PUCRS

FACULDADE DE INFORMATICA)
PROGRAMA DE POS-GRADUAGAO EM CIENCIA DA COMPUTAGAO
DOUTORADO EM CIENCIA DA COMPUTAGAO

MARCELO RUARO

SELF-ADAPTIVE QOS AT COMMUNICATION AND COMPUTATION LEVELS FOR
MANY-CORE SYSTEM-ON-CHIP

Porto Alegre
2018

-
POS-GRADUACAO - STRICTO SENSU

Pontificia Universidade Catodlica
do Rio Grande do Sul

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO GRANDE DO SUL
FACULDADE DE INFORMATICA
PROGRAMA DE POS-GRADUAGAO EM CIENCIA DA COMPUTAGAO

SELF-ADAPTIVE QOS AT COMMUNICATION
AND COMPUTATION LEVELS FOR
MANY-CORE SYSTEM-ON-CHIP

MARCELO RUARO

Thesis submitted to the Pontificia
Universidade Catdlica do Rio Grande do
Sul in partial fulfillment of the
requirements for the degree of PhD in
Computer Science.

Advisor: Prof. Dr. Fernando Gehm Moraes

Porto Alegre
2018

Ficha Catalografica

R894s Ruaro, Marcelo

Self-adaptive QoS at communication and computation levels for
many-core system-on-chip / Marcelo Ruaro . —2018.

148 f.

Tese (Doutorado) — Programa de Pos-Graduagao em Ciéncia da
Computagao, PUCRS.

Orientador: Prof. Dr. Fernando Gehm Moraes.

1. System-on-Chip. 2. Many-Core. 3. Network-on-Chip. 4.
Quality-of-Service. 5. Self-adaptation. I. Moraes, Fernando Gehm. II.
Titulo.

Elaborada pelo Sistema de Geragao Automatica de Ficha Catalografica da PUCRS
com os dados fornecidos pelo(a) autor(a).
Bibliotecario responsavel: Marcelo Votto Texeira CRB-10/1974

Marcelo Ruaro

Self-adaptive QoS at communication and computation
levels for many-core system-on-chip

This Thesis has been submitted in partial fulfillment
of the requirements for the degree of Doctor of
Computer Science, of the Graduate Program in
Computer Science, School of Computer Science of
the Pontificia Universidade Catdlica do Rio Grande
do Sul.

Sanctioned on March 16", 2018.

COMMITTEE MEMBERS:

Prof. Dr. Mateus Beck Rutzig (UFSM)

Prof. Dr. Rodolfo Jardim de Azevedo (UNICAMP)

Prof. Dr. Ney Laert Vilar Calazans (PPGCC/PUCRS)

Prof. Dr. Fernando Gehm Moraes (PPGCC/PUCRS - Advisor)

AGRADECIMENTOS

Cada Tese possui uma longa histéria por tras. S3o em média quatro anos de muitas
experiéncias académicas e de vida. Durante esses anos de Doutorado aprendi muito. Conheci novas
tecnologias, aprimorei meu pensamento cientifico, li, escrevi e publiquei artigos. Além disso, tive o
provilégio de fazer minha primeira viagem internacional para apresentar um artigo, e logo para uma
cidade fantdstica que sempre sonhava em visitar, que foi a cidade do Cairo no Egito (sim, conheci as
piramides é claro). Além disso, tive a felicidade de ser contemplado com uma bolsa saundiche, o

que me proporcionou a inesquecivel experiéncia de viver por seis meses em Viena na Austria.

Nos bastidores dessas experiéncias estdo as pessoas importantes das nossas vidas. A minha
familia: a namorada e meu amor Fabiana, meus pais Silvio e Marinés, minha irma Thais e meu tio
Nelson. Eles sdo a base de tudo. Ndo ha palavras para descrever o constante apoio que me deram,
me trazendo tranquilidade para enfrentar os momentos dificeis e sempre compartilhando comigo

os momentos de fecilidade.

Uma Tese sem orientador ndo existe, e tive a sorte de ter um excelente comigo. O professor
Moraes ndo fez s6 o papel de orientar, ele foi um acreditador, que me recebeu |a no inicio do
mestrado, e acreditou no meu sonho. Lembro claramente nossa primeira conversa, ele pediu quais
eram meus objetivos, e respondi: “quero ser Doutor em Ciéncia da Computacdo”. Suponho que
tenha sido uma frase dificil para ele acreditar, visto minha total inexperiéncia no assunto e o longo
caminho para ser percorrido. Aquele meu objetivo se tornou realidade, e sou muito grato a ele por
me orientar e me aguentar nesses seis anos, me proporcionando diversas oportunidades que me

fizeram crescer muito.

Um doutorado também é feito de cooperagdes, por isso, meu agradecimento especial aos
colegas e amigos do GAPH: mestrandos, doutorandos e aos bolsistas ICs, que cooperaram em

diversos artigos, discussdes de pesquisa e em momentos de descontragao.

Um ambiente académico é fundamental, aqui deixo meu agradecimento notério a PUCRS, que
possui no prédio 32 (Faculdade de Informatica) um ambiente igual ou supeior a muitos laboratérios
internacionais, com pessoas qualificadas e fornecendo equipamentos, conforto e seguranca. O
campus como um todo proporciona um bem-estar que incentiva trabalhos de melhor qualidade. Os
funciondrios, em especial os da secretaria do PPGCC, sempre atenciosos em resolver questdes o

mais rapido possivel.

Por fim, agradeco a CAPES pelo suporte financeiro através da bolsa de doutorado pleno.

AUTOADAPTAGAO DE QOS NOS NiVEIS DE COMUNICAGAO E COMPUTAGCAO PARA
SISTEMAS MULTI-NUCLEOS INTRA-CHIP

RESUMO

Sistemas multi-nucleos intra-chip sdo o estado-da-arte em termos de poder computacional,
alcancando de duzias a milhares de elementos de processamentos (PE) em um Unico circuito
integrado. Sistemas multi-nucleos de propdsito geral assumem uma admissdo dinamica de
aplicacdes, onde o conjunto de aplicacdes ndo é conhecido em tempo de projeto e as aplicagdes
podem iniciar sua execucdo a qualquer momento. Algumas aplicacGes podem ter requisitos de
tempo real, requisitando niveis de qualidade de servico (QoS) do sistema. Devido ao alto grau de
imprevisibilidade do uso dos recursos e o grande niumero de componentes para se gerenciar,
propriedades autoadaptativas tornam-se fundamentais para dar suporte a QoS em tempo de
execucdo. A literatura fornece diversas propostas de QoS autoadaptativo, focado em recursos de
comunicacao (ex., redes intra-chip), ou computacao (ex., CPU). Contudo, para fornecer um suporte
de QoS completo, é fundamental uma autoconsciéncia abrangente dos recursos do sistema, e
assumir técnicas adaptativas que permitem agir em ambos os niveis de comunicacdo e computacao
para atender os requisitos das aplicacOes. Para suprir essas demandas, essa Tese propde uma
infraestrutura e técnicas de gerenciamento de QoS autoadaptativo, cobrindo ambos os niveis de
computacdo e comunicacao. No nivel de computacdo, a infraestrutura para QoS consiste em um
escalonador dindmico de tarefas de tempo real e um protocolo de migracdo de tarefas de baixo
custo. Estas técnicas fornecem QoS de computacdo, devido ao gerenciamento da utilizacdo e
alocacdo da CPU. A novidade do escalonador de tarefas é o suporte a requisitos de tempo real
dindmicos, o que gera mais flexibilidade para as tarefas em explorar a CPU de acordo com uma carga
de trabalho variavel. A novidade do protocolo de migracdo de tarefas é o baixo custo no tempo de
execucdo comparado a trabalhos do estado-da-arte. No nivel de comunicagdo, a técnica proposta é
um chaveamento por circuito (CS) baseado em redes definidas por software (SDN). O paradigma
SDN para NoCs é uma inovacgao desta Tese, e é alcan¢ado através de uma arquitetura genérica de
software e hardware. Para QoS de comunica¢dao, SDN é usado para definir caminhos CS em tempo
de execucgdo. Essas infraestruturas de QoS sdo gerenciadas de uma forma integrada por um
gerenciamento de QoS autoadaptativo, o qual segue o paradigma ODA (Observar, Decidir, Agir),
implementando um lago fechado de adapta¢des em tempo de execugao. O gerenciamento de QoS
é autoconsciente dos recursos do sistema e das aplicagdes em execugao, e pode decidir por
adaptacdes no nivel de computacdo ou comunica¢do, baseado em notificacdes das tarefas,
monitoramento do ambiente, e monitoramento de atendimento de QoS. A autoadaptac¢ao decide
reativamente assim como proativamente. Uma técnica de aprendizagem do perfil das aplicagbes é
proposta para tragar o comportamento das tarefas de tempo real, possibilitando a¢bes proativas.
Resultados gerais mostram que o gerenciamento de QoS autoadaptativo proposto pode restaurar
os niveis de QoS para as aplicagdes com um baixo custo no tempo de execuc¢ao das aplicacdes. Uma
avaliacdo abrangente, assumindo diversos benchmarks mostra que, mesmo sob diversas
interferéncias de QoS nos niveis de computa¢do e comunicagdo, o tempo de execucdo das
aplicagbes é restaurado préximo ao cenario 6timo, como 99,5% das violagdes de deadlines
mitigadas.

Palavras-Chave: Sistemas intra Chip; Multi-ndcleos; Redes intra Chip; Qualidade de Servico;
Autoadaptacao.

SELF-ADAPTIVE QOS AT COMMUNICATION AND COMPUTATION LEVELS FOR
MANY-CORE SYSTEM-ON-CHIP

ABSTRACT

Many-core systems-on-chip are the state-of-the-art in processing power, reaching from a dozen to
thousands of processing elements (PE) in a single integrated circuit. General purpose many-cores
assume a dynamic application admission, where the application set is unknown at design-time and
applications may start their execution at any moment, inducing interference between them. Some
applications may have real-time constraints to fulfill, requiring levels of quality of service (QoS) from
the system. Due to the high degree of resource’s utilization unpredictability and the number of
components to manage, self-adaptive properties become fundamental to support QoS at run-time.
The literature provides several self-adaptive QoS proposals, targeting either communication (e.g.,
Network-on-Chip) or computation resources (e.g., CPU). However, to offer a complete QoS support,
it is fundamental to provide a comprehensive self-awareness of the system’s resources, assuming
adaptive techniques enabling to act simultaneously at the communication and computation levels
to meet the applications' constraints. To cope with these requirements, this Thesis proposes a self-
adaptive QoS infrastructure and management techniques, covering both the computation and
communication levels. At the computation level, the QoS-driven infrastructure comprises a dynamic
real-time task scheduler and a low overhead task migration protocol. These techniques ensure
computation QoS by managing the CPU utilization and allocation. The novelty of the task scheduler
is the support for dynamic real-time constraints, which leverage more flexibility to tasks to explore
the CPU according to a variable workload. The novelty of the task migration protocol is its low
execution time overhead compared to the state-of-the-art. At the communication level, the
proposed technique is a Circuit-Switching (CS) approach based on the Software Defined Networking
(SDN) paradigm. The SDN paradigm for NoCs is an innovation of this Thesis and is achieved through
a generic software and hardware architecture. For communication QoS, SDN is used to define CS
paths at run-time. A self-adaptive QoS management following the ODA (Observe Decide Act)
paradigm controls these QoS-driven infrastructures in an integrated way, implementing a closed
loop for run-time adaptations. The QoS management is self-aware of the system and running
applications and can decide to take adaptations at computation or communication levels based on
the task feedbacks, environment monitoring, and QoS fulfillment monitoring. The self-adaptation
decides reactively as well as proactively. An online application profile learning technique is proposed
to trace the behavior of the RT tasks and enabling the proactive actions. Results show that the
proposed self-adaptive QoS management can restore the QoS level for the applications with a low
overhead over the applications execution time. A broad evaluation, using known benchmarks,
shows that even under severe QoS disturbances at computation and communication levels, the
execution time of the application is restored near to the optimal scenario, mitigating 99.5% of
deadline misses.

Keywords: System-on-Chip; Many-Core; Network-on-Chip; Quality-of-Service; Self-adaptation.

LIST OF FIGURES

Figure 1 — (a) Network-on-Chip as interconnection infrastructure for a Many-core SoC. (b) a 5-port
router OVervieW [IMORDA].ccoo ittt ettt ee e e e e e e e e eea bt eaeeeeeeeeeasat e eeeeeesessnnanaeens 25
Figure 2 — Example of the components of a many-core Processing Element (PE), divided into
computation resources (local memory, CPU, and DMA) and communication resources (router, wires,

0T 1A 27
Figure 3 - Cross-layer virtual sensing and actuation at different layers of Cyber-Physical SoC (an
example of many-core) [SARLS][DUTIOD]. ..uuceiiiiiiiiiiiiiiiie et e e e e e e eas e e e eeeeeees 30
Figure 4 — Self-adaptiveness hierarchical organization [SHAO9].uveeeiiiiiiiiiiiiiiiee e, 30
Figure 5 — ODA loop providing self-awareness and enabling self-adaptation [HOF13]. 31
Figure 6 — Overview of distributed resource management proposed by [FAR10] to dynamically
control the temperature 0N MaANY-COIES.uuuuuuuuuuiiiiii s 32
Figure 7 — Kramer et al. [KRA12] hierarchical and hybrid monitoring.........cccccvvvviiieeeeiieeiieniienennn. 33
Figure 8 — Baseline many-core architecture. (a) system architecture [RUA17a]; (b) PE architecture.
... 35
Figure 9 - Application Model Example [RUALTZA]. ccooeeeiiiiiiiiiiieieeeeeeeeeetieeeee et e e e e eaaaane s 36
Figure 10 — Kernel HIerarChy Of HEIMPS. ...ttt e e ee et e e e e e e e e eessabe s 37
Figure 11 — Application Admission ProtOCOL.cceiiiiiiiviiiiiiiiiieeeeeeeiceee e e 37
Figure 12 — Memory paging organization [RUALTZD]. ...ccovuiiiiiiiiiiiiiiiicee e 38
Figure 13 — Packet and message structures [RUALTD]. ...couuuieiiiiiiiiiiiiiiciieeeeeeeeeieeeee e 39
Figure 14 - Inter-PE communication flow [RUALBD]........couuuieiiiiiiiiiiiiiiceeeeeeeeeeeieeeeeeeeeeevare e 39
Figure 15 — Many-core and PE organizations [RUALBD].ceeeiiiiiiiiiiiiiiiiieeeeeeeeiiiieeeeeeeeeevvnne e 40
Figure 16 — DMNI architecture [RUALBD].cuuuuuiiiiiiiiiiiiiiiiiiieieeeeeeeetiiieee e eeeeeeearteeeeeeeeeessnsne e 42
Figure 17 — Send_packet() function, executed in the @kernel of the processor [RUA16Db].............. 42
Figure 18 - FSM controlling the send module [RUALBD] . ..cccoeiiiiiiiiiiiii, 43
Figure 19 - Packet transmission by accessing two memory blocks [RUA16Db]. ..o, 43
Figure 20 - FSM controlling the receive module [RUAL6b]. ..., 44
Figure 21 — Read_packet() function, executed in the pkernel of the processor [RUA16b].............. 44
Figure 22 — FSM controlling the arbiter module [RUA16b]. ..., 45
Figure 23 - Memory access scheduling [RUALBD]. ..., 46
Figure 24 — DMNI and DMA+NI latency comparison [RUALED].ccoooeiiiiiiiiiiiiiieee, 46
Figure 25 - Overview of the proposed debugging data extraction method [RUAl6c]..................... 49
Figure 26 - Sequence diagram for database management [RUAL6C].cccooeviiiiiiiiiiiiiiiininnnnnn, 51
Figure 27 — Main View: throughput and communication event views [RUA16c].............cceeeeee. 52
Figure 28 - Mapping view for a scenario with 4 applications, each one represented by a different
[oo] Lo gl 13{ U7 K< To] PO PPN 53
Figure 29 - CPU Utilization View [RUALBC]......cuuuuiiii it e e e eetaee e e e e e e e e aaane e 54
Figure 30 - Case-study debugging an MPSoC with 256 PES [RUALGC].....cccoeevevriiviiiieeeieeeeeeiieennn, 54
Figure 31 — Overview of the proposed task migration protocol [RUAL7D]. ..cccovvvvveieeeeiiririiiiinne. 62

Figure 32 — Representation of the rules involved in the inter-task synchronization [RUA17b]. 64

Figure 33 — Task migration latency according to the task data size, 32-bit NoC channels, 1 hop

DEtWEEN PES [RUALTD]. et e e e e ettt e e e e e e e e e e et bt e e e e eeeeesranaeeeeas 65
Figure 34 — MJPEG frame decoding latency for simultaneous task migrations [RUA17b]............... 66
Figure 35 — Task migration applied for Quality of Service at MJPEG application [RUA17b]. 66
Figure 36 —Scheduler support for self-adaptation at run-time based on the ODA paradigm [RUA16a].
... 68
Figure 37 - RT constraints model [RUALBA].uuueeiiiiiieiiiiticiee et e et eeeeea e 69
Figure 38 - Example of a task code with run-time RT configuration. It calls the RealTime syscall twice
to configure the constraints (in lines 3 and 10) [RUALBAL.ccceeeeeeiiiieiiiiicce e 70
Figure 39 — Hierarchical scheduler organization [RUALBA].cceevvverrriiiieieeeieeeeiiieeeeeeeeeeevrnre e 71
Figure 40 - (a) layered decision flow. (b) RT_adaptation heuristic [RUA16a].......cccceeeeeererrvrnvnnnnnnn.. 72
Figure 41 — (a) Sees utilization using RT tasks. (b) Monitored SPs slack-time. Each square with a
number represents an Spe [RUATLBA]. ...coveieiiiiiiiiiiiiee et ee et ree e e e e e e e ee st e e e e e eeeesssraaneeas 74
Figure 42 — STM overhead for Spes in @ 12x12 many-core [RUALBA].uceeeeeeeievveriiiieeeeeeeeevrireenen. 75
Figure 43 - Change in the CPU time utilization during an RT adaptation (rectangles represent the CPU
ULIIIZAtION) [RUALBA]. coeevviiiiiiieiiiieeeiiieie e e ettt eee e e e e e e e e eea b e e e eeeeeeassbb e eeeeeesesssstaaaeeesesessssrnnaneens 76
Figure 44 - Task iteration latency change during an RT adaptation. (a) t1 latency. (b) t2 latency
[RUALBA]. e eiieeetiiiiei e ettt et e e e ettt e e e e e e e e ee et eeeeeeeeseae s bbb aaeeeeessesssasaaaeeeseessssssnnnaaeeesesesssnnnnn 76
Figure 45 - Change of the CPU time occupation during an RT adaptation with task migration. Task t2
start to execute in Spe 2 when the RT constraint changes [RUAL6BA].........ccevvvvieeeeeeeiiveiiiiiiieeeeeeeens 77
Figure 46 - t1(a) and t2(b) task iteration latency during an RT adaptation with task migration
[RUALBA]. e iiieeeeiiiiee e ettt e e ettt s e e e e e et e e et eeeeeeeeseae s bbb e seeeesseessaaaaaeeesesssssssranaeeeessssssnsnan 77
Figure 47 - (a) DTW application latency over disturbing. (b) DTW execution time over disturbing
[RUALBA]. e eiieeeeiitiei ettt e ettt e e e e e e et e e et ee e e e eeeeeee s st b e aseeeesseeasaaaaaeeeseesssssssanaeeeessssssnsnan 79
Figure 48 — (left) MPEG iteration latency; (right) DTW iteration latency [RUA15b].ccovvvvvvennnn... 80

Figure 49 - A 6x6 instance of the reference many-core system, with four 3x3 clusters [MAR17b]. 81
Figure 50 — Energy profiling of the PE for all voltage supplies. The total energy (y-axis) corresponds

to the energy spent in a monitoring window of 1 ms [MARL7D]......ccccoeeiiiiiiiiiiiiieeceeeeeeeeee e 82
Figure 51 - Task graph of an RT application (a) and its scheduling (b) [MAR17b].oo. 83
Figure 52 - Code snippet for the last RT task of an application [MAR17Db].........cccceeiiiiiininnnn. 83
Figure 53 — RT-REM Heuristic [MARL7D]. ..o, 84
Figure 54 - Execution time and energy of an RT application with and without REM for 100 iterations
IIVIARL 7D ettt e et et et e e e e e e eeeeeeeeeeee e e et et eeeeeeeeeeeeeeeeeee e e e e et eeeeeeeneeeesesesenennnen 85
Figure 55 — Cluster regions which can tune the number of VC [HEI12]. ..., 92
Figure 56 — SDN organization, and its adoption for NoC design [RUA17a].ccceeeriiiiiinnnnnnnnnnnn. 94
Figure 57 — (a) Layered view of the SDN paradigm in a many-core organization; (b) SDN-based
CoMMUNICALION [RUALTZA]. ittt ettt et e e ettt e e e e et e e e s eabaeeeseabeeeessbaeeesssaneesssnen 95

Figure 58 — Integration of the SDN in a standard NoC-based many-core architecture. (a) Standard
NoC-based many-core architecture, (b) proposed SDN-based architecture (c) integration of the SDN

in @ NoC-based manycore arChit@CtUIE.ccuiiuiiii e e e e e e e e 96
Figure 59 - (a) EB architecture [MIC11][MIC13], (b) SDN router architecture, with 5 EB
[RUATLTZAIIRUALS]. et e et ee et et e e e e ee s s e e et eeeeeeeeses e e ses s eaeeeeeeseeeeeesesesesesenenneen 97

Figure 60 — PE architecture and configuration process of an Sk [RUA17a].....ccccovvviieeeriiiiriiiinnnnnn. 98

Figure 61 — Proposed many-core, with the SDN-based CS.cccceeiiiiiiiiiiiieeeeeeeeee e 100

Figure 62 - SEARCH-PATH algorithm [RUAL7A]. ..ouuieiiiieeeeeeceee et e e 102
Figure 63 - CS management protocol [RUAL7A].....cccoiiiiiiiiiiiiiieeee, 103
Figure 64 - Communicating task graph of the applications’ benchmarks [RUA17a]...................... 105
Figure 65 — (a) success rate for 20x20:6 CS subnets; (b) SEARCH-PATH execution time for 20x20:6
[RUALTA] et eeeeeeeeeeeeeeeee et eeeeeeeeee et et eeeseeeee et eseeee et et e eeeaeeeseeeeeeee et eeeeeseeseseseeeseeeeeeeseeaseseeneeeeesennes 106
Figure 66 - SEARCH-PATH average execution time for the worst scenarios [RUA17al.................. 107
Figure 67 - CS-Controller memory requirement [RUAL7a]. .cccoooviiiiiiiiiiiiieeee, 108
Figure 68 - MPEG-2 start time and frame decoding latency [RUAL7a]......ccccevvviiiiiiiiiiiiniiinnnnnnnn, 108
Figure 69 — (a) PE architecture including the Parallel-Probing router. (b) Example of PP algorithm
LIU L 2], e e e e e e e e e e e e e e aaaaaaaaaaans 109
Figure 70 — Search path latency for PP (a) and SDN (b) - 8x8-4x4:8 system Size.......ccceeeeevvvvvennee. 111
Figure 71 — (a) Example of a task communicating graph of an application. (b) Overview of the
application profile [earning Method.uueeiiiiiiiic e e eeees 118
Figure 72 — Organization of the self-adaptive QoS management...........ccccceiiiiiiiiiieee, 118
Figure 73 — Self-adaptation QoS management flow, executed by the manager processors. 119

Figure 74 - Comparison with [RUA15a] and [RUA16a]: (a) scenario setup; (b) iteration latency of
[RUA15a]; (c) iteration latency of [RUA16a]; (d) iteration latency of the proposed work. 123
Figure 75 - (a) DTW and MPEG-2 application task graphs. (b) Overhead evaluation of the application
(o] oY i1 (I T=F T oY o T= SO UPPPURR 124
Figure 76 - Evaluation of the self-adaptive QoS management over the MPEG-2. (a) App. mapping.
(b) No adaptation, deadline miss = 20.3%. (c) Only reactive adaptations, deadline miss = 2.3%. (d)
Proactive and reactive adaptations, deadline miss = 0.5%. (e) APL for MPEG-2 at 15ms of simulation.

Figure 77 - Benchmark evaluation: (a) execution Time; (b) deadline miss rate.cccceeeeeerrvvnnnee. 127
Figure 78 — QoS provisioning trade-off: (a) Deadline miss rate; (b) Latency miss rate. 128

LIST OF TABLES

Table 1 — Area comparison related to NI implementations [RUALBDb].ccoovvviiiieeniiiiiriiiinn. 47
Table 2 - Related works in NoC and many-core debugging [RUALGC].........cceeeviiiiiiiiiiiiiiie, 48
Table 3 - Results related to simulation time and data storage, for 100 ms of simulation (DB:
Aatabase) [RUALBC]. .uuceeieiiiiiiiiiiiiee ettt e e e ettt e e e e e e e e eea ittt e e e eeeeeeesassaaaaeeeessssssnnnnaaeaaaeseees 55
Table 4 — Works focused on task scheduling and QOS. ..., 56
Table 5 — Works focused in WCET and QOS.uuuieeiiiiiiiiiiiiiieee et e e e e et e e e e e e eeesannee e 58
Table 6 — Works focused on temperature, power and energy reduction and QoS.ccccccuuenn.... 58
Table 7 — Works focused on memory access scheduling QOS...........ouvveeeeeiiiiieeiiiiieeeeeeeeeeereeee, 59
Table 8 - Comparison of task migration Works [RUAL7ZD].ceeeeiiiiiiiiiiiiieeeeeeeeeeieee e 62
Table 9 - Comparison of the migration latency against the state-of-the-art works [RUA17b]......... 67
Table 10 - Proposed scheduler classification [RUALBA]........eeeeiiiiiiiiiiiiiiieeeeeeeeeviiieee e e 71
Table 11 — Violations of hyper-periods and energy savings of RTREM compared to the baseline
SYSTEM [IMAR LT ceetttiiiiieeeii ittt ettt eee e e e e e et e e ea bt reeeeeeeeeeessa b aaeeeeeessssssstraaeeeessessssssnnnaeseeeseres 85
Table 12 — State-of-the-art about works addressing communication QOS.ccceeeeeeeiriivivivennnnne.. 88
Table 13 — Comparison CS NOC AESIZNS. ..ccoiveviiiiiieeeeeeeeeetiieeeeeeeeeeerteee e e e e e e eersabaeeeeeeeeeessaraaeeeas 90
Table 14 — Related works on SDN architectures for Many-Core SOCS.coovvvvvrieeeeeeeeeeevnneenennn. 95
Table 15 - Related works on CS NoCs, with search path proposals [RUAL17a].....ccccceeveeiirvvivinnnnnnne.. 99
Table 16 - Results for simulations with 100% of RT applications and a 100% of system occupation
[RUALTA] ettt e ettt et e e e et e eea b e e e e e e e e e e s s bbb aeeeeeesaeassbaaeeeeeeesssstssanaeeeeseesssrnnnn 105

Table 17 — PP and SDN evaluation, path length and connection time, for 6x6 to 16x16 many-core
systems. Success rate: (min hops + Non Min hops)/N# PALAS.ceeeeeeeeeeeeeiiiiiiiiieeeeeeeeeeeeeeeeeennn 110
Table 18 - Gate number (comb. and seq. gates), area (um?) and estimated power (uLW) for the CS
and PS routers (28 nm SOl technology @1GHz, using the Cadence ASIC design flow) [RUA17a].. 112
Table 19 — Related Works on Self-Adaptive QoS for Many-Cores.........ccccceeeveeieiiiiiiiiicceeeeeeeeee, 116
Table 20 — Author's publications. ..., 148

LIST OF ACRONYMS

AM Adaptation Manager

API Application Programming Interface
APL Application Profile Learning

ASIC Application Specific Integrated Circuits
ASIP Application Specific Instruction Set Processors
BE Best Effort

() Circuit Switching

CTP Communicating Task Pair

DB Database

DEL Data Extraction Layer

DMA Direct Memory Access

DMNI Direct Memory Network Interface
DTW Dynamic Time Warping

DVFS Dynamic Voltage and Frequency Scaling
EB Elastic Buffer

EDF Earliest Deadline First

FIFO First in First Out

FPGA Field Programmable Gate Array

FSM Finite State Machine

GCC GNU Compiler Collection

GPP General Purpose Processor

GPU Graphical Processor Unit

GS Guaranteed Service

GT Guaranteed Throughput

GUI Graphical User Interface

IDMA Identifier Division Multiplexing Access
IP Intellectual Property

IRT Input Reservation Table

ISA Instruction Set Architecture

ITRS International Technology Roadmap for Semiconductors
LST Least Slack Time

LUT LookUp Table

NoC Network-on-Chip

MJPEG Motion-Joint Photographic Experts Group
MMR Memory Mapped Register

MMU Memory Management Unit

MoC Model of Computation

MPI Messaging Passing Interface

Mpe Manager Processing Element

MPEG Moving Picture Experts Group

MPN Multiple Physical Network

MPSoC Multi-Processor System on Chip

NI Network Interface

ODA
ORT
0S

PE

PP

PS
QoS
RR
RT
RTL
RTOS
RT-REM
Sc
SDN
SDM
St
SMee
SoC
SOl
Spe
sQL
STM
TDM
LM
VC
VCS
VHDL
WCET

Observe Decide Act

Output Reservation Table

Operating System

Processing Element

Parallel Probe

Packet Switching

Quality-of-Service

Round-Robin

Real Time

Register Transfer Level

Real Time Operating System

Real Time Run-time Energy Management
Cluster Scheduler

Software-defined Networking
Spatial Division Multiplexing

Local Scheduler

System Manager Processing Element
System-on-Chip

Silicon on Insulator

Slave Processing Element

Structured Query Language

Slack Time Monitoring

Time Division Multiplexing
Transaction-level Modeling

Virtual Channel

Virtual Circuit Switching

VHSIC Hardware Description Language
Worst Case Execution Time

1

TABLE OF CONTENTS

INTRODUCGTION.......coiiiiiiiiititee e e eectitie et e e e e e st tr e e e e eeessaatteaeeeaeeesaastsaeaaaeessaassaaeeeaeeessasstsaeeeeaeessastseaeeaeeesanssssnnees 19
11 HYPOTHESIS DEVELOPIMENT ... eetttttiieeeeeeetttuua e e e eeetttuaaaeeeeeeaesaaaaaeeeeeatsaanaeaeeeesssnnnneeeeeenssnansseeereenssannnsseeeeennsnnn 21
1.2 THESIS GOALS ..ot eeeettiaiee e e e e e ettt e e e e e e ettt e e e eeeeeataa e e eeeeettsaa e e e eeeeatsana e eeeeeasssaansseeeeeassssnnnseeeeeenssnnnnsseeeeees 23
13 THESIS CONTRIBUTIONS «evvteeeeeetttuuuuieeeeeeetannaneeeeeessssnnssseeesssssnnnsssseesensssnnssseeeeenssssnnsnseeseessssnnnseeeeeensssnnnneeeeeees 24
1.4 THESIS ORGANIZATION «tvvuuieeeeeeetttuuuiaeeeeeettunnaaaeeeeeenassnsaeeeeesassnnnssseeeesssnnsssseeeeenssssnsnseeeseesssssnnseeeerensssnnnseeeerees 24

ASSUMPTIONS AND GENERAL CONGCEPTScooiiiiiiiiiiiiiee e e eeciiitee e e e e e e st taee e e e e e s st ta e e e e e e s s snatbaeeeaeesssnssnaeeaaaeeas 25
2.1 INETWORK-ON=CHIP ..cttttuieeeeeeettiaie e e e e eetttaaaeeeeeeettaaaaaeeeeeeaaasnaaeeeeeeaessaaaaeeeeaesssananeeeeeessssannseeeseenssnnnnsseeeeensnnns 25
2.2 IMIANY=CORE ...ttt ettt e e et ettt e e e e e e ettt e e e e eeeataaa s e e e e e eaetaa s eeeeeaaetsaaa e eeeeaessbanneeeeeeetssaannseeeeeenssnnnnsseeeeensnnns 26

2.2.1 Computation and COmMMUNICALION RESOUITESuuuuuuuuuuuuneeniiiennnsnnnnnnsnssnnssssssssssssssssssssnns 26
2.3 REAL-TIME APPLICATIONS w..cettttettteeeeeeeeeeeeeeeeeeesssssssssssssssssssssesssssssssassesesessessseesesesesseseeeeeeeeeseesesesnsnsnnnnnnnnnnnnnnnnns 27
2.4 QUALITY OF SERVICE FOR PERFORMANCE ...eieiiieieeeieeieeeeeeeeeeeee e e e e eeeeeeeeeaeaeeeeeeeaaeaeaeaaaaeaaaaaaeesaaaaaseeesesaeeeeeeeeesesaeeaens 28
2.5 SELF-AWARENESS AND SELF-ADAPTATION ... tettteeeeeeeeeeeeeeeeaeeaeeeeeaaaaaaaaaaaaaaaaaaaaaaaeaaaaeeeeeeeeeeeeeaeseeeeaeseeeeeseeeeeeeeeeeeeenes 29
2.6 ODA PARADIGM. .. eeeeeeeeeeeeeeee aaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaeaaeees 30
2.7 DISTRIBUTED RESOURCE IMANAGEMENT ...ttttuiiieteeettitniie e s e ettttiiae e e e e eetnesna s e s e e eesana s e e e et eanana s s e e s e eannaaa s seeeseannnns 31
2.8 IMIONITORING c.cttettetteeeteeeeeeeeeeeeeeeeeeeeseee e eeeee e e e e e e et e e eeee e eeeeeeeee e eeee e e eeee s e e e e e e e e e e e e e e eeeeeeennnnnnnnnnnnnnnnnnns 32
2.9 FINAL REIMARKS .. cteeteeeeteeeeeeeeeeeeeeeeeeeenseseseessesseeeseseeeee e eeee e e eeeeeeee e e eeeeeee e e e e e e ee e e e ee e e e e e s e e e e e e e e e e e e e eeeeeneennnnnnnnnnnnnnnnnnns 34

REFERENCE MANY-CORE ARCHITECTUREootiiiiiiiiiiiiieee ettt ettt et e e e e sttt e e e e e s s st e e e e e e e s s sasbenees 35
3.1 APPLICATIONS IMIODEL...ttttteeeeeeeeiiittteee e e e e sttt e e eeeeaaattaeeeeeeesaaastbaaeeeeeesaaasbbaaeeeesssasnnsbbaeeeaesssaansbbnaeeeesssnnnss 36
3.2 KERNEL (DISTRIBUTED OPERATING SYSTEM) 1vvvteeeeeiiiuurrreeeeeessiinsssseeeessssaassssseseessssssssssseseesssmnssssesssesssnsssssssseeeees 36

3.2.1 Application’s AdmisSion MANGAGEMENTuuuuuuuuuuuuuunieniessssssssssssssssssssnnnnannn 37

3.2.2 Inter-task Communication MANGGEIMENT..............uuuuuuuuuuuuunnneiesssssssssssssnsaanen 38

3.2.3 Multitasking MONGAGEMENTuuvuuuuununieeniieiee s ssssnanen 38
3.3 COMMUNICATION BETWEEN PES ...ttt e et e e e e e e e e e e e e e e eennn e e eeenes 38
3.4 DIRECT MEMORY NETWORK INTERFACE (DIVINI)...tiiieee e ettt ettt e e e e sttt e e e e e e e et aa e e e e e e s seannraaeeeaaeeas 40

R B 0 1Y AV I 01X [| PPN 41

3i4.2 DIVINI RESUILS. ..ot ettt ettt e e e e e ettt a e e e s ettt e e e e e s sasstttaeaesesssassssaaaassesnnsasses 46
3.5] 2T T NPT PPPPPRN 47

3.5.1 DaAtA EXErACION MOGEL..........eeveeeeeeeeeeeiiieeeee ettt ettt e e e ettt e e e e s sttt ae e e e esssssbnaaassssnsssnes 49

3.5.2 Graphical Debugging TOOISEL..............uuuuuuuuuuuuunniniiiieiiiiiiiiieessasse s nssssssssssanen 51

3.5.3 RBSUILS ettt ettt e e e e ettt e e e e e ettt e e e e e aa s bttt e e e e eea s tbttaaaeeeeaanares 54

QOS AT THE COMPUTATION LEVELooiiiiiiiiiiiiiiiieeeeeeeiiiiteee e e e e sssittee e e e e s e sssabbeteeeeesssaabbbaeeeaesssssnsbsaaesaessssnnns 56
4.1 ST ATE-OF-THE-ART ..ietetittiie et e eeteeee e e eeeetteea e e eee ettt aaa e eeeeeesana e eeeeeeeesaa e eeeeeeassnaaaeeeereensnnnseeeeennnnnnnnaeaannes 56

W Y Y o [=elo) Gt =y AV D KXot KX (o) N 59
4.2 TASK IMIIGRATION ..ttt e et e ettt e e e e e ettt e e e e e e eeetaa e e e eeeeeabaa e e eeeeeee s aa e e e e e e e eesaaa s e eeeeeee e s e eeeeeensbnnaseeeeeennnnnn 60

W B0 N /o) o Yo XY=To I o K [0 1Y/ [1o 1o 1 Lo N 62

G.2.2 RESUILS .vveeeeee ettt ettt ettt e e e e ettt e e e e e sttt a e e e e a bttt ea e e e aaa bt taaeeseeaabbtbaaaeeeenanare 64
4.3 DYNAMICAL REAL-TIME TASK SCHEDULER «.tttuuaeeeeeetttttiaeeeeeeettnuaaaeeeeeeesnaaaaeeeeeeesnnaaaeeeereannnanaeeeseennnnnnaaeeernennnnn 68

4.3.1 ReAI-TiME TASK MOGE!cceveeeieeeeeeeeette ettt e e ettt e e e e e ettt e e e e s sttt b aaaasssssssstsaaassassssanses 69

4.3.2 PropoSed TASK SCREAUIETuuuuuuuueniieiiiieii s aassssssssssssssssssnssansssnsnnnnnnns 71

G.3.3 RESUILS .vvveeeiee ettt ettt e e e e ettt e e e e e sttt e e e e e ettt e e e e e aaa bt taaaeseeaabttaaaaeeenaannre 74
4.4 ENERGY MANAGEMENT COMBINED TO REAL-TIME TASK SCHEDULING ... etetetttuuieeeeeeeetiiiieeeeeeeeniieseeeeeeannnnaeeeeeneennnns 80

Q4.1 DVFS DESIGN cevvaeeeeeiiiieiieeeeeeeittttte e e e ettt e e e s es ettt e e e e e ss sttt e e e e e ssaaasstaaaaasesssassssssasasssnsasssssnaaasssssnnsses 80

4.4.2 Power/Energy Characterization and ENergy Profilingcc.eeeeeeeeeciviuveeeeeeeeeeiiiieveeeeeeeeisiisseeessseessssinns 81

4.4.3 Energy Monitoring and EStIMQLION.uuuuuuuuuuuuuuueiniiiiiiiiiesnssssssennnnssnnnennsnnnnnnnnnnns 82

4.4.4 Application’s SIACK-tiMe MONITOIING................uuueuuuuueunenenniiiiiieiiieieeneeeneeeseetenenssssssssssssssssssssssnssnnnnns 82

4.4.5 Run-time Energy Management (RT-REM)...............uuuuuuuuuuuuuuuuuunnnininennnnsssnnsnsnssnnnssnsssssssssssssssssssssnnns 83

N R Y | N 84

4.5 CONCLUSIONS ..ttt eeettttae e e e e e ettt e e e e e eeettaaa e e eeeeeteaaa e eeeeaeetaan e eeeeeetesan e eeeeeassana s aeeeeeessbannsaeaeeeennsannnseaaeees 86
QOS AT THE COMMUNICATION LEVEL.........cccoiiuuiiiiieeeeeeiiiitteeeeeesseittaeeeaeessssatttaeesaeesssnastsaeeeaeesssssssssneeaeessannnes 87
5.1 T ATE - OF-THE-ART Leueetttttuieee et eetttau e eeeetttaua e eeeatteauaa e aeeetttaanaaaeeeettssanasaeeseenssnnnsaeeeeeeessannsseeeeeenssnnnneeeenees 87
5.1.1 StAte-Of-the-Art DISCUSSIONeeeeruiieeeeiiiieeeiitteeeiee e eetee ettt e e e sttt e e e sttt e e st e e e sataaesssstaasssnstaessnsseaeennns 92
5.2 SOFTWARE-DEFINED NETWORKING (SDN) FOR NOC-BASED IMANY-CORES ..eeeeeeiiuerrireeeeeeesiinnrrreeesaessssnssneessessssnnnsssnees 93
5.2.1 SDN ArCRiteCtUIE OVEIVIEWuuuueueeiiiieiiiiiii s s snanan 95
5.2.2 Hardware Archit@Cture — SDIN ROULETuuuuuuuuuuiiiiiiiiii s snan 96
5.2.3 SOFtWAIE AICRITECLUI®.eeeeeeeeee ettt e et e e sttt e e st e e st a e e ssteeessasteessstaaeennns 98
53 CIRCUIT-SWITCHING (CS) BASED ON THE SOFTWARE-DEFINED NETWORKING (SDN) PARADIGM.....ceeveeeeiiiiriieereeeeesnnnnnne 99
5.3.1 CS-CONLIOIICE ...ttt ettt e ettt e e e e e sttt e e e e e e st eeeeeessanes 100
5.3.2 SEARCH-PATH AlGOITtRM ...ttt ettt ettt e e e e e et e e e e e essanes 101
5.3.3 RELEASE-PATH AIGOItRAM ...ttt ettt e e e et e e e e e ensanes 102
5.3.4 CS MANQAGEMENT PIrOtOCO]uuvueeeieeeiiiiiiii s nnaan 103
5.4 L2 U TP P P PP PP PPPPPPPPPPPPPPPPPPPRE 104
5.4.1 Performance EVAIUGLIONuuuuuuueuuuuueeiieeea s nsnnans 104
5.4.2 SUCCESS ROTE......oeeeieii s 105
54,3 PAUN LENGLA......eveeeeieeieee e, 107
5.4.4 SEARCH-PATH EXECULION TIMME....cccceeieaiiiiieeeeeeeeeiietttaee e e ettt te e e e e ettt ae e e e ssasstaaeeesssssssaanesssnnnsnnes 107
R N 1V -1 0T] o VAl o Yo 1 o ¢ RPN 108
5.4.6 Application’s LAtency EVAIUGLION................uuuuuuueuuenniieee s asnan 108
5.4.7 Comparison of the SDN-based CS to a Hardware-based APProGeh.............cccuueeeuciiiisiisiiisiisessesesseans 109
5.4.8 Area and POWEr Of the SDIN ROULETuuuuuuuuueeniiieeie s nanan 111
5.5 CONCLUSIONS <.ttt et ettt e e e ettt e e e e e e eeeeae e e e e e e eeeeaa e e e e e e e ee e sa e e e e e e eeenna e e e e e eae s s e e e e e en e s s e e eeeseennnnanes 112
SELF-ADAPTIVE QOS MANAGEMENT AT COMPUTATION AND COMMUNICATION LEVELcccccoovvuvrrninnnnnnn. 114
6.1 INTRODUCTION ...tetetttttiie e e e eeetetteee e e e e et eeeaa e e e e e e e eaeeaa e e e e e e eaesna e e e e eeeee s aaa e e e eeeenn s s e eeeeennnna e e eeeeeennnnasneeannes 114
6.2 ST ATE-OF-THE-ART ettttttttiiee et e ettt e e e ettt et e e e et eeeeaa e e e e et eeeaaa e e e e e e aeensa e e e eeeenesna s e eeeeeennna e e eeeeeennnnasnes 115
6.2.1 Related Works in Application Profile EXtraCLIONeeueeeeeeeeeeeeeeeieeeeeeeeeeeeeseeseeseessssssssssssssssssssnnnnnes 115
6.2.2 Related Works on Self-Adaptation for QOS.............eeeeeeeeeeeuiiieiieieiesiiiiieee e e ettt e e e e e esssiireee s e e esssiaes 115
6.3 APPLICATION PROFILE LEARNING (APL) ..vvvteeeeeeeiiitireeeeeeeeeitttteeeeeeeessussaeeeeessssaassssaessesssansssssseseessssnsssssssseaeesannnes 117
6.4 SELF-ADAPTIVE QOS IMANAGEMENT «.tttuieeeeeeettnnuieeeeeeeetnnaa e e eeeeeennaaa e eeeenennnaaaeeeeeennsnn s eeeeeennnnnaaeeeesennnnnannnes 118
6.4.1 QUICK-CHECKUP AIGOItAMSccoveeeeiiiiiiiee ettt ettt eeit e e e e e sttt e e e s s s sssssssaaaasessnsnssnes 120
6.4.2 COMPLETE-CHECKUP AIGOITtRM.........evvvvieieeeeeiiiiiieee ettt ettt e e e e e sttt a e s e e ssssssaaaessesnsaanes 121
6.5 RESULTS ettt ettt ettt e et ettt e e e e et ettt e e e e e et eae e e e e e e e e ene s aa e e e e e e en e R a e e e et e e e e R n e e e e e et nenr e e et reenn e eeeeees 123
6.5.1 Comparison with Single Objective QOS MONAGEIS..........ccccuuveeeieeeereiiiiiiiieeeeessiiiiieeeeseessssiisreeeseessssianes 123
6.5.2 Application Profile Learning OVEIrN@QAUoeuueeeeeeevveeeeeeeeeeeeeeeeeeieeeeeiesssssssessssssssssssssssssssssssssssssnnns 124
6.5.3 Self-Adaptive QoS AdQPtation EVAIUGLION..............eeueeeeeeeeeiieiieeeeeeieesieiseeeeseeseesssessssssssssssssssssssssssssssnsnnns 124
(R A1) Vo [o] 01V O Lo N Y [[[=Te) PPNt 127
6.6 CONCLUSIONS <.ttt eeeeettettia e e e e eeetttua e e e eeeeeesaaa e e e eeeneanaa e e eeeeeeesaa e e eeeeeesana e eeeeee e s na e e eeeeeensnaaaeeeeseennnnannnes 128
(o(0]} Lo HLU LY [0 PP PP TPPPTRRN 129
7.1 QOS AT THE COMPUTATION LEVEL 1.ttt ettt ettt e e e ettt e e e e e e ettt e e e e e e ettt b e e e e e eeeebaa e eeeeseennnnaannes 129
7.2 QOS AT THE COMMUNICATION LEVEL vttt e ettt e e e ettt e e e e e ettt s e e e e e e eee e e e e e e eeeebaaa e e eeeeeennnaaannes 130
7.3 QOS AT BOTH COMPUTATION AND COMMUNICATION LEVELSuiieeeeeeiiiiie e e e eeteeie e e e e ettt e e e e e eeene e e e e e e eenna s 130
7.4 SIDE CONTRIBUTIONS - eettttttuieeeeeeettneuueeeeeeeesnaaaaeeeeeaesnnnaaaeeeesssnnnnsaeeeeansssnanaaeeeeenssnnnsaeeeeeessnnnnsseeeseensnnnnsnns 131
7.5 HYPOTHESIS SUPPORT ...ttt et ettt ee e e e e e ettt e e e e e eeettea e e e eeeeetaaaa e e eeeeeee b aaa s e eeeeeessbaa s e eeeeeeesnaa s eeeeseensnnnnsseeanees 131
7.6 FUTURE WORKS. ..ttt ettt ettt e e e e e ettt e e e e e e ettt taa e e e e e e eee e aaa e e eeeeeesbaa s e eeeeeesbna s eeeeeeennnnanaeeanaes 132
7.6.1 MeEMOIY ACCESS QOSceeereeeeeeee ettt et e e ettt e e ettt e e ettt e e et te e e et e e e e tae e e s aae s s s taeaettaeaettaaeaesaaaeaeesaas 132
7.6.2 Adistributed implementation of SDN CONIONISoee e, 132

7.6.3 ComPrehensiveness iS the KEY WOIMeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e e e e e 133

REFERENCESooooiiiiiiiiiiie

APPENDIX A — PUBLICATIONS OF THE AUTHOR

19

1 INTRODUCTION

The high performance demand of the embedded market, combined with the technological
advances in the semiconductor field, led to the development of many-core SoCs (System on Chip)
[WOLO08]. Many-cores contain a set of PEs (Processing Elements) interconnected through a NoC
(Network on Chip) [HEMOO][BENO2]. Many-cores are the state-of-the-art regarding computing
power, due the high density of processing cores, and the support of parallel communications among
them due the presence of the NoC as the communication infrastructure.

Current commercial many-cores can reach tens to hundreds of PEs [TIL13][CLE13][INT13].
Intel recently announced the Xeon Processor E5-2699 [INT16], a many-core with 22 physical cores.
There is an estimation of ITRS [ITR15] that the number of PEs will reach more than 1,000 after 2025.
This prediction is possible due to recent advances in the transistors’ fabrication [IBM17a][LOU17]
and new computation demands that push forward the edges of technology, like virtual reality, new
smartphone applications, robotic, internet of things, and cloud computing. Therefore, it is

noticeable the potential that many-core systems have, and its relevance for research.

NoC-based many-cores are a concept that emerged in the beginning of the last decade
[HEMOO][BENO2] and evolved through several contributions in academic and industrial works. The
research field in many-cores is broad, due to its high complexity, multidisciplinary, and its tight
design requirements. Verification and debugging, programming models, fault tolerance, security,
power reduction, energy reduction, aging, and QoS (Quality of Service) are examples of current

research areas in the NoC-based many-core SoCs.

General purpose many-core are systems where the application set is unknown at design-time,
as in office and entertainment markets, smartphones, and other devices were applications can be
installed and removed during the system’s life. The system’s developer does not know which
application will be inserted into the system. Thus, the system must be smart to detect the
application profile and to dynamically allocate its resources according to the applications’ real-time

constraints, providing QoS.

While to provide QoS for systems with few PEs (less than a dozen) seems to be solved in the
research community, QoS for large-scale many-cores is an open research topic. This fact occurs due
to challenges as management bottlenecks, communication and computation unpredictability, and
process variability [SHA14]. Unpredictability is a relevant factor in adopting self-adaptive
techniques. As the number of components increase, the number of events and transactions
triggered by several protocols, management, monitoring, and data exchange also increases, making
the process of predict them at design-time impracticable. In such systems, task mapping is only the
first step to provide QoS, and a self-adaptive property is indispensable to increase the system’s
resilience regarding performance. Process variability can also affect QoS. For example, a core that
is not working at the same frequency of other cores may induce deadline misses if a real-time task

with tight constraints is allocated in this core. A self-adaptive technique can detect the QoS

20

violations and migrate the task to another PE. Such challenges require a comprehensive and self-
adaptive QoS support to meet, at run-time, the different QoS levels of the user’s applications. To be
comprehensive, the QoS support must cover both the communication and computation resources.
To be self-adaptive, the system itself must be able to detect QoS violations and act on the resources
torestore the QoS levels. Related works have self-adaptive proposals covering only one level of QoS.
The goal of this Thesis is to propose a self-adaptation QoS infrastructure and management for many-
core systems, covering both the computation and communication levels. The proposed design can
be divided into infrastructure and management scopes. The infrastructure scope concerns the
design of techniques that enable the system’s resources to be reconfigured at run-time. The
management scope concerns high-level management, implemented in software, that is self-aware
of the resources and applications and can trigger self-adaptations to ensure QoS. The next two
paragraphs detail the contributions of this Thesis, covering the infrastructure scope at both

computation and communication level.

At the computation level, the proposal consists of a low overhead task migration protocol and
a dynamic real-time task scheduler. The task scheduler was designed based on the LST (Least Slack
Time) algorithm and adopts a hierarchical organization, with the concepts of local schedulers, and
a global scheduler. The local scheduler runs at each core allocating CPU resources according to the
tasks’ RT constraints (period, deadline, execution time). The global scheduler is included as part of
the self-adaptive QoS management at computation level, which can decide to migrate a task at run-
time if the local scheduler cannot ensure QoS. The main feature and novelty of the proposed task
scheduler is to support at run-time the change of the task’s RT constraints (period, deadline,
execution time), providing high flexibility to the task by enabling fine-tuning of its RT workload. The
task migration protocol is based on task recreation. It has a low overhead due to the choice of not
copy the messages produced by the migrated task. The produced messages data remain in the
original PE and are delivered on-demand. The task migration works to ensure computation QoS by
acting in the CPU allocation control. The task scheduler works to ensure computation QoS by acting

in the CPU utilization control.

At the communication level, the proposed design is a Circuit-Switching (CS) approach
managed through the Software-Defined Networking (SDN) paradigm. CS is supported by
configurable SDN routers organized in a Multiple Physical Network (MPN). The SDN routers have a
small area footprint, implementing Elastic Buffers as storage input units, and supporting the SDN
paradigm. The SDN paradigm removes the control logic from the router level (hardware), assigning
it to a high-level management called CS-Controller (software). The CS-Controller abstracts to the
rest of the system the CS management, it is responsible for searching CS paths and configuring the
SDN routers, defining the network paths. The SDN-based CS works to ensure communication QoS

by acting in the NoC allocation control.

Those techniques compose the QoS-driven infrastructure at computation and communication

levels. The other contribution of this Thesis comprises a distributed self-adaptive QoS management.

21

The QoS management is implemented by high-level software algorithms and heuristics that run
distributed at the manager PEs.

The QoS management is based on the ODA (observe, decide, act) paradigm. The Observation
is supported by three classes of monitoring messages sent from the PEs running real-time tasks to
manager PEs. The manager PE is self-aware about the status of applications and system’s resources
and executes heuristics that can decide to reconfigure QoS when necessary. The Decisions can be
reactive as well as proactive, and fire orders to start the last phase of the ODA paradigm, the
actuation. The Actuation is handled by the QoS-driven infrastructure and concerns the physical
reconfiguration of the system’s resources at both the communication, by setting up a new circuit-
switching connection between two communicating tasks, and computation level, by migrating a task

to another core and scheduling a task according it requested RT constraints.

To support proactive decisions, this Thesis proposes an online application profile learning
technique, which continually learns about the communication and computation profile of each real-

time task at run-time.

The overall results show that the proposed self-adaptive QoS management can restore the
QoS level for the applications with a low overhead over the applications execution time. A set of
experimental results are presented throughout this Thesis. A broad evaluation, assuming several
known applications benchmarks (presented in Chapter 6) shows that even under several
disturbances of QoS at both computation and communication levels, the execution time of the

application is restored near to the optimal scenario, with 99.5% of deadline misses mitigated.

1.1 Hypothesis Development

The Author’s research starting at the end of his Master course and finishing at the beginning

of the Ph.D. explored QoS separately at communication [RUA15a] and computation [RUA14a] levels.

In Ruaro et al. [RUA14a] the Author proposed a run-time adaptation focusing on QoS
computation, through task migration and a Round-Robin task scheduler with priorities. The key idea
was to act individually at PE scope. A monitoring infrastructure (implemented in hardware and
software) observes the latency and throughput of RT tasks. When a QoS violation is detected, the
QoS management tries to remove BE tasks that can be running together the affected RT tasks. If
there is no best-effort (BE) task to migrate, the heuristic searches for other RT tasks to migrate. The
goal is to mitigate the interferences of the affected task, without migrating it directly, but acting
indirectly, removing tasks sharing the same PE. If task migration is impossible due to the lack of
available resources, the option is to increase the scheduling priority of the affected task. Results
showed that the throughput of the affected task is restored after detecting interferences, with a
small reaction time due to the QoS management. A limitation of this work is the absence of a real-
time task scheduler, which can improve the CPU utilization and ensure more accurate QoS

fulfillment, by handling specific RT constraints, like period, deadline, and execution time.

22

In Ruaro et al. [RUA15a] the Author proposed and evaluated a run-time adaptation focused
on QoS of communication, through dynamic flow priorities and CS establishment. This research was
based on the communication infrastructure proposed by [CAR11][CAR14], a network with
duplicated physical channels, support to CS, and two levels of flow priorities (high and low). The
network has two channels: channel 0 and channel 1. Channel 1 is used by low priority flows, and
channel 0 is used by high priority flows, or by one CS connection, which allocates all channel O for a
given CS path. Based on the same latency and throughput monitoring infrastructure of [RUA14a],
the goal was to dynamically adapt the priority for a given flow according to the number of QoS
violations. If this action is not enough to fulfill the communication QoS, the management tries to
establish a CS connection. While this technique is effective to provide QoS in low congested
scenarios, its main limitation is the low path diversity provided by the duplicated physical channel
network. When a CS is established, all the communication flows using channel 0 are switched

automatically to channel 1, increasing the congestion on channel 1.

The mentioned research motivated the Author to perform a broad literature review
(presented in Chapters 4, 5, and 6) to study self-adaptive techniques covering QoS at both
computation and communication levels. The related works pointed to a significant gap: "a many-
core architecture that provides QoS in a comprehensive, scalable, and self-adaptive design,
addressing the management and reconfiguration of resources at the computation and
communication level." This gap was increasingly confirmed with the advances in the state-of-the-
art review, leading to a central question of how to design such kind of support. This study enabled

to propose the Thesis hypothesis:

A comprehensive, scalable, and self-adaptive QoS support can be achieved by
proposing reconfigurable QoS techniques covering both computation and
communication levels, and by a management that is based on the self-adaptive
model [SHA09][DUT16a][DUT16b][ANZ17], the ODA paradigm [HOF13], and the
distributed resource management [KRA12][CAS13].

The self-adaptive model [SHA09][DUT16a][DUT16b][ANZ17] provides the necessary
properties to implement subsystems to reach self-adaptiveness gradually. The ODA paradigm
[HOF13] comprises the steps involved in the execution of the QoS management, presenting an
organized structure to develop the components for self-adaptation comprehensively. The
distributed resource management [KRA12][CAS13] provides scalability to the system by adopting a

cluster-based organization.

Other related works contributed to the formulation of the Thesis hypothesis. At the
communication level, the choice to adopts CS, implemented in a multiple physical network (MPN)
design, was motivated by the previous conclusions in literature [EJA13][YOO13][LIU15], which
compare MPN with SDM and TDM designs. Authors [EJA13][LIU15] compare MPN to SDM. With an
equivalent bandwidth implementation, MPN increase area in O(n), while SDM increases O(n?). The

path delay increases with the number of sub-channels (SDM) in O(n), while stays unchangeable for

23

MPN. Yoon et al. [YOO13] evaluate virtual channels (TDM) with MPN, concluding that MPNs have a

simpler implementation, lower area, and simpler floorplan.

The high flexibility that the SDN paradigm shown for computer networks [KIR13] motivated
the proposition of an SDN-based organization at the SoC context, and its use to manage CS
connections. Thus, the proposition of an on-chip CS-Controller, as a module that abstracts the CS
connection from other system components, enables to create a generic and modular CS support,
fitted to the high-level management required in self-adaptive systems.

At the computation level, the proposition of task migration and the task scheduler was
motivated by gaps found during the state-of-the-art review. Regarding the task scheduler, the main
observed gap was the lack of support for the run-time modification of the RT constraints, instead of
using static constraints during the whole application execution. This dynamic workload behavior is
present in, e.g., multimedia applications [JAV14]. Regarding task migration, the main challenge was
to propose a low overhead protocol, since the QoS management could require many task migrations
simultaneously, and related works have limitations in task migration techniques for distributed

memory systems.

1.2 Thesis Goals

The general goal of this Thesis is to propose a self-adaptive QoS support for a many-core
system that covers QoS at computation and communication levels. This general goal is divided into

specific goals:
1. Alow-overhead task migration protocol for distributed memory many-cores;
2. A dynamic RT task scheduler;
3. An SDN-based Circuit-Switching;
4. Ahigh-level self-adaptive QoS management at computation and communication levels

To enable the high-level self-adaptive QoS management, an infrastructure needs to be
addressed, covering computation and communication. Goal 1 concerns the proposition and
implementation of the infrastructure to support task migration. Goal 2 concerns the proposition
and implementation of the infrastructure to support an RT task scheduler. Goals 1 and 2 cover the
QoS-driven techniques at the computational level. Goal 3 concerns the proposition and
implementation to support CS, covering QoS-driven technique at the communication level. Finally,

goal 4 is related to the proposition of the self-adaptive QoS management over these proposals.

24

1.3 Thesis Contributions
The main contributions of this Thesis are the following items:
1. Low overhead task migration protocol [RUA17b] (Chapter 4);
2. Dynamic RT task scheduler [RUA15b][RUA16a] (Chapter 4);
3. SDN-based CS management [RUA17a][RUA18] (Chapter 5);
4. Self-adaptive QoS management at computation and communication level (Chapter 6).
Side contributions arising from the work required to achieve the specific goals include:
5. DMNI: a specialized network interface for many-cores [RUA16b] (Chapter 2);
6. A many-core debugging framework [RUA14b][RUA16c] (Chapter 2).

The side contributions are not directly linked to QoS, but provide mechanisms to improve the
general system performance, which is the case of the Direct Memory Network Interface (DMNI),
and supported the Author throughout the validation processes to debug the many-core platform,

which is the case of the debugging framework.

1.4 Thesis Organization

This Thesis proposal is organized as follows. Chapter 2 presents assumptions and general
concepts in such a way to make the Thesis self-contained. Chapters 3 details architectural features
of the reference many-core system. Additionally, this Chapter presents the contribution DMNI and
the debugging framework, which are part of the baseline many-core system. Chapter 4 presents
contributions of Thesis at the context of the QoS infrastructure at computation level. Chapters 5
presents contributions of Thesis at the context of the QoS infrastructure at communication level.
Chapter 6 presents contributions comprising the self-adaptive QoS management. Chapter 4, 5 and
6 have a similar organization, with a state-of-the-art, description of QoS techniques, and
conclusions. Chapter 7 presents the general conclusion of the Thesis and directions for future work.

Appendix A presents the Author’s publications during the Ph.D. period.

25

2 ASSUMPTIONS AND GENERAL CONCEPTS

This Chapter presents assumptions and general concepts used in this Thesis. Other specific
concepts are detailed in the next Chapters.

2.1 Network-on-Chip

A Network-on-Chip (NoC) [HEMOO][BENOQ2] is an on-chip communication infrastructure to
interconnect Intellectual Property (IPs) components — Figure 1(a), decoupling the computation from
communication. The NoC structure contains routers and wires. Routers have the function to
implement the network control logic, as depicted in Figure 1(b), which defines the path for each
exchanged packet between a source and target PE, routing a packet from an input port to an output

port. Wires have the function to interconnect routers, and to connect each router with its local IP.

P P

IP — Intelectual Property
R - Router

Py

3
pol
|
5@-
P po)
|
N
;Ul)
\
\
\
\
E \

T
py)
|
§\f |
o)
[
5\%
py)
[
/
/

(a) Many-Core interconnected by a NoC (b) NoC’s router overview

Figure 1 — (a) Network-on-Chip as interconnection infrastructure for a Many-core SoC. (b) a 5-port router
overview [MORO04].

Due to the benefits of NoCs compared to bus-based connections, as parallelism and scalability,
NoCs has been evolved from university prototypes to full commercial synthesis flows [MIC17]. For
example, IBM’s TrueNorth neuromorphic chip has 5.4-billion transistors, where 4,096 cores are

connected through a NoC, aiming the design of a brain-inspired computer [IBM17b].

The main features of a NoC are the topology, routing algorithm, flow control, and switching
mode [MORO04]. Regarding topology, currently stand-out the 2D-mesh topology, due to its easy
implementation and scalability. Regarding the routing algorithm, turn-based algorithms (as XY,
West-first, Negative-first) are mostly used, due to its simplicity, low area footprint, minimum path
length, and deadlock-free features. A common example of flow control method is the synchronous
credit-based, which provides lower latency compared to handshake methods. The most used
switching mode is the wormhole packet-switching (PS) since it requires the smaller amount of space

in buffers and avoids the reservation of network resources for a large amount of time.

This Thesis adopts the Hermes [MORO04] PS router, with a 2D mesh topology, XY routing

algorithm, credit-based flow control and wormhole packet-switching.

26

2.2 Many-Core

Many-core [WOLO08] is a system-on-chip composed of several PEs, interconnected by a NoC.
The term many-core is related to the presence of several PE units in a single chip. Another definition
for many-core is MPSoC (Multiprocessor System-on-chip), the switching from the label "multi" to
"many" cores/processors is due to the growing number of PEs on the same chip. However, this
nomenclature is not well defined in the literature, because works mix the terms MPSoC, multi-core,
and many-core. This work adopts the many-core term, assuming systems from a dozen to hundreds
of cores.

Many-cores can be classified into two large groups: heterogeneous and homogeneous.

e Homogeneous many-cores: divided into asymmetric and symmetric architectures. In
symmetric many-cores, all PEs have the same architecture and are replicated over the
system. Example of asymmetric homogeneous many-core is the big.LITTLE
architecture, developed by ARM [ARM17][GUI17]. In this architecture, the system has
two PE types, "LITTLE" PEs are designed for power efficiency while "big" PEs are
designed for performance. The workload distribution between "LITLE" and "big" PEs is

managed at run-time according to the applications’ profile and the system budgets.

e Heterogeneous many-cores: different PEs architectures are assumed, as GPPs, GPUs,
DSPs, and ASIPs.

Heterogeneous many-cores target specific applications, because their PEs (or some of them)
are specialized to a given application profile. On the other hand, homogeneous many-cores
(symmetric or asymmetric) target general-purpose applications, such as multimedia and office
applications’ classes, and use the replication of processing components to increase its processing
power. Homogeneous many-cores have advantages over heterogeneous due to the possibility to
achieve better load balancing, fault tolerance, time-to-market (due to the redundancy of
components), and the support of easy task migration protocols. Currently, the industry already
designs homogeneous many-core from a dozen to thousands of cores. Some examples are the 72
PEs chip from Tilera [TIL13], and KiloCore composed of 1000 PEs [BOH17].

While this Thesis adopts a symmetric homogeneous many-core as the baseline architecture,
this does not limit (after some modifications) the applicability of the techniques herein proposed
for heterogeneous or asymmetric many-cores. The homogeneous many-core is only used as a proof-

of-concept.

2.2.1 Computation and Communication Resources

Resources of a many-core system can be divided into computation and communication parts.
Figure 2 presents an example of a PE architecture, its components, and the division between the
computation and communication resources. Computation resources are related to data processing,

collecting and manipulating data inputs to create a meaningful information that is available as data

27

output. Distributed memory many-core systems have their computational resources located inside
the PE instance, composed basically by a CPU and a local memory. A shared memory system has its
computational resources decoupled from the PE instance. They assume an off-chip memory or a
memory instantiated as on-chip IPs. Hybrid memory systems assume a shared memory and a small
local memory (cache memory) within the PE, which is used to speed-up instruction access and to
reduce the communication load [MAD16]. Besides the CPU and memory, a Direct Memory Access
(DMA) or Direct Memory Network Interface (DMNI) [RUA16b] also can be adopted to improve

memory transactions.

Computation resources

> = CPU |
e Communication
q) -
2 — | resources
T NI I
(@] \ 4
o
— R
g T
______ |

Figure 2 — Example of the components of a many-core Processing Element (PE), divided into computation
resources (local memory, CPU, and DMA) and communication resources (router, wires, and NI).

Communication resources are concerned in transmitting the inputs and outputs of the data
processing system. The communication resources correspond to the NoC resources, which can be
assisted by a Network Interface (NI) to make the interface between the PE and the NoC. The NI
decouples computation from communication, receiving data from local memory and converting to

the NoC packet format, and converting NoC packets in inputs for the computational resource.

This Thesis proposes QoS techniques that reconfigure computation and communication
resources. The computational resources comprise the CPU utilization (RT task scheduler) and CPU
allocation (task migration) at run-time. At the communication level, this Thesis proposes multiples

physical networks-on-chip (MPN), and the run-time management of the MPN resources.

2.3 Real-Time Applications

Real-time applications [LIUOQ] have timing constraints to finishes its jobs. A job can be defined
as a segment of computation and/or communication that applications need to execute, for example,
a loop iteration, the resolution of a mathematical equation, sorting an array, etc. Real-time
applications can be characterized according to their job execution frequency: as periodic, aperiodic,
sporadic. Periodic applications request to execute their jobs continually in fixed periods of time.
Aperiodic applications request to execute their jobs continually in unfixed periods, but with a

minimal interval of job release. Sporadic applications do not have a continual execution of their jobs,

28

they can request to execute they at any time, and there is not a guaranteed that the application will

request to execute again, i.e., there is not a minimum time between jobs release.

Another classification of RT applications concerns deadlines: hard RT and soft RT. A deadline
is a temporal constraint that indicates when the system must finish the execution of the application
job. Hard RT applications do not tolerate any deadline miss, they are safe-critical applications and
are commonly implemented in dedicated parts of the system. An example of hard RT application is
a self-driving car algorithm, which can not miss deadlines to take its decisions, with the consequence
of injury a human life. On the other hand, soft RT application tolerates some deadline misses. The
number of tolerated deadline misses is not a constant, it depends on the application characteristics.
Nevertheless, the system must work to avoid all deadline miss. Business and multimedia
applications are well known applications from this class. Consider an audio-video decoder running
on a smartphone. The system must work to deliver 30 frames per second to the end user, but if the

frame rate drops for a brief moment to 29 or 28, this may not have critical impact to the end user.

Applications that do not have any deadline to finish their jobs are classified as Best Effort (BE).
The system explores the idle time of the CPU or the slack time of RT application to execute those

applications.

This Thesis assumes BE and soft RT applications with periodic, aperiodic and sporadic job
releases. The support for the three job classes is due to the possibility of tasks to change its period,

deadline and execution time at run-time.

2.4 Quality of Service for Performance

Quality of service (QoS) for performance is a system capability to dedicate some of its resource
to fulfill the RT constraints of the applications [CAR11].

The term QoS originated from telecommunication networks, where QoS constraints are
related to the communication throughput and latency of interconnections. For many-core systems,
the concepts of QoS assumes a broader definition, covering not only communication but also
computation resources. The communication QoS is focused in the allocation of communication
resources (routers and wires), according to the application communication characteristics, as
latency, throughput, jitter, and the application communication graph between its tasks. Flow
priorities and circuit-switching are the most adopted techniques to perform this support. The
computation QoS for many-cores is focused on allocating CPU resources. This support is mainly
enabled by RT task schedulers, task mapping, and task migration techniques. Chapter 4 and 5 detail
the most adopted techniques in literature to provide QoS at computation and communication

levels.

Beside QoS for performance, there are also other QoS targets: examples are the QoS support
against system failures (fault tolerance) and data integrity (security). This Thesis focuses on QoS for

performance, addressing QoS at the communication and computation levels.

29

2.5 Self-awareness and Self-adaptation

Challenges that the design of the next many-core generations must address include the
presence of hundred to thousand cores in a single chip, tightly application-specific QoS constraints,
physical budgets for power and temperature, and low energy consumption. Design-time phases are
the first steps to deal with such challenges. A large-scale system, due to its high level of
unpredictability about the resources usage, requires autonomy to be aware of its resources and be
the actor of run-time adaptation to fulfill constraints. Thus, the system must be self-aware, meaning
that it must have the autonomy to observe the status of its resources and running application,
gathering the necessary information to start a reconfiguration when necessary. While in an adaptive
system the adaptation process may be triggered from the outside, e.g., by an application
management layer or a human operator, a self-adaptive system identifies the triggering condition

and initiates the adaptation process.

Recent works address these challenges, by investigating and proposing modular self-aware
infrastructures and architectures for many-cores. The main goal is to provide a unified self-aware
design phase, which is generic, avoiding the necessity to design a new self-awareness system for
each new project [DUT17]. Models based on a closed loop have been addressed, as the one
presented in Figure 3 [SAR15][DUT16b]. This kind of self-awareness model implements the ODA
(Observe, Decide, Act) paradigm, enabling the system to be continually working toward a better
understating of its behavior. Different layers implement independent self-awareness subsystems
[DUT16b], with submodules for observation (by virtual and physical sensors), decision (adaptation
policies composed of heuristics aware of design and applications constraints) and actuation
(infrastructure support to reconfigure the hardware and the software level). A dedicated network
can be assumed to enable fast communication of management packets, avoiding interference in the
application flows [DUT16b]. One of the main advantages of this model is that each layer of the many-

core can be made self-aware and self-adaptive, as detailed in Figure 3.

A recent survey conducted by Professor Axel Jantsch (Technological University of Vienna) and
co-Authors provides a comprehensive overview related to the research status and challenges in self-
awareness for SoCs [JAN17b]. The Authors present a precise definition and review of terms such as
self-awareness, self-adaptation and other definitions required to construct such functionalities.
Figure 4 reviews the pyramidal organization related to self-x functionalities to achieve self-
adaptiveness [SHAQ9]. Self-optimization is related to the ability to tuning system resources to satisfy
the requirements of different applications. Self-configuration is the capability related to the
infrastructure support that enables the system to be reconfigured at run-time. At the top of the
pyramid is self-adaptiveness. This functionality is related to the system ability to decide when and
which resource to adapt to fulfill a given constraint. Other self-x properties such as healing and
protection can be supported, covering fault-tolerance and data integrity, respectively. Note that for

the system to be self-adaptive it needs to be self-aware.

Actuators
(Act)

Sensors
(Observer)

30

Middleware/Firmware v

Supervisory Policies

1
—= I
i | \ = 1
: ! e ™ ! | |) [N 1
' .AA : Applications mam @ 1
1 ¢ J [i 1
\ : : 1 ; 1
" | 1 A 1
1 = | m 1
| = 1 =4 1
! =N ! 8 !
1 AN S | Network/Bus Communication | ! o e :
| 1| L
: 1 Architecture I . '
1 bl : 1 = 1
| < 1 g 1
! AH o i Hardware Architecture " SH = :
1 = |
I I
1
1 |
1 —'— |
1 1
1 A !
1 |
1 |
1 1
1 1
1 1
1 |
1 |
1 1
1 1
1 |
1 1
1 I
I

Figure 3 - Cross-layer virtual sensing and actuation at different layers of Cyber-Physical SoC (an
example of many-core) [SAR15][DUT16b].

Self-Adaptiveness

Self-Configuration Self-Healing

Self-Optimization Self-Protection

Self-Awareness Context Awareness

Figure 4 — Self-adaptiveness hierarchical organization [SHAQ9].

This Thesis is based on the self-x concepts to propose the self-adaptation QoS support at

communication and computation levels, detailed in Chapter 6.

2.6 ODA Paradigm

The Observe-Decide-Act (ODA) is a method to implement self-adaptation, proposed in
Hoffman et al. [HOF13] (SEEC Framework) at the SoC context, which consists in implement a closed
loop (Figure 5) of observation, decision, and actuation, enabling the system to be self-aware as well
as self-adaptive. Observation is implemented by information provided by monitors/sensors and
sporadic feedbacks that are sent to a high-level management (software). The application developer
defines goals/constraints to the application at design-time, and that must be met at run-time. The

management module reads these goals comparing them to the received monitoring information.

31

SEEC

Application Systems System
Developer Developer Infrastructure

Express application Read goals and

goals and progress performance
Observe (e.g. frames/ second)

Determine how to adapt
(e.g. How much to

Decide speed up the
application)

Provide a set of actions Initiate actions based
and a callback function on results of decision
(e.g. allocation of cores phase

to process)

Figure 5 — ODA loop providing self-awareness and enabling self-adaptation [HOF13].

Decision is implemented by a high-level management module, which is aware on the situation
and can determine how to adapt, for example, if a given task is losing QoS, deciding on which
resource to act to restore the QoS level. Actuation is implemented by a QoS-driven infrastructure
(such as real-time task scheduler, task migration protocols, circuit-switching designs), and by
systemic protocols, which work to reconfigure the computation or/and communication resources

at run-time. The actuation is triggered in the decision phase.

The ODA paradigm enables to implement a comprehensive self-adaptive management
because it divides the subsystems by their roles, providing scalability for inserting future features,

and also helps the validation of the self-adaptive implementation.

2.7 Distributed Resource Management

The high number of resources to manage can quickly overload a single manager of a many-
core. A scalable management design method consists in dividing the management of the system in
regions. Each manager handles a cluster of PEs [CAS13][GOT16]. This organization also enables to
implement hierarchical management, as proposed by Faruque et al. [FAR10] and depicted in Figure
6. A low-level management is applied at the PE level, such as task scheduling and monitoring. The
monitored information is sent to cluster managers, which concentrate these information enabling
to have a holistic view the cluster. A third level can be inserted by assuming a global manager, which
can receive high-level information from cluster managers, providing a systemic view. The global
manager takes coarse grain decisions, like choosing which is the best cluster to receive a new

application or managing reclustering protocols that change the shape of the cluster at run-time.

This Thesis assumes a distributed resource management implemented on dedicated
managers. The management is divided into three levels, as proposed in some works of literature
[FAR10][CAS13][GOT16]. Chapter 3 provides more details related to this infrastructure.

32

Global Agents (GAs) perform assignment of unmapped tiles to clusters,
create and destroy CAs, and are called by CAs to remap applications to
enable DTM across clusters.

Cluster Agents (CAs) perform thermal-aware remapping of tasks and
tiles. They also respond to the neighboring CAs about fine-grained tile
availability, and they store application details such as task graphs.

Tile Agents (TAs) are attached to each tile and contain sensors that
measure tile temperature and communication volume. Exceeding
temperature thresholds causes TAs to notify their CAs and may initiate DTM.

Figure 6 — Overview of distributed resource management proposed by [FAR10] to dynamically control the
temperature on many-cores.

2.8 Monitoring

Monitoring means observation, i.e., the capability of the system to observe a given behavior
and to enable self-adaptation. The literature presents many monitoring proposals [KOR13].
Monitoring for thermal, power and energy management are the most explored monitoring
techniques in the literature. These techniques guide managers to balance the on-chip temperature
or voltage by monitoring such parameters directly [RAN15][ZHA11][WAN10], or indirectly, through
the monitoring of the communication frequency [FAR10], or memory accesses [GRA13]. Monitoring
for fault-tolerance and reliability has also been proposed, measuring parameters as soft error
failures, and wear-out of devices [ZHA11][LIU14a].

There are some proposals specific for QoS monitoring. In general, the QoS-driven monitoring

targets two performance parameters: (i) performance constraints; (ii) system resource availability.

QoS monitoring can be applied at the task level in hardware [STA11] or software [SAI10].
Monitoring uses as constraints data obtained by a profiling step at design-time. At run-time, the
monitored performance is compared to the constraints defined at design-time. In this context, a
common technique is to observe the communication buffers. Stan et al. [STA11] monitor the
communication buffers in the memory space. Matos et al. [MAT10a] monitor the communication
buffers to apply buffer resizing. Faruque et al. [FAR12] apply buffer resizing and includes an adaptive
route allocation algorithm. Communication buffer monitors can be implemented exclusively into
the NoC [MAT10a], or into the NI [FAR12][KOR12][MOT12].

Kornaros et al. [KOR12] propose an NI monitor that can be software programmed to serve
QoS. The proposal describes a cluster manager monitor, a hardware unit that concentrates the data
from the low-level NI monitors, and generates interrupts to a generic management system when a
predefined threshold is violated. Motruk et al. [MOT12] propose an NI monitor to collect
information about the usage of the system shared resources. Monitoring is used to achieve

composability in a shared-memory many-core by using temporal and spatial division.

There are also proposals focusing on generic monitoring infrastructures [AMB13]
[FAT11][FIO10][KRA12]. The main strategy to achieve monitoring scalability, low area overhead, and

low intrusion is to adopt a hierarchical monitoring organization [FAT11][KRA12]. Monitors can be

33

divided into hierarchical levels, each one handling different granularities of the monitored data.
Such approaches include hybrid monitors (mixed hardware/software implementation) because they
can combine the non-intrusiveness of hardware monitors (at lower levels), with the system’s view
and flexibility of the software monitors (at higher levels).

A representative work is the proposal of Kramer et al. [KRA12] that addresses a scalable
monitoring infrastructure for many-cores. The Authors describe a hybrid monitoring organized in
three levels, as presented in Figure 7(a). At the lower level, several Associative Counters Arrays
(ACAs) can be attached to different hardware or software components of a PE - Figure 7(b). The ACA
extracts system’s performance parameters, as communication rate, buffer occupancy, and the
number of instructions. ACAs send the monitored data to a Lower Level Monitoring unit (LLM). An

LLM acts as an interface between the ACAs and high-level monitoring.

L r3: Processing Cell
Higr{.eLeiel o 1 Dynamic Static
Maonitoring A
———————————————————— General
Purpose o
Layer 2: Processor
Low-Level [LLM} [LLM} s [LLM] Low-Level
Manitoring A Monitoring
A4 Y |
L1 y
_______ Instruction L1-Data A
Layer 1: Cache Cache
Data jt Jt
Acquisition e
Unified L2- Cache
(a) X) 4
‘ ACA
» NoC-
‘ Router
(b) A A A
YYYY

Figure 7 — Kramer et al. [KRA12] hierarchical and hybrid monitoring.

An advantage of hierarchical monitoring over centralized approaches is that its organization
is easily settled with a cluster-based resource management [GOR13][GUA10][FAR10]. The lower
level monitor units can be attached to PEs, medium levels monitors can be attached to cluster

managers, and high-level monitors can be attached to a system many-core manager.

The key issue to support run-time monitoring implementations is the ability to program
monitors dynamically. Such feature can be easily achieved in software monitoring [SAI10] or can use
memory-mapped registers in hardware proposals [KOR12][AMB13][FIO10][STA11].

Another recent monitoring metric for many-cores is the task slack time monitoring. Slack time
monitoring (STM) is an important metric to enable QoS adaptation focused on computation. It can
be used together with an RT scheduler to observe the task, or CPU slack time (idle time monitoring).
STM at the task level computes the slack time based on an earlier task execution completion. The
literature shows that such approaches can be applied to energy management through DVFS
[LI13][KOT10], which can be combined with task migration [SIN13a]. Paterna et al. [PAT12] propose

an energy-efficient task allocation method considering process variation. That work mentions STM

34

for RT tasks based on a frame rate monitoring of multimedia applications, however, without
detailing the implementation.

This Thesis adopts monitoring methods targeting self-adaptive techniques: deadline miss
monitoring, latency miss monitoring, CPU slack-time monitoring, and application profile monitoring.
While the monitoring implementations are not original contributions, they are fundamental to
enable the self-adaptive techniques herein proposed.

2.9 Final remarks
The list presented below summarizes the assumptions adopted in the current Thesis:

e NOC: Hermes PS router, with a 2D mesh topology, XY routing algorithm, credit-based flow

control and wormhole packet-switching.
e Many-core: symmetric homogeneous many-core.

e Application types: BE, and soft-RT applications with periodic, aperiodic and sporadic job release.

e QoS: target applications' performance.

e Self-adaptation: paradigm adopted to meet QoS at communication and computation levels.

e ODA: method to implement a comprehensive self-adaptive management.

e Distributed Resource Management: 3-layer structure to ensure scalability for the proposed

methods.

e Monitoring: deadline miss monitoring, latency miss monitoring, CPU slack-time monitoring, and

application profile monitoring.

35

3 REFERENCE MANY-CORE ARCHITECTURE

The HeMPS platform (http://www.inf.pucrs.br/hemps/) is the reference many-core

architecture adopted in this Thesis. HeMPS is an open-source many-core architecture framework
developed by the GAPH research group, used to implement and evaluate proposals for many-cores.
The Author of this Thesis contributed significantly to the development of the last versions of HeMPS
(since version 7.0). Figure 8(a) overviews the HeMPS architecture.

The application repository is an off-chip memory used to store the applications that will enter
in the system at run-time. The system has a set of homogeneous PEs, organized in clusters. Each
cluster has a Manager PE (Mpe), dedicated to management purposes, as task mapping and
application admission control. The Mps can receive other algorithms to gather monitoring
information and to manage the system at run-time. This Thesis implements the self-adaptive
algorithms in the Mpes kernels.

Cluster: the cluster size is defined at design time. At runtime, the manager can borrow
resources from neighbor clusters increasing its size

—

s—s—s—s&s—s—s—s
' ' ' ' ' ' ' ' M Cluster Manager Processor
SHSHSHSMSHSHSHS - Mg
I I I I I I I I
SHSASMAS SHSHSHS S | Slave Processor - Spe
I I I I I I I I
A
M—HSHSHS M-HSHSHS||] ————————o - —
== I
SHSHSHSHSHSHS |
I I I I I I I |
SHSHSHS SHSHS I
I I I I I I I |
Application SHSHSsSsHSsSHSHSH S
Repository |
I I I I I I I
‘M—S—S—S'-M—S—S

(@)

Figure 8 — Baseline many-core architecture. (a) system architecture [RUA17a]; (b) PE architecture.

Slave PEs (Spe), execute user’s tasks, with inter-task communication and multitasking support.
The differentiation between Mpr and Spr occurs at the software level, with each one having a
different kernel (small operating system). Figure 8(b) overviews the PE’s hardware architecture. All
PEs have a dual-port scratchpad memory, a CPU, and a DMNI (Direct Memory Network Interface)
connected to PS router (an original Hermes router [MORO04]). The DMNI merges the functionalities
of the NI with a DMA module, reducing control logic and buffering, and creating a direct path
between the NoC and memory. The system can also support other Spr architectures enabling
heterogeneity. This Thesis assumes a homogeneous symmetric architecture, as stated in the
previous Chapter.

http://www.inf.pucrs.br/hemps/)

36

This Chapter contains five sections:

e Section 3.1 — describes the applications' model.

e Section 3.2 — reviews the main features of the operating system running in the processing
elements (kernel).

e Section 3.3 —explains the communication method between tasks, based on message passing.

e Section 3.4 — presents one of the side contributions of this Thesis, the Direct Memory Network
Interface (DMNI) [RUA14b].

e Section 3.5 — describes the modular verification, corresponding to the second side contribution
of this Thesis [RUA16b].

3.1 Applications' Model

Figure 9 presents an application model example. An application A is modeled as task graph:
A={T, D}, where T={t;, t,, ..., tn}is the task set. The set D represents the application descriptor, which
contains the communicating task pairs (CTP). The CTPs of the application presented in Figure 9 are:
ta—>ts, ta>tc, ts—>tp, te>tp. Agiven task may be in 3 states: (i) ready, the task is ready to be executed;
(i) waiting, the task is blocked waiting for a message delivery; (iii) running, the task is running, using

the CPU and changing its dynamic memory sections.

Receive(&msg, TaskA)
Send(&msg, TaskD)

App.
Descriptor

Send(&msg, TaskB)
Send(&msg, TaskC)

N

TaskA:
TaskB
TaskC

TaskB:
TaskD

TaskC:
TaskD

Receive(&msg, TaskB)
Receive(&msg, TaskC)
Receive(&msg, TaskA)

Send(&msg, TaskD)

Figure 9 - Application Model Example [RUA17a].

The reference many-core system has a task scheduler supporting BE applications only. One of
the contributions of this Thesis, presented in Chapter 4, provides the RT application support by

proposing an original RT task scheduler.

3.2 Kernel (Distributed Operating System)

Figure 10 presents the kernel hierarchy of the HEMPS, implementing a distributed
management. As previously mentioned, the system has three types of kernels: Spes and Mpes. There
is also one specific version of Mpg, called SMp¢ (S stands from System). The SMpeimplements exactly
the same functionalities of the Mpg, with the addition of other functions that perform a system
management, controlling the interface with the application repository and a heuristic to assign new

applications to the clusters [CAS13].

37

Spe :Slave PE is a kernel dedicated to support the execution of the applications
Mpe : Manager PE is a kernel dedicated to the management of an Sy cluster

SMp¢ : System Manager PE is a Mp: kernel that also implements the interface to the
Application Repository

Application
Repository

‘ Applications

‘ Applications

‘ Applications

Figure 10 — Kernel Hierarchy of HeMPS.

Clusters have a dynamic size, i.e., clusters can change their size at run-time if the number of
applications’ tasks is greater than the number of available cluster’s resources (local memory page
of a given PE). This capability is supported by a reclustering protocol [CAS13] implemented between

Mpes that allows to borrow resources from a cluster to another.

3.2.1 Application’s Admission Management

The kernels (Spe, Mpe, SMipe) implement an application admission protocol presented in Figure
11. When an application request to execute in the system, the application repository interrupts the
SMpe. The SMpe handles the interruption retrieving the application description D and executes a
cluster mapping algorithm, which selects the appropriate cluster to receive the application (based
on the cluster’s occupation). The SMp: sends the application description D to the Mg of the selected
cluster. The Mpe receives the application description, maps the tasks into Sees and requests to the
SMpe the tasks object code. The SMpe handles such request configuring the application repository to
transfer the object tasks code to the Spes. When an Spereceives a task code, it sends a message to
its Mpe informing the successful load of the task code. The Mpe receive these messages from each
Spe with the application tasks. When all tasks are loaded, the application is released by the Mp¢ to

execute in Spes.

App. Repository SMpe Mpe See

NEW APP REQUEST !

»
».

Y
T
Cluster
Selection
APP DESCRIPTOR “
App.
Mapping

OBJ CODE REQUEST

<
<

OBJ CODE COPY TASK ALLOCATION

o-—-Y

TASK ALLOCATED

TASK RELEASE

-t
\ 4

Figure 11 — Application Admission Protocol.

38

3.2.2 Inter-task Communication Management

The Spe supports multitasking, interruptions, context saving and provides a communicating API
for tasks by implementing two MPI-like primitives: Send and Receive. The Receive is a blocking
primitive called by the consumer tasks. The Receive generates a MESSAGE_REQUEST packet to the PE
of the producer task, which deliveries the data by sending a MESSAGE_DELIVERY packet when the
producer task calls the Send primitive. When a consumer task calls the Receive, it goes to a waiting
state until the reception of the message from the producer tasks.

Each Spe kernel has a message FIFO, named pipe, which stores the messages produced by the
running tasks. The kernel of the producer tasks manages the pipe. When a MESSAGE_REQUEST arrives
at the producer kernel, it searches for the message in the pipe. If the message is in the pipe, the
message is delivered to the consumer task. If the message is not in the pipe, the kernel stores the
message request, and when the producer task calls the Send primitive, the produced message is

forwarded to the consumer task.

3.2.3 Multitasking Management

The Spe kernel support multitasking using a paging mechanism, which divides the memory into
fixed-size pages during the kernel’s boot. Figure 12(a) present the PE architecture detailing the
logical division of local memory. Page 0 stores the kernel, and the remaining pages the applications'
tasks. The number and size of pages (equal for all pages) are defined at design-time. Figure 12(b)
details the memory structure for each page. The page has static and dynamic data sections. The
static section is called text, which stores the task’s object code. The dynamic sections are composed
of the data (initialized date), bss (uninitialized data) and stack. This memory structure is defined by

the compiler (e.g., GCC).

1.0 - Pl

oe H Pt peld oe |4 Processing Element - PE -] stack]_g
| (N | | 4 |\ [1| |7+~ a
- ; 3,
PE H RE H PE 1 page 3 \ S
| I““ I - CPU H """""" h CBD
PE H PEYH PE H | page2 [\ (D) S
: N L] O | task 2
- — g """"""" “ Uninitialized datal Q
PEMPEMREM] ¢ S| page1 || bss || S
— 1 L task ‘ nitalized data ¢

€=P| DVNI [t : data |1 o

\ PS P page 0 > ‘\ 5

4_"‘ r < 05 . g o

1) Q3

+ ‘ o

* N teXt > g

-3

Figure 12 — Memory paging organization [RUA17b].

3.3 Communication between PEs

The communication between PEs occurs through unicast messages. The kernel manages the

communication by sending and receiving packets. Packets may be related to the user inter-task

39

communication model, or to the system management. Figure 13 details the packet and message
structures. From the NoC point of view, the packet has a header and a payload. The packet header
has the target router address and the payload the packet size. From the kernel point of view, a
message has:

e message header: encapsulates the packet header and the payload size and adds other
control fields useful by the kernel, as the service header, which informs the service
type (e.g., message delivery, message request, task allocation);

e message payload: optional field. It holds raw data used in the service header context

(e.g., user data of a message delivery or an object code of a task allocation service).

Packet Iheader PacketI payload

Service
Header

Target
Address

Payload

size Service Payload (optional)

Message header Message payload

Figure 13 — Packet and message structures [RUA17b].

Figure 14 presents the flow to send and to receive a packet between two different PEs. When
the kernel of the producer PE needs to send a packet, it calls a send_packet() function that programs
the DMNI to start to send the packet, coping the data from memory and transmitting to the NoC.
At the consumer side, when the DMNI receives a packet it interrupts the processor. The interruption
handler calls the read_packet(), which programs the DMNI to read the packet coping it from the
NoC to memory. Once the packet is completely received, the kernel executes functions related to
the contents of the packet. For example, if the packet has data to a user task t, the packet (message
in the user task context) is written in the t memory space, and t is scheduled to execute. The next
Section presents more details about the API functions send_packet() and read_packet().

Producer PE Consumer PE

Network On Chip

Figure 14 - Inter-PE communication flow [RUA16b].

Need to send Receive the
a packet: packet:
send_packet() read_packet()
o Helad:r 5
Paylo. Si —
%: P:‘y’l:adlff I.lKe rnEI Header Q
= Paylo. Size | —
s DMNI DMNI Payload .. | =
= programing programing E
(&) (@]
S 1 z
Interruption
DMNI DMNI
Send Receive
Hardware

40

3.4 Direct Memory Network Interface (DMNI)

As previously mentioned, the integration of many-core SoC with a NoC requires an NI. The
goal of the NI is to make the interface between computation and communication, an interface
between the processor and the NoC that implements the communication protocol to send and
receive packets. Figure 15(a) shows a many-core architecture. Figure 15(b) presents a typical PE
architecture with an Nl integrated on the PE.

The architecture of Figure 15(b) is inherited from bus-based architectures and commonplace
in NoC-based many-core designs. The processor has interfaces with different modules (NI, DMA),
and the software has APIs to control each one. The processor programs the DMA writing in memory
mapped registers the initial memory address and the block size to transfer. After programming the
DMA module, the processor resumes the execution while the DMA transfers data to/from memory.
For performance reasons, DMA is broadly used in systems that support real-time applications
[LAP11].

(b) PE Architecture
PE (H Pe | PE | Pe | PE [PE
I I I 5
' ' ' Processor |¢=p 3
PE (H PE | PE H pe |H PE [PE P
I I | I I I §
PE (H Pe | PE H PE |H PE [PE S
I I I I I .. Router NI oA =
gy
PE (H PE | PE |H PE |H PE | PE S o 5
T T i T T T i
PE (H PE |H PE H PE |H PE [PE .
I I I I I I
PE (H PE |H PE H PE |H PE [PE =
Processor |¢=| g
. -
(a) 6x6 MPSoC instance 3 2
<
anl 2
Router0 DMNI N] <
P
it

(c)'Proposed PE with DMNI

Figure 15 — Many-core and PE organizations [RUA16b].

Several works in the literature mention a design including a DMA and an NI [PAL12][ARN14].
Derin et al. [DER13] briefly mention an NI with DMA capability, but the work only groups the two
modules, without an effective integration. Molnos et al. [MOL12] mention the use of a DMA to send

and receive data between two memories (local and shared) through the NoC, without design details.

Attia et al. [ATT11] present a pipelined NI architecture for NoCs. The work presents a modular
design, separating the injection and extraction path between the IP and the network sides. The
proposed design outperforms other works in terms of latency and power, but the analysis is
restricted to the NoC and the NI, without evaluating a complete system. Chouchene et al. [CHO11]
add a low-power technique in the NI design of [ATT11], using a stoppable clock technique. The Nl is
turned off when there is no data to be handled.

41

Designs proposed in Matos et al. [MAT10b] and Swaminathan et al. [SWA12] target
heterogeneous many-cores by using asynchronous communication architectures. Das et al. [DAS12]
propose a fault-tolerant NI to be used in SDM (Spatial Division Multiplexing) NoCs, with serializers
and deserializers to support the spatial division concept.

Kariniemi et al. [KAR10] propose an NI aiming to reduce the interruption frequency in the
Micronmesh many-core by an interrupt batch mechanism. The results demonstrated a throughput
improvement with longer messages. The work assumes the use of a DMA to improve
communication latency but without specifying implementation details. Fanfga et al. [FAN10]
propose an NI design combining a Lookup Table (LUT) mechanism and DMA features. The proposal
is focused on the packet reception process. The tag segment of the LUT (programmed by the CPU)
is compared with the tag information in the packet, and if matches, the address stored in the LUT
can be used to start the DMA transfer directly. The goal, as in Kariniemi et al. [KAR10], is to reduce
the interruption handler overhead. The Authors evaluate the latency to receive packets, with

performance gains in larger packets.

Chen et al. [CHE10] and Ma et al. [MA15] employ an NI named DMC (Dual Microcoded
Controller), targeting architectures with distributed shared memory organization. The DMC is a
programmable hardware module that connects the memory, processor, and NoC. The DMC
programming is eased using a microcode approach within two mini-processors. One mini-processor
is used to handle local memory requests and the other to handle remote memory requests, by
accessing the virtual shared memory space. A synchronizer ensures atomic memory access between

the two mini-processors.

Some proposals for NoC-based many-cores does not assume a DMA implementation [ATT11]
[CHO11][MAT10b][SWA12][DAS12], focusing only on the NI design. Other works separate the DMA
from the NI [PAL12][ARN14] or lack implementation details [DER13][MOL12][KAR10]. Works
focusing on the integration of both modules, either lack validation data [FAN10] or cover specific
implementations [CHE10][MA15]. As our proposal, works [KAR10][FAN10][CHE10] explore an NI
design including a system perspective, identifying bottlenecks not addressed in previous works, as

the cost to handle interruptions by the processor attached to the router NoC.

3.4.1 DMNI Design

This Section presents one of the side contributions of this Thesis. The goal of this proposal is
to merge both modules (NI and DMA), into a new one, named Direct Memory Network Interface
(DMNI), as shown in Figure 15(c). The main contribution is to give a specialized interface for NoC-
based many-cores that directly connects the NoC router to the internal memory using a single
module. The DMNI supports simultaneous packet reception and transmission, managed by a
memory access arbiter, which interleaves the memory access when the send and receive modules
are both active. A simplified programming interface exposes the DMNI services to the software

layer.

42

A relevant feature of the DMNI is the access to two distinct memory blocks to transfer a
packet. This feature is important because some transmissions between two PEs can come from two
distinct memory regions, as, the message header and the message payload of the packet structure

early explained.

Figure 16 details the DMNI architecture. The DMNI has three main modules: send, receive, and
arbiter. The arbiter manages the memory accesses for both modules, enabling simultaneous send
and receive operations. The kernel controls the DMNI through memory-mapped registers (MMRs).
The DMNI design is generic because it enables to send and receive any type of data, not necessarily

related to the message structure presented in Figure 13.

A

Interruption Processor - DMNI

signal programming interface
Receive pafket DM N I

P Copy TO mem.
o . _
o Receive 5
8 Y o
S v Memory =
% MMR Access <«—> E
8 Arbiter =z
> o
o Send Q
E <

i Copy FROM mem.

<-Send packet |

Figure 16 — DMNI architecture [RUA16b].

3.4.1.1 Send Module
This Section details the process related to the producer PE (left side of Figure 16). The role of
the send module is to inject a packet into the NoC. The particular feature of this module is the

possibility to transfer two memory blocks as a single transfer.

Figure 17 presents the send_packet() function provided in the DMNI API. It receives,
respectively, the first and second memory sizes and addresses. If the DMNI is transmitting a packet
(pMNT SEND ACTIVE=1),the procedure stays at line 2 until the release of the DMNI module. At lines
3 and 4, the first memory block is configured. If the message has a payload, at lines 6 and 7, the
second memory block is configured. At line 8, it is written the operation type, i.e., read from

memory. Finally, at line 9, the DMNI is released to start the packet transmission.

void send packet (mem size 1, mem addr 1, mem size 2, mem addr 2){
while (MemoryRead (DMNI SEND ACTIVE)) ;
MemoryWrite (DMNI SIZE, mem size 1);
MemoryWrite (DMNI_ ADDRESS, mem addr 1);
if (mem size 2 > 0){
MemoryWrite (DMNI SIZE 2, mem size 2);
MemoryWrite (DMNI ADDRESS 2, mem addr 2);
MemoryWrite(DMNIgOP, READ) ;
MemoryWrite (DMNI_ START, 1);

HoOoJdoUbd WwWNhPR

Figure 17 — Send_packet() function, executed in the Bkernel of the processor [RUA16b].

43

Figure 18 presents the Finite State Machine (FSM) controlling the Send module. Initially, the
FSM waits for the configuration of the MMRs (WAIT state) by the send_packet() function. When lines
8-9 of the function are executed, the FSM goes to the LOAD state, and the FSM assert a send_active
signal to the arbiter to request access to the memory. The LOAD verifies if the local port of the router
may receive data (credit=1) and if the arbiter allows a read operation (read_enable=1). If both
conditions are satisfied, the data is read from memory and injected into the router local port (state
COPY_FROM_MEM). Whenever the arbiter or the local port disables the transmission, the FSM returns
to the LOAD state. The FSM sends the first memory block and then changes the address pointer to

the second memory block (if configured) to transmit the remaining data.

NoC credit=0 or
read_enable =0

DMNI_START =1 and
DMNI_OP = read

Z N
& z msg
3 2

<

o) S .

s T DMNi_ADDRESS -+

Q_) (__ g

- 2| msg
S e e z

T e o

DMNI_ADDRESS_2

Figure 18 - FSM controlling the send module [RUA16b] .

Figure 19 presents the transmission of a packet configured with two memory regions: one
starting at address 0x910 with contents {1, 7, A1, A2, A3}, and the second one starting at address
0x8c8 with contents {B1, B2, B3, B4}. Between cycles 3 to 10, the first memory block is transmitted
(signal data_out). At cycle 11, the send_size becomes zero, changing the mem_addr signal to the
second memory region, and the second part of the packet is transmitted. The gap to change the
memory region is only two clock cycles. In a standard implementation (DMA+NI), which requires
programming the DMA twice, the minimal gap is 22 clock cycles, penalizing the transmission of

packets with a small payload.

e I A v A O A S A O A

sendFSMstate ~ WAIT Y LoAD COPY FROM MEM HoADY COPYFROMMEM YENDY WAIT
send_size X 5 Ya)Xa3Xz2X1XoX 4 Ya)Ya2)¥a1y) 0
send_size 2 b 4) 0
mem_addr ¥910)X914¥ 918 91c 920 o Yacs)scc)spo)aD4) 0
mem_data Y1 X7 {aiYazYasX o Yei1YBz)B3XB4) 0
data_out Y 1 X 7 XAarXa a3 o YB1)YB2)YB3)YBa) 0

Figure 19 - Packet transmission by accessing two memory blocks [RUA16b].

44

3.4.1.2 Receive Module

This section details the process related to the consumer PE (right side of Figure 16). Figure 20
details the receive module. It contains two FSMs and a 16-flit buffer. The buffer depth is
parameterizable at design-time.

When a packet arrives at the local port of the NoC router, the HEADER state reads the first flit
of the packet, interrupting the processor (the interruption is not masked in order to avoid the packet
to stall the NoC path). Next, the PAYLOAD_SIZE state reads the payload size and advances to the DATA
state, which reads the remaining flits of the packet. The buffer receives all incoming flits. The NoC

stalls when the buffer becomes full.

DMNI_START = 1 and
DMNI_OP = write

RMNL_ADDRES?. 1

msg

DMNI_SIZE

140d |B20] 433N0J DON
[%]
=
=
El
o
3
f=4
T
=
o
=]
@ i 2
C i
]
E
= s

py
P
%% :

Figure 20 - FSM controlling the receive module [RUA16b].

Figure 21 presents the interruption handler process (read_packet() function). The
read_packet() function writes into MMRs the amount of data to receive (line 2), the memory
address to store the packet (line 3), the DMNI operation (line 4), and a start command (line 5). The
kernel waits the complete reception of the packet (line 6) to safely read the packet content from

memory, and executing the actions related to the packet service.

1. void read packet (init addr, packet size)
MemoryWrite (DMNI SIZE, packet size);
MemoryWrite (DMNI ADDRESS, init addr);
MemoryWrite (DMNI OP, WRITE);
MemoryWrite (DMNI_ START, 1);

while (MemoryRead (DMNI RECEIVE ACTIVE));

SJ oy o WIN

Figure 21 — Read_packet() function, executed in the pkernel of the processor [RUA16b].

The write and start conditions start the FSM at the top of Figure 21 (lines 4 and 5 of the
read_packet()). This FSM transfer the data stored in the buffer to the local memory (state
COPY_TO_MEM). To write into the memory, this second FSM asserts the receive_active signal to the
arbiter to request access to the memory. The arbiter can grant access to the memory by asserting

the signal write_enable. If the arbiter does not grant access to the memory, the FSM stays blocked

45

in the COPY_TO_MEM state.

Note that both FSMs of the receive module work in parallel. The first one receives data from
the NoC storing the flits into the buffer, and the second one reads the buffer storing the data into
the memory.

3.4.1.3 Memory Access Arbiter

The arbiter enables concurrent memory accesses to receive and to send packets. With such
feature, the PE may receive new data and concurrently inject new packets into the NoC, interleaving
the memory accesses. A round-robin (RR) arbiter enables this feature, by controlling two signals:
read_enable (send) and write_enable (receive). A timer (DMNI_TIMER) controls the amount of time

each module may access the memory.

Figure 22 presents the FSM controlling the arbiter. A signal named round selects the module
to grant access. The receive and send FSMs assert the signals send _active and receive_active,
respectively. When the arbiter goes to SEND state, the read_enable signal is asserted, enabling the
send module to access the memory. The FSM stays in this state while send_active is asserted, or the
timer expired and the other module requested access to the memory. Note that the arbiter may
stay in the SEND state for periods larger than the timer limit if the other module does not request
access to the memory. The RECEIVE state has the same behavior of the SEND state. When the FSM
returns to the ROUND state, the round signal inverts, changing the order to verify which module must
be served.

send_active =0 OR
(current_timer >= DMNI_TIMER
AND receive_active =1)

receive_active = 0 OR
(current_timer >= DMNI_TIMER
AND send_active=1)

Figure 22 — FSM controlling the arbiter module [RUA16b].

Figure 23 presents the arbiter operation. For the sake of clarity, the DMNI_TIMER was
configured to 5 cycles (cc). At the cc=2, the receive_active becomes true, signalizing to the arbiter
that the send module needs to be stopped, and the RR scheduling executed. Note the timer value
at this cc (OxF) is larger than the DMNI_TIMER (5) because only the send module is active. The RR
execution occurs at cc=3, the timer returns to zero, the round signal is inverted, the read_enable
becomes false, and the arbiter releases the receive module by activating the write_enable signal.
The RR executes again at cc=10, and now the send module is released (receive_active<1). This

interleaved operation continues while both receive_active and send_active signals remain asserted.

46

current send mr rec mr send mr rec
round |\ / \
imer E 0
write_enable / \ /
read_enable | |\ / \
receive_active . [
send_active

Figure 23 - Memory access scheduling [RUA16b].

3.4.2 DMNI Results

The DMNI was implemented using synthesizable VHDL, integrated into the reference many-

core previosly presented. The baseline design, with separated modules, is named DMA+NI.

3.4.2.1 Latency to transmit packets

Figure 24 presents the latency to transmit packets with different sizes. The latency is
measured from the moment when send_packet() is invoked up to the end of the execution of the
read_packet(). Note that this latency includes the network latency, the interruption handling, and
the context saving. The network latency represents a small fraction in the total latency,

corresponding to 5 clock cycles per hop (in non-congested scenarios).

It is possible to observe that in both scenarios the latency grows linearly with the packet size.
DMNI had a latency decrease of 116 cycles per 128 flits compared to DMA+NI. This reduction comes
from two main reasons. The first one is related to software. For the DMA+NI implementation, the
processor must wait the transmission of the first memory section and then program the DMA to
transmit the second memory section. Using the DMNI, the processor programs once the memory
regions, without be blocked due the transmission of the first section. The second reason is related
to hardware. The unified DMNI design can transmit 1 flit per clock cycle, while in the DMA+NI it is
necessary 2 clock cycles to inject one flit into the NoC due to the interface protocol between the

two modules.

5000 T
DMNI ——
4500 DMA+N| —= o

4000 -

3500

3000

2500 2

2000 -

Latency (clock cycles)
\
\

1500 A

1000 .J!//X/

500
0 500 1000 1500 2000
Packet size (flits)
Figure 24 — DMNI and DMA+NI latency comparison [RUA16b].

47

A second latency evaluation concerns the latency in a real application, an MPEG decoder. The
latency to decode one frame with the DMNI presented a reduction of 12.3% compared with
DMA+NI. Further, the impact on the application execution time of MPEG is 15% lower with the DMNI
design. Such results highlight the performance improvement offered by the DMNI, which specializes
and simplifies the PE design.

3.4.2.2 Area and State-of-the-Art Comparison

Both designs, DMA+NI and DNMI, were synthesized using the Cadence ASIC design flow for a
65nm CMOS technology and prototyped in FPGA (Xilinx XC5VLX330), both using 100 MHz of clock
frequency. Table 1 presents the area for the proposed DMNI, DMA+NI, and related works (those

that have area report).

Comparing the baseline design (DMA+NI) with the proposed DMNI, there is a small area
reduction (3.47%) when targeting an ASIC implementation. On the other side, for FPGAs, an
important reduction in the number of flip-flops is observed — 48%, with an increased number of
LUTs — 11.5%. The reduction observed in the number of flip-flops comes from the smaller number

of registers required by the DMNI implementation.

Comparison to related works is difficult due to different specific goals and use different
technologies. Observing the table, works from [DER13] and [MA15] (that use a DMA and a NI) have
similar FPGA area results compared with DMNI.

Table 1 — Area comparison related to NI implementations [RUA16b].

Author FPGA/ASIC Work Goal LUTs FFs Area
- Network Adapter

[DER13] FPGA (Xilinx XC6VLX240T) (DMA + NI) 879| 577 N/A
[CHO11] FPGA (Xilinx XC5VLX30) gg‘s";zr)'e”'c'e“t NI (Credit 420| 590 N/A
[MAT10b] ASIC (0.18um) Asynchronous NI N/A| N/A| 18735 um?
[MA15] FPGA (Zynq7000) Programmable NI (DME) 1163| 313 N/A
Baseline design FPGA (Xilinx XC5VLX330) / ASIC Standard PE arch. 682| 787| 22141 um?
This proposal (65 nm) Unified design - DMNI 761| 409| 21371 um?

3.5 Debugging

Previous Sections focused on the architectural features and protocols of the reference many-
core platform. This Section details the proposition of a modular verification framework where it is
possible to debug high-level computation and communication events in a many-core concurrently.
It was used to validate and to debug the implementation of the reference many-core features,

previously described, corresponding to the second side contribution of this Thesis.

The debugging framework has two contributions. The first one is a generic Data Extraction
Layer, named DEL, which collects computation and communication events from the simulated
many-core and stores such data into a database. The process of data extraction can be integrated
with RTL, TLM, or virtual platforms descriptions. Such flexibility comes from an abstraction of the

target many-core architecture implemented by DEL, which defines a generic data extraction method

48

combined with a standard database insertion. The second contribution is a graphical debugging
toolset that explores the debugging database generated by DEL to create several GUI used for high-
level communication and computation debugging. The data extraction (back-end) is decoupled from
the graphical debugging tools (front-end), enabling the development of other custom front-end
debuggers (graphical or not).

The originality of this proposal is a generic and scalable approach for data collection combined
with a graphical toolset for debugging, it can be used jointly with state-of-the-art debugging

methods acting as a complementary debugging approach.

Table 2 presents works related to NoC and many-core debugging. Debugging methods for
many-cores and NoCs have gained increased attention due to the increased processor density,
which makes the debugging process even more complex.

Table 2 - Related works in NoC and many-core debugging [RUA16c].

Work Data Extraction Target Debugging (I:I\/Iam{-c?re szl DB | GUI
escription concern
[MUR14] event inside cores Parallel Software Concurrency Virtual No, 4 cores No No
Platform
Virtual
[GEO14] software API Software Errors Yes, 32 cores No Yes
Platform
Virtual
[WEN12] core events Parallel software data race Yes, 64 cores No No
Platform
[CUE12] breakpoints Multimedia App. periodic conflicts | RTL No, 3 cores N/A |Yes
[PRA11] SW instrumentation Generic Observation RTL No, 3 cores No No
[HED11] virtual HW events Parallel software data race Virtual Yes, 16 cores No No
Platform
[NEI12] NI NoC transactions and data race RTL No No No
[FRI14] at run-time by a host unit | Visualize core logs RTL (FPGA) Yes, 45 cores No No
[ALH10] router links NoC link usage statistics RTL (FPGA) Yes, 16 cores No Yes
[IMOL10] router links NoC usage statistics RTL No, 9 cores No Yes
This Thesis router links, CPU events | Communication / Computation RTL and Virtual | Yes, 400 cores Yes |Yes

Data extraction (2" column of Table 2) addresses how the debugging method collects the data
to be used in the debugging process. Some works extract data from the cores, enabling the debug
of parallel applications [MUR14][GEO14][WEN12][CUE12][PRA11][HED11]. Others works adopt a
communication-based data extraction by extracting data from the NoC links [ALH10][MOL10] or the
NI (Network Interface) [NEI12] to debug the communication events. This current proposal extracts
the data from the router’s links covering communication debug and extracts CPU events to cover
computation debug. This approach provides a broad view of the system resources. Non-intrusive

monitors extract these computation and communication events.

The target of debugging (3™ column) corresponds to the focus of the debugging. Three main
debugging methods are identified in the literature: (i) parallel software debuggers; (i) NoC
debuggers; (iii) FPGA emulation. Most of the works adopt parallel software debug. Other works
focus on improving the debug over FPGA implementations [FRI14][ALH10], and the works
[ALH10][MOL10] debug the NoC structure (NoC debuggers). The proposed method mixes the debug
of computation and communication resources.

49

The many-core description (4" column), is related to abstraction level adopted to model the
many-core. Authors [MUR14][GEO14][WEN12][HED11] adopt virtual-based platform descriptions.
Such choice enables to speed up the simulation time to direct all debugging efforts to improve the
software development. Other platforms are designed at the RTL level, with some proposals
including FPGA emulation [FRI14][ALH10]. As the proposed framework adopts a generic data
extraction, the designer implements the DEL according to the platform model. Therefore, both HDL
models or virtual models are supported.

The scalability column (5% column) evaluates whether the debugging methods can handle
large-scale data sets. The proposed framework leverages scalability by adopting a database (DB —
6" column of Table 2) to provide an efficient solution (described in the Results section) to access
structured data with SQL queries.

The graphical representation (GUI) of the system events (7 column) eases and reduces the
time spent debugging. Cueva et al. [CUE12] propose a simple GUI to observe the periodicity conflict
between applications. Alhonen et al. [ALH10] and Moller et al. [MOL10] propose graphical tools to
generate NoC statistic. All the aforementioned works adopt simple graphical interfaces. The
proposed framework presents several GUIs allowing a fast interpretation of the monitored system
events.

3.5.1 Data Extraction Model

Figure 25 details the proposed data extraction model. It contains DEL and the database. The
upper part of Figure 25 corresponds to a standard simulation environment. It assumes a generic
NoC-based many-core, with a set of PEs interconnected by a NoC. The software part contains the

kernel and a set of applications to execute on the system.

Set of
applicatons
object code

Operating
System object
code

o GDB
Simulator

> Log files

i

Many-core Description
(RTL, TLM, Virtual) waveforms

i

Data Extraction Layer
(DEL)

Communication Computation
Table Table

Database platform.cfg

queries

packet.cfg

Proposed Debugging
Graphical Tool Set

Figure 25 - Overview of the proposed debugging data extraction method [RUA16c].

A simulator receives the hardware and software parts of the system, simulating it using some

50

hardware description abstraction. A set of analysis may be executed according to the adopted
simulator, as waveformes, log files, and GDB. This Thesis follows a different approach by proposing a
generic DEL to extract communication and computation events and save them into a database
following a standard structure (subsection 3.5.1.1). The front-end debugging tools communicate
with the database according to a management protocol detailed in subsection 3.5.1.2.

3.5.1.1 DEL: Data Extraction Layer

The DEL collects data generated by the simulation and inserts them into database tables (e.g.
latency, throughput, selected functions). Communication events are represented by packets arriving
in the NoC router’s input port. Computation events are specific software addresses executed into
CPU. Such events enable to achieve a holistic view of the platform functional behavior. The DEL can
be seen as the interface between the many-core platform and a front-end debugger (graphical or

not), decoupling both parts of the system.

To achieve non-intrusiveness over the application execution, the DEL is implemented as a part
of the hardware platform. This part is used only during the simulation at design-time, and it is
removed for synthesis or prototyping. The DEL operation comprises two parts: monitoring and
database insertion. The monitoring is in charge to extract the system data. For communication data,
sniffers are implemented inside the router instance monitoring all input ports. The computation

data extraction is implemented in a similar fashion, sniffing the CPU instruction address.

The database insertions are done directly from the hardware in the same process of the
monitoring. The DEL can vary according to description level of the target platform. An RTL SystemC
simulation enables database insertions directly from the SystemC code. A VHDL simulation can use
a SystemC wrapper to execute the same task. The implementation of the DEL is a responsibility of

the designer, once that it knows the platform details.

The data created by the DEL must follow a standard format to enable the insertion of the
monitored events into the debugging database. The database implements two different tables. One
for storing the communication (monitored packets) and the other for computation events

(monitored addresses).

3.5.1.2 Database Management

The database is modeled in SQL. The communication and computation tables are created at
the beginning of a new simulation. Figure 26 shows the sequence diagram for a new debugging
scenario detailing the database management protocol necessary to the interaction between the

Simulator, DEL, database, and front-end debugger.

At step 1, the simulator initializes the DEL; at step 2, DEL connects to the database server and
creates a new database scenario for that simulation. A backup of previous databases is also created
at this step. At step 3, the front-end debugger can start a new debugging session, setting up a new
connection with the database. The database connection of the DEL, at step 2, and the connection

of the debugger, at step 3, are performed using a 5-tuple {hostname, remote_port, scenario_name,

51

user, password}. After the connection of the debugger with the database in step 3, the debugging
can start, in step 4. The DEL extracts the platform communication and computation events and
inserts into the database (step 5). The front-end debugger can read such information, at step 6, by
requesting information from the database using SQL queries.

Simulator Data Front-end
(RTL, TLM, Extraction Database
Virtual) Layer (DEL) Debugger

Connect DB

~—C

reag .

tes DB scenay; @scenarlo
10—

/nsert dat @ \start debu @
a I88in
T S—n

Insept @
data —
‘ — Get daty

Insert data

\ .
e Get dat,

Figure 26 - Sequence diagram for database management [RUA16c].

3.5.2 Graphical Debugging Toolset
The proposed graphical debugging toolset (referenced from this point as debugger) works by

reading communication and computation events stored in the database and converting such data

into graphical information.

The focus of the debugger is to provide high-level awareness of the system status to the
designer, enabling the analysis of computation and communication events. Figure 25 detailed the
debugger inputs. The debugger receives configuration files at the initialization and performs queries

over the communication and computation database tables.

3.5.2.1 Configuration Files

The debugger uses three configuration files: platform, services, cpu. These files can be

generated automatically during the system compilation phase.

The platform file configures the debugger by providing parameters about the many-core
architecture (e.g. size of the system) and the application tasks’ set. The set of tasks to be executed

in the many-core are listed as a tuple {task name, identifier}.

The service file contains the services supported by the platform. A service identifies the
function of a given packet, and a protocol is defined by a set of services. For example, the message
exchange protocol requires two services: MESSAGE_REQUEST and MESSAGE_DELIVERY. Each line of the

52

service file contains a tuple {service name, identifier}.

The cpu file describes the CPU addresses to be monitored. These addresses are monitored by
the DEL, which generates computation events to informs that the addresses were executed.
Examples of observation points are the addresses of the scheduler, system calls, task execution,
interruption handler.

3.5.2.2 Main View

The main view shows an overview of the many-core architecture. By using this view, the
system designer can debug the communication behavior, as NoC routing and link utilization, to
validate system management protocols or task communication messages, and supervise parallel

communications.

Figure 27 illustrates the view for a 4x4 many-core with 2x2 clusters. The green PEs represent
cluster managers, the orange PE represents the cluster manager with access to the application
repository (global manager), the blue PEs execute user applications. Each PE of this view contains
the input channel utilization of each router port. Those values represent the percentage of the

channel bandwidth usage, computed for a fixed time window (parameterizable in the tool).

%a 1% zn 73% ‘n 8% Qa 08%
00.00% [~

File Edit Tools Filters Plug-ins Help

00.00% ~<2 00.00% 00.00%
00.04% 00.00% |~ e 00.08% _ 00.00%
~~.
0x3 1x3 N 2x3 ~~L. 3x3
0.00% Plpo.osxn Ploo.00% Pp2.27%
07,543 02,38% 05,68% 11.09% " Sso
1 \ l i 1 1 h
ku‘.zam Ku:ms% }:x £1% ku RELY R
00,10% 00.72% N 00,14% 00,00%
S
s
< 00,72%
5 5%) .
00,37 00,11 \\ 00,07% h 00.00%
ox2 1x2 N 2xs, 3x2 00.00%
10.00% 1.86% Ppo.0o% N 20%
N,
N
N _ 00,00%
07.73% 09.18% 06.95% . 13.95%
.
N,
T! et]l 2Tl n1l b
S,
00,083 00.00% 00.08% 00,003,
S 0,04% [l
00.81% 00.00% 00.00% . 0000%
S
N
N
00 00.00° 00,00% h N\00.00%
S
N,
ox1 1x1 . 21 31 02,88%
0.00% Plpo.oox% Ploo.cos .00% M
N
™
N
13,50% 08,22% 11,59% 1401% N
o ‘ 00,15%
I > || 1 ! h easass
51.82% Kaam% 00.22% 00.00%
01,12% 00,00% 00,07% 00,00%
00,05% 00,06% 00,00% _ 00.00%
0x0 N 1x0 N 2x0 3x0
0.00% Ples. 2% 3 e 12,09%
00.00% 00.00% 00.00% 00.00%

Simulation Control Speed Control Back To Current Packet Information

.............. Time in Ticks Current Target Service Size

" > STOP Go Ox1 o1 MESSAGE_REQUEST [11]787

e 0,71255ms 71255 ticks

Figure 27 — Main View: throughput and communication event views [RUA16c].

The zoom in PE 1x3 (Figure 27) details the channel utilization. It is possible to observe that the

south port of the PE router has a channel utilization equal to 2.89% in this particular time window.

Each packet traveling into the PS NoC is displayed with a red arrow according to the packet
advances to the next PE. The packet traces are colored in red. Figure 27 shows three packets
traveling in the NoC at the time 71,225 (observed into Speed Control panel): 1x0 to Ox1, 1x2 to 1x3,

53

and 2x3 to 3x3.

3.5.2.3 Mapping View

Figure 28 presents the mapping view addressing computation debugging. With this view, the
designer can validate task mapping algorithms, view the occupation of the PEs, and observe the task
execution status.

Tasks belonging to the same application have the same color. Each task is displayed according
to its name and ID detailed in the platform file. The designer can choose to see all task status, only
the running tasks, or only the terminated tasks (tasks that already finished its execution). Tasks are
displayed dynamically as they are mapped.

atus Only running || Only terminated Updating [] without Task ID

Slave 0x3 Slave 2x3 Slave 3x3
Slave 1x3

CJAlt

Slave 1x2 Slave 3x2
Cluster M 0x2 5 Cluster M 2x2
Slave Dx1 Slave 1x1 Slave 2x1
5 5 m
Slave 1x0

Global M 0x0 5 Cluster M 2x0 Slave 3x0

Figure 28 - Mapping view for a scenario with 4 applications, each one represented by a different color
[RUA16C].

3.5.2.4 CPU Utilization View

The CPU utilization view addresses computation debugging. It enables the designer to verify
the CPU use by different software parts over the time. The logged CPU events are related to kernel

functions and the execution of a task. The addresses are described in the cpu file.

Figure 29 shows an example of the CPU utilization view for the PE 0x3. The y-axis corresponds
to the monitored software events, and the x-axis the simulation time. This view also shows at the
bottom left corner CPU utilization statistics, as the total CPU simulation time, and the percentage of
CPU utilization for each kernel functions and each task executed by the CPU (in this example idtc
and iquant). With this view, the designer can validate scheduling algorithms by verifying if a given
task meets its constraints, evaluate the processing load to validate task mapping algorithms,
correlate the processor events with communication protocols. Additionally, this view enables to

54

debug kernel or software bugs.

PEOx3 78138 ticks
|
Interruption | .'\
Idle (hold)
Scheduler \\
e i . B | B |
iquant I| 253367 ticks
Tms T 2ms T y
N
- CPU uilization --—-----weeemeo e Execution Slic

Total CPU time: 9466450 ticks MName idct N
idet: 13.244987% Starttime T4B451icks
Interruption : 1.9240138% Finish time : 80506 ticks
iguant 10.3216095% Slice Time 5861 ticks
Scheduler: 0.3753255%
Idle thold) 74.5234068%

Figure 29 - CPU Utilization View [RUA16c].

3.5.3 Results

This Section presents results using the baseline many-core platform modeled in SystemC RTL.
Applications (as DTW, MPEG, Dijkstra) and kernel are described in C language.

Figure 30 presents the debugging of a large-scale many-core (256 PEs), organized in a 16x16
PS mesh, with 4x4 clusters.

429282icks [| [om]
ﬂ__L-l_ Ll el
TL T et

pell 2oll 2.1l 2Tl LL 2 “;1,., X lL v-1l 3. ~TI::L ? Tl ; TI
T L i1 ﬁ%ﬂ e T T T 11
.- NS: I e ey ey
R = e
]

Figure 30 - Case-study debugging an MPSoC with 256 PEs [RUA16c].

The example in Figure 30 is a task allocation service, correlating the debugging of computation
and communication events. The main view enables the user to observe a TASK_ALLOCATION packet
leaving PE 0xO (label 1 in Figure 30) and arriving at PE 6x4 (2) at time 429,138 ticks (clock cycles).
This packet carries a task’s object code. When the target PE (6x4) receives the packet, the mapping
view shows the task p3 allocated at this PE (3). The CPU view enables to observe that the kernel of
the target PE was in the idle state. At time 429,252 the kernel executes the interruption handler (4),
to consume the packet received at the local port of the router, with the task code (p3). Next, the

scheduler selects the task p3 and starts its execution (5).

55

Table 3 summarizes results related to simulation time and data storage, obtained from a

SystemC RTL simulation, comparing the use of the database with an approach using log files (events

stored in text files). The simulation time is penalized in 15% due to the operations to manage the

database. On the other side, the required space to store the events reduces 26%. Executing an

application in a 20x20 many-core for 10 seconds would require a data storage space of ~7 GB using

log files, and ~5 GB using the database approach.

Table 3 - Results related to simulation time and data storage, for 100 ms of simulation
(DB: database) [RUA16c].

Simulation time (sec)

Data Storage (MB)

System
size DB log files DB/log DB log files DB/log

8x8 3,131 2,740 1.14 9.41 12.39 0.76
10x10 15,546 8,446 1.84 13.34 17.55 0.76
12x12 11,299 8,261 1.37 18.41 24.60 0.75
14x14 9,354 11,470 0.82 25.13 33.98 0.74
16x16 19,660 17,880 1.10 31.96 43.71 0.73
18x18 16,993 17,146 0.99 41.78 57.29 0.73
20x20 26,552 25,886 1.03 50.87 69.98 0.73

These results advance two key points related to debugging large-scale many-cores. The first

one is the graphical representation of events generated during the simulation. It requires intuitive

tools for accelerating debugging. The proposed framework provides GUIs that enables the designer

to verify the system operation quickly. The second point is scalability since large-scale many-cores

request flexible methods to handle datasets in a structured way.

56

4 QOS AT THE COMPUTATION LEVEL

This Chapter presents the contributions of this Thesis related to computation QoS. Section 4.1
presents the state-of-the-art review. Section 4.2 presents the first contribution, a low overhead task
migration protocol. Section 4.3 presents the main contribution, the dynamic LST-based task
scheduler. Section 4.4 presents a collaborative Ph.D. work, combining the proposed task scheduler
with a run-time energy management. Section 4.5 finishes this Chapter presenting the conclusions.

4.1 State-of-the-Art

QoS at the computation level is mainly achieved by RT task schedulers at the processor level.
Table 4 presents related works targeting task scheduling and QoS constraints. Most of the many-
cores schedulers consider design-time steps integrated into frameworks [GAN13a][ROS14][BAM12]
[TAF11]. Such works often employ a Model of Computation (MoC) (e.g., PPN, DAG, and SDGA), to
model the applications at design-time. Applications are modeled as graphs, with nodes representing
the actors, i.e., the application tasks, and edges representing the application communication
dependency [BAM12][ROS14], which enables the developer to obtain accurate estimations about
the communication and computation demands of each application. This approach makes easy to
predict the applications behavior, helping to enable hard RT scheduling [DAV11]. Task scheduling
based on MoC can be static (design-time scheduling) [GAN13a][BAM12][ROS14], dynamic (run-time
scheduling) [OLI11], or both [TAF11]. Static or partial static (mixing design-time and run-time steps)
scheduling is a conservative approach to guarantee hard RT behavior. Those proposals are only

effective when the set of applications to execute in the system is known at design-time.

Table 4 — Works focused on task scheduling and QoS.

Work Focus Design-Time/Run-time QoS
[GAN13a] | Processor resource scheduling framework Design-time MUItITnEdIa stream app
Framework deadlines
Scheduling periodic task modeled by CSDF graph using hard Design-time Throughput of periodic
[BAM12] .
RT scheduling concepts Framework task
[ROS14] Task mapping and task scheduling framework based on Design-time Fulfill RT deadlines
MoC Framework
[TAF11] Two task schedullr?g alg(.Jrljchms for temperature Mixed No violation in real time
improvements while satisfies QoS tasks
[PAR14] Handle I/O interrupts without disturbing hard RT tasks Run-time s;)tlz;c:rference in hard
[OoLI11] Dataflow MoC-based MPSoC RTOS Scheduler Run-time Appl|(.:at|on execution
deadlines
[HWA10] | Hybrid LST-based task scheduler Run-time Appl|c.at|on execution
deadlines

Different from a static scheduler, dynamic schedulers perform the scheduling decision at run-

time. Such behavior comes at the cost of scheduling overheads and unpredictability [PAR14][OLI11].
Pfair (Proportionate-fair) is a state-of-the-art dynamical task scheduler for many-cores that claims
to support hard RT tasks. It assumes run-time task migrations to improve system’s utilization.

Theoretically, hard RT support is achieved by assuming an excessive number of task migrations and

57

preemptions, without considering their interferences over the system. Indeed, this assumption
leads to a high overhead which makes the Pfair applicability inviable to many-cores [CHAOQ1].

Park et al. [PAR14] propose HPGP, a hybrid scheduler for many-cores based on Pfair. The
hybrid feature means that the Pfair algorithm is executed inside local processors combined to a
global scheduler, which makes task migrations. The goal is to reduce the number of task migrations
compared to Pfair. The manager selects the ready tasks to be scheduled into a PE. Each PE executes
a schedulability analysis. If the task is not schedulable, the core invokes the global scheduler to
perform task migration. While the scheduler is labeled as dynamical, the application set if fixed at
design-time. The proposal considers only periodic tasks with deadlines equal to their respective
periods and constant execution time. The evaluation is carried out only with four cores, which does

not enable validating the algorithm based on modern large many-cores systems.

The LST (Least Slack Time) scheduler is a task scheduler where the priorities of each job are
based on their slack time, with smaller slack times resulting in a higher priority. At a given time t,
the slack (or laxity) of a job with deadline d is equal to d - t minus the time required to complete the
remaining portion of the job. While the LST is an optimal scheduling for mono processed systems, it
was proved to be non-optimal to multiprocessor systems [LIUOO]. Hwang et al. [HWA10] propose
LSTR, a dynamic scheduling algorithm based on LST, with additional features to be optimal for
multiprocessor systems. LSTR was designed to support only periodic tasks. The limitation of the

proposal is that it is based on a theoretical evaluation, not addressing system overheads.

The design of a dynamic RT scheduler for many-cores should consider, among other factors,
how to inform the RT task constraints to the system, and how to handle interruptions. The
management of interruptions may interfere with the execution of RT tasks. Interruptions can be
handled immediately using specific system routines or can be pooled at fixed and predetermined
times [HAN11]. Another alternative is to redirect interruptions handling to free cores [PAR14].
However, this option only can be useful when interruptions come from external devices and are not
related to inter-task communications. The kernel of HeMPS handles interruption immediately using
system routines, enabling to quickly handle the interruptions, reducing the time to buffer them into
the NoC, which could create a significant communication interference. However, this approach does

not enable the scheduler to support hard real-time applications.

Dynamical RT task schedulers are integrated into an RTOS (Real-Time Operating System). An
RTOS, besides the RT scheduler, must also provide support for fast preemptions, improved context
saving, and low intrusive interruption mechanism. Those features conduct to a higher-level task
execution composability and small OS execution time overhead [OLI11], opening more space to the

RT task execution.

Provide QoS to a system consists of managing its resources. A typical approach is to work with
worst-case execution time (WCET) estimation of applications to guarantee that the reserved
resources are enough to all application corner cases. However, some Authors, presented in Table 5,

argue that current mechanisms for WCET estimation are inefficient and conduct to system

58

underutilization. Thus, there are proposals focusing on relaxing WCET [NOW13][YUQ9] or proposing
improvements of the WCET estimation [SHA12].

Table 5 — Works focused in WCET and QoS.

Work Focus Design-Time/Run-time QoS
e . . Run-time time slice Full fill hard RT
[NOW13] | Increase MPSoC utilization by a soft worst-case estimation .
manager constraints
[Yu09] Relax worst-case estimation Design time framework | Meet soft RT constraints
Priority budget memory scheduler based on precise WCET . o
[SHA12] estimaiion & ¥ P Run-time Memory access priorities

Power, energy, and temperature are critical parameters to be controlled. QoS policies become
tightly coupled with such parameters due to the growing need for energy saving and temperature

reduction. Table 6 presents works focusing on temperature, power and energy reduction, and

simultaneously providing some degree of QoS (STM stands for slack time monitoring).

Table 6 — Works focused on temperature, power and energy reduction and QoS.

Work Focus Design-Time/Run-time QoS Technique STM
[TUV13] Run-time Ada'ptlve task migration and Run-time Meet RT task Clock gating Yes
power reduction constraints
. . Task execution .
[HAN11] | Composable OS design Design methodology composability Clock gating Yes
. . Preserve task .
[YUN13] | Temperature aware scheduling Run-time deadlines Power gating Yes
[GAN14] Dynamic Power Mar)agement for Run-time Fulfl!l vu':leo Power gating Yes
temperature reduction application latency
- s Fulfill multimedia
DAV14] Energy efficient pipelined MPSoC Run-time application Clock an'd Power Yes
management . gating
deadlines
. . Aims to increase .
[Yui4] Temperature aware scheduling Run-time QoS budget Frequency scaling | No
Dynamic Frequency Scaling based on Fulfill real time
[ABB14] ¥ q ¥ J Run-time throughput Frequency scaling | No
PID controller -
deadlines
Dynamic Frequency Scaling with Fulfill real time
[GUI13] v 9 ¥ J Run-time throughput Frequency scaling | No
software management N
deadlines
Temperature aware task mapping, L Fulfill throughput
[DAS14] scheduling and PE’s DFVS levels Design time constraints DVFS No
[KOT10] Energy aware scheduling by exploring I?e5|gn time using Fulflllitask DVES Yes
task slacks linear programming deadlines
Composable and energy efficient . RT application
[MOL10] MPSoC architecture Theoretical proposal composability DVFS Yes
Run-time and a design N
[JUN14] | Energy efficient task mapping time behavior hard RT. application DVFS No
P constraints
specification
[L13] Tempe.ratu.re aware scheduling with Both Execu.tlon DVES Yes
task migration support deadlines
[SIN13] Energy reFiuctlon methodology based Both RT application DVES Yes
on slack time management throughput

There are two main classes of works that mix computation QoS policies with low power
techniques: (i) clock and power gating; (ii) DFVS. Clock and power gating techniques can be used to
the management of power [TUV13], energy [JAV14], and temperature [GAN14][YUN13]. Clock and

power gating techniques are well suited to work with task migration due to the possibility to remove

59

the workload of a hot or overused PE, opening space to apply such techniques. The PE’s slack time
can be exploited to make the processor run in low power mode, achieving significant power
reductions [TUV13][YUN13]. Clock and power gating can also be explored at the software level,
working in conjunct with a composable OS design [HAN11].

Some works opt to employ frequency scaling technique to provide QoS. This technique can be
used at design-time [YU14] or run-time [ABB14][ALM11][GUI13]. At design-time, using complex
heuristics, the methods search for the appropriated temporal scenarios where the frequency can
be scaled while satisfying QoS. This estimation requires a vast number of architectural
characteristics variables as well as a robust application’s description [YU14]. At run-time, frequency
scaling can be applied by using monitoring and run-time management modules, which tune the

processor’s frequency according to the application's deadlines.

DVFS-based techniques can gradually scale the system performance and system power and
are suitable when different QoS levels are needed. In fact, DVFS is a broadly adopted technique for
power, energy, and temperature reduction and at the same time, offering some degree of QoS.
DVFS can be applied at design-time (or offline) [DAS14] or mixing a design-time with the run-time
phase [JUN14][LI13][SIN13a]. DVFS-based task scheduler has been demonstrated efficient to save
energy and to reduce the temperature. Task and CPU slack time exploitation can be used to reduce
the impact of voltage and frequency decrease without compromise QoS [KOT10][MOL10][LI13]
[SIN13a][MAR17al.

Due to the number of PEs in many-cores, the memory access can generate bottlenecks in
shared-memory architectures [OLI11], requiring QoS techniques. Table 7 presents works focusing
on memory access scheduling QoS. QoS-aware memory scheduling mechanisms are required to
manage the memory access according to a QoS policy either to prioritize real-time tasks access
[SHA12][LIN10][KIM10][WAN14] or to provide memory access composability [LIU13].

Table 7 — Works focused on memory access scheduling QoS.
Design-Time/Run-

Work Focus time QoS
[SHA12] Z;ci)r:zit;:dget memory scheduler based on precise WCET Run-time Memory access priorities
[LIN10] Hierarchical DRAM memory access scheduling Run-time Memory access priorities
[KIM10] Cluster memory access scheduling Run-time Memory access priorities
[LIU13] Memory scheduling policy based in slack time management Run-time Composability
[WAN14] | Memory scheduling optimized for heterogeneous computing Run-time Memory access priorities

4.1.1 State-of-the-Art Discussion

Analyzing the reviewed works, essential features to provide QoS at the computation level
include: (i) real-time task scheduling; (ii) task slack and processing idle time monitoring; (iii) DVFS

for energy and temperature reduction; (iv) a relaxed WCET estimation.

The QoS, in the computation context, is mainly represented by RT task schedulers. Several

proposals addressed scheduling algorithm for multiprocessor systems. However, the proportion of

60

those targeting many-cores is still low and have limitations related to clock-cycle validation,
scalability, and dynamic behavior.

As dark silicon era imposes power reductions [SHA17], designers must find a way to ensure
QoS in those scenarios. DVFS outstands as the main technique to reduce energy and temperature
while allows controlling system’s performance. Some Authors also use clock or power gating
techniques. These techniques can be applied either in design-time methods or run-time managers.
In the same way, DVFS also can be applied at design-time, by expensive formal models and an earlier
and detailed system characteristics behavior, or adaptively, by using run-time power, frequency,
and voltage managers. A system monitoring scheme continuously feeds these managers, with task’s
slack time and idle time of each processor, which enables the execution of heuristics that find an

efficient tradeoff between QoS, temperature, and energy consumption.

Another recent topic in the design of many-cores is the concern by relaxed WCET. This
research is motivated by the dark silicon era that makes task mapping and task scheduling more
complex and challenging [SHA17]. Relaxing WCET can provide a significant efficiency in resource

utilization and save energy while the real-time present negligible deadline misses.

This Thesis addresses QoS at the computation level by proposing a dynamic and hierarchical
RT task scheduler based on the LST algorithm. The proposed LST scheduler is dynamic because it
supports an unknown application set (dynamic workload), and enable tasks to change its RT
constraints (period, deadline, execution time) at run-time. Faced with an RT workload change the
scheduler sent this feedback to the QoS management (also is a global scheduler), which decide to
employ an original task migration protocol. The hierarchical property is related to the organization
of the scheduler, with local schedulers (running in the Spes) and global schedulers (running in Mpgs).
The main function of the local scheduler is to manage the CPU allocation, while the main function
of the global scheduler is related to the Spes task allocation, executing task migration during the

application execution.

The proposed task scheduler was also integrated into an original energy management
technique proposed in a collaborative work with the Ph.D. student Andre del Mestre. The QoS
manager is aware of the slack-time of the whole application and exploits this time to apply DVFS

and to save energy.

4.2 Task Migration

Self-adaptive techniques, as thermal and power management, load balancing, QoS, and fault
tolerance commonly use task migration to perform run-time management in many-core systems. In
thermal and power management [SAL14], task migration can be employed together DVFS to
distribute the tasks according to the performance of the cores. For load balancing and aging control
[JOH12][MAR11], task migration can help to distribute the workload of the system, by migrating
several tasks simultaneously to PEs with lower utilization. For QoS [ABB14], task migration may be

used to reserve CPU resources for real-time tasks. For fault tolerance [DAS13], task migration can

61

be used to move tasks running in faulty PEs.

Proposals related to task migration addressing many-core systems and assuming a distributed
memory have at least one of the following features: (i) use of checkpoints, which requires source
code annotation; (ii) task replication, with a replica of the task in one or more PEs that can receive
the task to migrate (wasting memory); and (iii) significant migration latency.

The goal of this proposal is to develop a task migration technique between PEs having the
same ISA (Instruction Set Architecture), for many-core systems with a distributed memory
hierarchy. The contribution is a protocol with a lower latency compared to the related works.
Further, this proposal eliminates the need for checkpoints, not requiring task replicas, and enable

to migrate tasks of the same applications simultaneously.

The key point to reduce latency comes from a two steps procedure. First, the text memory
section (object code) of the task to migrate, Ty, is migrated separately from the dynamic memory
sections: data, bss, and stack. While the Ty/'s text is transferred from the source PE (Srcee) to the
target PE (Tgtere), Tm keeps running at the Srcee being blocked only during the dynamic memory
migration. The DMNI module is programmed to copy the text section while the CPU keeps running
Tm. The second step comes from an inter-task synchronization protocol, which does not migrate the
messages produced by Twm. The synchronization is performed on-demand after the migration,

helping to reduce the migration data volume while ensures no message loss.

Table 8 summarizes the main features of the related works in task migration for distributed
memory many-core systems. The 2™ column details the adoption of checkpoints. Checkpoints
simplify task migration because they statically define migration points where the task context is
safely saved. These checkpoints are inserted on task’s source code, being difficult in practice to the
application developer define safe states to migrate. The 3™ column addresses the inter-task
synchronization. El-Antably et al. [ANT15] and Fu et al. [FU13] transfer all pending messages during
the migration process (FIFO copy), Canella et al. [CAN12] wait for the consumption of all messages
to execute the migration (FIFO release), and Saint et al. [SAIO8] use the communication primitives
as checkpoint to enable the migration. The proposal herein presented adopts an approach similar
to the theoretic proposal of Munk et al. [MUN15]. The synchronization occurs on-demand according

to the messages request by the consumer tasks.

The 4t column of Table 8 evaluates the use of an MMU (memory management unit) in the
migration process. The adoption of MMU simplifies the migration process since the operating
system handles virtual addresses, at the cost of additional hardware. As most of the works, the
present proposal does not adopt an MMU. The memory management is simplified by using a paged

memory organization managed by the OS (operating system).

62

Table 8 - Comparison of task migration works [RUA17b].

Proposal Check. Inter-task sync MMU Migration
[MUN15] no Message forward no recreation
[ANT15] yes FIFO copy no replication
[FU13] no FIFO copy no replication
[CAN12] no FIFO release no replication
[JAH11] no N/A yes pre and post copy
[SAIOS] yes Send / Receive no recreation
This proposal no Message forward | no recreation

The 5™ column presents how the migration process is executed. Task replication
[ANT15][FU13][CAN12] keeps a task replica at different processors. This procedure reduces the task
migration latency because the text section is not transferred, but incurs in memory overhead. Task
recreation [MUN15][JAH11][SAIO8] stops the task execution, transfer the text and the context to
the target PE, and then resume the execution. Aided by an MMU, Jahn et al. [JAH11] adopt a mixed
mechanism, which pre-copies the most frequent data memory sections before the migration of the
task context, and transfers the remaining memory sections by requests sent to the Srcpr after the

task migration.

4.2.1 Proposed Task Migration

The task migration proposal is implemented as a kernel service. Figure 31 presents the task
migration protocol. The task migration is triggered when a migration order arrives at the Srcpe (the
generation of this event is out of the scope of this specific proposal). The kernel handles this order
by configuring the DMNI to transfer the Ty text section (event 1). The text section is sent to the Tgtpe
through a MIGRATION_CODE message (event 2). After the DMNI configuration, Ty continues its
execution up to reach a safe state, where the dynamic data memory sections can be safely migrated.

The safe state is automatically defined by the kernel at run-time.

~”4/\;7,) Task is stoped and
‘9”6,, Task kee};\)s running the context is saved
o)
ro,e, (
Srcpe
3 4
Sat Y Context is restored
%)“ afe state 7/;, and task resume
47/0 its execution
£
RAY
(@
%
TgtpE

| Task recreation overhead | | Migration overhead |

\4

time
N T, in RUNNING state [Tv in READY state
Figure 31 — Overview of the proposed task migration protocol [RUA17b].

Safe state definition. A given task may be in 3 states at the task scheduler perspective: (i)

ready, the task scheduler can schedule the task to execute; (ii) waiting, the task is blocked waiting

63

for a message delivery; (iii) running, the task is running, using the CPU and changing the dynamic
memory sections. A safe state is defined when Ty is in the ready state. If a migration occurs during
the running state, the dynamic data memory sections are in use, corresponding to an unsafe state.
If migration occurs during the waiting state, the delivery of the requested message will arrive at the
old PE of T, inducing a message loss. The delay to start the data migration is a function of the task
scheduler time slice and the time to the producer task to deliver the requested message.

Event 3 in Figure 31 represents Ty in a safe state. The task stops, and the kernel saves the
context, transferring the context (CPU registers values) and the data memory sections to the Tgtee
by a DATA_MIGRATION message (event 4). At event 5, the DATA_MIGRATION arrives at Tgtee. At event 6,
the kernel of the Tgtee restore the Ty context (by copying the DATA_MIGRATION payload to Ty page),
and Tu goes to the ready state. The overhead of the proposed protocol comes mainly from event 3
to event 6, which varies according to the size of the data section, and the interconnection
infrastructure. The overheads are detailed in Subsection 4.2.2 assuming a 2D-mesh NoC as the

interconnection infrastructure.

4.2.1.1 Inter-Task Synchronization

A key feature of the task migration protocol is the synchronization of the messages exchanged
between tasks. Each Spe kernel has a task location table. The Send and Receive primitives use this
table to find the address of the communicating tasks. When Ty migrates, this table must be updated
in all PEs with tasks that send and receive messages to/from Ty. The update is executed on-demand

according to the following rules:

Rule 1: when Ty migrates to Tgtee, all produced messages by Ty stay in the pipe of Srcee. After
Tm migration, the consumer tasks continue sending MESSAGE_REQUESTSs to Srcpe. If there is a message
in the pipe, the message is removed from the pipe and delivered to the consumer task. Figure 32(a)
presents this scenario. At event 1, task A migrates from PEO to PE1. Messages produced by task A,
to tasks B and C, stay in the pipe of PEO. At event 2, task B sends a MESSAGE_REQUEST to PEO (old
address of task A). As there is a message in the pipe to task B, this message is delivered to task B
(event 3).

Rule 2: If there is no message for the consumer task in the pipe of Srcpe, the MESSAGE_REQUEST

is forwarded to Tgter and Tgtee deliveries the requested message to the consumer task. The kernel
of the Srcee has the new address of Tu, enabling to forward the MESSAGE_REQUEST. Figure 32(b)
presents this scenario. Task B sends a MESSAGE_REQUEST to task A (event 1), and the pipe at PEO does
not contain messages to task B. Thus, the MESSAGE_REQUEST is forwarded to the new address of task
A (event 2). Task A at PE1 handles the request and deliveries the message to task B (event 3). Figure
32(c) corresponds to the consumption of the last message produced by Tu in PEO after the
migration.

Rule 3: The task location table is updated in the kernel of the consumer task with the Tgtee

address when a MESSAGE_REQUEST is received by Srcee, and there is no message produced by Ty in the

64

pipe of Srcpe. Thus, a MESSAGE_REQUEST is forwarded to Tgtee as in rule 2, but a second message is
sent to the kernel of the consumer task to update the task location table with the Tgtpr address
(UPDATE_LOCATION message). After this update, the kernel of the consumer task uses Tgtee address
to send all requests to Tw. Figure 32(d) presents this scenario. When PEO receives a MESSAGE_REQUEST
(event 1), this message is forwarded to PE1 (event 2), and a UPDATE_LOCATION message is sent to PE2
(event 3) to update the task location table with the new location of task A (PE1). After receiving the
forwarded request, PE1 deliveries the message to PE2 (event 4).

PE2 PE3 PE3
Task B
OF
5 5
(a) =8 B (b)
& g PE1 PE1
Task A
EQUEST
PIPE:
‘empty ‘ empty ‘Task B‘Task C‘ @
PE2 PE3 PE2 PE3
1 o |
© (@
c iz 3 3
PEO |5 (2 PE1 7 g PE1
9l |9
@1 MSG_REQUEST
H PIPE:
‘empty ‘ empty ‘ empty ‘Task C‘ ‘empty ‘ empty ‘ empty ‘empty‘

Figure 32 — Representation of the rules involved in the inter-task synchronization [RUA17b].

4.2.2 Results

The results were conducted in an RTL SystemC description of the reference many-core system.
The migration latency is due to the task recreation step and the dynamic data migration. The task
recreation latency is constant, regardless the Ty text size, once we adopt a dual-port memory and
a the DMNI (which is able to to copy two blocks of memory by making a single programming). In
systems with a single-port memory, this latency is proportional to the text size because the
processor stalls during the transference. The task recreation time is due to the time spent by the
kernel to configure the DMNI with the memory address and size of the text. Once configured the
DMNI module, Ty resumes it execution while its text is injected into the NoC. This process is similar
at the destination PE, when it receives the text message, it stops the execution of the current task
and programms the DMNI. After the programming it resumes the execution of current task while
the text is copied to the local memory by DMNI. The task recreation step (DMNI configuration phase)

takes, on average, 2,700 cc (clock cycles). This value may suffer small variations due to the status of

65

the DMNI at moment of kernel request. The migration latency corresponds in fact to the time spent
to transfer the dynamic memory section. The overhead grows linearly with a complexity of O(n),
where n is the sum of all dynamic memory sections and the Ty context (PC, SP, registers).
Transferring this data requires to stop Tw, and restart Ty at Tgtpee after the end of transference.

The evaluation of the dynamic data migration latency is carried out with a synthetic task and
a variable data size. Figure 33 presents the task migration latency between PEs at 1 hop of distance
and without NoC disturbing (each NoC router takes 5 cc to route a packet header). After a constant
task recreation latency, 2,709 cc, the migration latency increases linearly with the data size,
approximately 500 cc per KB, using 32-bit NoC channels. When compared to the related works (more

details in Subsection 4.2.2.2), this value corresponds to a small task migration latency.

20000

/.
16000 f R

12000 [//,/’/) rrrrrrrrrrrrrrr

8000 [r//////f////// rrrrrrrrrrrrrrrrrrrrrr

4000 },r”/ rrrrrrrr e e
¢

0 5 10 15 20 25 30
Data section size (KB)

Figure 33 — Task migration latency according to the task data size, 32-bit NoC channels, 1 hop between PEs
[RUA17b].

Migration Latency (clock cycles)

4.2.2.1 Impact of the Task Migration in the Applications’ Performance

Figure 34 presents the migration latency considering simultaneous task migration for the
MIJPEG application. Each point of Figure 34 represents the latency to decode one frame with 128
bytes. The MJPEG application is modeled as a pipeline, with five tasks: input, idct, ivic, iquant,
output. The tasks are allocated alone in different PEs, and the task migration moves tasks to idle
PEs. The curve "without task migration" corresponds to the minimal application latency that the

platform can sustain — baseline.

The migration order arrives when the simulation reaches 400,000 cc. The overhead over the
baseline latency measured at the 4™ frame was (in cc) 2,282 (+4%), 7,976 (+14%), and 10,794
(+19%), for 1, 2 and 3 migrations, respectively. The latency reduction at the 5" frame comes due
the message buffering caused by the blocking of the tasks, after the migration these buffered

messages are consumed with high throughput. The application latency is restored one frame later.

The overhead over the application execution time, considering only the first 11 frames of
Figure 34, was 0.05% (600 cc of penalty) for 1 migration, and 0.6% for 2, and 3 migrations. The

overhead for 2 and 3 migrations is not cumulative due to the parallel execution of the migration in

66

different PEs, and the inter-task message synchronization that masks the migration overhead due
to its on-demand behavior to deliveries the pending messages. For many received frames, and

frame sizes, this overhead is even smaller.

75000

—— Without task migration

70000 | —— With 1 task migration: ivic

—a— With 2 task migrations: ivic, iquant
—— With 3 task migrations: ivic, iquant, idct

m

[}

5]

>

(&]

% 65000 |

[}

S

2 60000 |

c

9

& 55000 |

c

S

S 50000 |

Q9

45000 '

w B (o) (2] ~ [0} [{e]
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o
o o o o o o o

Time (clock cycles)

Figure 34 — MJPEG frame decoding latency for simultaneous task migrations [RUA17b].

Figure 35 explores the proposed task migration targeting QoS. The MJPEG application is
mapped dynamically on the system. At time A, a disturbing application is mapped increasing the
frame decoding latency. At time B, a QoS heuristic (out of the current scope) fires 3 concurrent tasks
migrations (all tasks belonging to MJPEG application). The migration process finishes at time C, with
the migrated tasks moved to free PEs, this restores the MJPEG latency to the baseline value. The
MJPEG execution finishes at time E with task migrations. Without disturbing, the MJPEG finishes at
time D, and with disturbing but without task migration it finishes at time F. The migration overhead
over the application was 6,152 cc for 3 simultaneous task migrations (besides the speedup of 27%

in the execution time).

160000

140000 |
- 120000
Q
S
2 100000 F
=
[&]
S 80000 |
L
oy

- ——>
o 60000 27%speedup
8
— 40000 | /J ; _ _
g —6— Without Disturbing
20000 | —>— With Disturbing
——Task Migration
O 1 1 1 1 1 1 1
0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000

Time (clock cycles)
Figure 35 — Task migration applied for Quality of Service at MJPEG application [RUA17b].

67

4.2.2.2 Latency Comparison with the State-of-the-Art

Table 9 compares the proposed migration latency with results reported in the literature. This
is @ approximate comparison since the works’ architectures are not exactly the same. El-Antably et
al. [ANT15] evaluate the migration overhead using a synthetic application with three tasks:
generator, processing, and consumer. The migration overhead is a function of the task size. The
minimum overhead achieved was 530,923 us for a task size of 4KB, increasing at a rate of 42.2 us
for each 4KB. Our proposal achieves an overhead of 4,945 cc based on Figure 33 (equal to 49.45 us
@ 100MHz) for the same data size, at an increasing rate of 500 cc (5 us) per KB.

Table 9 - Comparison of the migration latency against the state-of-the-art works [RUA17b].

Proposal NoC details (0} Benchmark Migration Latency

[MUN15] Theoretical proposal

[ANT15] 3-D torus DNA-OS Synthetic Apps 530,923 us
[FU13] N/A uC/0s-II Matrix Mult. 10,457 cc
[CAN12] 2D mesh in-house MJPEG 25,000 cc
UAH11] 2D mesh ' CARAT X264 / 7Zip/ 106,505 cc

4 Gbit/s per link middleware |robotic app. (average value)

[SAI08] 2D mesh HS-Scale OS | MIJPEG 919,450 cc
This proposal 2D mesh 3.2 Gbit/s per link |in-house MIJPEG 600-6,152 cc

Fu et al. [FU13] use a matrix multiplication benchmark to evaluate its migration protocol. NoC
details are not available. The obtained application overhead was 10,457 cc, and the migration
latency for one task was in average 7,500 cc. Our proposal achieves an MJPEG application overhead
of 600 cc for one task migration. Fu et al. do not allow more than one simultaneous task migration
and use task replication.

Cannella et al. [CAN12] adopt as the benchmark a Sobel Filter and an MJPEG decoder. The
MIJPEG’s task migration latency takes 25,000 cc in that work. Our overhead for MJPEG was, in the
worst-case, equivalent to 24% to the one obtained in that work. Cannella et al. also employ task

replication and require instrumentation in the task source code.

Jahn et al. [JAH11] adopt three benchmarks: x264, 7Zip, and an embedded-systems robotic
application. With the CARAT task migration mechanism, the migration latency may vary because the
migration transfers the memory section dynamically according to the task behavior. For this reason,
the application benchmarks presented different migration latency overheads. A video application,
X264, resulted in a latency overhead 303,118 cc.

Saint et al. [SAIO8] use an MJPEG benchmark. The Authors employ a task migration in one task
of the MIJPEG application. The task migration process required 131.35 ms in a MIPS R3000,
corresponding to a migration latency of 919,450 cc. For comparison purposes, the scenario of Figure
34 detailed an overhead in the MJPEG decoding of 6,152 cc to migrate 3 tasks simultaneously.

68

4.3 Dynamical Real-Time Task Scheduler

A key feature of a complex system, such as a many-core, is the ability to support dynamic
workloads. Applications may have moments of heavy computational load and can have moments of
a state close to the idle, waiting, for example, an external input, as a user interaction or a message
from another task. For this reason, it is necessary to allow applications to tune the computational
workload, avoiding unnecessary resources allocation. This Section presents the main contribution of
this Thesis related to QoS at the computation level. The proposal focuses on a self-adaption
technique for many-core, proposing a dynamic Real-Time (RT) task scheduler that can support run-
time reconfiguration of the tasks’ RT constraints. This reconfiguration starts with an APl that enables
the application developer to characterize the RT workload of each task at different execution points.
At run-time, according to the task execution, the API triggers changes in the task RT constraints. The

proposed task scheduler handles these changes at run-time to fulfill the new tasks’ RT constraints.

Scalability is ensured by dividing the scheduler into two hierarchical levels: S; (Local
Scheduler), and Sc (Cluster Scheduler). The S, runs at the processor level within Spes, using the LST
(Least Slack-Time) algorithm. The Sc runs at the cluster level, within Mpes. The Sc receives messages
from the S;s, informing the CPU slack-time, deadline violations, and RT changes. The Sc implements
an RT adaptation heuristic, triggering task migrations according to RT reconfiguration or deadline

misses.

The scheduler works according to the ODA paradigm - Figure 36. The monitoring and
notification messages (CPU slack-time, deadline miss, RT changes), produced by the S;s, are the
inputs of the Sc (observation), the Sc executes a heuristic (decision), which can trigger an adaptation

by a task migration (actuation). This process is repeated along the execution of the applications.

Monitoring/ | Task
Notifications | Migration

Heuristic/
Action

Figure 36 — Scheduler support for self-adaptation at run-time based on the ODA paradigm [RUA16a].

The task scheduler proposed in this Thesis is a dynamic scheduler, in the sense that tasks can
change its real-time constraints at run-time. The task constraints are transferred to the kernel using
task code annotation, a common approach found in the literature. Theodoropoulos et al. [THE13]
use task code annotation that are used by a run-time manager to perform task mapping. Canella et
al. [CAN12] employ task annotation to implement a task migration mechanism based on task

replication.

69

As can be observed in Section 4.1, there is a lack of works in the literature addressing dynamic
RT schedulers for large-scale many-cores. The originality of this proposal is related to the scheduler
ability to support dynamic RT reconfigurations while it satisfies the task RT constraints. Task
mapping or schedulability analysis in out of this Thesis’ scope. Such techniques are explored in the
literature [SIN13b][JUN14][PAR14] and can be easily combined with the proposed scheduler. Aware
of the current state-of-the-art, this proposal is the first to support a run-time reconfiguration of the
RT task constraints. Besides, the evaluation of the proposed scheduler is executed in a clock cycle
accurate description of the many-core system.

4.3.1 Real-Time Task Model
An m-task of a real-time application A={t;, t;, . tm} is modeled by a task graph G(T7, E), with

each vertex t; € T representing a task and the directed edge (e;, €j), denoted as ej; € E, representing
the communication between tasks t; and tj. Tasks communicate using non-blocking Send and
blocking Receive MPI-like primitives (described in Subsection 3.2.2). A given task t; can assume four
states: waiting, ready, running, and sleeping. The waiting state implies that the task is blocked,
waiting for a producer task to send it a message. The ready state means that the task already
achieved its release time, and is ready to be scheduled. The running state implies that the task is
executing on the CPU. Note that, with the proposition of the task scheduler, and consequently, the
RT support, a new state, called sleeping is included in the scheduling of RT task only. The sleeping
state means that the task already finished its execution time and its period does not end yet, so the

task must be suspended.

As mentioned, the reference many-core system supports only BE tasks. This proposal adds the
support for RT tasks. BE tasks do not have time bounds and explore the slack-time of RT tasks. RT

tasks have soft temporal requirements. Figure 37 details the RT task constraints model.

¢ -——————————— Period:p - ======- >
<+ ----- Deadline: d = === =====—+
4 --- Exec. time: e ----><---|---
| Time in clock cycles

Slack time: s
Figure 37 - RT constraints model [RUA16a].

RT tasks properties definition: RT task is a 6-tuple {p, d, e, u, r, s} with a period (p), relative
deadline [LIUQO] (d), execution time (e), utilization (u), remaining execution time (r), and slack-time
(s). Utilization corresponds to u= e * 100 / p. The remaining execution time is the amount of time

that the RT task has to finish it execution time within a given period.

To make the system aware of the constraints of a given RT task, the task must execute a system
call named RealTime. This RealTime system call is the APl provided to the application developer to
reconfigure the RT constraints. Figure 38 presents an example of an RT task source code that
configures the RT constraints (d, p, and e) dynamically. At line 3, the RT task A calls RealTime,

70

notifying the kernel about its RT constraints. Lines 4-8 execute processing code. Due to the RT
constraints configuration, the scheduler can execute A according to the predefined RT requirements.
Next, at line 10 the task calls RealTime again to notify the scheduler about its new constraints. The
code between lines 11-15 executes according to these new constraints.

Note that the RT reconfiguration can be called in any task code point allowing the task can
change its period (characterizing an aperiodic behavior), deadline, and/or execution time. Such
behavior, where an RT task can change its RT constraints at run-time, is typical in real scenarios. For
example, a voice recognition application. The application can assume two workloads: the first one
is a listening state, where the application is waiting for the user to pronounce some sound, this state
requires a moderate RT workload. The second one is the recognition state, where the task uses voice
recognition algorithms. In this case, the application tasks can configure two workloads, with
different RT requirements. Another example, is an image decoding application, according to the
decoding frame properties, it can dynamically increase or decrease its RT constraints to decode the
frame in a specified time. This feature of dynamic RT configuration help to not waste resources,

avoiding the system always to assume the WCET scenario.

It is important to mention that the time used by the developer to configure the RT constraints
is independent of the target archiceture, such contratins can be represented by timming parameters
instead clock cycles. The platform can perform a simple conversion taking in consideration the clock

cycle period.

To handle with inter-task dependencies this proposal assumes that an iteration of a given
application defines a hyper-period, i.e., an RT application has all its tasks configured with the same
p. This hyper-period can handle with inter-task dependencies because it is composed of the sum of
the execution time of all application tasks and the worst-case of communication between the

application’s tasks.

1 int main(){

2 int period = 60000, deadline = 8000, execution_time = 2000;
3 RealTime(period, deadline, execution_time);

4 for (iiterations) {

5. Receive (msg from producer task);

6 processl(msg);

7 Send (msg to consumer task);

8. }

9. period = 60000, deadline = 10000, execution_time = 8000;
10. RealTime(period, deadline, execution_time);

11. for (k iterations) {

12. Receive (msg from producer task);

13. process2(msg);

14. Send (msg to consumer task);

15. }

16. return O;

17. }

Figure 38 - Example of a task code with run-time RT configuration. It calls the RealTime syscall twice to
configure the constraints (in lines 3 and 10) [RUA16a].

This task dependency model does not restrain the application model, accepting sequential,

71

parallel and pipelined applications. The designer can obtain the appropriated RT constraints running
the application alone in the system (profiling phase).

4.3.2 Proposed Task Scheduler

Table 10 presents the classification based on the works of [LIUOO][DAV11] for the proposed
scheduler.

Table 10 - Proposed scheduler classification [RUA16a].

Criterion Classification
Organization (Global, Partitioned) Hybrid (Mixes Global, Partitioned), and clustered
Scheduling decision (Static, Dynamic) Dynamic
Allocation (Clock, Table, Priority) Dynamic Priority-driven
Migration (Job level, Task level) Task-level Migration
Processor Number (Uni.,Multi.) Multiprocessor (on chip)
Preemption (Yes, No) Yes — Priority based on task’s slack time
Supported task Periodic, aperiodic, sporadic
Real-time (Hard, Soft) Soft real-time

The Sis send messages to Sc. The messages are: (i) CPU slack-time monitoring; (ii) deadline
miss; (iii) RT change. Messages (ii) and (iii) are reactive messages, sent when a task misses a
deadline, or when a task calls the RealTime syscall, respectively. The slack-time messages are
generated periodically.

CLUSTER

L SCHEDULER 1. CPU Slack Time
igh- ing: Task Migration
!—hgh level Scheduling: 5 (Mo 2. Deadline miss
inside Mpg | T 3. RT change
Low-level Scheduling: LOCAL LOCAL LOCAL | LOCAL
. . SCHEDULER SCHEDULER SCHEDULER SCHEDULER
inside Spe (Soe) (Sre) (Sre) (Sre) o

Figure 39 — Hierarchical scheduler organization [RUA16a].

The CPU Slack-Time Monitoring (STM) provides to the S. the actual slack-time of each Spe’s
CPU. The STM has a hardware/software implementation at each Spe. The hardware part corresponds
to a timer, which generates an interruption to the kernel according to a monitoring window. This
monitoring window is configurable at design-time and can be adjusted to provide a tradeoff
between NoC communication load and the STM update frequency. The software part corresponds
to a slack-time counter and a monitoring interruption handler function. When the STM timer
interrupts the kernel, the kernel achieves the amount of time that CPU stay in idle, computes a
percentage of this time over the monitoring window, sends a message with the current slack-time
to S¢, and reset the hardware slack-time counter.

72

4.3.2.1 Cluster Scheduler (S¢)

The Sc¢ has the goal of handling the messages sent by the Spes and execute the RT adaptation
if necessary. Each message has a different treatment. For the slack-time messages, the Sc only
updates the percentage of the idle state of each See. For deadline miss messages the Sc executes a
heuristic called RT _adaptation, which can select a new processor to migrate the penalized task.
Finally, for RT change messages, the Sc verify if the current processor of the task has enough
utilization to execute the task, if not, as well as occurs for deadline miss message, the Sc executes
the RT _adaptation heuristic.

The RT _adaptation heuristic works as a set of decision layers applied to the Spe of the cluster
asrepresented in Figure 40(a). Figure 40(b) presents the heuristic’s pseudo-code. As input it receives
the set Csp= {P(ci) - M} (corresponding to set of Spesin the cluster), and the task t to be migrated into
a given element of Csp. As output the algorithm returns the selected Sees, corresponding to the new
Spe to receive the task t. If no one Spris available to receive the task, the adaptation process is
suspended, the affected task will start to miss deadlines triggering the adaptation process again

until an available processor can be found.

The decision functions only select the Spe which fulfill the function’s requirement. The
following decision functions are used:
= ytilization: selects the Spes) that have a remaining utilization enough to receive the task t;
= max_avg_ST: selects the Spes) with the largest average CPU slack-time, information obtained
from STM;

= min_RT_task: selects the Speis) with the minimum number of RT tasks allocated to it;

= min_abs_ST: selects the Spe(s) with the largest absolute CPU slack-time measured at the last STM
window;

* min_alloc_tasks: selects the Spgs) with the minimum number of allocated tasks.

Finally, in line 6, the first Spein Cspis selected to receive task t. Using this heuristic, the Sc takes
advantage of the monitored slack-time of its slave processors (lines 2 and 4), together with the RT
metrics (line 1 and 3). The information provides a trade-off between the processor’s RT utilization
and load balancing. After the execution of the heuristic, a task migration order is sent to the current

Spe of task t, and the task is migrated to the selected processor s.

(b) RT_Adaptation (Cq, t, s)
Input: C,, t
Output: s
. begin
7| 1: Cp= Csp N utilization(Csp, t)
2: Cyp= Cs, 0 max_avg_ST(Csp)
3: Csp= Csp N min_RT_task(Csp)
4: Coo= Cso N min_abs_ST(Cy)

S

@ 5: Csp= Csp N min_alloc_tasks(Cs,)
)
6: s = first(Csp)
end

Figure 40 - (a) layered decision flow. (b) RT_adaptation heuristic [RUA16a].

73

Note that Sc in this proposal individually performs the role to make RT adaptations, covering
self-adaptation at computation level, the Sc role was integrated into a unified self-adaptive QoS
management that will be presented in Chapter 6.

4.3.2.2 Local Scheduler (S1)

Assuming the task model in Subsection 4.3.1, the S; executes as a conventional LST scheduler
[LIUOO]. The LST algorithm was chosen because it has been proved optimal for single cores, and due
toits support to deadlines different from the period, which is not supported in EDF (Earliest Deadline
First). Note that the multiprocessor scheduling problem can be reduced to the single core problem,
due the presence of the S¢, which acts as a high-level manager, migrating a task when the S; that is

not able to provide its RT requirements.

The RT tasks have scheduling priority over BE tasks. RT tasks are scheduled according to its
least slack-time priority. If there are two or more RT tasks with the same slack-time, a round-robin
algorithm is used to select the next scheduled task. BE tasks are scheduled only by the round-robin

algorithm.

As the system uses an MPI-like communication API, some tasks (either BE or RT) can be in a
waiting state. In this state, BE tasks are blocked. However, when an RT task goes to the waiting
state, the Sc handles the RT task as a sleeping task, i.e., the scheduler verifies the end of task period,
but do not update its remaining execution time neither schedules the task. When the task receives
the requested message, the kernel changes the state of the task to ready and calls the S;. The
scheduler then updates the slack-time and the remaining execution time for all its RT ready tasks,

scheduling the task using the LST priority.

Most schedulers use a fixed scheduler timer (Sr), or quantum, to schedule the tasks
[LIUOO][PAR14] (for example, EDF uses fixed time slices). This quantum is the interval between the
scheduler calls. The proposed S; adopts a variable Sr. Setting the appropriate Sris challenging,
because it may induce deadline misses caused by excessive scheduler executions. The proposed
method to compute St is executed after selecting a given task to be scheduled t;. The goal is to let
ts run, minimizing scheduler interruptions but without compromising other RT tasks. Let y be the

set of RT tasks allocated into a given See, except by ts.
The Srvalue is computed applying the following steps:

1. Selection of the first end of period for all sleeping and waiting tasks s € y, using Equation 1:

C;- first_end_of perido(s;...s,), n>0
ts(r], n=0

Ser=] &

where C; is the current system time, and n is the number of tasks s € y. The value Si; ensures
that the scheduler will be called at the first end of period of a task s; € y. The Si; value ensures
a scheduler call to awake a sleeping task or to verify if a waiting task missed a deadline. The

default value, if n=0, is the remaining execution time of t;, which is stated by ts).

2. Selection of the minimum slack-time: minST() for all ready tasks r € y, using Equation 2:

74

(2)

where n is the number of tasks r € y. The S«2value ensures the execution of ts up to the end

_(minST(ry...ry), n>0
tc2— {ts[r]’ n=0

of the smallest slack-time of a task ri € y.

3. Selection of the scheduler timer Sr, using the Equation 3:
St = min(Stcl'Stcz'ts(r)) (3)
If tsis smaller than the previously computed values, it is adopted as the quantum value. After
selecting Sr, tasks tsstart their execution using the Srvalue as quantum.

4.3.3 Results

Results were obtained using a clock-cycle accurate RTL SystemC model of the reference many-

core. Results use two latency metrics:

= Task iteration latency, time to execute a task iteration, which can e.g. be a loop.

= Application iteration latency, time for an application to execute its hyper-period.

4.3.3.1 CPU Slack-Time Monitoring

The evaluation of the STM includes: accuracy and performance overhead. The accuracy
evaluation employs an 8x8 dimension many-core, divided into four 4x4 clusters. To estimate the
Spes slack-time, the Spes received only RT tasks. Figure 41(a) presents the annotated utilization for
each Spe (%). Figure 41(b) presents the monitored slack-time achieved from STM (%). It is possible
to note that the monitored slack-time is in practice the remaining utilization of Figure 41(a), with
the sum of Spes utilization with the monitored slack-time reaching to 99%. The remaining 1% is

related to kernel overheads. Such results demonstrate the accuracy of the monitored slack-time.

9 | MM |34 |7 [81|77(8]10 90 [88 [65|92 | 18 | 22 | 17 | 89
6 12911511057 | 5 [62] 14 93 (70 | 84 |89 |42 |94 |37 | 85
21 |55 (15 (44 1121 25|80 | 24 78 |44 | 84 |55 |87 |74 [19| 75
Mpe| 58 | 86 | 6 [Mpe| 6 | 12 | 14 Mpe| 41 113 [93 [CM| 93 | 87 | 85
16 [47 [12 167 | 69 [13|66 | 9 8352|8732 (308 33|90
50| 5 11014 (29| 15| 14| 46 49194 189 (85|70)84|85](53
9 (19| 9 |74 |81 [11]12] 54 90 [80 | 90 | 25 | 18 | 88 | 87 | 45
Mpe| 40 | 79 | 59 | Mpe| 27 | 15 | 46 Mpe| 59 | 20 [40 ([CM| 72 | 84 | 53
(a) SPs utilization (%) (b) Monitored SPs slack-time (%)

Figure 41 — (a) Sees utilization using RT tasks. (b) Monitored SPs slack-time. Each square with a number
represents an Sp: [RUA16a].

To evaluate the performance overhead due to STM, a 12x12 many-core divided into nine 4x4
clusters was used in experiments, running a mix of RT and BE applications. The monitoring window
was set to 10 ms. Figure 42 presents the STM overhead for each Spe. This overhead is related to the

time required to handle the STM interruption and to send the slack-time message to the Sc. As can

75

be observed, the overhead in most Spes falls between 100 and 150 clock cycles (cc), with an average
of 132 cc. There are a few large values, which can be explained by NoC congestion, forcing the packet
to wait for the router to be released. The overhead in the Mpr to handle the STM packets was 1620
cc (only software execution). Such result shows the small penalty to monitor the slack time.

0
WFF* 244
%thzézg" 810, Seenumber
12
120 200 latency 14
18 (clock cycles) s
114 150 2%2
112 ”
110 100 o
108 o
106 50 20
104 "
102 0 34
100 2
98 38
96 40
94 42
92 d
90 a6
88 48
86 50
84 -
82 54
80 56
7876 6058
74727068 666462

Figure 42 — STM overhead for Spss in a 12x12 many-core [RUA16a].

Different STM windows were evaluated: 1, 2, 5 and 10 ms. The cost of handling a monitoring
message by Scdoes not change with the STM window. Reducing the monitoring window may reduce
the time to adapt the system, at the cost of increased processing in Mpg, due to the larger number
of packets to deal. The monitoring window is a design choice, enabling to establish a trade-off

between reaction time and performance overhead in the manager processors.

4.3.3.2 Real-Time Adaptation Support

This Subsection evaluates the RT adaptation support, observing the scheduler behavior when
a RealTime syscall occurs. Figure 43 presents the CPU utilization for a given Sperunning two RT tasks:
t1 and t2. At the beginning of the execution, both tasks configure its RT constraints: t1.,)=20%,
t2(,=30%. Near 52 ms, t2 changes its RT constraints, configuring t2.,)=65%. It is possible to note that
after the second RealTime, t2 executes for a longer period, corresponding to the utilization

configured in the second RealTime call.

76

t2: RealTime (100000, 100000, 65000);
Interruption
EE (B .
Scheduler T
1 |
12_
1 m: a0 ms 51 ms a2ms 23 ms 54 msg 25 ms

£2: RealTime (100000, 100000, 30000);
t1: RealTime (100000, 100000, 20000);

Figure 43 - Change in the CPU time utilization during an RT adaptation (rectangles represent the CPU
utilization) [RUA16a].

Figure 44 presents the task iteration latency for t1 and t2, considering the scenario presented
in Figure 43. It is possible to note that the t1 latency is not affected when the t2 workload increases,
demonstrating the capability of the S; to preserve the RT constraints in a shared CPU scenario. The
small peak near 52 ms observed in the graph occurs due the RT adaptation process. Figure 44(b)

shows that after t2 request more CPU resources the latency decreases in the same proportion.

(b) t2 latency - local RT adapatation

(a) t1 latency - with £2 local RT adaptation

500000 500000

400000 WW«VV‘\‘ — 400000
> ;
& 300000 f | & 300000
£ g
A A
& 200000 §‘ 200000 [
S g
2 2
= 3

100000 | 1 100000 -

0 0
0 20 40 60 80 100 0 20 40 60 80 100
Time (ms) Time (ms)

Figure 44 - Task iteration latency change during an RT adaptation. (a) t1 latency. (b) t2 latency [RUA16a].

4.3.3.3 Real-Time Adaptation with Task Migration

This Subsection presents an RT adaptation scenario using task migration (Figure 45). The same
scenario of the previous Section is used. However, the second RT configuration of t2 exceeds the
See's CPU utilization: t2.,)=85%. This utilization, plus t1,), would result in a CPU utilization equal to
105%. When Sc receives the RT change message related to the second t2 RT change, it detects that
the CPU utilization in the Speis above 100%, and executes the RT_adaptation (Figure 45(b)) to select

an Spewith enough remaining utilization (neighbor PE at 1 hop of distance).

77

(a) Seel t2: RealTime (100000, 100000, 85000):

Interruption

BN Bm = B B
Scheduler see I

1 m: 50ms 51 ms 52ms | 53ms |

t2: RealTime (100000, 100000, 30000},
t1: RealTime (100000, 100000, 20000);

(b) See 2

Interruption

Slack Time - - I l

Scheduler

t2

52 ms 53 ms 54 ms 85 ms 561
t2 task migration received

Figure 45 - Change of the CPU time occupation during an RT adaptation with task migration. Task t2 start to
execute in Spe 2 when the RT constraint changes [RUA16a].

Figure 46(a) and Figure 46(b) present the task iteration latency for t1 and t2, considering the
scenario presented in Figure 45. It is possible to observe the negligible impact of RT adaptation even
with task migrations taking place. Observing the chart of Figure 46(a) is possible to note that near
52 ms t2 call the second RealTime, inducing a task migration from Spe 1 to Spe 2 (Figure 46 (b)). The
total time between the start of RT adaptation until the end of task migration was 8906 cc, with 2651
cc (29.7%) required to the RT adaptation process, and 6255 cc (70.3%) required to the task migration

protocol.
(a) t1 latency - with t2 migration (b) £2 latency - with migration

500000 T T T T 500000 T

400000 - W*\/\/vwvv*‘ 400000 [
w w
S 3
& 300000 | {1 & 300000
- X
Q [*]
K=} o
ICA CA
& 200000 - & 200000 |
= c
2 2
5 K]

100000 1 100000

[¢ ¢
0 0
0 20 40 60 80 100 0 20 40 60 80 100
Time (ms) Time (ms)

Figure 46 - t1(a) and t2(b) task iteration latency during an RT adaptation with task migration [RUA16a].

Note that in this experiment t1 is not impacted by the t2 migration. Besides the low overhead
of the task migration protocol, another factor that contributes to this non interfecerence is due t1
isin sleeping state when the order to migrate t2 arrives at Spe 1. The protocol is fast enough to ensure

t2 migration until the next job release of t1.

78

4.3.3.4 Real-time Applications Execution Time Evaluation

This Subsection evaluates two RT applications: DTW (computation intensive, six tasks) and
MPEG (communication intensive, five tasks). These applications — named target applications, were
evaluated in the presence of disturbing applications (RT and BE). The goal is to observe the scheduler
behavior with multiple tasks allocated in the same Spr and the impact of the disturbing applications
over the target applications.

Initially, the target applications execute alone in the system aiming to collect the reference RT
constraints for its tasks (profiling step). Next, new simulations were performed aiming to insert RT
interference over the target applications. The functionality of the target and disturbing applications
is not important in this scenario. The goal is to observe how the insertion of either RT or BE
interferences affect the RT quality provided by the proposed task scheduler over the target
applications. Figure 47 depicts the results for DTW application. Each bar shows the results over
different interferences. In the minimal bar, the disturbing tasks are only communicating, not
presenting significative CPU interference over the DTW tasks. For the bars from 10% RT to 90% RT,
the disturbing applications are set to induce interference by setting RT constraints through the
RealTime syscall. The percentage represents the amount of the remaining CPU utilization left by the
target tasks, which was explored by the disturbing task. Thus, the available time to execute
disturbing tasks, tadisturs, cOrresponds to Ri(p)- Ri(e), where R: is the target task. The experiments vary
taisturb from 10% (0.1* taisturp) to 90% (0.9 * taisturs).

Figure 47(a) presents the DTW average application iteration latency. The first column presents
the minimal latency, next columns present the interference of an RT disturbing application varying
taisturs from 10% (10% RT) to 90% (90% RT), the column "BE" corresponds to a BE application
interference with taisturr €qual to 100%. The last column presents the latency when a round-robin
scheduler (i.e. without RT support) is used. Is possible to observe that for all RT disturbing scenarios
the DTW latency close to the minimal latency (36220.03 cc.), with an average latency increase of
2%, and a standard deviation of 316.4 cc. Such results demonstrate the scheduling ability to preserve
the RT application constraints even with high RT resource sharing load. BE disturbing applications
do not influence the latency values. Disabling the RT support the latency increase 97.13% compared
with the minimal latency, demonstrating the importance of the RT scheduler to meet deadline
constraints on this scenario. The deadline miss rate for DTW with RT interferences was 0.66%, and
for the disturbing application (which is also an RT application) was in average 2.7%. Figure 47(b)
presents the DTW execution time. The results are similar to the latency results. The additional
column "minimal-no STM", corresponds to the scenario to obtain the minimal latency, but disabling
the STM. Note the negligible impact of STM monitoring, increasing the application execution time

by 0.4% (adopting, as worst-case, STM window of 5 ms).

79

(b) DTW execution time over disturbing

(a) DTW latency over disturbing
80000 T T T T

B A ..H L
70000
20 [
760000 3
$ G100 [
£
550000 Eeol
=
é 40000 £ 60
o
Esoooo H £ a0
3 20000 | 20
10000 (] 0

2 2 2 e <&
$%%% %32 %%32%%%
* % AR B A DA DDA DD

%
)

2
Figure 47 - (a) DTW application latency over disturbing. (b) DTW execution time over disturbing [RUA16a].

The application iteration latency observed in the MPEG application is similar to the DTW
application. All latencies with RT disturbing remain close to the latency of the minimal scenario
(55358.5 cc.), with an average latency increase of 0.5% and standard deviation equal to 181.1 cc.
The frame rate achieved in the minimal scenario was 178 frames per 100ms. With RT disturbing
applications, the frame rate has presented a maximum of 2 frames decrease compared to the
minimal scenario. Disabling the RT support, the frame rate drops to 81 frames per 100ms. The
impact of STM monitoring in the MPEG application was 0.07% (STM windows of 5 ms). The deadline
miss rate for MPEG with RT disturbing application was 0.18%, and for the disturbing application was
equal to 2.1%.

The deadline miss difference between the disturbing application and the RT application occurs
because the disturbing application is computationally intensive, which makes such application more
sensitive during RT scheduling. This same observation can be used to explain the difference of
deadline misses between DTW and MPEG.

4.3.3.5 Real-time Applications Latency Time Evaluation

This Subsection evaluates how the latency of the RT application is affected faced to run-time
events of interferences. The DTW application is mapped on the system and starts its execution at
the beginning of the simulation, the MPEG start at 15ms. Three BE applications are inserted at 25ms,
35ms, and 45ms.

The graph of Figure 48(left) represents the latency for each MPEG iteration (frame decoding).
This latency is collected at the last MPEG task (output).

As can be observed, the RT support scenario provides a reduction of 209.3% of the iteration
latency compared with the scenario without RT support. Is possible to observe the high degree of
interference caused by BE application in this experiment. The RT scenario ensures a latency of 45.8%
higher in comparison to the optimal scenario.

80

350000 : i OptimalI —
Optimal —e— |]
RT Support --->--- 250000 - o RT Support - 1]
300000 - L1 Without RT Support - || i n Without RT Support ---m---
Lo omy owm M
I | - - L Y ™
& 250000 - T e e a s -l § - e
2 L] ey s 3 H i
S L] - g g H
> L 1) H
g 200000 ¥ 150000 |- .
[-] H
s X s im
g i g 3,
I} i S 100000 - i = F
& : k] :
= 100000 [
. 50000 -
50000 -
[}

0s
09 ~
[73

o o A

5 8 8 8
Time (ms) Time (ms)

Figure 48 — (left) MPEG iteration latency; (right) DTW iteration latency [RUA15b].

The graph presented in Figure 48(right) addresses the DTW iteration latency. The effect of the
RT support for DTW application is easily observed. The scenario with RT support can maintain the
application requirements even with the load of the BE applications. The average latency increases
only 1.43% comparing the RT support against the optimal scenario. The average latency reduction

comparing the RT support against without RT is 97.7%.

As shown in Figure 48, the proposed scheduler can sustain the RT constraints of tasks. The
high impact of disturbing over the MPEG application occurs because this application is highly
communicating, which allows that the disturbing caused by BE applications can be observed. In the
case of DTW, which is computation intensive, the scheduler can prevent deadline misses evenin a
high computation disturbing. As the scope of the scheduler is, essentially, computation resource
management, it is expected the behavior shown in both graphs. This analysis emphasizes the need

to complement a real-time scheduler with a run-time QoS mechanism at communication level.

4.4 Energy Management combined to Real-Time Task Scheduling

The proposed task scheduler was integrated into a run-time energy management technique
[MAR17a][MAR17b]. The goal of the work is to propose an adaptive run-time energy management
designed to support soft RT applications, called RT-REM. The energy management observes the
energy per PE and exploits the slack-time of RT application to guide task mapping, task migration
and to apply DVFS while meeting the application’s RT constraints.

4.4.1 DVFS Design
The DVFS is applied at the computational resources (CPU and local memory). To support DVFS,

the original DMNI design presented in Section 3.4 was modified, as overviewed in Figure 49. The
DMNI can support two different frequency domains between the NoC and the PE. The main goal of
such design is to enable PEs to work at different frequencies while the NoC transmits packets using

the nominal frequency.

81

Nominal Scaled (

.
frequency ‘—:—ffrequency
; t

: q s
Clock 1' MIPS-like

generator [N processor

R Router ‘0 DMNI H

Voltage! Island

S—Slave PE- Spe
M —Manager PE - Mpg

S S S S S S

I I | I I I

S S S S S S

[I I | I I

M S S M S S
S s ———
(an | | | | |
S S S S S S

I | | | I |

S S S S S S

I I I | I |

M S S M S S

Application
Repository

Figure 49 - A 6x6 instance of the reference many-core system, with four 3x3 clusters [MAR17b].

The work creates a set of voltage and frequency levels that can be applied at run-time, each
level is called vf-pairs (from voltage and frequency pairs): (1.1V, 4ns), (1.0V, 4.5ns), (0.9V, 5.5ns).

Such values were obtained from the Liberty files and timing analyses of the components netlist.

4.4.2 Power/Energy Characterization and Energy Profiling

Energy monitors extract the energy during time windows from the processor, memory, and
router. These energies values are obtained based on a characterization phase (at design time),
performed to each component. The processor’s characterization classifies the ISA (arithmetic,

logical, shift, etc.) achieving average power (mW) and energy (pJ) for each instruction class.

The router’s characterization is similar to the processor’s characterization. As the router
adopts wormhole PS and credit-based flow control, the packet’s header reserves the channel
temporally until the end of the packet. Thus, the switching activity of the router can be classified in
idle (0% of activity) and active (100% of activity), with each activity class presenting its energy
(dynamic and leakage values). The memory characterization is performed by the CACTI-P tool [LI11].
The CACTI-P tool enables distinct model types of memories, generating estimations as access time,
silicon area, and power.

After the characterization phase, an energy profiling phase is performed considering the vf-
pairs and the characterization step. The energy profiling enables the system developer to know the
minimum and maximum energy that an Spe can consume (best and worst cases). This knowledge is
useful to calibrate the run-time energy management algorithms. Figure 50 presents the energy
consumption for each Spr component. The histograms assume three supply voltages according to
the vf-pairs, and a sampling window equal to 1 millisecond. The histograms show the consumption
of the three main modules (processor, router, and memory). When the system operates at "max
energy" (processor running applications) and router transmitting data, the processor is responsible
for half of the consumed energy, and roughly 30% for the memory, and 20% for the router. For "min
energy" (processor and router in idle states), the parcel due to the router increases because its
frequency is not reduced.

82

16000 T T T T T T
Memory [

14000 |--|16% Processor O |
Router [

XX
12000 [
o2

10000 -

18%

8000

Energy (nJ)

6000

26%
4000 | |feed
29%
33%
2000 %

49% 21%

32%]

32%)....
31% 37% @
0 32% 27%

1.1V 1.0v 0.9v 1.1v 1.0v 0.9v
Q) (B) © (D) (B (]
Max Energy Min Energy

Figure 50 — Energy profiling of the PE for all voltage supplies. The total energy (y-axis) corresponds to the
energy spent in a monitoring window of 1 ms [MAR17b].

4.4.3 Energy Monitoring and Estimation

Hardware and software components make the energy monitoring. At the hardware level,
registers count the number of instruction classes (by monitoring the processor and the memory),
and the number of flits (by monitoring the router), periodically, according to a given time window.
These values are read by the kernel of the Spes periodically after the end of each monitoring window.
The Spe uses the received data to perform estimation functions, computing the dynamic and leakage

energy of the processor, memory, and router.

4.4.4 Application’s Slack-time Monitoring

The RT support assumes the previously described LST task scheduler. Figure 51 details how to
compute the application slack time. The Agr(p) is the application hyper-period. Agr(x) is the
application execution time, corresponds to the time to execute all tasks during one Agr(p). This time
is composed of the CPU usage and the communication overhead between tasks. Agr(s) is the

application slack time, which corresponds to the difference between Agr(p) and Arr(x).

The reference (RT constraints) Agr(p) and Agrr(x) are provided by the syscall RealTime. The
RealTime is called inside each task. Note that by removing the deadline field from RealTime the

proposal assumes only periodic task with their deadlines equal to the period.

The current Arr(p), Arr(x), and Arr(s) are computed at run-time by monitoring, triggered by a
syscall inserted on the task’s code, called PeriodMonitoring. This function sends the current time to
the Mpe (Which executes the energy management), allowing Mpr to measure the current Agr(x),
Agrr(s) and Arr(p) for each application, and to detect when a hyper-period is violated. This syscall is
required in the first task (e.g., task a in Figure 51(b)) and the last task (e.g., task e in Figure 51(b)) of
each application. Figure 52 presents an example of task’s code calling the RealTime and
PeriodMonitoring. As can be observed the RealTime is called once, at the beginning of the loop. The

PeriodMonitoring is called at the end of the loop, enabling the system to measure the QoS at each

83

iteration.
<« ART(R)
° 5 ART(X) ARTE
ORON==
‘
tRT(xz
(e]
D RT task running in a PE D RT task running in a PE

delayed by DVFS

(a) (b)

Figure 51 - Task graph of an RT application (a) and its scheduling (b) [MAR17b].

at nominal frequency

RT task e: code

int hyper period=60000, exec time=8000;
RealTime (hyper_ period, exec_ time);
for k iterations do

Receive (msg from dl);

Receive (msg from d2);

DoSomething () ;

(s e R T L R Y R I

PeriodMonitoring(get nominal tick counter());

end for

Figure 52 - Code snippet for the last RT task of an application [MAR17b].

4.4.5 Run-time Energy Management (RT-REM)

The RT run-time energy management implemented within Mp¢ it consists of heuristics that
act during the application admission (task mapping), and at run-time according to RT constrains
changes or hyper-period violations. During the application admission, the SMpe redirect the
application to the cluster with the lowest energy consumed, balancing the energy at the system
level. During the task mapping phase, the Mgt of the cluster performs a task mapping heuristic based
on a set of cost functions, which aim to select Spes with the lower number of RT task running on it,

and the minimal energy consumed. This approach balances the energy at the cluster level.

At run-time, after the task mapping, the Mpc detects when a given task change its RT
constraints (due to a RealTime syscall) and executes the RT-REM of Figure 53 to set the appropriated
vf-pair for the PEs running the task. The Mpe receives the new RT constraints of the task and uses it
to compute the task’s utilization tgr(u) according to line 4 of Figure 53. Two thresholds are used to
guide the DVFS process based on the obtained trr(u). HIGH_UTILIZATION: trr(u) corresponding to
more than 70% of Arr(p); LOW_UTILIZATION: tgr(u) corresponding to less than 30% of Agr(p). The
Agrr(p) is the constraint to meet in RT applications. As the voltage scaling introduces delays on the
task’s execution time, RT-REM heuristic selects vf-pairs based on tgr(u) assuming a low utilization

task is less likely to generate Agr(p) violations than a high utilization one.

84

Besides RT changes, the Mpes can also detect hyper-period violations (from the syscall
PeriodMonitoring), in such case, the Mpe reset the vf-pair of all application tasks to the nominal
voltage.

Algorithm 3: DVFS for tir (executed at the manager PEs)

1 Input: tgzr, Xposs VYpos

2 Output: send to SP(XgessVpes) nNew settings of VF

3 Begin

4 trr(u) € (tgr(x)/ * 100) / Az (p) /lequation2

5 if ter(u) > HIGH UTILIZATION then

6 sendDVFS CHANGE (Xposs Yposs VE_PAIR(1.1V, 4ns))

7 elsif tir(u) < LOW_UTILIZATION then

8 sendDVFS_CHANGE (Xyoss Vposs VE_PAIR(0.9V, 5.5ns))
9 else

10 sendDVFS _CHANGE (Xp0ss Yposs VE_PAIR(1.0V, 4.5ns))
11 end if

12 end

Figure 53 — RT-REM Heuristic [MAR17b].

PEs running at 1.0V and 0.9V delays a task execution by 12.5% and 37.5%, respectively, due
to the frequency reduction. Thus, an Spr running a task with high utilization operates at the nominal
voltage (lines 5-6) while an Spe running a task with low utilization, operates at vf-pair (0.9V, 5.5ns),
delaying the task by 37.5% (lines 7-8).

4,46 Results

Figure 54(a) presents the hyper-period of an RT application, the baseline execution time (black
curve) and the execution time using RT-REM (red curve). The green line represents the application
hyper-period. The hyper-period defined by RealTime for each iteration is 60K clock cycles. The
distance from the baseline execution time curves to the hyper-period corresponds to the application
slack-time. The baseline execution time presents a significative slack-time. Using RT-REM, after the
definition of the vfpairs, the slack-time reduces because the Spes running the application are delayed
due to the frequency reduction, with few violations in the hyper-period (smaller than 10% of the
hyper-period value). Figure 54(b) plots the energy consumed by the system for the baseline and the
system with RT-REM. As the simulation advances the energy savings increases, reaching 22% after

executing 100 iterations of the applications.

The variability in the execution time observed in both scenarios (baseline and REM) are

induced by branches of the application, kernel events, interruptions, and network congestion.

85

Execution time x Energy

__70000
)

-5 65000
;E;eoooo
= 55000
§ 50000
§ 45000
5 40000
= 35000

3000
1000

Hyper-period Baseline —— REM ——

REM —— Baseline

800- T 22% of ener,
| savi

600- b
400- b

(b) Energy (uJ)

200 b

& s & s
A ¥ Tick Counter (Kticks)
Figure 54 - Execution time and energy of an RT application with and without REM for 100 iterations
[MAR17b].

Table 11 presents the evaluation of hyper-period violations and energy savings for systems
having up to 144 PEs. Five many-core systems (first column), divided into different cluster sizes
(second column), run the applications set. The number of RT and BE tasks to process is the same of
the number of Spes of the many-core (third column). For instance, the 6x6-many-core has one SMpg,

three Mpes, and 32 Spes. The fourth column presents the number of executed task migrations.

Table 11 — Violations of hyper-periods and energy savings of RTREM compared to the baseline system

[MAR17b].

Many-core Cluster Number of tasks | Number of task | Violations of Energy
size size for each type migrations hyper-period savings
6x6 3x3 32 3 1,47% 15%
8x8 4x4 60 6 2,09% 18%
9x9 3x3 72 8 1,84% 20%

12x12 3x3 128 8 1,87% 18%
12x12 4x4 135 14 1.97% 18%

The fifth column of Table 11 shows the percentage of hyper-period violations (the execution
of the applications in the baseline system does no present violations. The RT-REM produces a small
number of hyper-period violations (< 2.1 %), with an amplitude inferior to 10% of the defined
constraint. This result shows that the proposed RT-REM is suitable for soft-RT applications. For
example, few hyper-period violations decoding a video frame do not affect the performance of the
applications [FEGO7]. The last column of Table 11 presents the energy savings, for a simulation time
of 50ms. The average energy reduction observed is in average 18%. The energy saving is
proportional to the amount of execution time. Therefore, for applications execution for long

periods, important energy savings are expected.

86

4.5 Conclusions

This Chapter presented background about QoS at the computation level and the contributions
of this Thesis in this context.

The proposed task migration [RUA17b] achieves results towards to demystify the high-cost of
the task migration in distributed memory many-core systems, presenting a low latency protocol
compared to the State-of-the-Art. Additional relevant features of the task migration proposal
include: there is no need to replicate the code of the tasks; it is not necessary to modify the source
code neither to add checkpoints; support to simultaneous migrations; and correct inter-task
synchronization without migrating produced messages. A direction for future work is to evaluate

the protocol with others self-adaptive techniques, as fault-tolerance.

The proposed dynamic task scheduler [RUA15b][RUA16a] is self-adaptive, supporting dynamic
task RT constraints and CPU slack-time monitoring. The evaluation demonstrated an ability to fulfill
RT applications with soft deadlines even for communication or computation intensive applications
with the interference of other RT applications. The average latency increase was 2%, even assuming
scenarios with 90% of CPU dedicated to disturbing RT applications. Such results demonstrate the
scheduling ability to preserve the RT application constraints even with high RT resource sharing load.
The STM presented a negligible impact on the execution time of application, with the worst
execution time increase of 0.4%. Future works include integrating the scheduler with a task mapping

and schedulability analysis algorithm.

The integration of the task scheduler to an energy management [MAR17b] reduces the
consumed energy in many-core while executing soft RT applications meeting the applications’
constraints. The proposed energy management executes monitoring (hyper-period slack time),
decision (RT-REM heuristic), and actuation (DVFS and task mapping/migration). As shown in the
results Section, the proposal is the scalable, with similar energy savings for different system sizes
(from 36 up to 144 PEs), producing a small number of hyper-period violations (<2%). Future works
include: (i) define consumption limits to cope with dark silicon issues; (ii) include other actuation

techniques, as power gating; (iii) evaluate the approach for SOI technologies.

87

5 QOS AT THE COMMUNICATION LEVEL

This Chapter addresses the contributions of this Thesis covering QoS at the communication
level. Section 5.1 reviews the state-of-the-art. Section 5.2 presents the proposition and evaluation
of the Software-Defined Networking (SDN) for NoC-based many-cores. Section 5.3 presents a CS
infrastructure and management based on the SDN paradigm. Section 5.4 presents the results.
Section 5.5 finishes this Chapter presenting the conclusions and direction to future works.

5.1 State-of-the-Art

Table 12 presents the state-of-the-art related to QoS of communication. A common approach
in the literature is to employ flow priority [KAK11][WIS11][CAR14][WAN12][JOV13][PAL12][GRO12]
(third column). Flow priority enables differentiated treatment of packets according to different
priorities. For instance, high priority packets can first receive the access to an output port by the
arbiter or can to explore adaptive routing algorithms [CAR14]. Flow priority mechanisms are
effective to offer a simple QoS support, where some deadlines may be missed, as in soft real-time
applications. Most techniques that implement flow priority use Packet-Switching (PS), being

susceptible to inter-packet interference and increased jitter.

The most adopted option to provide a robust QoS support is the end-to-end path reservation,
employing a connection-oriented Circuit-Switching (CS) communication [LUS11][WIN11][STE12a]
[PAL12][JOV13][CAR14][ZHA14][RUA15a]. CS is widely adopted in NoC-based many-cores to
guarantee RT constraints at the communication level, being employed since 2004 with MANGO
[BJEO5] and AEthereal [GOS05] NoCs. CS communication reserves the NoC resources along the path,
as links, buffers, and crossbar. It ensures that communication will not suffer traffic interference from
other flows, providing guaranteed throughput, minimal latency and jitter to the communication
flow. The path reservation is performed by a setup phase — which verify the resource availability
and perform the reservation, and a release phase — which consists in releasing the reserved
resources. The NI commonly manages the connection establishment and release phases. In
summary, the differences between flow priorities and CS and is that flow priority assumes

communication sharing and CS reserves the communication resources exclusively to a given flow.

There are two main approaches to implement CS. One reserves a single physical channel to a
given flow [ZHA14][CAR14], where the flits are forwarded in a pipeline fashion up to the destination,
without arbitration and routing overheads. The other approach is also known as Virtual Circuit
Switching (VCS, or as mentioned in some works Switched Circuit Switching). Different from
traditional CS, this technique allows sharing the physical channel with more than one flow. It ensures

guaranteed services by isolating the flows spatially or temporally.

Table 12 — State-of-the-art about works addressing communication QoS.

88

Qos QoS
Work Focus QoS Technique Guarantees implementation
place
BE with
[KAK11] Laouét tolerance and Qos for Flow Priority using 2 physical channels soft Router level
guarantees
Latency of
[Wis11] QoS for prioritized packets Priority-based Switch allocator real time Router level
packets
[WAN12] High throughput QoS- Arbltr_atlon Wl'th dypamlc cqngest!on control and Gs Router level
Aware router adaptive routing using multi physical channels
Run-time flow priority and CS adaptation Router/NI/OS
[RUA15a] | Run-time QoS Adaptation according with monitored communicating task BE and RT level
flow
NoC level:
Elastic Buffers / Flow priorities/Dedicated QoS topology and
[GRO12] Qos topology-aware NoC routers / VC and Preemptive Virtual Clock BE and RT router
implementation
[JEO12] Memory Access Sharin Priority-based QoS-Aware memory controller - Memory
y g ¥ ¥ Controller
[PAL12] Hybrid Switching Flow priority and CS using VC BE and RT Router Level
[CAR14] Different QoS Services Flow Priority and CS using 2 physical channels BE and RT Router level
Bufferless NoC with QoS cs support and four sgrwces classes sep.ar:i\ted ReaI?t|me Router level with
[zHA14] . according to the traffic type and four priority traffic QoS
guaranties . . IP support
levels managed by two stage routing algorithms guarantees
Priority-based scheduler supporting allocating VC
[SAL11] QoS Router A BE and RT Router level
according GS flows
HW/SW integration to QoS | QoS API that expose NoC QoS services of flow System level,
s L) o Guaranteed | : -
[Jovi3] control at the application priorities and CS using VC at application level to . integrated in all
h Services .
level openMP and ocMPI programming model instances
[0UY10] QoS NoC for real-time Flit schevdullng (LFS) and flow control (FRS), BE and RT Router level
flows supporting TDM connection
HWY/SW bridge TDMA connections thought dedicated input ports ngtgzzrtehfgc:s
[BEY13] infrastructure for connect and dedicated buffer to connection flow control BE and RT P ;i
. - services to the
NoC-based system in RT traffics 1Ps
[STE12a] | TDM NoC with QoS support | Distributed routing and TDM CS support Only RT Router level
[HE14] Power Efficient QoS Des.lg.n.tlme .TDM schedullr}g and shortest path BE and RT Design time
definition using a ILP algorithm
DSE(Des!gn Space Includes TDMA scheduling based in the worst Real-time Bus-based
[ROS14] Exploration) QoS L .
framework case communication analyses and bus bandwidth | RT system
[EJA13] NoC with CS support SDM (Spatial Division Multiplexing) with 1, 2 or 4 BE and RT Router and NI
sub-channels and sub-networks. level
[LUS11] QoS for RT applications NoC with PS + CS using SDM up to 7 physical BE and RT Router level
channels
[FAN11] QoS for NoC routers Dynamic VC allocation and NI flow injection BE and RT Router and NI
control level
. . Router and NoC
[WIN11] Run-time VC allocation ANoC Manager .unlt allocates at run-time BE and RT level — global
guaranteed service VCs
management
[PAL12] Hybrid Switching L\?/O VC one for PS and other for CS managed by BE and RT ::a/:’ier and NI
Guaranteed Services based
[SAM14] | inaconnection oriented FI|t-t.o-fI|t routing based in reservation and. BE and RT Router level
. routing management table that uses the flit ID
technique
[MAT14] | Multi-switching in NoCs Router.chapg.e two CS modes according with the Real-time Router level
path wire timing delay flows
[SEI14] Elastic buffer architecture Elastic Buffer with VC support BE Router level
for NoCs
[VAO14] QoS support in bufferless Flit with high priorities are less deflected and not | Soft Router level with
NoC throttled guarantees | IP support
[HEI12] High management Cluster regions are created to limit the number BE and RT OS - Dedicated

communication QoS

VCinto the region

Managmnt. Unit

89

VCS is more flexible in terms of resource utilization than conventional CS since a single
physical channel can be divided into virtual channels (VC) or virtual links. The VC separation is
performed by flow control techniques applied during the channel allocation, and by different buffer
organizations [PAS08]. VC implement blocking prevention using techniques for temporal link
scheduling applied in routers and NI. Its major benefit is it higher resource utilization due to the flit
interleaving of different packets in the same physical link. The VC technique can also be used as an
alternative to avoid packet blocking in the wormhole flow control [PASO8]. As drawbacks, VC-based
CS have increased complexity and power consumption against conventional CS [YOO13] due to the

necessity of multiplexing of the physical channels over the time.

An option to implement VC flow control is to use one buffer for each VC [SAL11][PAL12],
with VC used to BE flows and the others to GS flows. This approach has a high silicon cost due to the
buffer size increase and requires complex scheduling implementation to avoid conflicts between
different scheduling along the path [PAS08]. Another alternative to implementing the VC flow
control is to assign the entire physical channel to a single buffer, and the VC flow control is
performed by the Time Division Multiplexing (TDM) technique [LERO5][OUY10][STE12a][BEY13]
[HE14].

TDM is typically used as a VCS technique in NoC and buses. Its purpose consists in to divide
the channel bandwidth into time slots. Each VCS connection receives an exclusive time slot
according to its bandwidth requirements. TDM also reduces the buffer size due to the consecutive
time slot allocation in the routers [LERO5]. The flits that are crossing a path will be scheduled to not
stall into the routers, and thus not requiring buffering. However, TDM-based designs suffer from

high power demand and routers’ complexity [LERO5].

An alternative to TDM is Spatial Division Multiplexing (SDM). In SDM [LERO5][LUS11][EJA13]
the channel sharing occurs spatially instead temporally. SDM technique divides the wires between
routers' channels, creating sub-physical channels at run-time. This enables to establish and to
release a connection with a lower management effort when compared with TDM because in SDM
the routers' configurations are performed at the beginning of the connection and remain active until
its release, and in TDM the router configuration (TDM wheel) needs to be updated at each time
slice. The major problem of the SDM is the switch complexity due the necessity to support the

dynamic reconfiguration of wires [LERO5].

Recent works showed the benefits to adopts a simpler alternative to support CS by using
multiples instances of simple NoCs. Such design creates Multiples Physical Networks (MPN)
[EJA13][LIU15][YOO13]. Authors [EJA13][LIU15] compare MPN to SDM designs. With an equivalent
bandwidth implementation, MPN increases the area following an O(n) complexity, while SDM
increases O(n?). The path delay increases with the number of sub-channels (SDM) with a complexity
O(n), while remains unchangeable for MPN. The work of Yoon et al. [YOO13] presents a comparison
of MPN and VC. They conclude that MPN presents a better area scalability and critical path flexibility

touse in DVFS, also MPNs scale better regarding power dissipation regarding new technology nodes.

90

For distributed traffic patterns, VCs have a high sustained throughput and latency. However, when
the traffic generates hotspots, MPNs have a better throughput.

Other works also provide QoS with CS with differentiated proposals: mixing multiple
channels with SDM [LUS11], MPN with TDM [EJA13], TDM with SDM [LUS12], the IDMA technique
proposed by [SAM14], or the adaptive CS buffering of [MAT14].

Table 13 compares qualitatively the CS NoC designs found in the literature. TDM has a higher
adoption [OUY10][STE12a][BEY13][HE14]. However, the TDM drawback is its large area overhead
due to the router's tables required to store the time slot assignment of each flow. Further, a
switching algorithm is needed to be executed at each time slice, contributing to increases the
dynamic power consumption. Another TDM limitation is the scheduling flexibility because each flow
allocation must fit in the TDM wheel running at each router. If one router of the path has the time
slot used by another flow, the CS establishment is suspended.

Table 13 — Comparison CS NoC designs.

Vlrtuall e Chan.nel Main drawbacks Main advantages therat_ure
Technique sharing adoption

Expensive router’s tables, higher Simple implementation. High literature
TDM Time power, switching needed at each P P -1ig ++++

. . o . adoption
time slice, limited scheduling Pt
. Serialization and de-serialization in | Simple connection and easy CS control into
SDM Spatial ++

the NI, large router area routers

Easy and simple implementation,
MPN Not Inflexibility to manage high variety | floorplaning, place and routing. Low area, e
of throughput grains. low critical path, flexibility to frequency

scale

Expensive router’s tables, high
IDMA ID routing overhead (2x clock Ease multicast. Low granularity +
Athereal), low adoption

Time and High management overhead, Low
Spatial literature adoption

TDM+SDM

Low granularity +

The SDM was proposed after TDM for NoCs, with the goal to reduce power and area compared
to TDM. However, some works achieve SDM by defining statics sub-channels between routers, and
the NoC acts as a set of disjoint NoC configured at design-time [EJA13]. By the other hand, Leroy et
al. [LERO5][LERO8] propose a multistage SDM NoC based on an adaptive switch. This proposal
supports dynamic CS bandwidth and adapts the bandwidth according to the flow requirements at
the cost of a complex switching mechanism. Is easy to conclude in that work that the complexity of
the switches required for SDM can make it applicability for SoC inviable if a low granularity of SDM
is assumed. Leroy et al. [LERO5] also compared the SDM with a TDM NoC implementation, showing
lower power (-8%) and area in SDM (-31%), at the cost of a higher critical path (+ 37%).

MPNs have an increasing adoption over the last years [FAN11][WAN12][CAR14]. MPNs have
the advantage of simple implementation, low area and easy floorplanning [YOO13]. However, MPNs
have the drawback of static bandwidth per channel once that the number of MPNs is defined at
design-time with a fixed bandwidth. The design can benefit from frequency scale or DVFS techniques

to speed up or slow down an specific MPN. This approach is well fitted with the current dark silicon

91

context, where some system resources need to be turned off due to excessive power dissipation.

As alternative CS designs, the proposal of IDMA [SAM14] appears to be interesting due to the
flexibility of multiples CS flow sharing the same link. The proposal adopts a flit routing based on flit’s
ID. IDM uses the packet header to reserve the required bandwidth to a given flow. Next, the routing
is performed flit-to-flit by using an ID tag inserted at each flit. The ID is the same for all flits belonging
to a packet. The router uses the ID to select the output port and provides the appropriated
bandwidth to each flow, based on a routing reservation table, which is configured at run-time by
the header. Results showed success to meet the flow's bandwidth requirement and a low area if

compared with Ethereal NoC, which employs VCS using TDM.

As another option of CS design there is the exploratory study of Lusala et al. [LUS11], which
merges TDM and SDM. This work adopts a TDM over an SDM concept. This approach leverages to a
complex NoC design, divided into sub-channels that are defined at design time with each sub-
channel multiplexed over the time. The work concludes that increasing the number of sub-channels
on the SDM+TDM NoC creates a higher impact into the NoC area compared to the increased number
of slots in a TDM NoC.

Recently, new bufferless-based designs for NoCs have been proposed. Elastic Buffers (EB)
enable to reduce the power and area overhead due to the buffers by employing a latch-based design
[MIC11]. This implementation creates a distributed FIFO along the communication path and allows
to remove the credit protocol, which is required in wormhole flow control. To implement the
forwarding mechanism between each EB a ready-valid handshake is employed. This control logic is
smaller compared to traditional routers' switch allocators [MIC11]. EB can provide QoS either mixing
them with VCS [GRO12] or using a VCS with EB [SEI14]. In this Thesis, and as will be detailed in next

Sections, an original design combines EB with MPNs.

Another buffer-centered approach is to design bufferless NoC. Bufferless NoC removes the
routers’ buffers and saves area and power. Deflection or retransmissions techniques perform the
correct packet communication. However, QoS is sacrificed. Some recent works have addressed QoS

in bufferless approaches by using a priority-based deflection [ZHA14][YAOQ14].

Other works address communication QoS by a high-level communication management.
High-level management is required to provide a system view over the communication
infrastructure, and thus, providing communication QoS by run-time resource management. The
implementation of the management protocol can be in central processor as in Winter et al. [WIN11],
which presents and evaluates different implementations of a central hardware unit at the NoC level,
named NoCManager. The manager allocates at run-time guaranteed service VCs to flows. The
NoCManager contains the status of all links and is responsible for finding a CS path in the NoC.
Authors argue that the central NoCManager is superior to the distributed technique. Besides this
conclusion, the Authors mention scalability issues and point out a hierarchical method as future

work.

92

High-level communication management also can be exposed to user’s task by APIs
[HEI12][CAR14][MOT11][SAP14][JOV13]. In Heisswolf et al. [HEI12] for example, it was proposed a
decentralized policy to NoC management and communication resource allocation according to the
application requirements, informed by an API. The policy consists in to create NoC regions (Figure
55) to limit the VC number inside the region by allowing a maximum number of VC assigned to flows
GS and BE. The NoC regions are defined with the OS support that is responsible for configuring each
router. This approach enables to configure a VC limit in entire regions or only the region border,
aiming to accurately distribute the VC budget over the applications running inside the regions.

5 5 5 5 5 5 5 5 5 5

e e D an Nfo e (L ml an A

5 5 5 5 5 5 5 H 5 5

Wi E E: East L: Local BE policy modified
5 %: South Policies remain unchanged

Router: ML Ports: N: Morth W West !GSpﬂlkrmodiﬁed

Figure 55 — Cluster regions which can tune the number of VC [HEI12].

The high-level QoS management is supported by a software implementation that consists of
a mapping aware of application QoS constraints, jointly with a distributed QoS management within
the OS of PEs, which defines the NoC regions.

5.1.1 State-of-the-Art Discussion

QoS targeting communication constraints for many-cores received many proposals in the last
decade. Observing the reviewed works, it is possible to observe the adoption of the following

techniques:
= flow priority;
= end-to-end throughput guarantees using CS;
= area efficient buffer approaches;

= high-level communication management.

93

Several proposals for QoS at the communication level have hardware implementations.
These proposals can divide the flow priority into different classes, provide CS by mainly using TDM,
SDM or MPN, and area efficient approaches centered in the buffer design. Observing the state-of-
the-art related to CS NoCs, it is possible to find several design options. The TDM and SDM have a
high capacity to meet the QoS levels. The drawback of such proposals is scalability, due to the area
and power overheads. As shown by [YOO13], the use of MPNs can equally compete, and in some
scenarios to overcome VC-based approaches.

With the increasing number of PEs on the same die, has emerged the need to provide high-
level QoS management. Therefore, QoS becomes to be managed at the system level and some
system services exposed to applicationm developer [CAR14]. At system level by run-time QoS
management policies, and at developer level by QoS APIs that exposes the hardware services.
However, assigning to the application’s developer the job to configure the QoS statically is not a
suitable solution. Self-adaptive systems are the alternatives, where the constraints are monitored
at run-time, and a manager act over the system resources to meet the constraints. Thus, the
application developer only has the role to inform the application’s constraints to the system,

without the need to act directly on the system resources.

This Chapter proposes techniques to achieve QoS at the communication level, aware of the
main characteristics previously stated in the state-of-the-art. First, Section 5.2 proposes an SDN
technique for NoCs, targeting high-level communicating management. At the hardware level, this
Thesis proposes an MPN design with routers based on EB, enabling run-time reconfiguration and
low area overhead. At the software level, a NoC-Controller implements the SDN paradigm by
defining at run-time the paths in the MPN. Next, Section 5.3 proposes the adoption of CS targeting
end-to-end throughput guarantees achieving QoS at the communication level. The SDN architecture
is the support to implement the CS proposal. A CS management protocol implemented in a CS

controller defines the CS paths. Section 5.4 evaluates the SDN architecture and the CS protocol.

5.2 Software-defined Networking (SDN) for NoC-based Many-Cores

SDN is a computer network paradigm that has as the central concept the routers'
simplification. The diversity of routers available on the market of computer networks made difficult
the process to configure and manage a network, motivating the SDN development. Figure 56
overviews a classical SDN organization [JAR14]. SDN was conceived assuming simple architectures,
moving the control logic from the router to a high-level manager, called Network Controller,
implemented in software. With this paradigm, routers act as simple forwarding units, programmed
by the controller at run-time according to network policies defined by the user or the network

status.

94

4 |)
Application [| |
Layer User’s Application
_ J
4)
QoS Ball_;r?gnd Security
Control v
Layer
Network Controller
_ J
4)
. R2 H R3
Physical | |
Layer
y RO H R1
\. J

Figure 56 — SDN organization, and its adoption for NoC design [RUA17a].

The same scenario may occur today in the context of many-core systems. NoC designs
targeting QoS adopt large buffers, several virtual channels, and complex arbitration/routing
schemes [LER0O8][YOO13] to meet the applications' requirements. The complexity of current NoCs
motivated this research to explore SDN applied to many-core systems, with potential advantages to
reduce the NoC cost (area and power [SHA17]) concomitantly with a flexible management (e.g., QoS
policies defined by software). Also, SDN can provide better reusability because routers are generic

and simple hardware components, configured by software.

Recent works started to explore the SDN paradigm for SoC communication. Cong et al.
[CON14] propose an SDNoC architecture where the control plane is deployed as a distributed unity
at each router. The routers' control plane exchanges messages to implement the communication
management protocol and to define the path for the flows. That work presents few details related
to the architecture and no RTL validation. Sandoval et al. [SAN15] propose an SDN organization with
three layers: operating system, network operating system, and infrastructure. The work assumes
routers that can have the routing algorithm defined by the SDN controller. Flows that are not
managed by the SDN controller use the XY routing algorithm. Work [SAN16] evaluated the
configuration time for several routing algorithms, implementing them in the SDN controller. Results
showed that the performance of the SDN to configure the routers varies according to the routing
algorithm and the injection rate. For congested scenarios, worst results were obtained with adaptive
routing algorithms. Scionti el al. [SCI16] propose the SDN architecture to explore dynamic changes
in the network topology. Each PE has specific instructions to control the network topology by
software, including switch off the links which are not used. The SDN paradigm is implemented by
these specific instructions and not by an SDN Controller. Table 14 compares de SDN proposals for
NoCs.

95

Table 14 — Related works on SDN architectures for Many-Core SoCs.

Works Implementation Details RTL Validation SDN Controller
[CON14] Few Details No One per router
[SAN15][SAN16] | Arch. organization overview Yes (SystemC) One per system
[SCl16] Only router level details Yes N.A.

This Thesis Arch. organization and implementation Yes (VHDL, SystemC) | One per system

The SDN architecture herein proposed covers two gaps observed in the literature. The first
oneisinto provide a comprehensive SDN architecture, describing the hardware and software layers.
The second one is the SDN evaluation against a state-of-the-art hardware method for defining the
paths. The proposed SDN provides a generic and flexible architecture to manage the communication
in many-core systems and to provide differentiated communication services. This Thesis is focused
on the QoS service by establishing CS. Other services could be supported, for example, fault-

tolerance, security, and load balancing.

5.2.1 SDN Architecture Overview

Figure 57(a) presents the proposed layered SDN organization for the many-core context. The
application layer has the users' applications. The middleware layer contains the embedded OS
(kernel) and the NoC-Controller (NC). The NC implements the SDN services to the kernel. Figure
57(b) presents the SDN-based communication directions. The kernel asks the NC to define paths.
The NC set the paths by configuring SDN routers, which act as a forwarding unit, linking an input
port to an output port. The NC configure several SDN routers to make a path. After the connection,
the kernel injects/receives the applications’ data by using the local port of the SDN router connected

toit.

(Application

Layer [I > Call API primitives
User's Application)) Send/Receive data

L mp Configure Services

P> Request Services

—
Middleware Interface de
Layer NoC-Controller SDN Router onfiguracso
4 kernel Hardware ¥+ |
QOS Fault T. LEE] L N
In|EJW|N|S|L
_

(Applications)

(kernel)—(NOC Controller)

\¢

Out [N|S|W]| - |E

r W E

Physical
Layer

_ S

(a) Layered view for the proposed SDN paradigm in a
many-core organization
Figure 57 — (a) Layered view of the SDN paradigm in a many-core organization; (b) SDN-based
communication [RUA17a].

(b) SDN-based communication

Despite the advantages of the SDN-based management, it also imposes an important

challenge that is the software overhead to manage NoC flows at run-time. The layered SDN

96

organization proposed in Figure 57(a) helps to mitigate this issue by assuming two main principles:

i. the NoC Controller provides differentiated communication services (QoS on this
Thesis), being decoupled from the PS architecture. The system may work with the
kernel and the PS NoC, independently of the SDN infrastructure;

ii. the NoC Controller is a parallel system service of the kernel.

Figure 58 presents details the physical layer and the modifications required to support the
SDN paradigm. Figure 58(a) shows a standard many-core architecture, with PEs connected to one
PS router (R in the Figure). Figure 58(b) presents the SDN architecture, with an NC managing the
connection between SDN routers (Sg). Figure 58(c) shows the integration of the SDN architecture to
the many-core architecture. The communication architecture presented in Figure 58(c) corresponds
to MPNs, with one PS network and a set of SDN networks, named subnets. The PS network is used
for management packets and to transmit data packets when there is no path between two PEs. It

also has the role of configuring the Sgs.

(@) (b)

PE PE PE

(

I

' ' |
R IR i
I

I

PR PR
'} i3

py)
py)
py)
~—

T

Pyl

o
m

0
m
Py
!
o
Py
|
o
| m
Py
|

B,
P
B

Figure 58 — Integration of the SDN in a standard NoC-based many-core architecture. (a) Standard NoC-
based many-core architecture, (b) proposed SDN-based architecture (c) integration of the SDN in a NoC-
based manycore architecture.

5.2.2 Hardware Architecture — SDN Router

Figure 59 details the proposed Sg. According to the SDN paradigm, the Sz should act as
forwarding unit. To reduce area, Elastic Buffers (EB) [MIC11][MIC13] replace input buffers — Figure
59(a). The router has five inputs and five output ports (East, West, North, South, Local). Each input
port has one EB. An EB contains a master and a slave latch, controlled by the EB control logic. The
master latch is enabled when the clock signal is low, and the slave latch when the clock signal is
high. This latch-based design allows the latches to be used as two independent storage locations.
An EB uses a ready-valid handshake protocol. The ready signal notifies the upstream router that the
current EB can receive a flit in its master latch. The valid signal notifies the downstream router that
current EB has a flit to transmit. A flit is transferred to the downstream EB when both the ready and

valid are asserted at the rising clock edge.

97

The EBs retains data for one clock period, avoiding long wires, ensuring a reduced clock period.
EBs also enable to reduce the silicon cost compared to a two-slot FIFO [MIC13], once EBs need only
one master-slave flip-flop instead of two.

Figure 59(b) details the Sg architecture. Besides the EB, each port has an upstream req signal
employed by the consumer PE to request data from the producer PE. The regq is used for the inter-
task communication, being asserted when the consumer task requests a message to the producer
task (this replaces the MESSAGE_REQUEST packet).

553 .2 .
°Cpl= "l =3 Configuration
g% o280
bk
e
ST
data_in | - data_out| dalltgarou{« EB
* P Q ”1P Q > dy-oti] N(2) ORT/ IRT Config.
Master Slave data_in—»| Eg
lid_in —»]
Latch Latch re\gﬂhlﬁhn <l L@ A
Enable Enable r[;e(?_(i)ﬂtz h IRT(In)
ENM B Upstream
ENS eﬁfg-gﬂ{:: crossbar iRT(OUt > data_out
clock \ ready—out—» o1z 3 @ [oxyaidod
E1 o data_in—p Downstream l—data in
EB Control Logic valid_in—»| EB crossbar EB L—vaiid in
. ready in <+ W(1) E() |+ ready_in
El=la+b req_in —» le—req_in
_ q_|
N E2=!la.m.b_m req_out <— Table Indexes: = req_out
lid ~>lvalid_out=a+b - > E =0 . -
valld_IN| reagy in = E1 valid_out w - 1
a=lready_out. (a+b) B
P b = (valid_in . ready_out) + (la. 'b. g 'g
~ - valid_in) + ('valid_in . !ready_out .b) + |« =
ready_in (a.'b.ready_out) ready_out EB L=4
S(3) F(Free) =5
(a) Elastic-Buffer (EB) a; aggggg
. 855 255 (b) SDN Router (Sg)
25 175513¢de
5 255
Figure 59 - (a) EB architecture [MIC11][MIC13], (b) SDN router architecture, with 5 EB [RUA17a][RUA18].

The Sg has internally two crossbars to connect the upstream (ready, req) and the downstream
(valid, data) signals between the input and output ports. They are configured by the Input
Reservation Table (IRT) and Output Reservation Table (ORT), respectively. Each table is a 5-entry
array (number of input ports) with 3 bits at each slot (enabling to store six states: E, W, N, S, L, Free).
In Figure 59(b), the North inport is forwarding data to the East outport. A configuration interface
enables to programs the IRT and ORT tables. This interface is the key feature to make the router
simple, avoiding logic for routing and arbitration modules. After configuring the Sz routers, data is

transmitted in streaming without interferences by the path.

Figure 60 presents the process to configure an Sz. The SDN configuration is independent of
the PE architecture once the configuration process does not include the NI. The NC sends through
the PS network a configuration packet to program the IRT/ORT tables. Each configuration packet
has 3 flits: header, with the target address and a flag specifying that the packet must be consumed
by a given Sg and not by the NI; payload size, which is always 1; configuration, with 3 fields: input
port, output port, SDN network number. It is not necessary to clear the IRT/ORT tables because the

configuration process is managed by software.

98

| I
T CPU | NoC-Controller
1| S | | .
% PS cor|1trol flits SDN clonflg.
| = NI | | dn T l
— payload Y in[ou
l 8 [PS {headerI size sub-net
| 8 S |
I s |
| — — == —]

Figure 60 — PE architecture and configuration process of an Sg [RUA17a].

5.2.3 Software Architecture

The software architecture concerns the implementation of the NC, which handles path
establishment requests generated by the kernel. As the NC is decoupled from the kernel (Figure 57),
it can also can handle path requests from other system’s components. Algorithm 1 presents the
pseudo-algorithm of the NC.

Algorithm 1: NOC-CONTROLLER (NC)

Input: Source, Target

begin

1: while TRUE do

2: path_request = read_path_request()

3 if path_request == VALID then

4 path[], subnet = SEARCH-PATH(Source, Target)
5 if path[] # @ then

6: configure_SDN_routers(path[], subnet)

7: send_ack_to_requester(subnet)

8 else

9: send_nack_to_requester()

10: end if

11 endif

12: end while

end

The NC continuously observes for new path requests (lines 1 and 2 of Algorithm 1). If there is
a request (line 3), the NC calls the SEARCH-PATH algorithm at line 4. The role of the SEARCH-PATH
algorithm is to define a path between a source and a target PE, implementing the control logic of
the network (removed from the router to make it simple) according to a given path definition policy,
for example, to fulfill QoS. The SEARCH-PATH algorithm returns the path/[], which consists of an array
composed of the path routers’ addresses, and the selected sub-net of the MPN. If the path is valid
(path[] # @), the NC configures each Sg of the path by sending the configuration packet (line 6). Next,
at line 7, the NC sends an ack message to the OS (requester). If the path cannot be defined (path[]
== (@), the algorithm sends a nack to the requester at line 9.

99

5.3 Circuit-Switching (CS) based on the Software-defined Networking (SDN) Paradigm

This proposal aims to provide QoS support by adopting the CS approach managed by the SDN
paradigm. CS has an initial phase called connection (or setup), which searches and allocates the
path's resources. The connection phase is the subject of several researches, with the goal to reduce
the connection latency. Table 15 presents related works on CS NoCs with proposals addressing the
search path method. The 2™ column details the hardware infrastructure to support CS. Most
techniques are based on the TDM and SDM approaches. The 3™ column of Table 15 presents the
resulting path length of the search path mechanism. Minimal path length corresponds to the
Manhattan distance between the source and target PEs. Deterministic search uses a deterministic
routing algorithm, as XY. The shortest path searches for all possible paths in the NoC, returning the
minimal path between the source and target PEs. Works [LERO8][STE12b][LUS11] addresses only
minimal or deterministic search methods. Such approaches limit the path exploration, thus reducing
the success rate to establish the CS connections. Works [LIU15][CHE16][LIU14b] adopt the search
for shortest paths. This approach increases the success rate to establish CS connections because the

search space increases.

Table 15 - Related works on CS NoCs, with search path proposals [RUA17a].

Works CS Path Length Implementation Organization Target
[STE12b] TDM Minimal SW Centralized NoC
[CHE16] TDM Shortest HW Centralized NoC
[LEROS] SDM Deterministic SW/HW Centralized NoC
[LIU14b][LIU15] |TDM/MPN Shortest HW Distributed NoC
[LUS11] SDM Deterministic HW Distributed NoC
This Thesis MPN Shortest SDN-based Centralized System

Works that search for the shortest path use dedicated hardware implementations (4%
column), with centralized or distributed approaches (5" column). Chen et al. [CHE16] propose a
centralized design, implementing a dedicated hardware unit to establish the connection. Liu et al.
[LIU14b] implement a distributed approach called Parallel Probe that uses a flood-based search,
eliminating redundant paths, and achieving a constant setup time per hop. That work was extended
to MPN and SDN [LIU15].

Most proposals address CS at the NoC level and CS infrastructures with hardware-centered
connection algorithms and constant setup time. Hardware-based search path designs are faster
than software approaches, at the cost of increased silicon complexity. Software-based solutions are
scarce because the search path evaluation has as target the NoC context (6™ column) with a

comprehensive CS management not being addressed.

This Section presents a CS infrastructure and management based on the SDN paradigm
previously described. This Section proposes a CS-Controller. The CS-Controller is an instance of the
NoC-Controller dedicated to QoS services. The CS-Controller defines the paths by running a SEARCH-
PATH based on the Hadlock’s algorithm [HAD77] and configuring SDN routers of the MPN at run-

100

time. The CS-Controller handles requests from the Mpr to establish connections during the RT
application admission and to release connections when the application finishes its execution. After
the CS establishment phase, the RT applications start their execution with all task exchanging data
by dedicated CS paths, established during the application admission. This approach brings two main
benefits: (/) removes the overhead to execute several connections and releases during the
application lifetime, e.g., for each decoded frame [LEROS8]; (ii) provides communication predictability
and QoS during the application lifetime, once each path is dedicated to serve one flow.

The CS technique herein proposed adopts a software-based search path algorithm, proposing
a high-level CS management based on the SDN paradigm. This proposition fills a lack in the related
works regarding a systemic and self-aware CS support for applications, i.e., aiding the CS

provisioning from the applications’ beginning up to its ending.

5.3.1 CS-Controller

The CS-Controller is an instance of the NoC-Controller implementing the QoS service by
managing CS establishment and releasing at run-time. Figure 61 presents a many-core architecture
example detailing the presence of the CS- Controller (CS). The MPN is used for CS connections, with
the SDN routers managed by the CS-Controller. The CS-Controller is developed as a system task and

mapped in the most central Spe of the system.

a— N T ——— Multiple Physical NoC: 1 PS
SESESESHSESESES | = andnCSsubnets
M I, I I \[O, I I, I Cluster Manager Processor
sEsgsEgEsidEseEsgses || M- v
M I, I I | 0, e e, I
SESEHESESHSESHEHSHS S | Slave Processor - Spe
10 11 S 11 1 11 11 s 11 i
ME SEHSES MESEHSES| ———————a—a—

11 I L_’ I

SsEsEsEcsHSs EsE 1S CPU |
IIII Mr IO [T T | g |
SESESES S EH S E 1| 2 |
M I, I I (I I Il = = DMNI |
SESESESHsSsESE Ig PS
M I, I I\ (0, I - “4 |
MESESgESHME S = Il Jl

Figure 61 — Proposed many-core, with the SDN-based CS.

A distributed implementation of the CS-Controller seems to be a natural choice because it
distributes the search path computation load in several instances of the controller. However, we
observed in experiments that one single unit of CS-Controller does not represent a bottleneck for
CS establishment in system’s sizes up to 400 PEs (maximum system size assumed in the evaluations).
The reason for this performance is due to the low complexity of the SEARCH-PATH algorithm. Its
computation time, in the average case, grows linearly with the system size. Additionally, a

distributed implementation assuming one CS-Controller for each cluster creates a communication

101

bottleneck between the CS controllers to obtain a systemic view of the system. The CS controllers
need to communicate between them when it is necessary to create paths that cross the clusters
borders. It is possible to adopt a distributed version of the CS-Controller for larger systems (> 20x20)
without the cooperation between CS-Controllers, at the cost of reducing the path search
exploration.

The CS-Controller executes two actions: (i) searches and configures CS paths; (ii) release CS
paths. Equation 4 presents the memory storage requirements of the CS-Controller (in bytes).

Smem = (Rn* Sp * [p + 1]) + 3 * R, (4)

where: Rn is the number of routers, S, is the number of SDN subnets, and p is the number of ports
per router (5 - N, S, E, W, L_IN) plus one representing the input port of the NI (L_OUT). The first
multiplication of the Equation 4 computes the amount of data required to store the status of the
input port for each SDN router, in a 3-dimensional array called inport. The inport stores zero when
a given port is free, or the path,p, when the port is allocated. The {3*R,} multiplication corresponds

to the size of inherited variables from the Hadlock’s algorithm (propagation, neighbors, and detour).

Section 5.4.5 evaluates the memory storage requirements of the CS-Controller.

5.3.2 SEARCH-PATH Algorithm
The SEARCH-PATH algorithm implements a heuristic that explores the path diversity of the

MPN to select a subnet and a path,p from a source S to a target T.

The Hadlock’s algorithm is a sub-function of the SEARCH-PATH algorithm. It searches for a
path at each subnet. The Hadlock’s algorithm is a grid routing search method, proposed in Hadlock
[HAD77] and described in Sherwani [SHEQ5], originally used in VLSI synthesis. It is a bread-first
algorithm that makes it expansion guided by a detour number d, assigned for each visited node. For
minimal paths, d(T)=0. The detour number is increment according to the number of hops away from
the minimal path. When a path P is found, the length of P, len(P), connecting S and T is defined

according to Equation 5.

len(P)= MS(S,T) + 2 *d(T) (5)

where: MS(S, T) is the Manhattan distance between Sand T.

Figure 62 present the SEARCH-PATH algorithm. The algorithm initially searches minimal paths
in all subnets. A min_path variable controls the Hadlock’s algorithm search path mode. When
min_path is TRUE, the Hadlock’s search is limited to minimal paths (d(T) = 0), when min_path is
FALSE, the Hadlock’s search is released to find the shortest path (d(T) > 0), if it exists.

Initially, line 2 sets min_path as TRUE. The first round of the loop (lines 4-16) explores all SDN
subnets, stopping when a minimal path is found. Line 5 tests if the source (L_IN) and target (L_OUT)
routers’ interface with the DMNI are free or not. If TRUE, the Hadlock’s algorithm is called (line 6),

returning the pathpif a path was found, 0 otherwise. If all subnets were explored and no minimum

102

path exists (line 12), the algorithm switches the search to non-minimal paths (min_path=FALSE), at
lines 13-14. The search stops at the first path found. By employing this approach, the complexity of
the SEARCH-PATH is O(R»?) in the worst case and O(R;) in the best case.

Algorithm 2: SEARCH-PATH

Input: S, T

Output: pathp, subnet
begin

1: pathp=0

2: min_path = TRUE

3: subnet=0

4: while subnet < S, do

5: if inport[S][subnet][L_IN]==0 and inport[T][subnet][L_OUT]==0 then
6 path;p = HADLOCK(S, T, min_path)

7: if path,p > 0 then

8: break

9: end if

10: end if

11: subnet = subnet + 1

12: if subnet == S, and min_path == TRUE then
13: subnet=0

14: min_path = FALSE

15: end if

16: end while

17: return pathp, subnet

end

Figure 62 - SEARCH-PATH algorithm [RUA17a].

When the Hadlock’s algorithm reaches router T, it executes the retrace phase to define the
path’s routers. This phase is used to store the path,p in the inport structure (software allocation),

and to configure the CS routers (hardware allocation).

5.3.3 RELEASE-PATH Algorithm

The RELEASE-PATH algorithm uses the pathp stored in the inport array to release the
connection. For each path, the algorithm removes the path;p value associated with the allocated
input ports, setting it to O (free). The release phase is only executed in software. It is not necessary
to clear the IRT/ORT tables because the software manages the allocation. The RELEASE-PATH is a
simple algorithm with complexity O(len(P)).

The CS-Controller exposes to the system the CS services (connection and release) generically
because it only requires the source/target addresses to make connections. Thus, it also can handle
requests from other IPs (rather than Mpes), without a software stack (a kernel for example).
Additionally, as the IPs are not involved in the process to configure the SDN router, the connections

can be established between generic IPs (memories, GPUs, I/0 modules).

103

5.3.4 CS Management Protocol

Figure 63 presents the sequence diagram detailing the protocol for CS connection and release,
detailing the relationship between the components of the system and how they work together to
provide CS for the RT applications. The CS management is performed for each new RT application.
It is performed in parallel to the application admission management (Subsection 3.2.1).

App Repository Mpe CS-Controller Path’s CS Routers| |SPES (Sand T)l
New App Descriptor
|Map Application’s tasks |
4 Reguest tasks OBJ code
§ r—>|For each CTP do: |
= .
o S Request CTP Connection
o |'a —
- |2 |SEARCH-PATH(S, 7 |
o | E
=] ©) (o) 7
8 © (o fall e Path Found? -
c c Configure CS
c |2 CS sucess Routers IRT/ORT
O | w ¢
O =2 CTP $0Path Fou\ndféy Set CTP (selected subnet) >
0 % uses PS g
Ol|<
End tasks loading
|Releses App to RUN |
% P CTP end
25 Request CTP Release
L O »
@ 9
n 9 RELEASE-PATH(S, T, pathp, subnet) |
(Ol

Figure 63 - CS management protocol [RUA17a].

When a new RT application requests to execute in the system at run-time, the App. Repository
sends the app descriptor to an Mpe, which execute a task mapping heuristic to select the Speto each
application’s task. Next, the Mpr requests to the App. Repository to load the object code of the
mapped tasks into its corresponding Spes (application admission phase). The load of the task code
uses the PS subnet. In parallel to the load of the tasks’ code, the Mpe requests connections to CS-

Controller.

Best-effort applications do not have timing bounds and use the PS subnet. RT applications
request CS for all CTPs (communicating task pairs). For each CTP, the Mpr requests the CS-Controller
to establish a connection between the source and target Sees. The CS-Controller executes the
SEARCH-PATH algorithm and returns to the Mpe if the CS establishment failed (returning 0) or
succeeded (returning the path,p and subnet). If succeeded, the Mpe sends messages tothe Sand T
Spres, Notifying the selected subnet. This message configures the kernel of S and T Spes to inject and

receive data by CS in the configured subnet. If failed, the CTP’s communication uses the PS subnet

104

by default. When both the CTPs’ allocation finishes, and the tasks are allocated into Spes (each task
notifies the Mpr when it is ready), the Mp¢ releases the application sending a message to each task
to start the execution.

When a task finishes, the Spe notifies the Mpethe end of a given CTP. If the CTP communicates
through CS, the Mpr uses the task identifier (unique for each running task), to recover the subnet
and pathp, and requests the CS-Controller to release the connection through the execution of the
RELEASE-PATH algorithm.

5.4 Results

In this section, we evaluate the silicon area, power, performance, memory requirements, and
latency of the proposed SDN-based CS. The many-core hardware is described in VHDL (for synthesis
— Cadence’s Genius) and RTL SystemC (for performance evaluation of large-scale systems).

Applications and kernel are implemented in C language.

5.4.1 Performance Evaluation

The experimental setup addresses many-core sizes from 64 PEs (4 Mpgs, 60 Spes) to 400 PEs (16
Mpes, 384 Spes), with three SDN subnets configurations: 4, 6, 8. The PS routers use 32-bit flits, and

the CS routers 16-bit flits. Results use the following definitions:

Path Diversity (Pp): number of available CS paths (equation 6).

(6)
Pp = #PEs * #SDN subnets

Path Exploration (Pex): percentage of CS requests w.r.t the path diversity (equation 7).

CS requests (7)

Pry =
EX PD

Success Rate: percentage of established connections per CS requests (equation 8).

CS connections (8)
CS requests

success rate =

The performance evaluation addresses several scenarios with different RT benchmarks: DTW
(Dynamic Time Warping — pattern recognition algorithm), MPEG decoder, MPEG-2 decoder, and
VOPD. Figure 64 presents the applications’ communicating graph. We selected a heterogeneous set
of applications aiming to create a fair evaluation. Each Spr executes simultaneously two tasks. The
evaluated scenarios execute several instances of the applications in such a way to have all Spes
executing two tasks (system occupation equal to 100%). These scenarios enable to stress the SDN

infrastructure. Real-life scenarios hardly run with a system occupation equal to 100%, also mixing

105

best-effort application (which do not need CS) and RT applications.

o e vl s o) o

MPEG
VOPD
STRIMPEM @ @ @

ADPCM_DEC

Figure 64 - Communicating task graph of the applications’ benchmarks [RUA17a].

Table 16 details the results. The 15t and 2" columns present the scenario’s configuration. The
3" column presents the number of tasks executing for each scenario. The 4" column presents the
Ppfor each scenario.

Table 16 - Results for simulations with 100% of RT applications and a 100% of system occupation [RUA17a].

1 2 3 4 5 6 7 8 9 10
Scenario |SDN|Simultaneous| Path cSs Success Manhattan Hops SEARCH-PATH| App. Start
—system [nets| Running |Diversity| requests | Rate Distance Avg. | Std.Dev | Max. time Overhead

size Tasks (Pp) (Pex) Avg. | Std.Dev | Max. Avg. | Worst. | Avg. (ms.)
4 256 127 94.4% 26]16|8 2811914 4258 | 48614 1.4
(49%)
8x8 6 | 120(100% 384 127 99.2% 271168 3821 | 13166 1.6
(64 PEs) occupation) (33%)
8 512 127 100% 26]16|8 3725 | 12158 1.1
(24%)
4 1024 623 88.6% 25]20]21 2712121 5336 | 52965 3.1
(60%)
16x16 | 6 | 480 (100% 1536 623 97.7% 26]21]22 5326 | 102433 3.9
(256 PEs) occupation) (39%)
8 2048 623 99.8% 25]20]21 5220 | 38361 3.5
(30%)
4 1600 916 90.94% 2712126 3.0|27]30 8521 | 486180 4.0
(57%)
20x20 | 6 | 768 (100% 2400 916 98.25% 2.7]123]|26 7716 | 174033 4.5
(400 PEs) occupation) (38%)
8 3200 916 100% 2.7]121]|26 7121 | 107214 2.9
(28%)

5.4.2 Success Rate

The 5% column of Table 16 presents the number of CS requests and the achieved Pgx. The
number of CS requests is a function of the applications’ graph. Increasing the number of SDN

subnets decreases the Pex due to a higher Pp. For example, the 20x20 scenarios generate 916 CS

106

requests, resulting in a Pex=57% for 4 subnets, and a P:x=28% for 8 subnets. This result shows the
rich path diversity provided by the MPN design. Even with a system occupation of 100%, the amount
of CS requests is below the Pp. The 6 column of Table 16 presents the success rate. The success
rate increases with the number of subnets, due to the higher Pp. The scenarios with 6 and 8 subnets
reach a success rate superior to 97%. Figure 65(a) presents the success rate as a function of the Pex
(bottom x-axis) and CS request (top x-axis), for scenario 20x20:6 (most complex scenario). This
scenario has a Pex=38%, with a success rate of 98.25% (highlighted in the Figure).

CS requests (%) CS requests (%)
0 20 40 60 80 100 0 20 40 60 80 100
100 L . T 140000 X
90 9 120000 Worstcases —
- 3]
X 80 %
% 70 % 100000 -
() 1000 zoom £ 80000 -
ﬁ 50 99,5 = Average and best cases - success rate > 98.5%
8 40 9,0 £ 60000 1 up aPex=31.3% and CS requests = 82% o
< A
@ 30 98,5 & 40000 1 .
T
21 98,0
° 97,5 g 20000 4
10 ' <
] 10 20 30 40 w
0 : : o 0
(a) 0 5 10 15 20 25 30 35 b 0 5 10 15 20 25 30 35
Path Diversity Exploration - Pgy (%) (b) Path Diversity Exploration - Pgy (%)

Figure 65 — (a) success rate for 20x20:6 CS subnets; (b) SEARCH-PATH execution time for 20x20:6 [RUA17a].

The mapping heuristic also contributes to the high success rate. This Thesis adopts a task
mapping heuristic which distributed the RT tasks in free PEs [RUA16a]. Other heuristics [SIN13b]
may increase the proximity of the communicating tasks, contributing to increasing the success rate
further.

The achieved success rate can be compared to related works that address the shortest path
search [LIU15][CHE16][LIU14b]. It is worth to mention that each proposal uses a different method
to evaluate the success rate. Our success rate is computed according to the number of CS requests.
In Liu et al. [LIU14b], the success rate is computed according to the router rate, a parameter that
refers to the portion of clock cycles in which a node is used for transferring data. In Chen et al.
[CHE16] the success rate is computed according to the requested BW. Work of Liu et al. [LIU15] does
not present the success rate. Additionally, works [CHE16][LIU14b] addresses TDM while ours use
MPN.

InLiu etal. [LIU14b] it is presented the success rate for a 16x16 mesh with a master percentage
of 20% and 50%. The master percentage is similar to ours Pex. Our success rate for Pex =50% is 92%
(20x20:4, worst scenario), while Liu et al. [LIU14b] achieves 30% of success rate with a master
percentage=50%. That work also evaluates the HAGAR solution with the same configuration, which
reaches a success rate near to 28%.

In Chen et al. [CHE16] the authors vary the requested BW to evaluate the success rate. The
Authors also considers a background traffic (bk) as the percentage of used TDM slots. The bk can be
roughly compared to ours Pex. Assuming 20% of bk, the success rate achieved for a requested BW
of 16% (maximum presented) was 82% for a 4x4 mesh. Our success rate for an 8x8 mesh with the
Pex of 20% was 100% regardless the number of subnets (4, 6 or 8).

107

5.4.3 Path Length

The 7™ column of Table 16 presents the Manhattan distance between communicating tasks.
It is worth to note that the average and standard deviation values for the scenarios are similar,
regardless the system size. The main cost function of mapping heuristics is to place tasks belonging
to the same application near to each other. As the system occupation increases, the number of

contiguous regions to map the tasks reduces, explaining the maximum hop number.

The 8™ column of Table 16 presents the path length (hops). The algorithm succeeds to
establish short paths, reducing the interference for the next connections, which contributes to

increasing the success rate.

5.4.4 SEARCH-PATH Execution Time
The 9™ column of Table 16 presents the SEARCH-PATH execution time, in clock cycles (cc),

including the execution time of the algorithm and the configuration of the SDN routers through the
PS subnet. For all 20x20 scenarios (worst cases evaluated scenarios), the higher average value is
8,521 cc or 8.5 us@100 MHz. Figure 65(b) plots the SEARCH-PATH execution time as a function of
the Pex (bottom x-axis) and CS requests (top x-axis), for 20x20:6 scenarios, respectively. Compare
Figure 65(a) with Figure 65(b). The execution time in Figure 65(b) remains near 7,029 cc up to a
Pex=31.3% (third quartile). After this point, the minimal paths become scarce, requiring the search
of non-minimal paths. With a Pex=38%, the execution time reaches the worst case, failing to

establish some connections.

Figure 66 presents the average execution time for the SEARCH-PATH algorithm as a function
of the number of PEs and SDN subnets. In this scenario was used random source and target
addresses generation (random task mapping), thus presenting a pessimistic evaluation. The
execution time grows linearly with the system size at an average rate of 33.27 cc/PE. The 10" column
evaluates the impact of the CS establishment phase on the applications’ start time. In the worst
scenario, applications were delayed by 4.5 ms. This delay only occurs when the applications begin
the execution, being not noticed by the end user during the application execution. Some related
works [LERO8][LIU14b] may assume a new CS connection for each message, with an overhead

proportional to the communication volume.

70000
——4 CS subnets

—+—6 CS subnets
50000 - —— 8 CS subnets

60000 -

40000 4

30000 -

20000 -

10000 A

SEARCH-PATH time (clock cycles)

0 T T T T T T T
0 50 100 150 200 250 300 350 400

N° Processing Elements (PEs)

Figure 66 - SEARCH-PATH average execution time for the worst scenarios [RUA17a].

108

5.4.5 Memory Footprint

Figure 67 presents the memory footprint as a function of the number of the PEs. This memory
usage includes data (Equation 4) and code of the CS-Controller. The memory requirement increases
at a linear rate of 0.03, 0.05, and 0.06 KB/PE, for 4, 6, 8 SDN subnets, respectively. The total storage
required for a 20x20:8 system is 19.22 KB, a small amount of memory for a many-core system.

25

4 CS subnets
20 6 CS subnets

—=—8 CS subnets
15
10 /

5 _/

//—

~

Total Mmeory Footprint (KB)

0 50 100 150 200 250 300 350 400
) N° Processing Element (PEs)

—~
(¢

Figure 67 - CS-Controller memory requirement [RUA17a].

5.4.6 Application’s Latency Evaluation

Figure 68 presents the frame decoding latency of the MPEG-2 decoder using scenarios: PS
without disturbing traffic (PS Baseline); PS with disturbing traffic (PS+Disturbing); CS.

80000

75000 —o-PS BEI.S€|IFI(=T gtsaga-zg;i?lé =19ms
—%— PS+Disturbing PS+Disturbing =1.9 ms
70000 f —=—CS Cs =2.1 ms (+13%)
65000 F Finish Time:
PS Baseline =39.9ms
60000 F PS+Disturbing =42.7 ms
CS =39.7 ms (-0.5%)

55000 F

50000 F

Frame Decoding Latency (cc)

45000 F

40000

0 1000000 2000000 3000000 4000000
Time (cc)

Figure 68 - MPEG-2 start time and frame decoding latency [RUA17a].

The PS+Disturbing scenario shares the PS NoC with packets from other applications, resulting
in increased frame decoding latency and jitter. The CS scenario presents a constant and predictable
latency, with a latency smaller than the PS Baseline scenario due to the streaming behavior of the
CS routers, transmitting one flit/cycle (without routing and arbitration logic). Note that the
application executes faster using CS, despite the delay to start. The results of Figure 68 addresses
an application running for only 39.9 ms. The impact of the delay to start the application is even more

negligible for longer execution time.

109

5.4.7 Comparison of the SDN-based CS to a Hardware-based Approach

The SDN-based CS was compared regarding latency to set a path and quality of paths (success
rate) to a state-of-the-art search path mechanism called Parallel-Probe (PP) [LIU12], which is
hardware implemented.

The PP method adopts a dedicated NoC responsible for finding the paths. As shown in Figure
69(a), each PE receives a PP router, connected to neighbors PP routers and locally to the SDN routers
(Srs) (note that in this case the Sg, although it is the same hardware component, is configured by the
PP router instead the CS-Controller). Figure 69(b) presents an example of the search method, with
router 1 being the source and router 9 the target. The PP method finds the shortest path by
propagating a wave of probes, which floods the PP network and unveils the shortest path by
selecting the first probe to reach the target. When the first probe reaches the target, a backtracking
process starts, releasing the other pre-allocated paths, and setting up the current path by
configuring the Sgs. The PP method enables to find the shortest path within a constant setup time

of 3*D+6 clock cycles, where D is the Manhattan distance between the source and target PP routers.

{
(@)
T
C

Local Memory

N[b

(b)

Figure 69 — (a) PE architecture including the Parallel-Probing router. (b) Example of PP algorithm [LIU12].

The CS-Controller acts only as a synchronizer in the PP implementation. As in the SDN
implementation, the CS-Controller receives CS requests. These requests are stored in a FIFO because
the PP network handles one propagation at a time. If there is a request in the FIFO, the CS-Controller
handles it by sending a message to the source Spr kernel to start the PP method. The message
contains the target address and the subnet that the Spe should use (the subnet is selected according
to the subnet utilization, selecting the less used subnet). The Spe starts the PP propagation by
configuring its PP router. When the propagation reaches the target, the backtracking process starts.
During the backtracking, the pre-allocated Sgs not belonging to the path are released, and the Sgs
belonging to the path are configured using the programming interface. When the backtracking
reaches the source PP router, it interrupts the Spe’s kernel. If the search fails, the Spe tries the next
subnet, until finding a path. When this process finishes, the Spe sends a message to the CS-Controller,
reporting success or failure. As in the SDN implementation, after the search path process, the CS-

Controller sends a ack/nack to the Mp¢ (the CS requester).

110

Table 17 presents the results, addressing many-core sizes from 36 to 256 PEs (1% column,
system size-cluster size), with three SDN subnet configurations: 4, 6, 8 (2" column). Each Spe can
execute simultaneously two tasks. The evaluated scenarios execute several benchmarks instances
(DTW, MPEG, MPEG-2, VOPD) in such a way to have all Spes executing 2 tasks (system occupation
equal to 100%), with the goal to stress the paths’ diversity of subnets. The 3" column presents the
total number of requested paths by the selected benchmarks, i.e., the total number of CTPs. The 4t
column corresponds to the method: PP or the proposed SDN.

Table 17 — PP and SDN evaluation, path length and connection time, for 6x6 to 16x16 many-core systems.
Success rate: (min hops + non min hops)/N# paths.

System size:| N# of SDN | N# Method Avg Hops Success Rate Connection time (clock cycles)
Cluster size subnet |Paths hops| min non min. not found (%) Avg Std dev Max

4 PP |2.25 65 2 3 95.71 450 237 1,248

SDN |2.24 64 2 4 94.29 2,840 1,663 8,637

PP |2.31 66 4 0 100 435 252 1,800

6x6:3x3 6 70 SDN |2.20 70 0 0 100 2,946 2,036 16,792
3 PP (2.20 69 1 0 100 377 214 1,800

SDN |2.20 70 0 0 100 2,913 2,103 16,284

4 PP (2.57| 113 9 5 96.06 467 265 1,252

SDN |2.60f 119 3 5 96.06 3,765 3,111 25,810

PP (2.48| 122 5 0 100 420 215 1,801

Bx8:4x4 6 127 SDN |2.40| 127 0 0 100 5,084 5,324 27,793
3 PP (2.45| 124 3 0 100 401 199 1,511

SDN |2.40| 127 0 0 100 5,166 5,645 29,465

4 PP (3.03| 269 28 31 90.55 501 311 1,247

SDN |3.02| 273 21 34 89.63 5,094 5,570 61,557

PP (2.85| 304 20 4 98.78 443 288 1,835
12x12:4x4 6 328 SDN |2.70| 323 1 4 98.78 4,772 3,392 42,024
3 PP (2.76| 318 9 1 99.70 406 243 2,431

SDN |2.67| 327 0 1 99.70 4,468 2,514 26,077

PP (2.62| 608 12 3 99.52 423 289 2,486

16x16:4x4 8 623 SDN |2.62| 620 0 3 99.52 5,453 3,522 48,542

The 5% column presents the avg hops, which corresponds to the average distance between a
CTP. The SDN and PP methods present similar results (difference smaller than 5%), showing the
effectiveness and scalability of the proposed software method compared to the hardware method.
The reduced average number of hops is due to the mapping heuristic, which maps communicating
tasks near to each other [SIN13b]. Next, the table presents the number of minimal, nonminimal, and
not found paths. The SDN slightly overcomes the PP when evaluating the path length, since from 6
CS subnets all found paths were minimal for 6x6 and 8x8 systems, 98.5% for a 12x12:8 system, and
99.52% for a 16x16:8 system. The column not found is related to non-established paths. As
expected, smaller number of SDN subnets induces a larger number of failures. The 9™ column
corresponds to the success rate. For small to medium systems sizes, 6 subnets were enough to find
all paths. For large system sizes (12x12 and 16x16), 8 SDN subnets enabled to route more than 99%
of the paths. In summary, the SDN method has a similar success rate to establish connections
compared to the hardware implementation, with a slight advantage related to the path length

(higher number of minimal paths).

111

The last 3 columns compare the latency to search the CS paths. The PP latency presents a small
variation (small standard deviation values). On the other hand, the SDN latency tends to increase
with the system size. The highest average latency was 5,453 and 501 clock cycles (cc) for SDN and
PP, respectively. This is expected since the comparison occurs between software (SDN) and
hardware (PP) implementations. If we assume CS connections established at the beginning of the
application execution, with connections staying active during the application lifetime, the SDN
search path latency only impacts on the application startup. For example, consider a system running
at 500 MHz (T = 2ns), an average latency equal to 5,000 cc, and an application with 10 CTPs. The
total latency would correspond to 100 ps, and would not be noted by the end user. We argue that
SDN can be a viable option for communication management, with reduced area and management

flexibility, features that hardware-centric techniques are not able to provide.

Graphs in Figure 70 detail the search path latency (Y-axis) as a function of the system
occupation (X-axis), for scenario 8x8-4x4:8. All other experiments present similar behavior. As
mentioned, the PP latency presents a small variation (Figure 70(a)). The average search path latency
is 401 cc, and only 5 paths (3.9%) presents a latency higher than 630 cc. The latency increases when
the available paths become scarce, inducing the search mechanism to explore alternative CS
subnets. SDN presents a more significant variation in the search path latency (Figure 70(b)), due to
the features of the Hadlock’s algorithm, which increases the search space according to the failures
to set a given path. The latency stays below 5,000 cc for 82.7% of the paths. As in the PP method,
the SDN achieves worst latency when the system occupation increases, reaching 29,465 cc in the

worst result.

1600 35000
— ° 4 — b)
8 1400 (a) §30000 3 (°
& . &
%é 1200 é 25000 -
< 1000 |] ° ° °
> ° ° >.20000 ° ® o 0 o
[} o
g ‘%15000 ¢
3 600 ° @ 0 g0 g omoo, g0 -
s = ° o °
8 200 | £ 10000 °
ﬁ g = D ange GRED GEDO JOMERF, 0WE JE: N °
© [+ [] °
o 200 | ° S 5000 [op -o@ ot ¥ 8 &KCe °.® P]
5 B RANEEI MR o e s L,

o

* 0
80 100 0 20

20

o

40 60 80 100
System Occupation (%)

Figure 70 — Search path latency for PP (a) and SDN (b) - 8x8-4x4:8 system size.

40 60
System Occupation (%)

5.4.8 Area and Power of the SDN Router

Table 18 compares the SDN router with a low-area PS router, for different flit widths. The PS
router is configured as follows: 8-flit buffer depth, round-robin arbitration, XY routing, no virtual
channels. The SDN router corresponds, in average, to 21% of the area and 16% of the power of the

PS router. The area and power difference increase with the flit size.

112

Table 18 - Gate number (comb. and seq. gates), area (um?) and estimated power (uW) for the CS and PS

routers (28 nm SOI technology @1GHz, using the Cadence ASIC design flow) [RUA17a].

5-port SDN router 5-port PS router
Flit width Comb. Seq. gates Area Power Comb. gates | Seq. gates Area Power
gates pm? HwW pm?2 nwW
8 398 135 907 701 1079 472 3521 3683
16 517 215 1267 1154 1672 832 5948 6121
32 802 375 2011 1334 2927 1552 10921 10606

Such results show the low cost to adopt multiple physical networks based on simple design of
SDN routers. Consider a PS router configured as follows: 32-bit flit width, 8-flit buffer depth, round-
robin arbitration, XY routing, no virtual channels. The area of this router is 10,921 pm?. As reported
in the literature, the adoption of 2 virtual channels (VCs) almost doubles the router silicon area of
the PS router [MELO5]. One Sk with 32-bit flit, as detailed in Figure 59, requires 2,011 pm?. As the
current work adopts 16-bit flits to reduce the MPN area while providing a sufficient throughput, the
Sk requires 1,291 um?. Thus, the a MPN composed of 1 PS and 8 SDN subnets has a silicon area
equivalent to a 2-VC packet switching NoC. Such result demonstrates the low cost to adopt MPNs

compared to TDM-based NoCs, achieving similar results achieved in literature [YOO13].

The Parallel-Probing technique achieves better latency for search path, however, presents an
additional area incurred by the presence of the dedicated PP router inside the PE instance. Such
area increases according to the number of subnets and can be quantified as 800, 962 and 1,130 pm?
for 4, 6, and 8 SDN subnets respectively. The overhead of the PP router is equivalent to one Sg. Thus,
replacing the PP method by the SDN enable to create one additional subnet in the network, used
for application data instead search path management, which contributes to increasing the

communication throughput between cores.

5.5 Conclusions

This Chapter presented a background about QoS at the communication level and the

contribution of this Thesis in this context.

This research investigated the pros and cons of the SDN paradigm, evaluating the proposal in
a cycle-accurate many-core model. The work fills a lack in the literature by proposing a generic SDN
architecture, addressing both hardware and software implementation details [RUA17a). The
reference hardware implementation (PP) enables fast connection establishment (small latency),
with a small area overhead. Comparing the proposed SDN to the PP, we observe a similar path
quality (i.e., average number of hops), with a slight improvement in the number of minimal paths,
and higher latency. The higher latency is not an actual drawback since the latency only affects on
the application startup (in the order of ps). The advantages of adopting SDN include simple
hardware architectures, reusability, and management flexibility, features not available in hardware-

centric approaches.

This research also proposed self-adaptive CS managed through the SDN paradigm for many-

cores. This approach enabled to design a simple CS infrastructure, with configurable SDN routers

113

based on Elastic-Buffers. The adoption of a systemic CS management fills the gap in the literature
related to the evaluation only at the NoC context. This proposition provides permanent CS for the
RT applications, providing communication predictability and QoS. The search path based on the
Hadlock’s algorithm, plus the rich path diversity offered by the MPN, enabled the proposal to
achieve a connection success rate higher than 97% for MPNs with 6 and 8 subnets executing real

applications.

Future work includes the proposition and evaluation of other communication management

policies using the SDN paradigm herein proposed, as fault-tolerance and security.

114

6 SELF-ADAPTIVE QOS MANAGEMENT AT COMPUTATION AND
COMMUNICATION LEVEL

This Chapter details the main contribution of the Thesis, corresponding to the high-level
management that offers self-adaptiveness for QoS at both the computation and communication
levels. The Author developed this part of the Thesis during an internship in the ICT (Institut fiir
Computertechnik) in TU Wien (Technische Universitidt Wien), Vienna — Austria, from April 2017 to
September 2017, supported by CAPES-PDSE program. During this period, the Author deepened the
knowledge related to self-awareness models with the SoC group under the supervision of Prof. Dr.
Axel Jantsch [JAN17a]. Professor Jantsch, as well as the SoC group, have expertise in self-awareness,
advancing the understanding about the means to implement and organize such property in the SoC
environment. Related work about self-awareness related to this group and cited by this Thesis
include [ANZ17][DUT16a][DUT16b]. Additionally, professor Jantsch has a significant experience in
the NoC field, being as one of the Authors that formulated this concept [HEMOO], and co-Author of
the following works that are referenced by this Thesis: [EJA13][LIU14b][LIU15][LIU16][MA15].

The high-level QoS management herein proposed is only possible due the QoS techniques
previously presented at computation and communication levels. The proposal presented in this
Chapter modifies the organization of the QoS management presented in the previous Chapters. The
Cluster Scheduler (described in Section 4.3) and the CS Management Protocol (described in Section
5.3) implement the high-level management for QoS at computation and communication levels,
respectively. These managers were replaced by a unified QoS management herein presented,

deciding by task migrations and CS at run-time.

6.1 Introduction

Many-core systems provide outstanding processing power [BOH17], but also pose challenges
for temperature management, energy consumption, security, and quality of service (QoS). Due to
the high amount of resources to manage and the unpredictability that many-core SoCs have, self-

adaptive properties become fundamental to address such challenges [DUT16a].

Related works [QUA16][PAR14][MAN10][RUA15a][WIN11][ABO13][JOV13][RUA17a]
[RUA17b][JUN14] on self-adaptation mechanisms for QoS in many-core SoCs focus on techniques
addressing either communication (NoC) or computation (CPU). The focus of this proposal is to
ensure QoS for soft real-time applications through a self-adaptive QoS management. The QoS
management is aware of system’s communication and computation resources and acts reactively
and proactively at both levels. The QoS management receives QoS fulfilment monitoring data
(deadline miss, latency miss) and an application QoS feedback (notifications about run-time
workload changes), enabling the QoS management to act reactively according to the severity of the
events. Additionally, this Thesis proposes an Application Profile Learning (APL) technique, which on-

the-fly learns about the communication and computation profile for each RT task. This feature

115

enables the QoS management to assume also a proactive behavior guided by the computation and
communication that each RT application demands.

The main contributions of the proposal presented in this Chapter are as follows:

= A self-adaptive QoS management for soft real-time applications that acts reactively and

proactively, and covers both computation and communication levels;

= An Application Profile Learning mechanism, which traces the application tasks' profile at
run-time and provides this information to the QoS management.

6.2 State-of-the-Art

This Section discusses related works according to the two contributions: the APL at the scope

of application profile extraction, and self-adaptation for QoS of performance.

6.2.1 Related Works in Application Profile Extraction
Works [JUN14][QUA16] propose to obtain the applications’ task graph mixing design-time and

run-time steps, a dynamic mechanism has access to the application graph, using it to optimize run-
time decisions, such as application remapping. This approach simplifies the work of run-time
techniques because it provides a detailed application profile. However, it inserts more complexity
during the application development; hence, the developer is in charge to provide the application
profile correctly to the system. Ganeshpure et al. [GAN13b] propose a full run-time technique that
extracts the communication task graph of the applications. A middleware implements this

extraction by observing the execution phases for each task.

Our proposal adopts a more flexible approach. As in Ganeshpure et al. [GAN13b], the
middleware (kernel) extracts the behavior of the tasks. Differently from [GAN13b], which uses less
than 200 iterations to profile the application, our technique is continuously learning about the
application profile due to continuous monitoring. This feature enables to support applications with
dynamic behaviors, i.e., the workload changes at run-time (common in multimedia applications).
Additionally, we are concerned with scalability, as the APL follows a hierarchical organization with
monitors at the task level (at each core) that send information to the QoS management (cluster

manager).

6.2.2 Related Works on Self-Adaptation for QoS

Several proposals in the literature provide run-time QoS mechanisms for many-core systems,
with self-adaptive techniques, targeting resource management (dynamic mapping, task migration,
task scheduling, flow priority, and CS. Table 19 presents the self-adaptive QoS proposals most
related to this Thesis.

Works [QUA16][PAR14][RUA16a][JUN14] adopt task remapping/migration to answer to

workload changes or real-time violations, addressing QoS at computation level. Some works

116

[JUN14][QUA16] adopt a hybrid task remapping heuristic, assuming that application characteristics
are known at design-time. In contrast, we assume the application set is unknown at design-time.
The proposed APL enables the system to learn about the running applications, creating an online
profile. In Jung et al. [JUN14], applications can tune the workload at run-time by using an API. This
feature provides high flexibility to an application to change its workload. Our work also enables such
workload reconfiguration by an API, where each task can change its real-time constraints.

Table 19 — Related Works on Self-Adaptive QoS for Many-Cores

Works QoS Focus Method Technique
[JUN14] |Computation Dynamic Specification Behavior and Dynamic Mapping | Task Remapping
[QUA16] |Computation Dynamic mapping based on prediction Task Migration
[PAR14] |Computation Hierarchical Scheduler Task Migration
[RUA16a] | Computation Dynamic Task Scheduler Task Migration
[MAN10] | Communication Bandwidth self-adaptation Flow priority
[JOV13] |Communication Expose NoC QoS services by a API Flow priority / CS
[ABO13] |[Communication Proactive CS establishment (&

[RUA15a] | Communication Self-Adaptive QoS Management Flow priority / CS
[RUA17a] | Communication SDN-based self-adaptive QoS management CS

Most works assume a hierarchical management organization [QUA16][PAR14][RUA16a],
which distributes the management load by adopting a cluster-based organization, with a set of cores
managed by a cluster manager. Our proposal also adopts a hierarchical organization, with slave
cores running the user's applications and sending monitored/feedback data to a cluster manager,

which executes the QoS management.

While the aforementioned works satisfy the computation constraints and also try to reduce
the communication cost by mapping tasks closer to each other, these approaches address
communication QoS indirectly and are not able to handle unpredictable events that can disturb the
traffic in the network, e.g., a task migration packet crossing the communication path between two
RT tasks. To mitigate this disturbance works focusing only on computation QoS should migrate the

affected tasks to other processors, instead to act directly on the communication level.

Works [MAN10][RUA15a] address QoS at the communication level. Several works develop
techniques to implement a QoS-driven infrastructure considering only the NoC (e.g.
[WIN11][ABO13]). Joven et al. [JOV13] expose the communication QoS support to the software layer
enabling the developer to define the QoS constraints. Abousamra et al. [ABO13] observe the
message requests to set proactive CS, used for future message deliveries. Authors in Mangano et al.
[MAN10] propose a self-adapting mechanism that exposes the hardware through a set of registers
to program the QoS constraints for a bus-based SoC. Work of Ruaro et al. [RUA15a] proposes a self-
adaptive flow priority management and CS establishment based on latency and throughput
constraints. Authors of [RUA17a] propose a run-time CS based on a Software-Defined Networking

(SDN) paradigm, enabling to establish CS paths during the whole application lifetime.

117

As also can be observed in related works, task migration and CS stand out as techniques to
provide QoS at computation and communication levels, respectively. The novelty of the proposal
presented in this Chapter is a unified self-adaptive QoS management addressing QoS of
computation (task migration) and communication (CS) for soft real-time applications. Additionally,
we propose a dynamic Application Profile Learning technique, which enables to take proactive

decisions.

6.3 Application Profile Learning (APL)

This Section details the Application Profile Learning (APL). The APL has its implementation
divided into two hierarchical levels. The lower level, implemented in the Sees, and the higher level,
implemented in the Mpgs. At each Spg, the kernel monitors the tasks’ profile at run-time. The kernel
monitors for each task t the following parameters: (i) computation, Tp, the part of time where t is
using the CPU; (ii) communication, T, the part of time where t is blocked, waiting for a requested

message from a producer task; (jii) idle time, T.

The monitoring extracts the relative amount (percentage) of Tm, Tp, and T;, for each task
periodically, over non-overlapping windows, where T + T, + Ti = 1. The task scheduler computes T,
and T;. The communication APl computes Tp,. T is computed from the perspective of the consumer
task, evaluating the time spent between the requisition of a message until its reception. Tp is a
function of three factors: (i) the time spent on the producer task to generate the requested message;
(i) the message size; (iii) the NoC congestion. Note, that the communication percentage is
computed only for the received messages because the kernel adopts a non-blocking send operation
(produced but not consumed messages are locally stored in a buffer). In scenarios with congestion
in the NoC, the observed communication profile tends to increase when the consumer task spends
more time waiting for messages. This behavior helps to mitigate network congestion because the

management will pay more attention to affected communications.

Each Spe sends the monitored profile periodically to its Mpg, which implement the APL upper
level. The Mpe handles the received profile by applying an accumulated mean of the received profile
with the past profiles. The self-adaptive QoS management uses the resulting value to estimate the

profile of each task.

Consider as an example the task graph of Figure 71(a) and assume that each task executes the
same computation load periodically. Figure 71(b) presents the profile graphs according to the APL
method. Task A does not receive packets from other tasks, thus Ty, = 0. Tasks B and C receive packets
from task A, resulting in a mixed profile with T, = 26% and T, = 15% (tasks B and C have similar
graphs). Finally, task D has two communication flows, receiving packets from tasks B and C. In task

D the communication is higher, as depicted in the graph of Figure 71(b).

118

% comm. % comp. 100 ‘ TDLE oMM
[90 comp EXPECTED-DLE
Recelve(&msg' TﬁkA) I N g0 | L====- EXPECTED-COMP EXPECTED-COMM
Send(&msg, TaskD) o . | E 70 |\
% comm. % comp. ——— % comm. % comp. Ze0 (
= Task B [g 50
| —> = a0
Send(&msg, TaskB) | % comm. % comp. : » g 30 / expected
Send(&msg, TaskC) ——— [== . 520 observed profile profile
Ve Task A | > Task D 10 (learned)
| o
== 0 20 40 60
Task C Profilesamples
Receive(&msg 100 TBLE CouM 100 TOLE Comm
. %0 comp EXPECTEDDLE %0 comp EXPECTED-DLE
Receive(&msg, s | L====- EXPECTED-COMP EXPECTED-COMM 80 | L====- EXPECTED-COMP EXPECTED-COMM
£ vy =
" & 60 £ 60
Receive(&msg, TaskA) ° 5 expected S expected
Send(&msg, TaskD o profile 3 observedprofile profile
(&msg) g4 observedprofile foenelt go ficarned]
S [P ANAPPINNNNA == == === £
10 /AM/\/\/\/\/\/\/\/\/\N\'\/‘ 10
0 0
0 0 40 60 0 20 40 60
Profilesamples Profilesamples

Figure 71 — (a) Example of a task communicating graph of an application. (b) Overview of the application
profile learning method.

6.4 Self-Adaptive QoS Management

This Section details the self-adaptive QoS management. The approach is distributed,
implemented inside each Mp:. It adopts the ODA (Observe, Decide, Act) paradigm [HOF13]. The ODA
method includes a loop that is constantly aware of the system status. It is generic and can be
adapted to different many-core architectures. Figure 72 summarizes the main contribution of this

proposal, by presenting an overview of the self-adaptive QoS management.

Actuation Decision Observation

\ 4 \ 4 \ 4

Manager Processor - Mg

2
2 <+— Adaptation Manager System running
@ T :
Q ‘".
- N
g' — _ Feedback (RT change)
8 * Self-awareness
. .
3 ry n P
ERNN core % Enviroment Monito ring
o * (APL)
& ,
ES QoS fullfilment monitoring
‘75‘: o +—— (deadline/latency miss)
Q
5 Task
> cs Mapping
Controller

Figure 72 — Organization of the self-adaptive QoS management.

Observation: There are three message classes sent by Spes to the QoS management: feedback,
environment monitoring, and QoS fulfillment monitoring. Feedback messages provide performance
figures related to the tasks. The tasks generate the feedback messages, reporting changes in the RT
constraints (period, deadline, execution time). The tasks may update at run-time the RT constraints
using the RealTime API, enabling flexible workloads [RUA16a][JUN14]. The environment monitoring
messages allow the manager to gather periodic information about the status of the resources and

applications. These messages include the APL data. QoS fulfillment monitoring messages warn the

119

manager about violations of the QoS fulfillment. These messages address both communication
(packet latency miss) and computation (deadline miss) levels.

Decision: The self-awareness core implements the awareness by accessing: (i) observation
messages; (ii) tasks’ location (provided by the task mapping heuristic); (iii) CS paths (provided by the
CS-Controller); (iv) statistics obtained from the APL. This rich information set allows for accurate
run-time decisions. The self-awareness core acts as a trigger deciding which system component is
the target of the adaptation and when the adaptation occurs. The self-awareness core decides
reactively as well as proactively. The Adaptation Manager (AM) handles the decisions, reconfiguring

the system resources. Thus, the AM acts as the actuator managing the adaptation process.

Actuation: The AM manages task migration and CS (establishment/releases) protocols,
according to decisions made by the self-awareness core. These protocols change physically the
resources of computation and communication. The AM also ensures that the resources will be

correctly updated after the adaptation to be used by the self-awareness module in future decisions.

Figure 73 presents the self-adaptation flow. The method is similar to a health check-up, with
quick and complete check-ups. The quick check-up acts like when a symptom appears, such as a
feedback message notifying an RT constraint modification or a deadline/latency miss, leading to
reactive actions. According to the received message, there are two quick check-up functions, one to
deal with computation events (RT change and deadline miss) and the other one to deal with
communication events (latency miss). The complete check-up enables to evaluate the application
behavior in detail, analyzing all application’s tasks instead only one or one CTP. It may be triggered
by the quick-checkup function leading to a reactive action, or it is invoked periodically (by the routine

overhaul trigger), potentially leading to proactive actions.

Observation: 11 change/Deadline miss Task’s profile Latency miss
v Routine Overhaul | & Self-aware
quick_checkup I—-il V quick_checkup Analysis
Decision: Computation | APL Communication
: v |
L» complete_checkup 4J
Actuation: r i Self-adaptation

Task Migration Circuit-Switching

Figure 73 — Self-adaptation QoS management flow, executed by the manager processors.

The self-adaptive QoS management has its decision part implemented by the quick and

complete check-up algorithms. The algorithms adopt the following design-time parameters:
1. cpu_TH: maximum allowed CPU utilization per processor;

2. comp_profile_TH: threshold percentage used to recognize a high computation profile
task;

120

3. comm_profile_TH: threshold percentage used to recognize a high communication profile
task;

4. comp_profile_sum_TH: threshold percentage used to fire a proactive adaptation,
corresponding to the total load of the tasks on a given processor;

5. deadline_TH: maximum percentage of deadline misses in a sampling period;

6. latency_TH: maximum number of latency misses for a given Communicating Task Pair
(CTP).

6.4.1 QUICK-CHECKUP Algorithms

The feedback and QoS fulfillment monitoring messages fire the quick check-up algorithms,
presented in Algorithms 2 and 3.

The goal of the QUICK-CHECKUP-COMPUTATION algorithm is to evaluate when it is necessary
to migrate some task due to a computation interference. The algorithm inputs are the task
identification (task) and the CPU address executing the task (task_cpu). Line 1 computes the CPU
utilization where the task is running, and line 2 calculates the deadline miss rate (percentage) for
the task. The deadline miss rate is the relationship between the number of missed deadlines divided
by the number of tasks’ periods since the last application adaptation. Line 3 of the Algorithm verifies
the task status using these two parameters (cpu_util and deadline_miss_rate). If the cpu_util or the
deadline_miss_rate is higher than the predefined thresholds (cpu TH and deadline_TH), the
decision is to migrate the task. If the migration fails (no available processor), the COMPLETE-
CHECKUP (line 5) is called.

Algorithm 2: QUICK-CHECKUP-COMPUTATION

Input: task, task_cpu

begin

1: cpu_util = get_cpu_utilization(task_cpu)

2: deadline_miss_rate = get_deadline_miss_rate(task)

3: if cpu_util > cpu_TH or deadline_miss_rate > deadline_TH then
4. if task_migration(task) = FALSE then

5 COMPLETE-CHECKUP(task’s application)

6 end if

7: end if

end

The goal of the QUICK-CHECKUP-COMMUNICATION algorithm is to evaluate when it is
necessary to establish CS connections for some CTPs due to a communication interference. The
algorithm receives as input a CTP, with a producer (prod_task) and consumer (cons_task) task
identifiers. Line 1 obtains the total number of latency misses since the last application adaptation.
When the latency misses exceed 2*latency _TH (line 2), the COMPLETE-CHECKUP is invoked. If the
latency misses exceed latency TH (line 4) the algorithm tries to establish a CS path between
prod_task and cons_task. Note, that in Algorithm 3 the call of the COMPLETE-CHECKUP only occurs
if the CS establishment fails.

121

Algorithm 3: QUICK-CHECKUP-COMMUNICATION

Input: prod_task, cons_task

begin

1: ctp_latency_count = get_ctp_latency_number(prod_task, cons_task)
2: if ctp_latency_count > 2*latency_TH then

3 COMPLETE-CHECKUP(task’s application)

4. else if ctp_latency_count > latency_TH then

5 CS_configuration(prod_task, cons_task)

6: end if

end

6.4.2 COMPLETE-CHECKUP Algorithm

The main goal of the proposed QoS management is to reduce the reactive actions, acting
proactively when possible to avoid future QoS violations. Algorithm 4 presents the COMPLETE-
CHECKUP algorithm, which receives as input an application identifier. This algorithm has two

operating modes, reactive and proactive.

Algorithm 4: COMPLETE-CHECKUP

Input: application

begin

1: task_migration_list = @

2: task_rank[] = computes_task_score(application)

3: if task_rank[] # EMPTY then

4. selected_task = get_high_task_score(task_rank[])
5 task_migration(selected_task)

6: else

7: for t;€ application do

8: comp_task_num = get_num_comp_task(t; cpu)
9: if comp_task_num > 1 or get_comp_sum(t;_cpu) = comp_profile_sum_TH then
10: task_migration(t))

11: task_migration_list = t;

12: end if

13: end for

14: for t;€ application and t; & task_migration_list do

15: if get_comm_profile(t;) 2 comm_profile_TH or get_comm_profile(t;) > get_comp_profile(t;) then
16: for ctp; € C which t;is consumer do

17: prod_task = get_producer(ctp;)

18: if prod_task & task_migration_list and ctp; = PSthen
19: CS_configuration(prod_task, t;)

20: end if

21: end for

22: end if

23: end for

24: endif

end

122

The activation of the reactive mode occurs when a quick checkup algorithm fails, including the
code lines 2 to 5. Line 2 ranks the application tasks according to the QoS violation severity, using
Equation 9.

rr=dm + Ly +10(ucpy > cpu TH?1:0) (9)
where: rris the task rank, dm is the number of deadline misses, I is the number of latency misses,
uceu is the CPU utilization where the task is executing.

According to Equation 9, the rank of a given task is higher when it is running on a CPU with a
utilization higher than cpu_TH. Line 4 selects the most critical task, (i.e., the one with the highest
rank), and the task migration is fired to selected_task (line 5). Note that the reactive mode acts only
in one task of the application. As one single QoS adaptation can affect the whole application

performance, gradual steps are preferable to simultaneous adaptations.

The activation of the proactive mode occurs periodically (lines 7-23). The trigger to activate
the COMPLETE-CHECKUP algorithm in this mode is the overhaul routine, which calls the COMPLETE-
CHECKUP at the end of ten hyper-periods of the application. This number is a trade-off, a higher
value reduces the COMPLETE-CHECKUP calls, delaying the time to take proactive actions; and
smaller values increase the Mpr CPU usage. The proactive mode starts as in the reactive mode,
ranking the tasks according to Equation 9. As the COMPLETE-CHECKUP was invoked by the overhaul
routine and not by quick checkup algorithms, it is expected that the task_rank[] set be empty, i.e.,
all application tasks are fulfilling their constraints. The proactive mode acts first on the computation

(lines 7-13) and then on the communication (lines 14-22).

At the computation level, for each task t; of the application, the algorithm verifies if there are
more than two high computation tasks in t's core (tasks exceeding comp_profile_TH), or if the sum
of the computation profile for all tasks sharing ti's core exceeds comp_profile_sum_TH (line 9). If
true, t; is migrated to a free processor (line 10), and the task identifier is added to the set
task_migration_list. The goal is to reduce the CPU sharing between high computation tasks
proactively. Also, as tasks may change their RT constraints dynamically, this action can prevent

deadline misses when a given task increases the CPU utilization.

At the communication level, for each task ti of the application that is not in the
task_migration_list, the algorithm verifies if ti's communication profile exceeds comm_profile_ TH
or is higher than the computation profile (line 15). If true, t;is a candidate to have its communication
mode changed to CS. The loop in lines 16-21 sets CS for each CTP that has t; as a consumer task. Line
18 verifies if the producer task is not in task_migration_list and if communication is assigned to the

PS network. If this condition is true, a CS is established.

In summary, the proactive QoS actions try to reduce the CPU sharing between high

computation tasks and to establish CS mode between tasks with a high communication profile.

123

6.5 Results

The many-core system is modeled at the RTL level (VHDL and SystemC), and all software
components are implemented in C language. The RT benchmarks correspond to real applications’
previously addressed, as DTW and MPEG-2. Synthetic tasks run in parallel on the system with the
purpose to induce computation and communication disturbances. The experiments adopt the
following parameters: cpu TH=99%, comp_profile_ TH=50%, comp_profile_sum_TH=75%,
comm_profile_TH=10%, deadline_TH=1%, latency TH=2.

6.5.1 Comparison with Single Objective QoS Managers

This section compares this proposal with works covering self-adaptive QoS of communication
[RUA15a] and computation [RUA16a]. Figure 74(a) shows a mapping scenario using the DTW
application with interference at both computation (task A) and communication levels (df:). The
interference of computation occurs from 20ms to 55ms, where task A increases its utilization from

10% to 50%. The interference of communication occurs from 66mm to 90ms.

(a) 120000 [(b) Run-time CS stablishmentfor the
T disturbed CTPs
N N 5100000 F
o0 :
o) ;@ 8 80000
O
— dfi : g 60000
N [N [% L
@VE (pa ‘@ 2 40000 I
<-- B Computation Disturbance
J L J \C g 20000 EEE— disturb.= 10%
2
= L .
0 Communication_Disturbance |
0 20 40 60 80 100
Time (milliseconds)
120000 | (C) 120000 | (d) / Proactive QoS adaptation points - covering
n N th tati d icationlevel
;E 100000 | Run-time taskmigration of task A g 100000 | - ! e computation and communication levels
> > H H
3 3 HE
4 X H H " .
S 80000 | S 80000 f React.lve QoS adaptatlor_1-CS
S < stablishmentbetween disturbed CTPs
s g ~Sa
g 60000 | A g 60000 [
= 40000 [= 40000 |
o o
E= C " DI b. k= " .
Sl rre— e © 20000 [T —— T
= I | = Y S
o L© ication_Disturbance | o LCommunication Disturbance i
0 20 40 60 80 100 0 20 40 60 80 100
Time (milliseconds) Time (milliseconds)

Figure 74 - Comparison with [RUA15a] and [RUA16a]: (a) scenario setup; (b) iteration latency of [RUA15a];
(c) iteration latency of [RUA16a]; (d) iteration latency of the proposed work.

Figure 74(b) shows results from [RUA15a]. The work establishes run-time CS for the disturbed
CTPs, but it cannot mitigate the computation interference induced by task A. Figure 74(c) shows the
results from [RUA16a], which counteracts the computation disturbance by migrating task A to
another processor, but the communication interference remains. Figure 74(d) shows the results of
the proposed work, which mitigates both computation and communication interference using

proactive and reactive actions.

124

6.5.2 Application Profile Learning Overhead

The APL is implemented at the Mp¢ level since the learning process is spread across multiple
manager processors. However, at the Spe level, the APL can penalize the tasks’ execution time due
to the monitoring process. The kernel adopts two actions to minimize this overhead: (i) the
monitored profile transmission occurs preferably in idle periods of the Seg; (ii) each Spe uses a
different counter to trigger the sending of the information, thus distributing the monitoring load.

Figure 75(b) compares the overhead of the APL on application's execution time with a
different number of tasks running at the same PE. This scenario uses two applications, Figure 75(a):
DTW (Dynamic Time Warping algorithm recognizing 2500 patterns), and MPEG-2 (to decode 500
frames/audio arrays). The functionality of the application is not relevant, only the number of tasks

per PE. The APL messages are transmitted from Spe to Mpe at each 10 ms.

350
(b) O1Task/PE @2 Tasks/PE m3 Tasks/PE m4 Tasks/PE

= = N N w
o wu o 1% [=]
o o o o o

%
o

Execution time (milliseconds)

o

APL Disabled APL Enabled ‘ APL Disabled APL Enabled

DTW ‘ MPEG-2

Figure 75 - (a) DTW and MPEG-2 application task graphs. (b) Overhead evaluation of the application profile
learning.

All tasks in the "APL enabled" scenarios have the APL monitoring enabled, with an expected
overhead at each core increasing according to the number of tasks per PE. However, the results
show that the impact on the application execution time is negligible. The worst overhead is achieved
in the MPEG-2 scenario, with 3 tasks/PE, corresponding to an increase of 0.0024% in the application
execution time.

6.5.3 Self-Adaptive QoS Adaptation Evaluation

This subsection evaluates the proposed QoS management. Figure 76(a) shows the MPEG-2
task mapping, represented by blue circles. Tasks D; and D, share the CPU with tasks SP and 1V,
respectively. They belong to another QoS application, exemplifying a disturbance at the
computation level. The red arrows denote disturbances of communication, other messages that
interfere with the application flows. On the y-axis of Figure 76(b)-(d) shows the latency of one
iteration of the MPEG-2 application, measured at the task JO (joint). The QoS constraint is 5,800
clock cycles, corresponding to the time to decode one audio/image frame of 576 bytes. Bars below
the x-axis represent the CPU utilization of task D, (computation disturbance) and when the

disturbing flows occur (communication disturbance).

b@) —k
JO
o J)
N
B ®
N
o) [
QV/ JAN 9
— df: A] >
PAN y,

(€)

MPEG-2 APL at time of 15ms

Computation Communication
Tasks profile profile
SP 2 0
v 70 3
Q 9 11
ID 10 17
AD 60 2
Fl 27 21
JOo 3 43

130000

90000

70000

50000

30000

Iteration Latency (clock cycles)

10000

130000

110000

90000

70000

50000

30000

Iteration Latency (clock cycles)

10000

130000

110000

90000

70000

50000

30000

Iteration Latency (clock cycles

10000

110000 [

125

(b) All adaptations disabled
Computation Disturbance
D; util. = 10% D; util. = z_ D; util. = 10%
| TEET |
Communication Disjurbance I I I
0 20 40 60 80 100
Time (milliseconds)
Proactive adaptations disabled
© M
B <«—— Reactive QoS adaptation points
- coveringthe computationand
o communication levels
I Tl
i o
Ce ion Disturbance
D, util. = 10% D, util. = 28% D} URIN=IS000NN D, util. = 10%
| TEET T
‘Communication Dis‘urbance | | |
0 20 40 60 80 100
Time (milliseconds)
d Proactive QoS adaptation points - covering
I () Y ‘/ the computation and communication levels
r Reactive QoS adaptation - CS
stablishmentbetween SP - AD
Computation Disturbance
D, util. = 10%
| THET [|
Communication Disfurbance I I I
0 20 40 60 80 100

Time (milliseconds)

Figure 76 - Evaluation of the self-adaptive QoS management over the MPEG-2. (a) App. mapping. (b) No
adaptation, deadline miss = 20.3%. (c) Only reactive adaptations, deadline miss = 2.3%. (d) Proactive and
reactive adaptations, deadline miss = 0.5%. (e) APL for MPEG-2 at 15ms of simulation.

The first evaluated scenario has all QoS adaptations disabled - Figure 76(b). When the CPU

utilization of task D; increases, at 25 and 40 ms, the latency increases due to the CPU sharing. In the

same way, disturbing flows affect the latency. Note that when flow df; is active the task D, presents

a low CPU utilization and the latency also increases. This result shows that the communication

disturbance also impacts the QoS constraint.

The second evaluated scenario (Figure 76(c)) activates only reactive adaptations. When D,
increases its CPU utilization from 10% to 28%, the total Spe utilization reaches 98% (28% + 70% from

task /V). The task migration is not immediately triggered because the CPU utilization remains below

cpu_TH. Thus, task /V starts to generate deadline misses, and the QoS management decides to

migrate task /V to a free processor at 31.4ms. Also, flow df; induces latency misses in the flows
SP->1V and SP->AD, making the QoS management to decide to establish CS for these flows at 30.3

126

and 32ms. There is no impact on the latency when D; increases its utilization to 50% because task
IV was previously migrated. Flow df. induces latency misses in the flow AD—>FI, resulting in a new
CS establishment at 49.2ms. As the CS establishment for one CTP affects in average 150 clock cycles
of the application's latency, its effect is not perceptible in the graph. Finally, flow df; starts,
disturbing three MPEG-2 flows: IQ—>ID, FI=>JO, and ID->JO. The consequence is several latency
misses, and CSs are reactively established for all penalized pairs at 66.5, 67.4 and 68.5 ms. Note that
after the reactive adaptations the QoS level is restored.

The third evaluated scenario activates proactive and reactive adaptations - Figure 76(d). The
first call to the COMPLETE-CHECKUP occurs at 15ms due to the execution of the overhaul routine,
with the learned profile presented in Figure 76(e). The COMPLETE-CHECKUP decides to migrate
proactively task IV because it is sharing the CPU with D, and the sum of its computation profile is
higher than comp_profile_sum_TH (at 17,6ms). Additionally, according to the obtained profile, tasks
ID, Fl, JO, and IQ have a high communication profile (higher than comm_profile_TH). Therefore, the
QoS management proactively establishes CS for the flows: IQ—>ID (18.5 ms), AD->FI (18.6 ms),
ID->JO (19.1ms), FI=>JO (19.7 ms), and /V=>IQ (23 ms). This scenario also has a reactive QoS
adaptation, which is a CS establishment between SP->AD at 32 ms due to the disturbance caused
by dfi. The QoS management did not establish CS's previously since the APL revealed that AD has a

communication profile smaller than the comm_profile TH.

Comparing deadline miss rates in all three scenarios, we observe a miss rate of 20.3% when
QoS is disabled, 2.3% when only reactive adaption is used, and 0.5% with both proactive and

reactive adaptions.

While Figure 76 shows the MPEG-2 case in detail, Figure 77 summarizes results for 8
benchmarks. It compares execution time (a), and deadline miss rate (b), for: (i) baseline scenario;
(i) DIST - disturbances and no QoS mechanism; (iii) REACT - disturbances and only reactive QoS
enabled; (iv) P+R - disturbances and both QoS mechanisms enabled (proactive + reactive). The
disturbances consist of 2 tasks providing computation disturbance (randomly mapped within PEs
running benchmark's tasks), and 3 disturbing communication flows. Compared to the baseline
execution time, the DIST increases the execution time, on average, by 224.7% (severe disturbance).
Applying QoS management, the execution time is restored close to the baseline: 13.8% for REACT
and 2.4% for P+R above the baseline. Note that REACT exhibits a higher average execution time than
P+R, highlighting the benefit of proactive actions. As Figure 77(b) shows, the deadline misses were
reduced, on average, by 98% for REACT, and 99.5% for P+R, with a rate below 0.6% for all P+R

benchmarks.

Those experiments show the synergy between proactive and reactive actions. The proactive
adaptation reconfigures the system according to the application profile learning,
preventing/minimizing future deadline misses due to interference. The reactive actuation operates

during the learning period or responds to unpredictable disturbing events.

127

i
=
o

EDIST OREACT mP+R

Normalized Execution Time
o
wv

Deadline miss rate (%)

o Rr N W A U OO N 0O O

> N 4
& - b)
(a) & Application Benchmark () \“é Application Benchmark

Figure 77 - Benchmark evaluation: (a) execution Time; (b) deadline miss rate.

6.5.4 Self-Adaptive QoS Trade-off

Subsection 6.5.1 showed that the QoS manager must act in both computation and
communication conjointly. Subsection 6.5.3 presented the effectiveness of the proposed method to
provide QoS for a set of benchmarks in the presence of disturbing events. This last evaluation
stresses the proposed method, with all PEs executing tasks with QoS constraints, and increasing the
CPU utilization gradually. This evaluation adopts three synthetic applications, with different profiles:
() COMP — computation intensive (66% comp., 10% comm.); (ii)) COMM - communication intensive
(32% comp., 61% comm.); (iii) HYB — hybrid, a mix of computation and communication profile (45%
comp., 30% comm.).

The simulated workload corresponds to 5 applications executing simultaneously: 1 COMM, 1
COMP, and 3 HYB. The applications were randomly mapped in a cluster with 16 PEs (1 Mpr and 15
Spes). The Spes were configured to run 2 tasks concurrently. To use all Spes of the cluster, all Spe
received two tasks. With such configuration, task migration is disabled due to the full system usage.
All applications start their execution at the beginning of the simulation, with a warm-up period of
10 ms. After the warm-up period, each Spr has 10% of CPU utilization (5% from each mapped task).
As the simulation advances, all tasks increase its CPU utilization steadily. The utilization increases by

5% for each task at each 10 ms, resulting in a total CPU utilization increase of 10% at each 10 ms.

Figure 78(a) presents the deadline miss rate for this experiment (y-axis: percentage of
deadline misses, x-axis: CPU utilization per Spe). The deadline miss rate remains 0 up to 80% of CPU
utilization. After 80% of CPU utilization, all applications start to miss deadlines. Due to the system
unpredictably behavior with a higher CPU utilization, some application misses more deadlines than
others (Apps 3, 4, 6). As task migration is not possible due the full system occupation, this result
showed the effectiveness of the task scheduler to ensure QoS at computation level. The proposed
method can ensure QoS for several applications running concurrently, even with a large CPU
utilization (80% in this scenario).

Figure 78(b) presents the latency miss rate. All applications start their execution
communicating using the PS NoC. As the simulation advances, the QoS management aided by the
application profile learning, identify the applications’ profile and set CS to the COMM and HYB

128

applications, reducing the latency miss to less than to 0.5%. The exception is the COMP application
(App 5), which continues using the PS NoC because it does not satisfy the requirements for proactive
CS. With the increase in the CPU utilization, this application receives one latency miss at each 10ms,
resulting in latency miss rate of 12.5%. As App 5 is computation intensive, this latency miss does not
impact the deadline misses, as can be observed in Figure 78(a), not justifying the establishment of
Cs.

Time (milliseconds) Time (milliseconds)

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
0,4
06 1 —o— App 1 - Hybrid 035 | —o— App 1 - Hybrid
05 App 2 - Hybrid App 2 - Hybrid
4 —— App 3 - Commun. I 03 —A— App 3 - Commun.
04 1 :pp : : g:bm”d 0,25 App 4 - Hybrid
i p- —%— App 5 - Comp.

—e— App 6 - Hybrid

—6— App 6 - Hybrid

0,3 A

0,2 A
201 |
0,1 A
0,05 I
0 3 3 3 3 # i % 3 0 % o & o o =
0,6 0,7 0,8 0,9 1 1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0,1 0,2 0,3 0,4 0,5 ,] , ,
Total CPU utilization of the cluster's See Total CPU utilization of the cluster's See

(a) (b)
Figure 78 — QoS provisioning trade-off: (a) Deadline miss rate; (b) Latency miss rate.

Application's deadlinemiss rate
Application's latency miss rate
o
N

This experiment enabled to observe the QoS provisioning trade-off at the computation and
communication levels in a stressed scenario. The computation QoS starts to be affected after 80%
of CPU utilization. The method ensures communication QoS for all communication sensitive
applications by establishing CS at run-time. The adoption of an MPN provides sufficient CS paths

even in a cluster with all Spes running the maximum number of tasks.

6.6 Conclusions

This Chapter proposed a dynamic profiling and self-adaptive QoS management for soft real-
time applications. A run-time application learning profiling (APL) technique allows the QoS
management system to take proactive actions, and when necessary, react to cope with the
interference induced by the dynamic workload. The low overhead of the APL demonstrates that

run-time techniques can be used to characterize applications.

The results show two relevant facts. First, mechanisms for regulating both communication and
computing are essential for the overall QoS management. Second, proactive techniques can ease

the avoidance of future deadlines and latency misses.

While we have demonstrated the benefits of the proposed APL and QoS management in a
specific setting, there is little in the NoC, the PEs, and the middleware, that we require for our
techniques to work. Hence, we expect similar benefits on very different platforms, which, however,

should be demonstrated in future work.

129

7 CONCLUSION

This Thesis incrementally proposed and developed solutions to meet QoS constraints. Initially
considering computation and communication in a separate way (Chapters 4 and 5), and then
merging the techniques to build a comprehensive solution (Chapter 6).

7.1 QoS at the Computation Level

Chapter 4 explored QoS techniques at the computation level, including task migration and a
dynamic task scheduler. The task migration protocol has as main feature the absence of code
checkpoints; adopts task recreation, which reduces the memory overhead due to the absence of

task replicas in potential target PEs; and transmits the task messages to the new PE on-demand.

Experimental results showed that the latency to migrate one task is lower that in related
works, and the proposed protocol achieved a low overhead in the applications execution time:
0.05% for 1 migration, and 0.6% for 2 and 3 migrations while ensuring correct inter-task message

synchronization.

The proposed task migration protocol is important towards demystifying the high penalties to
adopt task migration in distributed memory systems. This is a significant achievement for self-
adaptive techniques, since frequent task migrations may occur, and a low overhead protocol

reduces the adaptation overhead.

The proposed dynamic task scheduler ensures a flexible RT time support for soft-RT
applications. The scheduler has a hierarchical organization, with a cluster and a local scheduler. The
local scheduler controls the CPU usage according to the task constraints, at the PE scope. When the
local scheduler cannot meet the constraints, it warns the cluster scheduler, which can decide to fire
a task migration, moving the task to a PE with more CPU availability. The main feature and
contribution of the scheduler concerns the support to change at run-time the tasks' constraints

(period, deadline, execution time).

Experimental results showed that the task scheduler is efficient to support soft RT
applications, without deadline miss up to 80% of CPU utilization. Additionally, the scheduler handled
dynamic workloads with tasks changing the RT constraints at run-time, and when necessary,
migrating the task to another PE with a low overhead due to the low cost of the task migration

technique.

The dynamic feature of the scheduler is important for many-cores because it allows a fine-
grain QoS tuning at the computation level, enabling a better QoS management due to the avoidance
of resource overuse. This is fundamental in the dark silicon era, where software development and

execution must be efficient to offset the power and temperature restrictions.

130

7.2 QoS at the Communication Level

Chapter 5 explored QoS techniques at the communication level, introducing the Software-
Defined Networking (SDN) paradigm to the many-core context, and addressed QoS by providing a
run-time CS management based on the SDN infrastructure.

The motivation to adopt the SDN paradigm is its flexibility to manage network resources at
run-time. The SDN approach transfers the hardware complexity of the network control to a software
layer called Network Controller (NoC Controller). The underlying hardware supporting the SDN

paradigm is an MPN NoC, with area and power efficient SDN routers.

The NoC Controller handles the requests to define paths, search the paths, and configure the
MPN’s routers in the paths. The NoC Controller is a generic concept related to the system
management based on the SDN paradigm. This Thesis proposed a NoC-Controller called CS-
Controller, which finds shortest paths using the Hadlock’s algorithm for RT applications during the
application admission management phase. The goal is to set CS for all application’s flows before the
application start its execution. At the end of the application, all connections are released. A CS
management protocol ensures the communication between the Mpg, CS-Controller, and the Spe

running the applications’ tasks.

Experimental results showed that the low cost of MPN combined to the routers design based
on Elastic Buffers enable to create a rich path diversity for the SDN management, achieving a
connection success rate higher than 97% for MPNs with 6 and 8 subnets. Additionally, the SDN
paradigm when compared to a state-of-the-art search path mechanism achieved a similar path
quality (i.e., average number of hops), with a slight improvement in the number of minimal paths,
and higher latency. The higher latency was expected since the comparison was done assuming a
software-based approach against a hardware-based approach. The overhead is not an actual
drawback since the latency only affects the application startup (in the order of ps). The advantages
of adopting SDN include simpler hardware architectures, reusability, and management flexibility,

features not available in hardware-centric approaches.

The features provided by the SDN approach enables to create a self-awareness of the
communication resources on-chip. Other important feature offered by the SDN-based NoC
management it the hardware simplicity, which leads to a high degree of hardware reusability. Each
SDN router is a simple unit, with the goal to link a given input port to an output port, according to

the definition made in software and stored in a table inside the router.

7.3 QoS at both Computation and Communication Levels

Chapter 6 unified the QoS management, integrating the communication and computation
techniques. The proposed management gathers several system and application information at run-
time to create a self-awareness of computation and communication resources combined to the QoS
fulfillment monitoring of the applications. Additionally, an application profile learning was able to

observe the profile of the application on-the-fly. Based on all this information the QoS management

131

can act reactively, as well as proactively. Reactively, when a given task or CTP loses a deadline or
latency constraint. Proactively, by early identifying if a given task has a computation or
communication profile, allocating resources to the task before future QoS violations.

Experimental results showed the capability of the proposed self-adaptive QoS management
to act reactively and mainly, proactively, avoiding potential QoS violations due to the identification
of the correct tasks profile. In a scenario executing several benchmarks, the deadline miss rate
stayed below 0.6% even with severe interferences at the computation and communication levels.
The application profile learning achieved an accurate observation of the task profile with an
insignificant overhead (0.0024% in the application execution time), demonstrating that run-time

techniques can be used to characterize applications.

Comprehensiveness and self-adaptation are essential features for the next generation of
many-cores due to the high complexity of such designs. Comprehensiveness enables defining trade-
offs when multi-objective optimizations are required, such as a power, temperature, and QoS. Self-
adaptation is essential to deal with challenges as unpredictably, dynamic workloads, and lack of

composability.

7.4 Side Contributions
This Thesis presented two side contributions not related to QoS.

The DMNI enabled to create a direct link between the memory and the NoC router. The
processor manages the DMNI, allowing to speed-up the communication between PEs. Experimental
results showed that the DMNI speed-up the application execution time up to 12.3% when compared
to a traditional PE architecture, with a DMA and NI modules (inherited from bus-based
architectures). Such design optimizes the communication performance of NoC-based many-core

systems, being important for the proposed QoS techniques.

The proposal of a graphical framework for many-core debugging presented a generic and
intuitive way to decrease the validation time of system techniques (as the ones proposed in this
Thesis), intuitively and holistically. The DEL layer defines a generic data extraction method combined
with a standard database. The graphical windows enable to observe what is occurring during the
simulation without looking into long log files or waveforms. A set of windows covering both

debugging of computation and communication levels creates an intuitive debugging environment.

7.5 Hypothesis Support
The Introduction of the Thesis stated the following hypothesis:

A comprehensive, scalable, and self-adaptive QoS support can be achieved by proposing
reconfigurable QoS techniques covering both computation and communication levels, and by a
management that is based on the self-adaptive model [SHA09][DUT16a][DUT16b][ANZ17], the ODA
paradigm [HOF13], and the distributed resource management [KRA12][CAS13].

132

Comprehensiveness was achieved by addressing the communication and computation levels
at both the infrastructure scope (task scheduler, task migration, and SDN-based CS) and
management scope (the self-adaptive QoS management). Related works so far address specific
techniques for communication or computation separately. Acting only in the computation
contributes significantly to the system performance. However, due to the number of PEs, the NoC

traffic can impact significantly on overall applications' performance, requiring holistic techniques.

Due to the unpredictable profile of general-purpose applications, it is necessary to profile
them at run-time and have tools to provide the correct resource allocation according to the
application needs. This Thesis advanced the state-of-the-art related to this issue. The proposed self-
adaptive QoS management supports the self-adaptation QoS stated in hypothesis, by presenting a
run-time resource reconfiguration according to the RT tasks QoS monitoring status (reactively), and
its profile (proactively). All these features were deployed according to the ODA paradigm, enabling

a better understanding of the adaptation flows, and a better organization of the components.

The QoS techniques and management were distributed in a cluster-based organization, which
ensure scalability to the proposal. This organization proved to be scalable, thanks the distribution

of the resource management load [CAS13].

Based on the presented techniques throughout this Thesis and supported by the experiments,

the Author concludes that the hypothesis was fulfilled.

7.6 Future Works

Future works include the gaps identified in the Thesis’ proposals, presented in the next

subsections.

7.6.1 Memory Access QoS

The DMNI was designed to support the parallel transmission of data to PS and SDN routers.
However, the read and write memory access are atomic operations performed by the DMNI.
Assume that two QoS flows are sending data in streaming from memory to SDN routers. The DMNI
will provide the same priority for them. A priority-based memory access control over an MPN design
is a relevant research that can fulfill this gap. The control can communicate with the task scheduler

to know which QoS flow is more urgent, assigning higher priority to it.

7.6.2 Adistributed implementation of SDN Controllers

The CS-Controller evaluations target many-core up to 400 PE (20x20 dimension). For larger
system sizes, the SDN Controller can be deployed distributed at each cluster. However, if they not
communicate among them, the SDN-based management will be performed in individual clusters
without a global awareness of the network status. To implement system awareness of the SDN
control in higher system dimensions, it is required the research and development of a distributed

implementation of the SDN Controller. Such global awareness is challenging, once the protocols to

133

synchronize the network status among SDNs spreads over the cluster has the potential to cause a
high communication overhead or a high latency to answer for a requested service.

7.6.3 Comprehensiveness is the key word

In the Author’s opinion, current self-adaptive techniques, focused on only one scope
(computation or communication), are mature in literature. The increasing complexity of many-cores
will require increasingly degrees of comprehensiveness. This Thesis made one step towards a
comprehensive system by integrating self-adaptation for QoS of the computation and
communication resources. However, other self-adaptive mechanisms can be integrated. At the
computation level, aging-aware task mapping can be assumed; at the communication level, other
NoC controllers can be developed, targeting fault tolerance and communication security, for
example. Additionally, systemic energy and temperature management are necessary, and they need
to interact with the QoS heuristics to reach a good trade-off between applications performance

constraints and system budgets.

[ABB14]

[ABO13]

[ALH10]

[ALM11]

[AMB13]

[ANT15]

[ANZ17]

[ARM17]

[ARN14]

[ATT11]

[BAM11]

[BAM12]

[BENO2]

134

REFERENCES

Abbas, N.; Ma, Z. "Run-time Parallelization Switching for Resource Optimization on an
MPSoC Platform". Design Automation for Embedded Systems, vol. 18-3, Sep. 2014, pp.
279-293.

Abousamra, A.; Jones, A. K.; Melhem, R. "Proactive circuit allocation in multiplane
NoCs". In: DAC, 2013, pp. 1-10.

Alhonen, A.; Salminen, E.; Nieminen, J.; Himaldinen, T. D. "A scalable, non-interfering,
synthesizable Network-on-chip monitor". In: NORCHIP, 2010, pp. 1-6.

Almeida, G.M.; Busseuil, R.; Carara, E. A.; Hébert, N.; Varyani, S.; Sassatelli, G.; Benaoit,
P.; Torres, L.; Moraes, F.G. "Predictive Dynamic Frequency Scaling for Multi-Processor
Systems-on-Chip". In: ISCAS, 2011, pp. 1500-1503.

Ambrose, J. A.; Cassisi, V.; Murphy, D.; Tuo, L.; Jayasinghe, D.; Parameswaran, S.
"Scalable performance monitoring of application specific multiprocessor Systems-on-
Chip". In: ICIIS, 2013, pp. 315-320.

El-Antably, A.; Gruber, O.; Rousseau, F.; Fournel, N. "Transparent and portable agent-
based task migration for data-flow applications on multi-tiled architectures". In:
CODES+ISSS, 2015, pp. 183-192.

Anzanpour, A.; Azimi, |.; Gotzinger, M.; Rahmani, A. M.; TaheriNejad, N.; Liljeberg, P.;
Jantsch, A.; Dutt, N. "Self-awareness in remote health monitoring systems using
wearable electronics". In: DATE, 2017, pp. 1056-1061.

ARM. "big.LITTLE technology". Available at: https://developer.arm.com/technologies/
big-little, November 2017.

Arnold, O.; Fettweis, G. "Adaptive run-time management of heterogeneous MPSoCs:
Analysis, acceleration and silicon prototype". In: SoC, 2014, 4p.

Attia, B.; Wissem, C.; Noureddine, A.; Zitouni, A.; Torki, K.; Tourki, R. "A new pipelined
network interface for Network on Chip with latency and jitter optimization". In: ICM,
2011, pp. 1-6.

Bamakhrama, M.; Stefanov, T. "Hard-real-time scheduling of data-dependent tasks in
embedded streaming applications". In: EMSOFT, 2011, pp. 195-204.

Bamakhrama, M.A.; Zhai, J.T.; Nikolov, H.; Stefanov, T. "A methodology for automated
design of hard-real-time embedded streaming systems". In: DATE, 2012, pp. 941-946.

Benini, L; Micheli, G. "Networks on chips: a new SoC paradigm". Computer, vol. 35-1,
Jan. 2002, pp. 70-78.

[BEY13]

[BJEOS]

[BOH17]

[BUR10]

[CAN12]

[CARO7]

[CARO9]

[CAR11]

[CAR14]

[CAS13]

[CHAO1]

[CHE10]

[CHE16]

135

Beyranvand, A. N.; Molnos, A.; Martinez, M. E.; Goossens, K. "A hardware/software
platform for QoS bridging over multi-chip NoC-based systems". Parallel Computing, vol.
39-9, Sep. 2013, pp. 424-441.

Bjerregaard, T.; Sparso, J. "A router architecture for connection-oriented service
guarantees in the Mango clockless network-on-chip". In: DATE, 2005, pp. 1226-1231.

Bohnenstiehl, B.; Stillmaker, A. J.; Pimentel, J.; Andreas, T.; Liu, B.; Tran, A. T.; Adeagbo,
E.; Baas, B. M. "KiloCore: A 32-nm 1000-Processor Computational Array". IEEE Journal of
Solid-State Circuits, vol. 52-4, Apr. 2017, pp. 891-902.

Burgio, P.; Ruggiero, M.; Esposito, F.; Marinoni, M.; Buttazzo, G.; Benini, L. "Adaptive
TDMA bus allocation and elastic scheduling: A unified approach for enhancing
robustness in multi-core RT systems". In: ICCD, 2010, pp. 187-194.

Cannella, E.; Derin O.; Meloni, P.; Tuveri, G.; Stefanov, T. "Adaptivity Support for MPSoCs
Based on Process Migration in Polyhedral Process Networks". VLS/ Design, article n2 2,
Jan. 2012, 17p.

Carara, E.; Moraes, F.; Calazans, N. "Router Architecture for High-performance NoCs".
In: SBCCI, 2007, pp. 111-116.

Carara, E.; Oliveira, R.; Calazans, N.; Moraes, F. "HeMPS - a Framework for NoC-based
MPSoC Generation". In: ISCAS, 2009, pp. 1345-1348.

Carara, E. "Servicos de Comunicacdo Diferenciados em Sistemas Multiprocessados em
Chip Baseados em Redes Intra-Chip". Tese de Doutorado, Programa de Pds-Graduacdo
em Ciéncia da Computagao, PUCRS, 2011, 107p.

Carara, E. A.; Calazans, N. L. V.; Moraes, F. G. "Differentiated Communication Services
for NoC-Based MPSoCs". IEEE Transactions on Computers, vol. 63-3, Mar. 2014, pp. 595-
608.

Castilhos, G.; Mandelli, M.; Madalozzo, G.; Moraes, F. "Distributed resource
management in NoC-based MPSoCs with dynamic cluster sizes". In: ISVLSI, 2013, pp.
153-158.

Chandra, A.; Adler, M.; Shenoy, P. J. "Deadline fair scheduling: bridging the theory and
practice of proportionate fair scheduling in multiprocessor systems". In: RTAS, 2001, pp.
3-14.

Chen, X.; Lu, Z.; Jantsch, A.; Chen, S. "Supporting Distributed Shared Memory on multi-
core Network-on-Chips using a dual microcoded controller". In: DATE, 2010, pp. 34-44.

Chen, Y.; Matus, E.; Fettweis, G. P. "Trellis-search based Dynamic Multi-Path Connection
Allocation for TDM-NoCs". In: GLSVLSI, 2016, pp. 323-328.

[CHO11]

[CLE13]

[CON14]

[CUE12]

[DAS12]

[DAS13]

[DAS14]

[DAV11]

[DER13]

[DUT16a]

[DUT16b]

[DUT17]

[EJA13]

136

Chouchene, W.; Attia, B.; Zitouni, A.; Abid, N.; Tourki, R. "A low power network interface
for network on chip". In: SSD, 2011, pp.1-6.

CLEARSPEED. "CSX700". Available at: http://www.clearspeed.com/products/
¢sx700.php, December 2013.

Cong, L.; Wen, W.; Zhiying, W. "A configurable, programmable and software-defined
network on chip". In: WARTIA, 2014, pp. 813-816.

Cueva, P. L.; Bertaux, A.; Termier, A.; Méhaut, J. F.; Santana, M. "Debugging embedded
multimedia application traces through periodic pattern mining". In: EMSOFT, 2012, pp.
13-22.

Das, A.; Kumar, A.; Veeravalli, B. "Fault-tolerant network interface for spatial division
multiplexing based Network-on-Chip". In: ReCoSoC, 2012, pp. 1-8.

Das, A.; Kumar, A.; Veeravalli, B. "Communication and Migration Energy Aware Design
Space Exploration for Multicore Systems with Intermittent Faults". In: DATE, 2013, pp.
1631-1636.

Das, A.; Kumar, A.; Veeravalli, B. "Temperature aware energy-reliability trade-offs for
mapping of throughput-constrained applications on multimedia MPSoCs". In: DATE,
2014, pp. 1-6.

Davis, R.l.; Burns, A. "A survey of hard real-time scheduling for multiprocessor
systems". ACM Computing Surveys, vol. 35-4, Oct. 2011, 44p.

Derin, O.; Cannella, E.; Tuveri, G.; Meloni, P.; Stefanov, T.; Fiorin, L.; Raffo, L.; Sami, M.
"A system-level approach to adaptivity and fault-tolerance in NoC-based MPSoCs: the
MADNESS project". Journal Microprocessors & Microsystems, vol. 37-6. Aug. 2013, pp.
515-529.

Dutt, N.; Kurdahi, F. J.; Ernst, R.; Herkersdorf, A. "Conquering MPSoC complexity with
principles of a self-aware information processing factory". In: CODES+ISSS, 2016, pp. 1-
4,

Dutt, N.; Jantsch, A.; Sarma, S. "Toward Smart Embedded Systems: A Self-aware System-
on-Chip (SoC) Perspective". ACM Transactions on Embedded Computing Systems, vol.
15-2, Feb. 2016, 27p.

Dutt, N.; Rahmani, A. M.; Jantsch, A. "Empowering autonomy through self-awareness in
MPSoCs". In: NEWCAS, 2017, pp. 73-76.

Ejaz, A.; Jantsch, A. "Costs and benefits of flexibility in spatial division circuit switched
networks-on-chip". In: NoCArc, 2013, pp. 41-46.

[FAN10]

[FAN11]

[FAR10]

[FAR12]

[FAT11]

[FEGO7]

[FIO10]

[FRI14]

[FU13]

[GAN13a]

[GAN13b]

[GAN14]

[GEO14]

[GOR13]

[GOSO05]

137

Fangfa, F.; Xin'na, H.; Jinxiang, W.; Mingyan, Y. "A novel communication strategy
between PE and NI in NoC-based MPSoC". In: RCSLPLT, 2010, pp.374-377.

Fan, W.; Xiang, L.; Hui, S. "The QoS mechanism for NoC router by dynamic virtual channel
allocation and dual-net infrastructure". In: ICCP, 2011, pp. 1-5.

Faruque, M. Al; Jahn, J.; Ebi, T.; Henkel, J. "Run-time Thermal Management Using
Software agents for Multi- and Many-Core Architectures". IEEE Design & Test, vol. 27-6,
Sep. 2010, pp. 58-68.

Farugue, M. Al; Ebi, T.; Henkel, J. "AdNoC: Run-time Adaptive Network-on-Chip
Architecture". IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20-
2, Feb. 2012, pp. 257-269.

Fattah, M.; Daneshtalab, M.; Liljeberg, P.; Plosila, J. "Exploration of MPSoC Monitoring
and Management Systems". In: ReCoSoC, 2011, pp. 1-3.

Feghali, R.; Speranza, F.; Wang, D.; Vincent, A. "Video quality metric for bit rate control
via joint adjustment of quantization and frame rate". IEEE Transactions on Broadcasting,
vol. 53-1, Mar. 2007, pp. 441-446.

Fiorin, L.; Palermo, G.; Silvano, C. "A Monitoring System for NoCs". In: NoCArc, 2010, pp.
25-30.

Friederich, S.; Heisswolf, J; Becker, J. "Hardware/software debugging of large scale
many-core architectures". In: SBCCI, 2014, pp. 1-7.

Fu, F.; Wang, L.; Lu, Y.; Wang, J. "Low Overhead Task Migration Mechanism in NoC-based
MPSoC". In: ASICON, 2013, 4p.

Gangadharan, D.; Chakraborty, S.; Zimmermann, R. "Quality-aware media scheduling on
MPSoC platforms". In: DATE, 2013, pp. 976-981.

Ganeshpure, K.; Kundu, S. "On run-time task graph extraction in MPSoC". In: ISVLSI,
2013, pp. 171-176.

Gangadharan, D.; Teich, J.; Chakraborty, S. "Quality-aware video decoding on thermally-
constrained MPSoC platforms". In: ASAP, 2014, pp. 256-263.

Georgiev, K.; Martin, V. M. "MPSoC Zoom Debugging: A Deterministic Record-Partial
Replay Approach". In: EUC, 2014, pp. 73-80.

Gorski, P.; Timmermann, D. "Centralized traffic monitoring for online-resizable clusters
in Networks-on-Chip". In: ReCoSoC, 2013, pp.1-8.

Goossens, K.; Dielissen, J.; Radulescu, A. "Aethereal network on chip: concepts,
architectures, and implementations". IEEE Design & Test of Computers, vol. 22-5, Sep.-
Oct. 2005, pp. 414-421.

[GOT16]

[GRA13]

[GRO12]

[GUA10]

[GUI13]

[GUI17]

[HAD77]

[HAN11]

[HE14]

[HED11]

[HEI12]

[HEMOO]

[HOF13]

[HWA10]

138

Gotzinger, M.; Rahmani, A. M.; Pongratz, M.; Liljeberg, P.; Jantsch, A.; Tenhunen, H. "The
Role of Self-Awareness and Hierarchical Agents in Resource Management for Many-Core
Systems". In: MCSOC, 2016, pp. 53-60.

Grammatikakis, M.D.; Papagrigoriou, A.; Petrakis, P.; Kornaros, G. "Non-intrusive NoC
DFS for Soft Real-Time Multimedia Applications". In: DSD, 2013, pp. 60-63.

Grot, B.; Hestness, J.; Keckler, S.W.; Mutlu, O. "A QoS-Enabled On-Die Interconnect
Fabric for Kilo-Node Chips". IEEE Micro, vol. 32-3, May-Jun. 2012, pp. 17-25.

Guang, L.; Bo Yang; Plosila, J.; Latif, K.; Tenhunen, H. "Hierarchical power monitoring on
NoC - a case study for hierarchical agent monitoring design approach". In: NORCHIP,
2010, pp. 1-6.

Guindani, G.; Moraes, F.G. "Achieving QoS in NoC-based MPSoCs through Dynamic
Frequency Scaling". In: SoC, 2013, pp. 1-6.

Guikang Chen, X. Li.; Wen, W. "Energy-efficient execution for repetitive app usages on
big.LITTLE architectures". In: DAC, 2017, pp. 1-6.

Hadlock, F. O. "A shortest path algorithm for grid graphs". Networks, vol. 7-4, Jan. 1977,
pp. 323-334.

Hansson, A.; Ekerhult, M.; Molnos A.; Milutinovic, A.; Nelson, A.; Ambrose, J.; Goossens,
K. "Design and implementation of an operating system for composable processor
sharing". Microprocessors and Microsystems, vol. 35-2, Mar. 2011, pp. 246-260.

He, H.; Yang, G.; Hu, J. "Algorithms for power-efficient QoS in application specific NoCs".
In: ISLPED, 2014, pp. 165-170.

Hedde, D.; Petrot, F. "A non-intrusive simulation-based trace system to analyze
Multiprocessor Systems-on-Chip software". In: RSP, 2011, pp. 106-112.

Heisswolf, J.; Zaib, A.; Weichslgartner, A.; Konig, R.; Wild, T.; Teich, J.; Herkersdorf, A.;
Becker, J. "Hardware-assisted Decentralized Resource Management for Networks on
Chip with QoS". In: IPDPSW, 2012, pp. 234-241.

Hemani, A.; Jantsch, A.; Kumar, S.; Postula, A.; Oberg, J.; Millberg, M.; Lindqvist, D.
"Network on chip: An architecture for billion transistor era". In: NORCHIP, 2000, 8p.

Hoffman, H. "Seec: A Framework for Self-Aware Management of Goals and Constraints
in Computing Systems". Tese de Doutorado, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology (MIT), 2013, 172p.

Hwang, M.; Choi, D.; Kim, P. "Least Slack-time Rate First: New Scheduling Algorithm for
Multi-Processor Environment". In: CISIS, 2010, pp. 806-811.

[IBM17a]

[IBM17b]

[INT13]

[INT16]

[ITR15]

[JAH11]

[JAN17a]

[JAN17b]

[JAR14]

[JAV14]

[JEO12]

[JOH12]

[JOV13]

[JUN14]

139

IBM. "IBM Research Alliance Builds New Transistor for 5nm Technology". Available at:
https://www-03.ibm.com/press/us/en/pressrelease/52531.wss, September 2017.

IBM. "TrueNorth's - Brain-inspired Computer". Available at:
http://www.research.ibm.com/articles/brain-chip.shtml, November 2017.

INTEL. "Teraflops Research Chips". Available at:
http://www.intel.com/pressroom/kits/Teraflops/index.htm, December 2013.

INTEL. "Intel® Xeon® Processor E5-2699 v4", Available at:
http://ark.intel.com/products/91317/Intel-Xeon-Processor-E5-2699-v4-55M-Cache-
2 20-GHz?_ga=1.154754040.1577199730.1471540418, August 2016.

International Technology Roadmap for Semiconductors. "ITRS 2011 edition". Available
at: http://www.itrs.net/reports.html, April 2015.

Jahn, J.; Faruque, M.; Henkel, J. "CARAT: Context-aware Run-time Adaptive Task
Migration for Multi Core Architectures". In: DATE, 2011, pp. 1-6.

Axel Jantsch’s web-site. Available at: http://jantsch.se/Axellantsch, October 2017.

Jantsch, A.; Dutt, N.; Rahmani, A. M. "Self-Awareness in Systems on Chip — A Survey".
IEEE Design & Test, vol. 34-6, Dec. 2017, pp. 8-26.

Jarraya, Y.; Madi, T.; Debbabi, M. "A Survey and a Layered Taxonomy of Software-
Defined Networking". IEEE Communications Surveys & Tutorials, vol. 16-4, Apr. 2014, pp.
1955-1980.

Javaid, H.; Shafique, M.; Henkel, J.; Parameswaran, S. "Energy-Efficient Adaptive
Pipelined MPSoCs for Multimedia Applications". IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 33-5, May 2014, pp. 663-676.

Jeong, M. K.; Erez, M.; Sudanthi, C.; Paver, N. "A QoS-aware memory controller for
dynamically balancing GPU and CPU bandwidth use in an MPSoC". In: DAC, 2012, pp.
850-855.

Johann, S.; Aguiar, A.; Magalhdes, F.; Longhi, O.; Hessel, F. "Task Model Suitable for
Dynamic Load Balancing of Real-time Applications in NoC-based MPSoCs". In: ICCD,
2012, pp. 49-54.

Joven, J.; Marongiu, A.; Angiolini, F.; Benini, L.; Micheli, G. "An integrated, programming
model-driven framework for NoC-QoS support in cluster-based embedded many-cores".
Parallel Computing, vol. 39-10, Oct. 2013, pp. 549-566.

Jung, H.; Lee, C.; Kang, S.; Kim, S.; Oh, H.; Ha, S. "Dynamic Behavior Specification and
Dynamic Mapping for Real-Time Embedded Systems: HOPES Approach". ACM
Transactions on Embedded Computing Systems. vol. 13-4, Apr. 2014, 26p.

[KAK11]

[KAR10]

[KIM10]

[KIR13]

[KOR12]

[KOR13]

[KOT10]

[KRA12]

[LAP11]

[LEROS]

[LEROS]

[LI11]

[LI13]

140

Kakoee, M.; Bertacco, V.; Benini, L. "ReliNoC: A Reliable Network for Priority-based On-
chip Communication". In: DATE, 2011, pp. 1-6.

Kariniemi, H.; Nurmi, J. "High-Performance NoC Interface with Interrupt Batching for
Micronmesh MPSoC Prototype Platform on FPGA". In: NORCHIP, 2010, pp. 1-6.

Kim, Y.; Papamichael, M.; Mutlu, O.; Harchol-Balter, M. "Thread Cluster Memory
Scheduling: Exploiting Differences in Memory Access Behavior". In: MICRO, 2010, pp.
65-76.

Kirkpatrick, K. "Software-defined networking". Communications of the ACM, vol. 56-9,
Sep. 2013, pp 16-19.

Kornaros, G.; Pnevmatikatos, D. "Real-Time Monitoring of Multicore SoCs Through
Specialized Hardware Agents on NoC Network Interfaces". In: IPDPSW, 2012, pp. 248-
255.

Kornaros, G.; Pnevmatikatos, D. "A survey and taxonomy of on-chip monitoring of
multicore systems-on-chip". ACM Transactions on Design Automation Electronic
Systems, vol. 18-2, Apr. 2013, 38p.

Kooti, H.; Bozorgzadeh, E. "Unified theory of real-time task scheduling and dynamic
voltage/frequency Scaling on MPSoCs". In: ICCAD, 2010, pp. 139-142.

Kramer, D.; Karl, W. "A Scalable Monitoring Infrastructure for Self-Organizing Many-Core
Architectures". In: DSD, 2012, pp. 42-49.

Laplante, P. A.; Ovaska, S. J. "Real-time systems Design and Analysis". Wiley-IEEE Press,
4t edition, 2011, 584p.

Leroy, A.; Marchal, P.; Shickova, A.; Catthoor, F.; Robert, F.; Verkest, D. "Spatial Division
Multiplexing: a Novel Approach for Guaranteed Throughput on NoCs". In: CODES+ISSS,
2005, pp. 81-86.

Leroy, A.; Milojevic, D.; Verkest, D.; Robert, F.; Catthoor, F. "Concepts and
Implementation of Spatial Division Multiplexing for Guaranteed Throughput in
Networks-on-Chip". IEEE Transactions on Computers, vol. 57-9, Sep. 2008, pp. 1182-
1195.

Li, S.; Chen, K.; Ahn, J. H.; Brockman, J. B.; Jouppi, N. P. "CACTI-P: Architecture-level
modeling for SRAM-based structures with advanced leakage reduction techniques". In:
ICCAD, 2011, pp. 694-701.

Li, X.; Jia, X.; Ju, L. "Slack-Time-Aware Energy Efficient Scheduling for Multiprocessor
SoCs". In: HPCC_EUC, 2013, pp. 278-285.

[LIN10]

[LIUOO]

[LIU12]

[LIU13]

[LIU14a]

[LIU14b]

[LIU15]

[LIU16]

[LOU17]

[LUS11]

[LUS12]

[MA15]

[MAD16]

[MAN10]

[MAR11]

[MAR17a]

141

Lin, Y.; Yang, C.; Lin, T.; Huang, J.; Chang, N. "Hierarchical memory scheduling for
multimedia MPSoCs". In: ICCAD, 2010, pp. 190-196.

Liu, J.W.S. "Real-Time System". Prentice Hall, 1°t edition, 2000, 456p.

Liu, S.; Jantsch, A.; Lu, Z. "Parallel probing: Dynamic and constant time setup procedure
in circuit switching NoC". In: DATE, 2012, pp. 1289-1294.

Liu, S.; Su, M.; Wu, R.; Li, L. "Exclusive Memory Scheduling for Multimedia MPSoC". In:
HPCC_EUC, 2013, pp. 2022-2026.

Liu, W.; Wang, X; Xu, J.; Zhang, W.; Ye, Y.; Wu, X.; Nikdast, M.; Wang, Z. "On-chip sensor
networks for soft-r tolerant real-time multiprocessor systems-on-chip". ACM Journal on
Emerging Technologies in Computing Systems, vol. 10-2, Mar. 2014, 20p.

Liu, S.; Jantsch A.; Lu Z. "Parallel probe based dynamic connection setup in TDM NoCs".
In: DATE, 2014, pp. 1-6.

Liu, S.; Jantsch, A; Lu, Z. "MultiCS: Circuit switched NoC with multiple sub-networks and
sub-channels". Journal of Systems Architecture, vol. 61-9, Oct. 2015, pp. 423-434.

Liu, S.; Lu, Z.; Jantsch, A. "Highway in TDM NoCs. In Proceedings of the International
Symposium on Networks on Chip". In: NOCS, 2015, 8p.

Loubet, N. et al. "Stacked nanosheet gate-all-around transistor to enable scaling beyond
FinFET". In: VLSIT, 2017, pp. 230-31.

Lusala, A.; Legat, J-D. "Combining SDM-BASED Circuit Switching with Packet Switching in
a NoC for Real-Time Application". In: ISCAS, 2011, pp. 2505-2508.

Lusala, A.; Legat, J-D. "A hybrid NoC combining SDM-TDM based circuit-switching with
packet-switching for real-time applications". In: NEWCAS, 2012, pp. 17-20.

Ma, R.; Hui, Z.; Jantsch, A. "A packet-switched interconnect for many-core systems with
BE and RT service". In: DATE, 2015, pp. 980-983.

Madalozzo, G.; Duenha, L; Azevedo, R.; Moraes, F. G. "Scalability evaluation in many-
core systems due to the memory organization" In: ICECS, 2016, pp. 396-399.

Mangano, D.; Strano, G. "Enabling Dynamic and Programmable QoS in SoCs". In: NoCArc,
2010, pp. 17-22.

Marwedel, P.; Bacivarov, |.; Lee, C.; Teich, J.; Thiele, L.; Xu, Q.; Kouveli, G; Ha, S.; Huang,
L. "Mapping of applications to MPSoCs". In: CODES+ISSS, 2011, pp. 109-118.

Martins, A.; Ruaro, M.; Santana, A.; Moraes, F. G. "Distributed Run-time Energy
Management for Many-Core Systems Running Real-Time Applications". Journal of Low
Power Electronics, v. 13-3, Sep. 2017, pp. 402-418.

[MAR17b]

[MAT10a]

[MAT10b]

[MAT14]

[MELOS5]

[MIC11]

[MIC13]

[MIC17]

[MOL10]

[MOL10]

[MOL12]

[MORO04]

[MOT11]

[MOT12]

[MUN15]

142

Martins, A.; Ruaro, M.; Santana, A.; Moraes, F. G. "Run-time Energy Management Under
Real-Time Constraints in MPSoCs". In: ISCAS, 2017, pp. 2589-2592.

Matos, D.; Concatto, C.; Kologeski, A.; Carro, L.; Kastensmidt, F.; Susin, A.; Kreutz, M.
"Monitor-Adapter Coupling for NoC Performance Tuning". In: SAMOS, 2010, pp. 193-
199.

Matos, D.; Carro, L.; Susin, A. "Associating packets of heterogeneous cores using a
synchronizer wrapper for NoCs". In: ISCAS, 2010, pp. 4177-4180.

Matos, D.; Kreutz, M.; Reinbrecht, C.; Carro, L.; Susin, A. "Adaptive multiple switching
strategy toward an ideal NoC". In: ISCAS, 2014, pp. 1014-1017.

Mello, A.; Tedesco, L.; Calazans, N.; Moraes, F. G. "Virtual Channels in Networks on Chip:
Implementation and Evaluation on Hermes NoC". In: SBCCI, 2005, pp. 178-183.

Michelogiannakis, G.; Becker, D.U.; Dally, W.J. "Evaluating Elastic Buffer and Wormhole
Flow Control". IEEE Transactions on Computers, vol. 60-6, Jun. 2011, pp. 896-903.

Michelogiannakis, G.; Dally, W. "Elastic Buffer Flow Control for On-Chip Networks". /EEE
Transactions on Computers, vol. 62-2, Feb. 2013, pp. 295-309.

Micheli, G. De; Benini, L. "Networks on Chips: 15 Years Later". Computer, vol. 50-5, May
2017, pp. 10-11.

Moller, L.; Jesus, H.; Moraes, F. G.; Indrusiak, L. S.; Hollstein, T.; Glesner, M. "Graphical
interface for debugging RTL Networks-on-Chip". In: BEC, 2010, pp. 181-184.

Molnos, A.; Ambrose, J.A.; Nelson, A.; Stefan, R.; Cotofana, S.; Goossens, K. "A
composable, energy-managed, real-time MPSOC platform". In: OPTIM, 2010, pp. 870-
876.

Molnos, A.; Nejad, A. B.; Nguyen, B. T.; Cotofana, S.; Goossens, K. "Decoupled inter- and
intra-application scheduling for composable and robust embedded MPSoC platforms".
In: SCOPES, 2012, pp. 13-21.

Moraes, F.; Calazans, N.; Mello, A.; Méller, L.; Ost, L. "Hermes: an Infrastructure for Low
Area Overhead Packet-switching Networks on Chip". Integration, the VLSI Journal, vol.
38-1, 2004, pp. 69-93.

Motakis, A.; Kornaros, G.; Coppola, Marcello. "Dynamic Resource Management in
Modern Multicore SoCs by Exposing NoC Services". In: ReCoSoC, 2011, pp. 1-7.

Motruk, B.; Diemer, J.; Buchty, R.; Ernst, R.; Berekovic, M. "IDAMC: A Many-Core
Platform with Run-Time Monitoring for Mixed-Criticality". In: HASE, 2012, pp. 24-31.

Munk, P.; Saballus, B.; Richling, J.; Heiss, H. "Position Paper: Real-Time Task Migration
on Many-Core Processors". In: ARCS, 2015, 4p.

[MUR14]

[NEI12]

[NOW13]

[OLI11]

[OUY10]

[PAL12]

[PAR14]

[PASO8]

[PAT12]

[PRA11]

[QUA16]

[RAN15]

[ROS14]

[RUA14a]

[RUA14b]

143

Murillo, L. G.; Wawroschek, S.; Castrillon, J.; Leupers, R.; Ascheid, G. "Automatic
detection of concurrency bugs through event ordering constraints". In: DATE, 2014, 6p.

Neishaburi, M. H.; Zilic, Z. "An enhanced debug-aware network interface for Network-
on-Chip". In: ISQED, 2012, pp. 709-716.

Nowotsch, J.; Paulitsch, M. "Quality of service capabilities for hard real-time applications
on multi-core processors". In: RTNS, 2013, pp. 151-160.

Oliva, Y.; Pelcat, M.; Nezan, J.-F.; Prevotet, J.-C.; Aridhi, S. "Building a RTOS for MPSoC
dataflow programming". In: SoC, 2011, pp. 143-146.

Ouyang, j.; Xie, Y. "LOFT: A High-Performance Network-on-Chip Providing Quality-of-
Service Support". In: MICRO, 2010, pp. 409-420.

Palumbo, F.; Pani, D.; Congiu, A.; Raffo, L. "Concurrent hybrid switching for massively
parallel systems-on-chip: the CYBER architecture". In: CF, 2012, pp. 173-182.

Park, S. "Task-1/0 Co-scheduling for Pfair Real-Time Scheduler in Embedded Multi-core
Systems". In: EUC, 2014, pp. 46-51.

Pasricha, S.; Dutt, N. "On-Chip Communication Architectures System on Chip
Interconnect". Elsevier, 2008, 522p.

Paterna, F.; Acquaviva, A.; Caprara, A.; Papariello, F.; Desoli, G.; Benini, L. "Variability-
Aware Task Allocation for Energy-Efficient Quality of Service Provisioning in Embedded
Streaming Multimedia Applications". IEEE Transactions on Computers, vol. 61-7, Jul.
2012, pp. 939-953.

Prada-Rojas, C.; Marangozova-Martin, V.; Méhaut, J; Santana, M. "A Generic
Component-Based Approach to MPSoC Observation". In: EUC, 2011, pp. 261-267.

Quan, W.; Pimentel, A. D. "A Hierarchical Run-time Adaptive Resource Allocation
Framework for Large-scale MPSoC Systems". Design Automation for Embedded Systems,
vol. 20-4, Dec. 2016, pp. 311-339.

Ranieri, J.; Vincenzi, A.; Chebira, A.; Atienza, D.; Vetterli, M., "Near-optimal thermal
monitoring framework for many-core systems on chip". IEEE Transactions on Computer,
vol. 64-11, Nov. 2015, pp. 3197-3209.

Rosvall, K.; Sander, I. "A constraint-based design space exploration framework for real-
time applications on MPSoCs". In: DATE, 2014, pp. 1-6.

Ruaro, M.; Carara, E. A.; Moraes, F. G. "Run-time QoS Support for MPSOC: A Processor
Centric Approach”. In: SBCCI, 2014, pp. 1-7.

Ruaro, M.; Carara, E. A. Moraes, F. G. "Tool-Set for NoC-Based MPSoC Debugging - a
Protocol View Perspective". In: ISCAS, 2014, pp. 2531-2534.

[RUA15a]

[RUA15b]

[RUA163a]

[RUA16Db]

[RUA16C]

[RUA17a]

[RUA17b]

[RUA18]

[SAIO8]

[SAI10]

[SAL11]

[SAL14]

[SAM14]

[SAN15]

144

Ruaro, M.; Carara, E. A.; Moraes, F. G. "Run-time Adaptive Circuit Switching and Flow
Priority in NoC-Based MPSoCs". IEEE Transactions on VLSI, vol. 23-6, Jun. 2015, pp. 1077-
1088.

Ruaro, M.; Madalozzo, G.; Moraes, F. G. "A Hierarchical LST-Based Task Scheduler for
NoC-Based MPSoCs with Slack-Time Monitoring Support". In: ICECS, 2015, pp. 308-311.

Ruaro, M.; Moraes, F. G. "Dynamic Real-Time Scheduler for Large-Scale MPSoCs". In:
GLSVLSI, 2016, pp. 341-346.

Ruaro, M.; Lazzarotto, F.; Marcon, C.; Moraes, F. G. "DMNI: A Specialized Network
Interface for NoC-based MPSoCs". In: ISCAS, 2016, pp. 1202-1205.

Ruaro, M.; Rubin, F.; Chamorra, H.; Amory, A. M.; Moraes, F. G. "A Data Extraction and
Debugging Framework for Large-Scale MPSoCs". In: ICECS, 2016, pp. 616-619.

Ruaro, M.; Medina, H. M.; Moraes, F. G. "SDN-Based Circuit-Switching for Many-Cores".
In: ISVLSI, 2017, pp. 385-390.

Ruaro, M.; Moraes, F. G. "Demystifying the Cost of Task Migration in Distributed
Memory Many-Core Systems". In: ISCAS, 2017, 4p.

Ruaro, M.; Medina, H.; Moraes, F. G. "Software-Defined Networking Architecture for
NoC-based Many-Cores". In: ISCAS, 2018, 4p.

Saint-Jean, N.; Benoit, P.; Sassatelli, G.; Torres, L.; Robert, M. "MPI-Based Adaptive Task
Migration Support on the HS-Scale System". In: ISVLSI, 2008, pp. 105-110.

Said, M. B.; Loukil, K.; Ben Amor, N.; Abid, M.; Diguet, J.P. "A timing constraints Control
technique for embedded real time systems". In: DTIS, 2010, 6p.

Salah, Y.; Tourki, R. "Design and FPGA Implementation of a QoS Router for NoC". In:
NGNS, 2011, pp. 84-89.

Salami, B.; Baharani, M.; Noori, H. "Proactive Task Migration with a Self-Adjusting
Migration Threshold for Dynamic Thermal Management of Multi-Core Processors". The
Journal of Supercomputing, vol. 68-3, Mar. 2014, pp. 1068-1087.

Samman, F. A. "Run-time connection-oriented guaranteed-bandwidth network-on-chip
with extra multicast communication service". Microprocessors and Microsystems, vol.
38-2, Mar. 2014, pp. 170-181.

Sandoval-Arechiga, R.; Vazquez-Avila, J. L.; Parra-Michel, R.; Flores-Troncoso, J.; Ibarra-
Delgado, S. "Shifting the Network-on-Chip Paradigm towards a Software Defined
Network Architecture". In: CSCI, 2015, pp. 869-870.

[SAN16]

[SAP14]

[SAR15]

[SCI16]

[SEI14]

[SHAO9]

[SHA12]

[SHA14]

[SHA17]

[SHEO5]

[SIN13a]

[SIN13b]

[STA11]

[STE12a]

[STE12b]

145

Sandoval-Arechiga, R.; Parra-Michel, R.; Vazquez-Avila, J. L.; Flores-Troncoso, J.; Ibarra-
Delgado, S. "Software Defined Networks-on-Chip for multi/many-core systems: A
performance evaluation". In: ANCS, 2016, pp. 129-130.

Saponara, S.; Bacchillone, T.; Petri, E.; Fanucci, L.; Locatelli, R.; Coppola, M. "Design of a
NoC Interface Macrocell with Hardware Support of Advanced Networking
Functionalities". IEEE Transactions on Computers, vol. 63-3, Mar. 2014, pp. 609-621.

Sarma, S.; Dutt, N.; Gupta, P.; Nicolau, A.; Venkatasubramanian, N. "Cyberphysical-
system-on-chip (CPSOC): A self-aware MPSOC paradigm with cross-layer virtual sensing
and actuation". In: DATE, 2015, pp. 625-628.

Scionti, A.; Mazumdar, S.; Portero, A. "Software defined Network-on-Chip for scalable
CMPs". In: HPCS, 2016, pp. 112-115.

Seitanidis, |.; Psarras, A.; Dimitrakopoulos, G.; Nicopoulos, C. "ElastiStore: An elastic
buffer architecture for Network-on-Chip routers". In: DATE, 2014, 6p.

Salehie, M.; Tahvildari, L. "Self-adaptive software: Landscape and research challenges".
ACM Transactions on Autonomous and Adaptive Systems, vol. 4-2, May 2009, 42p.

Shah, H.; Raabe, A.; Knoll, A. "Bounding WCET of applications using SDRAM with Priority
Based Budget Scheduling in MPSoCs". In: DATE, 2012, pp. 665-670.

Shafique, M.; Garg, S.; Henkel, J.; Marculescu, D. "The EDA challenges in the dark silicon
era". In: DAC, 2014, 6p.

Shafique, M.; Garg, S. "Computing in the Dark Silicon Era: Current Trends and Research
Challenges" IEEE Design & Test, vol. 34-2, Apr. 2017, pp. 8-23.

Sherwani, N. "Algorithms for VLSI Physical Design Automation". Springer, 2005, 3rd
edition, 572p.

Singh, A.; Das, A. Kumar, A. "Energy optimization by exploiting execution slacks in
streaming applications on Multiprocessor Systems". In: DAC, 2013, pp. 1-7.

Singh, A.K.; Shafique, M.; Kumar, A.; Henkel, J. "Mapping on multi/many-core systems:
Survey of current and emerging trends". In: DAC, 2013, pp. 1-10.

Stan, A.; Valachi, A.; Barleanu, A. "The design of a run-time monitoring structure for
aMPSoC". In: ICSTCC, 2011, pp. 1-4.

Stefan, R.; Molnos, A.; Ambrose, A.; Goossens, K. "ATDM NoC supporting QoS, multicast,
and fast connection set-up". In: DATE, 2012, pp. 1283-1288.

Stefan, R.; Nejad, A.; Goossens, K. Online allocation for contention-free-routing NoCs.
In: INA-OCMC, 2012, pp. 13-16.

[SWA12]

[TAF11]

[THE13]

[TIL13]

[TUV13]

[WAN10]

[WAN12]

[WAN14]

[WEN12]

[WIN11]

[WIS11]

[WOLO0S]

[YAO14]

[YOO13]

[YUO9]

146

Swaminathan, K.; Lakshminarayanan, G.; Seok-Bum Ko. "High Speed Generic Network
Interface for Network on Chip Using Ping Pong Buffers". In: ISED, 2012, pp. 72-76.

Tafesse, B.; Raina, A.; Suseela, J.; Muthukumar, V. "Efficient Scheduling Algorithms for
MpSoC Systems". In: ITNG, 2011, pp. 683-688.

Theodoropoulos,D.; Pratikakis,P.; Pnevmatikatos,D. "Efficient run-time support for
embedded MPSoCs". In: SAMOS, 2013, pp. 164-171.

Tilera Corporation. "Tile-GX Processor Family". Available at:
http://www.tilera.com/products/processors/TILE-Gx_Family, November 2013.

Tuveri, G.; Secchi, S.; Meloni, P.; Raffo, L.; Cannella, E. "A run-time adaptive H.264 video-
decoding MPSoC platform". In: DASIP, 2013, pp. 149-156.

Wang, Y.; Wang, Yu; Xu, J.; Yang, H. "Performance Evaluation of On-Chip Sensor Network
(SENoC) in MPSoC". In: ICGCS, 2010, pp. 323-327.

Wang, C.; Bagherzadeh, N. "Design and Evaluation of a High Throughput QoS-Aware and
Congestion-Aware Router Architecture for Network-on-Chip". In: Euromicro, 2012, pp.
457-464.

Wang, H.; Singh, R.; Schulte, M. J.; Kim, N. S. "Memory scheduling towards high-
throughput cooperative heterogeneous computing". In: PACT, 2014, pp. 331-342.

Wen, C. N.; Chou, S. H.; Chen, C. C.; Chen, T. F. "NUDA: A Non-Uniform Debugging
Architecture and Nonintrusive Race Detection for Many-Core Systems". [EEE
Transactions on Computers, vol. 61-2, Feb. 2012, pp. 199-212.

Winter, M. and Fettweis, G. "Guaranteed Service Virtual Channel Allocation in NoCs for
Run-Time Task Scheduling". In: DATE, 2011, pp. 1-6.

Wissem, C.; Attia, B.; Noureddine, A.; Zitouni, A.; Tourki, R. "A Quality of Service Network
on Chip based on a New Priority Arbitration Mechanism". In: ICM, 2011, pp. 1-6.

Wolf, W.; Jerraya, A.; Martin, G. "Multiprocessor SystemFonFChip (MPSoC) Technology".
IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, vol. 27-
10, Sep. 2008, pp. 1701-1713.

Yao Z.; Sui, X.; Xu, T.; Ma, J.; Fang, J.; Mckee, S.A.; Fu, B.; Bao, Y. "QBLESS: A case for QoS-
aware bufferless NoCs". In: IWQoS, 2014, pp. 93-98.

Yoon, J. Y.; Concer, N.; Petracca, M.; Carloni, L.P. "Virtual Channels and Multiple Physical
Networks: Two Alternatives to Improve NoC Performance". IEEE Transactions Computer-
Aided Design of Integrated Circuits and Systems, vol. 32-12, Dec. 2013, pp. 1906-1919.

Yu, Y.; Ren, S.; Hu, X.S. "A Metric for Judicious Relaxation of Timing Constraints in Soft
Real-Time Systems". In: RTAS, 2009, pp. 163-172.

[YU14]

[YUN13]

[ZHA11]

[ZHA14]

147

Yu; H.; Syed, R.; Ha, Y. "Thermal-aware frequency scaling for adaptive workloads on
heterogeneous MPSoCs". In: DATE, 2014, pp. 1-6.

Yun, B.; Shin, K. G.; Wang, S. "Thermal-Aware Scheduling of Critical Applications Using
Job Migration and Power-Gating on Multi-core Chips". In: TRUSTCOM, 2011, pp. 1083-
1090.

Zhao, J.; Madduri, S.; Vadlamani, R.; Burleson, W.; Tessier, R. "A Dedicated Monitoring
Infrastructure for Multicore Processors", IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 19-6, Jun. 2011, pp. 1011-1022.

Zhang, N.; Gu, H.; Yang, Y.; Fan, D. "QBNoC: QoS-aware bufferless NoC architecture".
Microelectronics Journal, vol. 45-6, Jun. 2014, pp. 751-758.

148

APPENDIX A — PUBLICATIONS OF THE AUTHOR

Table 20 presents the set of publications (sorted by date) held since the beginning of the PhD.

The description column links the paper to this Thesis section, when applicable, or to the main theme

of the publication.

Table 20 — Author's publications.

Publication

Description

Tool-Set for NoC-Based MPSoC Debugging - a Protocol View Perspective
Ruaro, Marcelo; Carara, Everton Alceu; Moraes, Fernando Gehm.
In: ISCAS, 2014.

Section 3.5

Run-time QoS Support for MPSoC: A Processor Centric Approach
Ruaro, Marcelo; Carara, Everton Alceu; Moraes, Fernando Gehm.
In: SBCCI, 2014.

Section 1.1

A Hierarchical LST-Based Task Scheduler for NoC-Based MPSoCs with Slack-
Time Monitoring Support

Ruaro, Marcelo; Madalozzo, Guilherme; Moraes, Fernando Gehm.

In: ICECS, 2015.

Section 4.3

Run-time Adaptive Circuit Switching and Flow Priority in NoC-Based MPSoCs
Ruaro, Marcelo; Carara, Everton Alceu; Moraes, Fernando Gehm.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, v. 23, p. 1077-
1088, 2015.

Section 1.1

Hierarchical Energy Monitoring for Many-Core Systems
Martins, André; Ruaro, Marcelo; Moraes, Fernando Gehm.
In: ICECS, 2015.

Section 4.4

A Data Extraction and Debugging Framework for Large-Scale MPSoCs

Ruaro, Marcelo; Rubin, Felipe; Chamorra, Henrique; Amory, Alexandre de Morais
Moraes, Fernando Gehm.

In: ICECS, 2016.

Section 3.5

Dynamic Real-Time Scheduler for Large-Scale MPSoCs
Ruaro, Marcelo; Moraes, Fernando Gehm.
In: GLSVLSI, 2016.

Section 4.3

DMNI: A Specialized Network Interface for NoC-based MPSoCs
Ruaro, Marcelo; Lazzarotto, Felipe; Marcon, César; Moraes, Fernando Gehm. In:
ISCAS, 2016.

Section 3.4

System Management Recovery Protocol for MPSoCs

Fochi, Vinicius; Caimi, Luciano; Ruaro, Marcelo; Wachter, Eduardo; Moraes,
Fernando Gehm.

In: SOCC, 2017.

High-level protocol to support fault
tolerance at the system management
level.

10

Demystifying the Cost of Task Migration in Distributed Memory Many-Core
Systems

Ruaro, Marcelo; Moraes, Fernando Gehm.

In: ISCAS, 2017.

Section 4.2

11

SDN-Based Circuit-Switching for Many-Cores.
Ruaro, Marcelo; Medina, Henrique; Moraes, Fernando Gehm.
In: ISVLSI, 2017.

Section 5.3

12

Distributed Run-time Energy Management for Many-Core Systems Running
Real-Time Applications.

Martins, André; Ruaro, Marcelo; Santana, Anderson; Moraes, Fernando Gehm
Journal of Low Power Electronics, v.13, Sep. 2017, p. 402-418.

Section 4.4

13

Software-Defined Networking Architecture for NoC-based Many-Cores
Ruaro, Marcelo; Medina, Henrique; Moraes, Fernando Gehm.
In: ISCAS, 2018, early accepted.

Section 5.2

14

Self-Adaptive QoS Management at Communication and Computation Levels for
Many-Core SoCs

Ruaro, Marcelo; Jantsch, Axel; Moraes, Fernando Gehm.

Submitted to ACM Transactions on Embedded Computing Systems (TECS), 2018

Chapter 6

marista PUCRS

Pontificia Universidade Catdlica do Rio Grande do Sul
Pré-Reitoria de Graduacao
Av. Ipiranga, 6681 - Prédio 1 - 32. andar
Porto Alegre - RS - Brasil
Fone: (51) 3320-3500 - Fax: (51) 3339-1564
E-mail: prograd@pucrs.br
Site: www.pucrs.br

