

36

of machine learning task. In this work, we focus on classification metrics. First of all, it is important

to emphasize that the core objective of the learning is to generalize from the experience, i.e., perform

accurately on new and unseen tasks after having experienced a data set. Due to this reason, the

available data is divided in training set and testing set. During training, the testing set must

remain totally hidden from the model, so, the evaluation metrics, applied in testing set, measure its

generalization power.

As described before, the objective function, minimized during training, measures the per-

formance. This function is used to guide the search of the best parametrization, even though,

different machine learning models use different objective functions in their training. So, it is not

desirable to compare losses calculated by different functions, once their value for two models with

similar performance using other metrics can vary in order of magnitude.

Due to these differences in objectives functions, other performance metrics can be used to

compare different models. There are specific metrics for tasks of classification, regression, clustering,

ranking, among others. In this work, we focus on metrics for classification and ranking. To measure

the performance of classification tasks, accuracy and AUC are usually applied. In ranking tasks,

precision-recall is widely used.

Accuracy is the measure of how often the classifier correctly labels a sample. It is the ratio

between the number of correct predictions and the size of data set. Accuracy can be computed

using equation 3.12, where yi and y′

i refers, respectively, the correct label and the predicted label of

sample i, N is the total size of data set and [y′

i == yi] returns 1, if the logical proposition y′

i == yi

is true, and 0, if otherwise.

accuracy =
1

N

N∑

i=0

[y′

i == yi] (3.12)

The AUC metric stands from Area Under Curve, usually calculated based on the Receiver

Operating Characteristic (ROC) curve. The ROC curve plots the rate of true positives to the rate

of false positives, showing the sensitivity of the classifier. This metric shows how many correct

positive labels are returned by the model as more and more false positives are allowed. A perfect

classifier should maintain the true positive rate at 100% immediately, without incurring in any false

positive. Good classifiers show a bigger AUC, since they show a high true positive rate. The range

of calculated AUC varies in [0, 1], although a random binary classifier achieves 0.5, since the rate

of false positive and true positive increase equally as decision boundary is altered. The Figure 3.8

shows a ROC curve of an arbitrary classifier C1 and a random binary classifier, identified as C2.

Precision-recall actually refers to two metrics: precision and recall. Precision metric focus

on number of true positives among the set of samples predicted as positive. Recall metric describes

about the number of true positive samples among all available positive samples. Precision and recall

are computed using equations 3.13 and 3.14 respectively, where yi and y′

i refer the correct label and

37

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P

os
it

iv
e

R
at

e

ROC Curve

C1
C2

Figure 3.8: Receiver operating characteristic (ROC) curve of an arbitrary classifier C1 and a random
binary classifier C2.

the predicted label of sample i, N is the total size of data set and [(y′

i == 1) ∧ (yi == 1)] returns

1, if the logical proposition (y′

i == 1) and (yi == 1) are true, and 0, if otherwise.

precision =

∑N
i=0[(y

′

i == 1) ∧ (yi == 1)]
∑N

i=0[y
′

i == 1]
(3.13)

recall =

∑N
i=0[(y

′

i == 1) ∧ (yi == 1)]
∑N

i=0[yi == 1]
(3.14)

38

39

4. VIRTUAL SCREENING USING SIAMESE NEURAL NETWORKS

Structure based virtual screening (SBVS) is a computational approach to identify novel

hit compounds when 3D structure of drug target is known. Molecular docking is the most used

approach of SBVS applied to filter small molecules in compound libraries [25]. Despite the accuracy

of this strategy in drug development, its implementation costs are prohibited. Molecular docking

requires a lot of computational resources to dock a huge library of compounds, due to the successive

application of the search algorithm and the scoring function.

The main objective of this work is to propose a cheaper alternative method to rank ligands

based on affinity using siamese neural networks, reducing the size of compounds to dock. In the

following sections, we describe the architecture of proposed approach.

4.1 Proposed architecture

The objective of proposed model is to rank small molecules based on binding affinity with a

drug target. This ranking is based on a distance-based metric calculated between the target and the

candidate molecule. We intend that our approach could be used along molecular docking, increasing

the performance and accuracy, and reducing the computational time and human intervention in drug

development. It is important to emphasize that the proposed model, unlike other approaches to

VS [30] [36] [35] [44], does not require the location of each ligand atom in the binding site of the

target.

The proposed model is composed of a siamese neural network that computes the com-

patibility between target binding site and a candidate molecule. As described in chapter 3, siamese

neural networks compute the similarity between samples using a distance-based metric. In that case,

both samples can be directly compared, due to the fact that similar samples show similar attributes.

However, in case of ranking ligands, high affinity binding requires the match of complementary

features between ligand and receptor [32]. So, due to this complementarity between ligand and

receptor, the representations generated by map function must be complementary.

4.1.1 Distance Metric

In ligand classification task using siamese neural networks, the distance metric must ac-

count the required complementarity between vectors. Besides, as described in chapter 3, siamese

neural network outputs lower energy to compatible (similar) pairs. And the minimization of con-

trastive loss function enforces this comportment. So, we trained different architectures of map

function with each distance metric proposed. The training data and validation data of these SNN

are both composed by a small portion of training data, described in details in section 4.2.1. Ev-

40

G(W, x)G(W, x)

E(W, Xr, Xl)

W

Xr Xl

Compatibility

GW (Xr) GW (Xl)

Figure 4.1: Diagram of the SNN to calculate E(Xr, Xl)

ery model was training using Stochastic Gradient Descent (SGD) algorithm and the gradients were

computed by backpropagation. The learning rates were update using Adam method [18].

We evaluated two different distance metrics: cosine distance (equation 4.1), which is based

in cosine similarity, and euclidean distance (equation 4.2). These metrics were altered to output a

small value distances to complementary vectors and large value distances, otherwise. The cosine

distance varies between [0, 2]. In training, we multiply this distance by a factor m and define the

threshold of classification at m/2. The threshold of the model using euclidean distance, which varies

in range [0, +∞), was also set to m/2.

We trained two architectures of SNN, each one with a different distance metric. The map

function of both architectures were composed 4 fully connected layers with 512, 256, 64, 8 neurons,

respectively. We trained both architectures during 2000 optimization steps. Each optimization step

is composed of a feed-forward step and a backpropagation step. The loss reduces quickly using the

distance metric shown in Equation 4.2. So, due to this behaviour, we chose this metric to compute

the similarity calculated by SNN.

E(Xl, Xr) = 1 +
Vr · Vl

‖Vr‖ ‖Vl‖
(4.1)

E(Xl, Xr) = ‖Vr + Vl‖ (4.2)

4.1.2 Map function

The map function G(W, x) of SNN consists of a convolutional neural network. CNNs

expect, as input, a matrix of real valued features. Due this requirement, we use grids of biochemical

properties as input. In addition, once chemical interactions are predominantly local [5], convolutional

layers of CNNs could capture spatially local correlations in these grids and use them to generate

41

Figure 4.2: Bounding box of 3D grid is centered at center of mass of small molecule 1TN (PDB ID:
4OXY)

more improved representations. So, the use of CNN as G(W, x) is appropriate [44]. In the following

sections, we describe the experiments executed with this architecture.

4.1.3 Data encoding

The detection of important chemical interactions is a central key in development of an

accurate drug identification model. These chemical interactions are predominantly local [5]. So,

the convolutional layers of an SNN can be used to detect these features and use them in decision

making. However, convolutional layer takes as input a matrix of number. So, due to this behavior,

the involved molecular structures must be encoded as n-dimensional matrices in order to feed a

neural network.

In this work, we chose to encode these structures as a 3D grid of electrostatic potential.

Electrostatic interactions play an important role in molecular recognition and constitute a driving

force underlying protein-ligand and protein-protein interactions [15]. For each point in the grid,

the electrostatic potential is calculated and a real value is returned, creating a 3D matrix. These

grids were generated by APBS (Automatic Poisson Boltzmann Solver) [2], using Poisson-Boltzmann

Equation, described in more details in section 2.2. The generated grids were adjusted to fit a

25
◦

A ×25
◦

A ×25
◦

A cube, using grid spacing of 1
◦

A, centered at the center of mass, in case of

ligand (Figure 4.2), and at binding site, in case of protein grids (see Figure 4.3).

4.2 Experiments

This section describes the experiments performed using the proposed model. We compare

the results obtained with our model to those obtained with a DCNN, similar to the approach

described in [44].

42

Figure 4.3: Bounding box of 3D grid is centered at binding site of InhA-NADH complex (PDB ID:
1ENY). InhA is represented as cartoon and NADH, as sticks.

4.2.1 Dataset

We demonstrate the application of the proposed model on a Fully Flexible Receptor (FFR)

Model containing 19.5 nanoseconds molecular dynamics trajectories simulation of InhA-NADH en-

zyme complex of Mycobacterium Tuberculosis (PDB ID:1ENY) [11]. In this FFR model, there are

19 500 snapshots, one for each 1 picoseconds.

Once CNNs are used as map function, the model can capture local correlations and use it

in decision making. Besides, differences in torsion angles of small molecules influence the position of

chemical features and this change can be the difference between high-affinity binding and low-affinity

binding. So, to train our model, we used conformations of ligands that could match with the target

binding site.

To create the dataset used in the experiments, we selected 38 small molecules, equally

distributed between actives and decoys. The 19 actives ligands were selected from structures of InhA

available in RCSB PDB [4] and were studied in [36]. The 19 decoys were selected from decoy subset

of InhA from DUD-E [31]. In DUD-E, decoys were selected based on similar physical properties but

43

Table 4.1: Small molecules in training set

ZINC ID Classification Source
ZINC21289745 active PDB ID: 1P44
ZINC14961108 active PDB ID: 2B36
ZINC02943677 active PDB ID: 4U0J
ZINC00851723 active PDB ID: 4TRJ
ZINC01103943 active PDB ID: 4TZK
ZINC51492080 active PDB ID: 4U0K
ZINC06700734 active PDB ID: 4TZT
ZINC01295794 active PDB ID: 2NSD
ZINC58632782 active PDB ID: 2X22
ZINC29061009 active PDB ID: 3FNF
ZINC39232487 active PDB ID: 3FNG
ZINC16052312 active PDB ID: 3FNH
ZINC95921165 active PDB ID: 4BQP
ZINC95921221 active PDB ID: 4OIM
ZINC98208018 active PDB ID: 4OXN
ZINC04008680 decoy DUD-E
ZINC08861490 decoy DUD-E
ZINC12599848 decoy DUD-E
ZINC15232810 decoy DUD-E
ZINC19902859 decoy DUD-E
ZINC20614024 decoy DUD-E
ZINC32129225 decoy DUD-E
ZINC37151917 decoy DUD-E
ZINC37503812 decoy DUD-E
ZINC43123516 decoy DUD-E
ZINC50005899 decoy DUD-E
ZINC53766965 decoy DUD-E
ZINC59011110 decoy DUD-E
ZINC59250224 decoy DUD-E
ZINC62766324 decoy DUD-E

different chemical structures from known active ligands. For our dataset, we selected 19 decoys

based on pharmacophore fingerprints similarity of each selected active ligand. The training and

testing set were split based on molecule, once, in virtual screening, new and unseen molecules must

be compared to the target binding site. The molecules in training set and testing set are shown in

table 4.1 and 4.2 respectively. These tables show the selected molecules identified by its ZINC ID,

along with classification and source of each one.

The docking of 38 molecules were done using Autodock 4.2.5 [30], using 3 000 000 energy

evaluations or 27 000 generations as stop criteria for genetic algorithm with population size of 150

individuals. The full list of parameters used is shown in appendix APPENDIX A. As receptors, we

selected 976 snapshots of InhA-NADH complex from 19.5ns MD FFR model, one conformation for

each 20ps of simulation.

44

Table 4.2: Small molecules in testing set

ZINC ID Classification source
ZINC14961116 active PDB ID: 2B37
ZINC29060814 active PDB ID: 3FNE
ZINC98209089 active PDB ID: 4COD
ZINC29050100 active PDB ID: 4OXY
ZINC03314334 decoy DUD-E
ZINC21950587 decoy DUD-E
ZINC21987975 decoy DUD-E
ZINC64521482 decoy DUD-E

For each molecular docking execution, we selected the pose with best FEB. In order to

enable the model to tolerate small changes in conformation of ligands, we aligned and clustered all

selected poses with average linkage algorithm using the RMSD as distance metric. We configure the

average linkage algorithm to stop joining clusters if the distance between clusters was greater than

1
◦

A. The most representative conformation of each cluster, i.e, the most similar conformation with

all other in cluster, was selected and randomly rotated around the center of mass. This rotation

ensures that SNN can identify chemical features despite ligand position and orientation. Each

rotated pose was paired with the FFR snapshot used in docking.

4.2.2 Training and Results

In this section, we discuss the results obtained using DCNN, considering just the grid of

ligand as input, and the proposed SNN approach to classify and rank ligands. In case of probabilistic

models, DCNN, the rank are based on calculated probability, i.e, the greater the probability of

high-affinity binding, better the position achieved by a compound.

In this work, the accuracy and the AUC (Area Under Curve) are used to compare the

models. In addition, we employed precision-recall metrics to evaluate the bias of each tested model.

Training Method

In order to define the best architecture and hyperparameters of optimization process of

both tested networks, we tested different architectures and evaluate the performance of each model

against a small subset of training data. Each ANN architecture was trained during 5 epochs with

different hyperparameters. The best performing architecture was selected to another optimization

process.

To define the best approach to update learning rate of gradient descent algorithm, we

tested two different approaches, Adam [18] and Adadelta [49]. We use the grid search to define

the best parameters of each approach and compared the results obtained after 2 epochs for each

45

combination of parameters. The configuration with best performance was used in the training of

network.

Siamese Neural Network

Using the dataset described above, we trained a siamese neural network as described above.

In order to train this model, we used the contrastive loss, shown in equation 3.7, minimized using

stochastic gradient descent (SGD) and backpropagation. The learning rate of SGD was updated

using Adam method [18]. The parameters of Adam were optimized using the grid search. In this

search, random values were generated for each parameter (initial lr α, β1,β2,ǫ) and all combinations

of these values were tested using a small dataset. To achieve the best architecture of SNN, different

architectures were trained using a subset of training data. The performance of each architecture

in another subset of training data was evaluated and compared. In this work, we only describe the

best performing architecture.

In our experiments, the map function that shows best performance consists of n convo-

lutional layers followed by 3 fully connected layers. ReLU was the activation function used in all

neurons, except the outputs, which uses the linear function. Cx denotes convolutional layers and Fx

refers to fully connected layer, where x is the layer index.

C1 Filters: 4; Kernel Size: 5 × 5 × 5; Stride: 2 × 2 × 2; Parameters: 504;

C2 Filters: 8; Kernel Size: 5 × 5 × 5; Stride: 2 × 2 × 2; Parameters: 4008;

C3 Filters: 8; Kernel Size: 5 × 5 × 5; Stride: 1 × 1 × 1; Parameters: 8008;

C4 Filters: 16; Kernel Size: 3 × 3 × 3; Stride: 1 × 1 × 1; Parameters: 3472;

F5 Number of units: 32; Parameters: 64032;

F6 Number of units: 16; Parameters: 528;

F7 Number of units: 8; Parameters: 136;

Siamese neural networks are considered an energy-based model, which lacks normalization

in output. To enable direct comparison with other machine learning approaches, we normalized the

output of SNN using the logistic function. The default decision boundary of logistic function is at

0 and the not normalized output of SNN varies in range [0, +∞). In this case, we set a threshold

of energy, which defines the maximum energy of a pair (Xl, Xr) to be labelled as compatible or Xl

be classified as active. During our tests, we set the threshold at m/2, where m is the margin in

contrastive loss function. The normalization function used is shown in equation 4.3, where E(Xl, Xr)

refers to output of model feed with pair (Xl, Xr).

pactive =
1

1 + e(E(Xl,Xr)− m

2
)

(4.3)

46

Using the normalized output, it is possible to compute the AUC and accuracy of this

model, which achieved 0.92 AUC and 85.81% of accuracy. The precision and recall are 0.85 and

0.81, respectively, which suggests that this trained model is more restrictive in classifying molecules

as active, even if some of discarded molecules are, in fact, active.

DCNN

As described in chapter 3, deep convolutional neural networks are subclass of neural net-

works that can correlate spatial information on multi-dimensional matrix using convolutional layers.

DCNN takes as input a multi-dimensional matrix and outputs a normalized probability, due to the

use of softmax function in output neurons.

In our experiments, to avoid the requirement of knowing the location of each atom inside

target binding site, the input of trained DCNN is only the 3D grid of ligand. Using this architecture,

the trained DCNN learns to identify candidate molecules for a single target. However, this limitation

do not affects our results, once dataset used in training and tests contains one single FFR model of

a single receptor. As the used dataset contains a pair of grids (Xl, Xr) and a label c, we discard the

grid Xr and train the model using just Xl and c.

Different network architecture was trained using the dataset. In this work, we describe

the architecture with best performance. Cx denotes convolutional layers with ReLU activation, Px

denotes a max pooling layer where x is the layer index, O refers to 2-way softmax layer.

C1 Filters: 4; Kernel Size: 3 × 3 × 3; Padding: 1 × 1 × 1; Parameters: 112;

P2 Pool Filter: 2 × 2 × 2

C3 Filters: 8; Kernel Size: 3 × 3 × 3; Padding: 1 × 1 × 1; Parameters: 876;

P4 Pool Filter: 2 × 2 × 2

C5 Filters: 16; Kernel Size: 1 × 1 × 1; No Padding ; Parameters: 1142;

C6 Filters: 16; Kernel Size: 3 × 3 × 3; Padding: 1 × 1 × 1; Parameters: 69282;

P7 Pool Filter: 2 × 2 × 2

C8 Filters: 32; Kernel Size: 1 × 1 × 1; No Padding ; Parameters: 554;

C6 Filters: 16; Kernel Size: 3 × 3 × 3; No Padding; Parameters: 55360;

O Number of units: 2; Parameters: 130;

The loss function used to train this model was cross-entropy, shown in equation 4.4,

where y′ is the output of neural network feed by X. The stochastic gradient-descent algorithm

47

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P

os
it

iv
e

R
at

e

ROC Curve

SNN
DCNN

Figure 4.4: Receiver operating characteristic curve of both tested models.

and backpropagation were applied to minimize the loss. The learning rate in gradient-descent was

updated using Adadelta method.

ζ(W, X, c) = −c log(y′) − (1 − c) log(1 − y′) (4.4)

This architecture of DCNN achieved 74.03% of accuracy and 0.82 of AUC. The precision

and recall are both 0.74, what implies that this model mislabel the same number of actives and

decoys molecules, showing no bias in classification.

4.2.3 Comparing the results

After training both models, we can measure and compare their performance. We sum-

marize the obtained results in table 4.3. The proposed model achieved 0.92 AUC, outstanding the

DCNN approach. Figure 4.4 shows the ROC curve of both approaches. Besides, the accuracy of

the proposed model was greater too. The Precision-recall shows that the proposed model is more

restrictive in considering a molecule as active, even if this restriction force the misclassification of

true active molecules.

Table 4.3: Statistics of performance

Accuracy Precision Recall AUC
SNN 85.81% 0.85 0.81 0.92

DCNN 74.03% 0.74 0.74 0.82

48

Figure 4.5: Representation of interactions between small molecule 8PC (PDB ID: 3FNE) and binding
site of InhA-NADH complex (PDB ID: 1ENY).

Figure 4.6: Conformation of small molecule 8PC (PDB ID: 3FNE). The atom CL1 is labelled

4.3 Understanding the model

To achieve better understanding about map function G(W, X) and how chemical fea-

tures are combined to calculate compatibility, we artificially altered changes of a docked ligand and

compared the calculated compatibility between an original grid and a grid with altered charges as

input.

Firstly, we identified an important interaction involved in molecular recognition between a

docked conformation of inhibitor 8PC (8PC400 from PDB ID: 3FNE) and a snapshot of FFR model.

Using Ligplot+ [21], we observed a hydrogen bond between chlorine atom CL1 of 8PC, shown in

Figure 4.6, and nitrogen atom N7N of NADH complex, as shown in Figure 4.5.

In order to measure the influence of this interaction in compatibility calculated by SNN, we

artificially altered the calculated charge of atom CL1 to avoid the existence of the hydrogen bond.

To better visualize the difference between original and altered grid, we plotted the electrostatic

surface in Figure 4.7 , visualized in PyMOL [40]. Both surfaces are aligned with Figure 4.6, so,

it is possible to identify the region of atom CL1 on electrostatic surface. In this Figure, blue

color represents positive electrostatic potential, and red color, negative electrostatic potential. It

is possible to observe a slight difference between the original surface (Figure 4.7a) and the surface

49

(a) Original electrostatic surface of
molecule 8PC

(b) Altered electrostatic surface of
molecule 8PC

Figure 4.7: Electrostatic surfaces used to verify the influence of a hydrogen bond in compatibility
calculated by the proposed model. Blue areas represent positive electrostatic potential and red areas,
negative electrostatic potential. White areas show potential close to 0 volts.

Figure 4.8: Electrostatic surface of binding site of InhA-NADH complex. InhA is represented as
cartoon and NADH is represented as stick, using CPK color scheme. Blue areas represent positive
electrostatic potential and red areas, negative electrostatic potential. White areas show potential
close to 0 volts.

with altered charges (Figure 4.7b); the potential at region of atom CL1 is slightly higher. Besides,

as shown in Figure 4.8, most of binding site of InhA shows positive electrostatic potential. So,

this increase in potential of grid shown in Figure 4.7b should reduce the calculated compatibility

(increase the output of SNN). As expected, the compatibility between the original pair is 0.71,

while the compatibility of altered grid is 32.32. This difference shows that the model is identifying

important features and matching complementary features to calculate the compatibility.

50

51

5. RELATED WORK

Virtual screening techniques focus on ranking a set of previously untested molecules ac-

cording to the probability of successfully binding to a drug target [43]. In this context, there are two

main approaches: structure-based virtual screening, which requires the knowledge of 3D structure

of target; and ligand-based virtual screening, which is based on search of compounds that are similar

to known ligands that exhibit the desired biological activity.

Nowadays, the most used computational method in SBVS is molecular docking, which

uses scoring functions to evaluate each generated pose. For the sake of efficiency, these functions

are based on theory-inspired mathematical functions that approximate physical forces underlying

molecular interactions. To overcome these limitations, machine learning approaches to scoring

functions were proposed. Different ML approaches were used to mimic scoring functions, including

random forest, SVM and neural networks [1]. Nowadays, deep learning approaches are being used in

this context. Wallach et al [44] and Pereira et al [35] proposed the use of deep convolutional neural

networks to distinguish between active and decoys docked inside target binding site. These DCNNs

were feed with 3D grids of biochemical descriptors. Both works used DUD-E [31] as training and

testing data. The main difference between these works is the data encoding. AtomNet, proposed

by Wallach, uses as input 3D grids protein-ligands descriptors, while DeepVS, proposed by Pereira,

uses atom context representations, which includes features like atom types, atomic partial charges,

amino acid types and distances from neighbors to the reference atom. Both works achieved more

than 0.9 AUC on specific targets of DUD-E.

Despite the good results obtained using deep learning models to mimic scoring functions,

these approaches require the knowledge of the positions of all atoms of ligands inside target binding

site. To overcome this limitation, Wang et al [45] proposed an architecture of neural network that

combine information about ligand and receptor. Wang’s approach creates binary representations of

receptor and ligand based on chemical fingerprints and combines these representations in a Pairwise

Input Neural Network (PINN). Using a different approach, Untherthiner and Mayr et al [43] proposed

a multi-task neural network for target prediction. This MTNN comprises one or multiple layers of

ReLU hidden layers followed by one layer of 1 230 sigmoid output units, where each output unit refers

to a specific drug target. The input of this network is a binary sparse vector of ligand fingerprints.

According to this work, this approach achieves a mean AUC of 0.83 across all studied targets.

The approach proposed in this work is different from the described methods. The proposed

model learns a function that maps 3D grids of biochemical properties into low-dimensional represen-

tations and computes the compatibility between these grids using these vectors. Due to the use of

a convolutional neural network in map function, our approach can use spatial information available

in these grids in decision making. Unlike other ML approaches to SBVS that use CNNs, our method

do not require the knowledge of the location of every small molecule atom inside binding site. In

addition, this approach can learn to identify implicitly molecular interactions involved in molecular

recognition that are hard to model explicitly.

52

53

6. CONCLUSION

Structure-based virtual screening usually relies on molecular docking to screen libraries of

compounds against a drug target. However, the computational docking requires a lot of computa-

tional resources [48], due to generation and evaluation of many poses of ligand. In this context,

machine learning models could exploit the available biological data and learns, through experience,

to identify implicit molecular features and use them to rank small molecules based on matching

important chemical properties with drug target.

In this work, we propose a distance-metric used in siamese neural networks that can com-

pute compatibility of complementary structures. This altered SNN can be used in virtual screening

to rank ligands based on matches of complementary chemical features. The proposed model takes

as input two 3D grids of biochemical properties and computes the compatibility between these grids.

This compatibility is calculated using the euclidean distance between representations generated by

a convolutional neural network. The convolutional layers of CNN capture local correlation in these

grids and use this information to calculate the compatibility.

We also show that the proposed model can be used to rank and classify molecules based

on information of target binding site. The training data consisted of a 30 small molecules docked

on a FFR model of InhA-NADH complex of Mycobacterium tuberculosis. This model point out

another deep learning approach based on convolutional neural network [44] [35], achieving 0.92

AUC. Besides, we demonstrate that the trained model identifies important chemical features, like

hydrogen bonds.

This model showed promising results, although, further tests are required to identify its

potential. These further tests may include the use of multiple drug targets and changes of biochem-

ical properties used to generate the grids, however, the computational resources to generate new

biological datasets that include docked conformations of active ligands and decoys are prohibited,

due to the time spent in molecular docking process. In addition, changes in loss function to consider

the FEB or other characteristics of complexes ligand-receptor should improve the performance and

prioritize compounds that experimentally showed better results.

54

55

BIBLIOGRAPHY

[1] Ain, Q. U.; Aleksandrova, A.; Roessler, F. D.; Ballester, P. J. “Machine-learning scoring

functions to improve structure-based binding affinity prediction and virtual screening”, Wiley

Interdisciplinary Reviews: Computational Molecular Science, vol. 5–6, 2015, pp. 405–424.

[2] Baker, N. A.; Sept, D.; Joseph, S.; Holst, M. J.; McCammon, J. A. “Electrostatics of

nanosystems: application to microtubules and the ribosome”, Proceedings of the National

Academy of Sciences, vol. 98–18, 2001, pp. 10037–10041.

[3] Bengio, Y.; Courville, A.; Vincent, P. “Representation learning: A review and new perspectives”,

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35–8, 2013, pp. 1798–

1828.

[4] Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov,

I. N.; Bourne, P. E. “The protein data bank”, Nucleic acids research, vol. 28–1, 2000, pp.

235–242.

[5] Bissantz, C.; Kuhn, B.; Stahl, M. “A medicinal chemist’s guide to molecular interactions”,

Journal of medicinal chemistry, vol. 53–14, 2010, pp. 5061–5084.

[6] Cheng, T.; Li, Q.; Zhou, Z.; Wang, Y.; Bryant, S. H. “Structure-based virtual screening for

drug discovery: a problem-centric review”, The AAPS journal, vol. 14–1, 2012, pp. 133–141.

[7] Chopra, S.; Hadsell, R.; LeCun, Y. “Learning a similarity metric discriminatively, with

application to face verification”. In: IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, 2005, pp. 539–546.

[8] Cozzini, P.; Kellogg, G. E.; Spyrakis, F.; Abraham, D. J.; Costantino, G.; Emerson, A.; Fanelli,

F.; Gohlke, H.; Kuhn, L. A.; Morris, G. M.; et al.. “Target flexibility: an emerging consideration

in drug discovery and design”, Journal of medicinal chemistry, vol. 51–20, 2008, pp. 6237–6255.

[9] Davis, M. E.; McCammon, J. A. “Electrostatics in biomolecular structure and dynamics”,

Chemical Reviews, vol. 90–3, 1990, pp. 509–521.

[10] Dessen, A.; Quemard, A.; Blanchard, J. S.; Jacobs Jr, W. R.; Sacchettin, J. C. “Crystal

structure and function of the isoniazid target of mycobacterium tuberculosis”, Science, vol.

267–5204, 1995, pp. 1638.

[11] Gargano, F.; Costa, A.; De Souza, O. N. “Effect of temperature on enzyme structure

and function: a molecular dynamics simulation study”. In: Annals of the 3rd International

Conference of the Brazilian Association for Bioinformatics and Computational Biology, 2007.

[12] Glorot, X.; Bengio, Y. “Understanding the difficulty of training deep feedforward neural

networks.” In: Aistats, 2010, pp. 249–256.

56

[13] Hadsell, R.; Chopra, S.; LeCun, Y. “Dimensionality reduction by learning an invariant mapping”.

In: IEEE Computer Society Conference on Computer vision and pattern recognition, 2006, pp.

1735–1742.

[14] He, K.; Zhang, X.; Ren, S.; Sun, J. “Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification”. In: Proceedings of the IEEE International Conference

on Computer Vision, 2015, pp. 1026–1034.

[15] Hildebrandt, A.; Blossey, R.; Rjasanow, S.; Kohlbacher, O.; Lenhof, H.-P. “Electrostatic

potentials of proteins in water: a structured continuum approach”, Bioinformatics, vol. 23–

2, 2007, pp. e99–e103.

[16] Irwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S.; Coleman, R. G. “Zinc: A free tool

to discover chemistry for biology”, Journal of Chemical Information and Modeling, vol. 52–7,

2012, pp. 1757–1768, pMID: 22587354, http://dx.doi.org/10.1021/ci3001277.

[17] Karpathy, A. “Stanford University CS231n: Convolutional Neural Networks for Visual

Recognition”. Available in: http://cs231n.stanford.edu/syllabus.html, Sep 2015.

[18] Kingma, D. P.; Ba, J. “Adam: A method for stochastic optimization”. Available in: https:

//arxiv.org/abs/1412.6980, Feb 2017.

[19] Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J. “Docking and scoring in virtual screening

for drug discovery: methods and applications.”, Nature reviews. Drug discovery, vol. 3–11,

2004, pp. 935–949.

[20] Kohavi, R.; Provost, F. “Glossary of terms”, Machine Learning, vol. 30–2-3, 1998, pp. 271–274.

[21] Laskowski, R. A.; Swindells, M. B. “Ligplot+: multiple ligand–protein interaction diagrams for

drug discovery”, Journal of chemical information and modeling, vol. 51–10, 2011, pp. 2778–

2786.

[22] LeCun, Y.; Chopra, S.; Hadsell, R.; Ranzato, M.; Huang, F. “A tutorial on energy-based

learning”, Predicting structured data, vol. 1, 2006, pp. 0.

[23] LeCun, Y.; et al.. “LeNet-5, convolutional neural networks”. Available in: http://yann.lecun.

com/exdb/lenet, Feb 2017.

[24] Lengauer, T.; Rarey, M. “Computational methods for biomolecular docking”, Current opinion

in structural biology, vol. 6–3, 1996, pp. 402–406.

[25] Lionta, E.; Spyrou, G.; K Vassilatis, D.; Cournia, Z. “Structure-based virtual screening for drug

discovery: principles, applications and recent advances”, Current topics in medicinal chemistry,

vol. 14–16, 2014, pp. 1923–1938.

57

[26] Lyne, P. D. “Structure-based virtual screening: an overview”, Drug discovery today, vol. 7–20,

2002, pp. 1047–1055.

[27] Martin, Y. C.; Kofron, J. L.; Traphagen, L. M. “Do structurally similar molecules have similar

biological activity?”, Journal of medicinal chemistry, vol. 45–19, 2002, pp. 4350–4358.

[28] Mitchell, T. M. “Machine learning”. McGraw-Hill Boston, MA:, 1997.

[29] Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson,

A. J.; et al.. “Automated docking using a lamarckian genetic algorithm and an empirical binding

free energy function”, Journal of computational chemistry, vol. 19–14, 1998, pp. 1639–1662.

[30] Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson,

A. J. “Autodock4 and autodocktools4: Automated docking with selective receptor flexibility”,

Journal of computational chemistry, vol. 30–16, 2009, pp. 2785–2791.

[31] Mysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B. K. “Directory of useful decoys,

enhanced (dud-e): better ligands and decoys for better benchmarking”, Journal of medicinal

chemistry, vol. 55–14, 2012, pp. 6582–6594.

[32] Oloff, S.; Zhang, S.; Sukumar, N.; Breneman, C.; Tropsha, A. “Chemometric analysis of ligand

receptor complementarity: identifying complementary ligands based on receptor information

(colibri)”, Journal of chemical information and modeling, vol. 46–2, 2006, pp. 844–851.

[33] Organization, W. H.; et al.. “Global tuberculosis report 2016”. Available in: http://www.who.

int/tb/publications/global_report/en/, Feb 2016.

[34] Paquet, E.; Viktor, H. L. “Molecular dynamics, monte carlo simulations, and langevin dynamics:

a computational review”, BioMed research international, vol. 2015, 2015.

[35] Pereira, J. C.; Caffarena, E. R.; dos Santos, C. N. “Boosting docking-based virtual screening

with deep learning”, Journal of chemical information and modeling, vol. 56–12, 2016, pp.

2495–2506.

[36] Quevedo, C. V. “Triagem virtual em banco de dados de ligantes considerando propriedades

físico-químicas de um modelo de receptor totalmente flexível (Virtual screening in ligand

databases considering phisical-chemical properties of a fully-flexible receptor model)”, Ph.D.

Thesis, Programa de Pós-Graduação em Ciências da Computação, PUCRS, 2016, 157p.

[37] Rester, U. “From virtuality to reality-virtual screening in lead discovery and lead optimization: a

medicinal chemistry perspective.”, Current opinion in drug discovery & development, vol. 11–4,

2008, pp. 559–568.

[38] Rojas, R. “The backpropagation algorithm”. In: Neural networks, Springer, 1996, pp. 149–182.

58

[39] Samarasinghe, S. “Neural networks for applied sciences and engineering: from fundamentals to

complex pattern recognition”. CRC Press, 2016.

[40] Schrödinger, LLC. “The PyMOL molecular graphics system, version 1.8”. Available in: http:

//www.pymol.org, November 2015.

[41] Takayama, K.; Wang, C.; Besra, G. S. “Pathway to synthesis and processing of mycolic acids

in mycobacterium tuberculosis”, Clinical microbiology reviews, vol. 18–1, 2005, pp. 81–101.

[42] Teodoro, M. L.; Kavraki, L. E. “Conformational flexibility models for the receptor in structure

based drug design”, Current pharmaceutical design, vol. 9–20, 2003, pp. 1635–1648.

[43] Unterthiner, T.; Mayr, A.; Klambauer, G.; Steijaert, M.; Wegner, J. K.; Ceulemans, H.;

Hochreiter, S. “Deep learning as an opportunity in virtual screening”. In: Proceedings of the

Deep Learning Workshop at NIPS, 2014.

[44] Wallach, I.; Dzamba, M.; Heifets, A. “Atomnet: A deep convolutional neural network for

bioactivity prediction in structure-based drug discovery”. Available in: https://arxiv.org/abs/

1510.02855, Feb 2017.

[45] Wang, C.; Liu, J.; Luo, F.; Tan, Y.; Deng, Z.; Hu, Q.-N. “Pairwise input neural network for

target-ligand interaction prediction”. In: IEEE International Conference on Bioinformatics and

Biomedicine (BIBM), 2014, pp. 67–70.

[46] Waszkowycz, B.; Clark, D. E.; Gancia, E. “Outstanding challenges in protein–ligand

docking and structure-based virtual screening”, Wiley Interdisciplinary Reviews: Computational

Molecular Science, vol. 1–2, 2011, pp. 229–259.

[47] Xiao, L.; Wang, C.; Luo, R. “Recent progress in adapting poisson–boltzmann methods to

molecular simulations”, Journal of Theoretical and Computational Chemistry, vol. 13–03, 2014,

pp. 1430001.

[48] Yuriev, E. “Challenges and advances in structure-based virtual screening”, Future medicinal

chemistry, vol. 6–1, 2014, pp. 5–7.

[49] Zeiler, M. D. “Adadelta: An adaptive learning rate method”. Available in: https://arxiv.org/

abs/1212.5701, Feb 2017.

59

APPENDIX A – AUTODOCK PARAMETERS USED IN DOCKING

o u t l e v 1 # d i a g n o s t i c output l e v e l

i n t e l e c # c a l c u l a t e i n t e r n a l e l e c t r o s t a t i c s

seed 71277 142557 # seed s f o r random g e n e r a t o r

l i g a n d _ t y p e s A C HD N NA OA SA # atoms t yp e s i n l i g a n d

t r an0 random # i n i t i a l c o o r d i n a t e s /A or random

qua t e r n i o n0 random # i n i t i a l o r i e n t a t i o n

d i he0 random # i n i t i a l d i h e d r a l s o r random

t o r s d o f 3 # t o r s i o n a l d e g r e e s o f f reedom

rms t o l 2 . 0 # c l u s t e r _ t o l e r a n c e /A

ex t n r g 1000 .0 # e x t e r n a l g r i d ene rgy

e0max 0 .0 10000 # max i n i t i a l : ene rgy ; r e t r i e s

ga_pop_size 150 # number o f i n d i v i d u a l s i n pop

ga_num_evals 3000000 # maximum number o f ene rgy e v a l u a t i o n s

ga_num_generat ions 27000 # maximum number o f g e n e r a t i o n s

g a _ e l i t i s m 1 # number o f top e l i t i s m

ga_mutat ion_rate 0 .02 # r a t e o f gene mutat ion

ga_c ro s s o v e r_ r a t e 0 .8 # r a t e o f c r o s s o v e r

ga_window_size 10 #

set_ga # s e t the above pa ramete r s f o r GA

sw_max_its 300 # i t e r a t i o n s o f l o c a l s e a r c h

sw_max_succ 4 # s u c c e s s e s b e f o r e chang ing rho

sw_max_fai l 4 # f a i l u r e s b e f o r e chang ing rho

sw_rho 1 .0 # s i z e o f l o c a l s e a r c h space

sw_lb_rho 0 .01 # lowe r bound on rho

l s _ s e a r c h _ f r e q 0 .06 # p r o b a b i l i t y o f l o c a l s e a r c h

unbound_model ex tended # s t a t e o f unbound l i g a n d

ga_run 25 # do t h i s many h y b r i d GA−LS runs

a n a l y s i s # per fo rm a ranked c l u s t e r a n a l y s i s

t s t e p 0 .2 # t r a n s l a t i o n s t e p /A

qs t ep 1 .0 # q u a t e r n i o n s t e p /deg

ds t ep 1 .0 # t o r s i o n s t e p /deg

1

