

FACULDADE DE INFORMÁTICA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

MARCELO RUARO

SELF-ADAPTIVE QOS AT COMMUNICATION AND COMPUTATION LEVELS FOR
MANY-CORE SYSTEM-ON-CHIP

Porto Alegre

2018

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL
FACULDADE DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

SELF-ADAPTIVE QOS AT COMMUNICATION
AND COMPUTATION LEVELS FOR

MANY-CORE SYSTEM-ON-CHIP

MARCELO RUARO

Thesis submitted to the Pontifícia
Universidade Católica do Rio Grande do
Sul in partial fulfillment of the
requirements for the degree of PhD in
Computer Science.

Advisor: Prof. Dr. Fernando Gehm Moraes

Porto Alegre
2018

Marcelo Ruaro

Self-adaptive QoS at communication and computation

levels for many-core system-on-chip

This Thesis has been submitted in partial fulfillment

of the requirements for the degree of Doctor of

Computer Science, of the Graduate Program in

Computer Science, School of Computer Science of

the Pontifícia Universidade Católica do Rio Grande

do Sul.

Sanctioned on March 16th, 2018.

COMMITTEE MEMBERS:

Prof. Dr. Mateus Beck Rutzig (UFSM)

Prof. Dr. Rodolfo Jardim de Azevedo (UNICAMP)

Prof. Dr. Ney Laert Vilar Calazans (PPGCC/PUCRS)

Prof. Dr. Fernando Gehm Moraes (PPGCC/PUCRS - Advisor)

AGRADECIMENTOS

Cada Tese possui uma longa história por trás. São em média quatro anos de muitas

experiências acadêmicas e de vida. Durante esses anos de Doutorado aprendi muito. Conheci novas

tecnologias, aprimorei meu pensamento cientìfico, li, escrevi e publiquei artigos. Além disso, tive o

provilégio de fazer minha primeira viagem internacional para apresentar um artigo, e logo para uma

cidade fantástica que sempre sonhava em visitar, que foi a cidade do Cairo no Egito (sim, conheci as

pirâmides é claro). Além disso, tive a felicidade de ser contemplado com uma bolsa saundíche, o

que me proporcionou a inesquecível experiência de viver por seis meses em Viena na Áustria.

Nos bastidores dessas experiências estão as pessoas importantes das nossas vidas. A minha

família: a namorada e meu amor Fabiana, meus pais Silvio e Marinês, minha irmã Thaís e meu tio

Nelson. Eles são a base de tudo. Não há palavras para descrever o constante apoio que me deram,

me trazendo tranquilidade para enfrentar os momentos difíceis e sempre compartilhando comigo

os momentos de fecilidade.

Uma Tese sem orientador não existe, e tive a sorte de ter um excelente comigo. O professor

Moraes não fez só o papel de orientar, ele foi um acreditador, que me recebeu lá no início do

mestrado, e acreditou no meu sonho. Lembro claramente nossa primeira conversa, ele pediu quais

eram meus objetivos, e respondi: “quero ser Doutor em Ciência da Computação”. Suponho que

tenha sido uma frase difícil para ele acreditar, visto minha total inexperiência no assunto e o longo

caminho para ser percorrido. Aquele meu objetivo se tornou realidade, e sou muito grato a ele por

me orientar e me aguentar nesses seis anos, me proporcionando diversas oportunidades que me

fizeram crescer muito.

Um doutorado também é feito de cooperações, por isso, meu agradecimento especial aos

colegas e amigos do GAPH: mestrandos, doutorandos e aos bolsistas ICs, que cooperaram em

diversos artigos, discussões de pesquisa e em momentos de descontração.

Um ambiente acadêmico é fundamental, aqui deixo meu agradecimento notório a PUCRS, que

possui no prédio 32 (Faculdade de Informática) um ambiente igual ou supeior a muitos laboratórios

internacionais, com pessoas qualificadas e fornecendo equipamentos, conforto e segurança. O

campus como um todo proporciona um bem-estar que incentiva trabalhos de melhor qualidade. Os

funcionários, em especial os da secretaria do PPGCC, sempre atenciosos em resolver questões o

mais rápido possível.

Por fim, agradeço a CAPES pelo suporte financeiro através da bolsa de doutorado pleno.

AUTOADAPTAÇÃO DE QOS NOS NÍVEIS DE COMUNICAÇÃO E COMPUTAÇÃO PARA
SISTEMAS MULTI-NÚCLEOS INTRA-CHIP

RESUMO

Sistemas multi-núcleos intra-chip são o estado-da-arte em termos de poder computacional,
alcançando de dúzias a milhares de elementos de processamentos (PE) em um único circuito
integrado. Sistemas multi-núcleos de propósito geral assumem uma admissão dinâmica de
aplicações, onde o conjunto de aplicações não é conhecido em tempo de projeto e as aplicações
podem iniciar sua execução a qualquer momento. Algumas aplicações podem ter requisitos de
tempo real, requisitando níveis de qualidade de serviço (QoS) do sistema. Devido ao alto grau de
imprevisibilidade do uso dos recursos e o grande número de componentes para se gerenciar,
propriedades autoadaptativas tornam-se fundamentais para dar suporte a QoS em tempo de
execução. A literatura fornece diversas propostas de QoS autoadaptativo, focado em recursos de
comunicação (ex., redes intra-chip), ou computação (ex., CPU). Contudo, para fornecer um suporte
de QoS completo, é fundamental uma autoconsciência abrangente dos recursos do sistema, e
assumir técnicas adaptativas que permitem agir em ambos os níveis de comunicação e computação
para atender os requisitos das aplicações. Para suprir essas demandas, essa Tese propõe uma
infraestrutura e técnicas de gerenciamento de QoS autoadaptativo, cobrindo ambos os níveis de
computação e comunicação. No nível de computação, a infraestrutura para QoS consiste em um
escalonador dinâmico de tarefas de tempo real e um protocolo de migração de tarefas de baixo
custo. Estas técnicas fornecem QoS de computação, devido ao gerenciamento da utilização e
alocação da CPU. A novidade do escalonador de tarefas é o suporte a requisitos de tempo real
dinâmicos, o que gera mais flexibilidade para as tarefas em explorar a CPU de acordo com uma carga
de trabalho variável. A novidade do protocolo de migração de tarefas é o baixo custo no tempo de
execução comparado a trabalhos do estado-da-arte. No nível de comunicação, a técnica proposta é
um chaveamento por circuito (CS) baseado em redes definidas por software (SDN). O paradigma
SDN para NoCs é uma inovação desta Tese, e é alcançado através de uma arquitetura genérica de
software e hardware. Para QoS de comunicação, SDN é usado para definir caminhos CS em tempo
de execução. Essas infraestruturas de QoS são gerenciadas de uma forma integrada por um
gerenciamento de QoS autoadaptativo, o qual segue o paradigma ODA (Observar, Decidir, Agir),
implementando um laço fechado de adaptações em tempo de execução. O gerenciamento de QoS
é autoconsciente dos recursos do sistema e das aplicações em execução, e pode decidir por
adaptações no nível de computação ou comunicação, baseado em notificações das tarefas,
monitoramento do ambiente, e monitoramento de atendimento de QoS. A autoadaptação decide
reativamente assim como proativamente. Uma técnica de aprendizagem do perfil das aplicações é
proposta para traçar o comportamento das tarefas de tempo real, possibilitando ações proativas.
Resultados gerais mostram que o gerenciamento de QoS autoadaptativo proposto pode restaurar
os níveis de QoS para as aplicações com um baixo custo no tempo de execução das aplicações. Uma
avaliação abrangente, assumindo diversos benchmarks mostra que, mesmo sob diversas
interferências de QoS nos níveis de computação e comunicação, o tempo de execução das
aplicações é restaurado próximo ao cenário ótimo, como 99,5% das violações de deadlines
mitigadas.

Palavras-Chave: Sistemas intra Chip; Multi-núcleos; Redes intra Chip; Qualidade de Serviço;
Autoadaptação.

SELF-ADAPTIVE QOS AT COMMUNICATION AND COMPUTATION LEVELS FOR

MANY-CORE SYSTEM-ON-CHIP

ABSTRACT

Many-core systems-on-chip are the state-of-the-art in processing power, reaching from a dozen to
thousands of processing elements (PE) in a single integrated circuit. General purpose many-cores
assume a dynamic application admission, where the application set is unknown at design-time and
applications may start their execution at any moment, inducing interference between them. Some
applications may have real-time constraints to fulfill, requiring levels of quality of service (QoS) from
the system. Due to the high degree of resource’s utilization unpredictability and the number of
components to manage, self-adaptive properties become fundamental to support QoS at run-time.
The literature provides several self-adaptive QoS proposals, targeting either communication (e.g.,
Network-on-Chip) or computation resources (e.g., CPU). However, to offer a complete QoS support,
it is fundamental to provide a comprehensive self-awareness of the system’s resources, assuming
adaptive techniques enabling to act simultaneously at the communication and computation levels
to meet the applications' constraints. To cope with these requirements, this Thesis proposes a self-
adaptive QoS infrastructure and management techniques, covering both the computation and
communication levels. At the computation level, the QoS-driven infrastructure comprises a dynamic
real-time task scheduler and a low overhead task migration protocol. These techniques ensure
computation QoS by managing the CPU utilization and allocation. The novelty of the task scheduler
is the support for dynamic real-time constraints, which leverage more flexibility to tasks to explore
the CPU according to a variable workload. The novelty of the task migration protocol is its low
execution time overhead compared to the state-of-the-art. At the communication level, the
proposed technique is a Circuit-Switching (CS) approach based on the Software Defined Networking
(SDN) paradigm. The SDN paradigm for NoCs is an innovation of this Thesis and is achieved through
a generic software and hardware architecture. For communication QoS, SDN is used to define CS
paths at run-time. A self-adaptive QoS management following the ODA (Observe Decide Act)
paradigm controls these QoS-driven infrastructures in an integrated way, implementing a closed
loop for run-time adaptations. The QoS management is self-aware of the system and running
applications and can decide to take adaptations at computation or communication levels based on
the task feedbacks, environment monitoring, and QoS fulfillment monitoring. The self-adaptation
decides reactively as well as proactively. An online application profile learning technique is proposed
to trace the behavior of the RT tasks and enabling the proactive actions. Results show that the
proposed self-adaptive QoS management can restore the QoS level for the applications with a low
overhead over the applications execution time. A broad evaluation, using known benchmarks,
shows that even under severe QoS disturbances at computation and communication levels, the
execution time of the application is restored near to the optimal scenario, mitigating 99.5% of
deadline misses.

Keywords: System-on-Chip; Many-Core; Network-on-Chip; Quality-of-Service; Self-adaptation.

LIST OF FIGURES

Figure 1 – (a) Network-on-Chip as interconnection infrastructure for a Many-core SoC. (b) a 5-port

router overview [MOR04]. .. 25

Figure 2 – Example of the components of a many-core Processing Element (PE), divided into

computation resources (local memory, CPU, and DMA) and communication resources (router, wires,

and NI). ... 27

Figure 3 - Cross-layer virtual sensing and actuation at different layers of Cyber-Physical SoC (an

example of many-core) [SAR15][DUT16b]. .. 30

Figure 4 – Self-adaptiveness hierarchical organization [SHA09]. .. 30

Figure 5 – ODA loop providing self-awareness and enabling self-adaptation [HOF13]. 31

Figure 6 – Overview of distributed resource management proposed by [FAR10] to dynamically

control the temperature on many-cores. .. 32

Figure 7 – Kramer et al. [KRA12] hierarchical and hybrid monitoring. .. 33

Figure 8 – Baseline many-core architecture. (a) system architecture [RUA17a]; (b) PE architecture.

 ... 35

Figure 9 - Application Model Example [RUA17a]. .. 36

Figure 10 – Kernel Hierarchy of HeMPS. .. 37

Figure 11 – Application Admission Protocol. ... 37

Figure 12 – Memory paging organization [RUA17b]. ... 38

Figure 13 – Packet and message structures [RUA17b]. .. 39

Figure 14 - Inter-PE communication flow [RUA16b]... 39

Figure 15 – Many-core and PE organizations [RUA16b]. .. 40

Figure 16 – DMNI architecture [RUA16b]. ... 42

Figure 17 – Send_packet() function, executed in the kernel of the processor [RUA16b]. 42

Figure 18 - FSM controlling the send module [RUA16b] . .. 43

Figure 19 - Packet transmission by accessing two memory blocks [RUA16b]. 43

Figure 20 - FSM controlling the receive module [RUA16b]. ... 44

Figure 21 – Read_packet() function, executed in the kernel of the processor [RUA16b].............. 44

Figure 22 – FSM controlling the arbiter module [RUA16b]. ... 45

Figure 23 - Memory access scheduling [RUA16b]. ... 46

Figure 24 – DMNI and DMA+NI latency comparison [RUA16b]. ... 46

Figure 25 - Overview of the proposed debugging data extraction method [RUA16c]. 49

Figure 26 - Sequence diagram for database management [RUA16c]. .. 51

Figure 27 – Main View: throughput and communication event views [RUA16c]. 52

Figure 28 - Mapping view for a scenario with 4 applications, each one represented by a different

color [RUA16c]. ... 53

Figure 29 - CPU Utilization View [RUA16c]... 54

Figure 30 - Case-study debugging an MPSoC with 256 PEs [RUA16c]. .. 54

Figure 31 – Overview of the proposed task migration protocol [RUA17b]. 62

Figure 32 – Representation of the rules involved in the inter-task synchronization [RUA17b]. 64

Figure 33 – Task migration latency according to the task data size, 32-bit NoC channels, 1 hop

between PEs [RUA17b]. .. 65

Figure 34 – MJPEG frame decoding latency for simultaneous task migrations [RUA17b]. 66

Figure 35 – Task migration applied for Quality of Service at MJPEG application [RUA17b]. 66

Figure 36 – Scheduler support for self-adaptation at run-time based on the ODA paradigm [RUA16a].

 ... 68

Figure 37 - RT constraints model [RUA16a]. .. 69

Figure 38 - Example of a task code with run-time RT configuration. It calls the RealTime syscall twice

to configure the constraints (in lines 3 and 10) [RUA16a]. ... 70

Figure 39 – Hierarchical scheduler organization [RUA16a]. ... 71

Figure 40 - (a) layered decision flow. (b) RT_adaptation heuristic [RUA16a].................................. 72

Figure 41 – (a) SPEs utilization using RT tasks. (b) Monitored SPs slack-time. Each square with a

number represents an SPE [RUA16a]. ... 74

Figure 42 – STM overhead for SPEs in a 12x12 many-core [RUA16a]. .. 75

Figure 43 - Change in the CPU time utilization during an RT adaptation (rectangles represent the CPU

utilization) [RUA16a]. .. 76

Figure 44 - Task iteration latency change during an RT adaptation. (a) t1 latency. (b) t2 latency

[RUA16a]... 76

Figure 45 - Change of the CPU time occupation during an RT adaptation with task migration. Task t2

start to execute in SPE 2 when the RT constraint changes [RUA16a]. .. 77

Figure 46 - t1(a) and t2(b) task iteration latency during an RT adaptation with task migration

[RUA16a]... 77

Figure 47 - (a) DTW application latency over disturbing. (b) DTW execution time over disturbing

[RUA16a]... 79

Figure 48 – (left) MPEG iteration latency; (right) DTW iteration latency [RUA15b]. 80

Figure 49 - A 6x6 instance of the reference many-core system, with four 3x3 clusters [MAR17b]. 81

Figure 50 – Energy profiling of the PE for all voltage supplies. The total energy (y-axis) corresponds

to the energy spent in a monitoring window of 1 ms [MAR17b]. ... 82

Figure 51 - Task graph of an RT application (a) and its scheduling (b) [MAR17b]. 83

Figure 52 - Code snippet for the last RT task of an application [MAR17b]. 83

Figure 53 – RT-REM Heuristic [MAR17b]. .. 84

Figure 54 - Execution time and energy of an RT application with and without REM for 100 iterations

[MAR17b].. 85

Figure 55 – Cluster regions which can tune the number of VC [HEI12]. ... 92

Figure 56 – SDN organization, and its adoption for NoC design [RUA17a]. 94

Figure 57 – (a) Layered view of the SDN paradigm in a many-core organization; (b) SDN-based

communication [RUA17a]. .. 95

Figure 58 – Integration of the SDN in a standard NoC-based many-core architecture. (a) Standard

NoC-based many-core architecture, (b) proposed SDN-based architecture (c) integration of the SDN

in a NoC-based manycore architecture. .. 96

Figure 59 - (a) EB architecture [MIC11][MIC13], (b) SDN router architecture, with 5 EB

[RUA17a][RUA18]. .. 97

Figure 60 – PE architecture and configuration process of an SR [RUA17a]. 98

Figure 61 – Proposed many-core, with the SDN-based CS. .. 100

Figure 62 - SEARCH-PATH algorithm [RUA17a]. ... 102

Figure 63 - CS management protocol [RUA17a]. .. 103

Figure 64 - Communicating task graph of the applications’ benchmarks [RUA17a]. 105

Figure 65 – (a) success rate for 20x20:6 CS subnets; (b) SEARCH-PATH execution time for 20x20:6

[RUA17a]... 106

Figure 66 - SEARCH-PATH average execution time for the worst scenarios [RUA17a]. 107

Figure 67 - CS-Controller memory requirement [RUA17a]. .. 108

Figure 68 - MPEG-2 start time and frame decoding latency [RUA17a]. .. 108

Figure 69 – (a) PE architecture including the Parallel-Probing router. (b) Example of PP algorithm

[LIU12]. ... 109

Figure 70 – Search path latency for PP (a) and SDN (b) - 8x8-4x4:8 system size. 111

Figure 71 – (a) Example of a task communicating graph of an application. (b) Overview of the

application profile learning method. ... 118

Figure 72 – Organization of the self-adaptive QoS management. .. 118

Figure 73 – Self-adaptation QoS management flow, executed by the manager processors. 119

Figure 74 - Comparison with [RUA15a] and [RUA16a]: (a) scenario setup; (b) iteration latency of

[RUA15a]; (c) iteration latency of [RUA16a]; (d) iteration latency of the proposed work. 123

Figure 75 - (a) DTW and MPEG-2 application task graphs. (b) Overhead evaluation of the application

profile learning. ... 124

Figure 76 - Evaluation of the self-adaptive QoS management over the MPEG-2. (a) App. mapping.

(b) No adaptation, deadline miss = 20.3%. (c) Only reactive adaptations, deadline miss = 2.3%. (d)

Proactive and reactive adaptations, deadline miss = 0.5%. (e) APL for MPEG-2 at 15ms of simulation.

 ... 125

Figure 77 - Benchmark evaluation: (a) execution Time; (b) deadline miss rate. 127

Figure 78 – QoS provisioning trade-off: (a) Deadline miss rate; (b) Latency miss rate. 128

LIST OF TABLES

Table 1 – Area comparison related to NI implementations [RUA16b]. ... 47

Table 2 - Related works in NoC and many-core debugging [RUA16c]. .. 48

Table 3 - Results related to simulation time and data storage, for 100 ms of simulation (DB:

database) [RUA16c]. ... 55

Table 4 – Works focused on task scheduling and QoS. .. 56

Table 5 – Works focused in WCET and QoS. .. 58

Table 6 – Works focused on temperature, power and energy reduction and QoS. 58

Table 7 – Works focused on memory access scheduling QoS... 59

Table 8 - Comparison of task migration works [RUA17b]. .. 62

Table 9 - Comparison of the migration latency against the state-of-the-art works [RUA17b]......... 67

Table 10 - Proposed scheduler classification [RUA16a]. ... 71

Table 11 – Violations of hyper-periods and energy savings of RTREM compared to the baseline

system [MAR17b]. ... 85

Table 12 – State-of-the-art about works addressing communication QoS. 88

Table 13 – Comparison CS NoC designs. .. 90

Table 14 – Related works on SDN architectures for Many-Core SoCs. ... 95

Table 15 - Related works on CS NoCs, with search path proposals [RUA17a]. 99

Table 16 - Results for simulations with 100% of RT applications and a 100% of system occupation

[RUA17a]... 105

Table 17 – PP and SDN evaluation, path length and connection time, for 6x6 to 16x16 many-core

systems. Success rate: (min hops + non min hops)/N# paths. .. 110

Table 18 - Gate number (comb. and seq. gates), area (m2) and estimated power (W) for the CS

and PS routers (28 nm SOI technology @1GHz, using the Cadence ASIC design flow) [RUA17a]. . 112

Table 19 – Related Works on Self-Adaptive QoS for Many-Cores... 116

Table 20 – Author's publications. .. 148

LIST OF ACRONYMS

AM Adaptation Manager

API Application Programming Interface

APL Application Profile Learning

ASIC Application Specific Integrated Circuits

ASIP Application Specific Instruction Set Processors

BE Best Effort

CS Circuit Switching

CTP Communicating Task Pair

DB Database

DEL Data Extraction Layer

DMA Direct Memory Access

DMNI Direct Memory Network Interface

DTW Dynamic Time Warping

DVFS Dynamic Voltage and Frequency Scaling

EB Elastic Buffer

EDF Earliest Deadline First

FIFO First in First Out

FPGA Field Programmable Gate Array

FSM Finite State Machine

GCC GNU Compiler Collection

GPP General Purpose Processor

GPU Graphical Processor Unit

GS Guaranteed Service

GT Guaranteed Throughput

GUI Graphical User Interface

IDMA Identifier Division Multiplexing Access

IP Intellectual Property

IRT Input Reservation Table

ISA Instruction Set Architecture

ITRS International Technology Roadmap for Semiconductors

LST Least Slack Time

LUT LookUp Table

NoC Network-on-Chip

MJPEG Motion-Joint Photographic Experts Group

MMR Memory Mapped Register

MMU Memory Management Unit

MoC Model of Computation

MPI Messaging Passing Interface

MPE Manager Processing Element

MPEG Moving Picture Experts Group

MPN Multiple Physical Network

MPSoC Multi-Processor System on Chip

NI Network Interface

ODA Observe Decide Act

ORT Output Reservation Table

OS Operating System

PE Processing Element

PP Parallel Probe

PS Packet Switching

QoS Quality-of-Service

RR Round-Robin

RT Real Time

RTL Register Transfer Level

RTOS Real Time Operating System

RT-REM Real Time Run-time Energy Management

SC Cluster Scheduler

SDN Software-defined Networking

SDM Spatial Division Multiplexing

SL Local Scheduler

SMPE System Manager Processing Element

SoC System-on-Chip

SOI Silicon on Insulator

SPE Slave Processing Element

SQL Structured Query Language

STM Slack Time Monitoring

TDM Time Division Multiplexing

TLM Transaction-level Modeling

VC Virtual Channel

VCS Virtual Circuit Switching

VHDL VHSIC Hardware Description Language

WCET Worst Case Execution Time

TABLE OF CONTENTS

1 INTRODUCTION ...19

1.1 HYPOTHESIS DEVELOPMENT ..21

1.2 THESIS GOALS ...23

1.3 THESIS CONTRIBUTIONS ...24

1.4 THESIS ORGANIZATION ..24

2 ASSUMPTIONS AND GENERAL CONCEPTS ...25

2.1 NETWORK-ON-CHIP ..25

2.2 MANY-CORE ...26

2.2.1 Computation and Communication Resources ...26

2.3 REAL-TIME APPLICATIONS ..27

2.4 QUALITY OF SERVICE FOR PERFORMANCE ...28

2.5 SELF-AWARENESS AND SELF-ADAPTATION...29

2.6 ODA PARADIGM..30

2.7 DISTRIBUTED RESOURCE MANAGEMENT ..31

2.8 MONITORING ..32

2.9 FINAL REMARKS ...34

3 REFERENCE MANY-CORE ARCHITECTURE ..35

3.1 APPLICATIONS' MODEL ..36

3.2 KERNEL (DISTRIBUTED OPERATING SYSTEM) ...36

3.2.1 Application’s Admission Management ...37

3.2.2 Inter-task Communication Management ..38

3.2.3 Multitasking Management ..38

3.3 COMMUNICATION BETWEEN PES ...38

3.4 DIRECT MEMORY NETWORK INTERFACE (DMNI) ...40

3.4.1 DMNI Design ...41

3.4.2 DMNI Results...46

3.5 DEBUGGING ..47

3.5.1 Data Extraction Model ...49

3.5.2 Graphical Debugging Toolset ...51

3.5.3 Results ..54

4 QOS AT THE COMPUTATION LEVEL ...56

4.1 STATE-OF-THE-ART ..56

4.1.1 State-of-the-Art Discussion ..59

4.2 TASK MIGRATION ...60

4.2.1 Proposed Task Migration ...62

4.2.2 Results ..64

4.3 DYNAMICAL REAL-TIME TASK SCHEDULER ..68

4.3.1 Real-Time Task Model ...69

4.3.2 Proposed Task Scheduler ...71

4.3.3 Results ..74

4.4 ENERGY MANAGEMENT COMBINED TO REAL-TIME TASK SCHEDULING ...80

4.4.1 DVFS Design ..80

4.4.2 Power/Energy Characterization and Energy Profiling ...81

4.4.3 Energy Monitoring and Estimation ...82

4.4.4 Application’s Slack-time Monitoring...82

4.4.5 Run-time Energy Management (RT-REM) ...83

4.4.6 Results ..84

4.5 CONCLUSIONS ...86

5 QOS AT THE COMMUNICATION LEVEL...87

5.1 STATE-OF-THE-ART ..87

5.1.1 State-of-the-Art Discussion ..92

5.2 SOFTWARE-DEFINED NETWORKING (SDN) FOR NOC-BASED MANY-CORES ..93

5.2.1 SDN Architecture Overview ..95

5.2.2 Hardware Architecture – SDN Router ...96

5.2.3 Software Architecture ..98

5.3 CIRCUIT-SWITCHING (CS) BASED ON THE SOFTWARE-DEFINED NETWORKING (SDN) PARADIGM ..99

5.3.1 CS-Controller ... 100

5.3.2 SEARCH-PATH Algorithm ... 101

5.3.3 RELEASE-PATH Algorithm .. 102

5.3.4 CS Management Protocol .. 103

5.4 RESULTS .. 104

5.4.1 Performance Evaluation .. 104

5.4.2 Success Rate .. 105

5.4.3 Path Length ... 107

5.4.4 SEARCH-PATH Execution Time.. 107

5.4.5 Memory Footprint ... 108

5.4.6 Application’s Latency Evaluation .. 108

5.4.7 Comparison of the SDN-based CS to a Hardware-based Approach .. 109

5.4.8 Area and Power of the SDN Router .. 111

5.5 CONCLUSIONS ... 112

6 SELF-ADAPTIVE QOS MANAGEMENT AT COMPUTATION AND COMMUNICATION LEVEL 114

6.1 INTRODUCTION .. 114

6.2 STATE-OF-THE-ART .. 115

6.2.1 Related Works in Application Profile Extraction .. 115

6.2.2 Related Works on Self-Adaptation for QoS ... 115

6.3 APPLICATION PROFILE LEARNING (APL) ... 117

6.4 SELF-ADAPTIVE QOS MANAGEMENT .. 118

6.4.1 QUICK-CHECKUP Algorithms .. 120

6.4.2 COMPLETE-CHECKUP Algorithm ... 121

6.5 RESULTS .. 123

6.5.1 Comparison with Single Objective QoS Managers... 123

6.5.2 Application Profile Learning Overhead ... 124

6.5.3 Self-Adaptive QoS Adaptation Evaluation ... 124

6.5.4 Self-Adaptive QoS Trade-off ... 127

6.6 CONCLUSIONS ... 128

7 CONCLUSION ... 129

7.1 QOS AT THE COMPUTATION LEVEL ... 129

7.2 QOS AT THE COMMUNICATION LEVEL ... 130

7.3 QOS AT BOTH COMPUTATION AND COMMUNICATION LEVELS ... 130

7.4 SIDE CONTRIBUTIONS .. 131

7.5 HYPOTHESIS SUPPORT ... 131

7.6 FUTURE WORKS... 132

7.6.1 Memory Access QoS .. 132

7.6.2 A distributed implementation of SDN Controllers ... 132

7.6.3 Comprehensiveness is the key word ... 133

REFERENCES .. 134

APPENDIX A – PUBLICATIONS OF THE AUTHOR ... 148

19

1 INTRODUCTION

The high performance demand of the embedded market, combined with the technological

advances in the semiconductor field, led to the development of many-core SoCs (System on Chip)

[WOL08]. Many-cores contain a set of PEs (Processing Elements) interconnected through a NoC

(Network on Chip) [HEM00][BEN02]. Many-cores are the state-of-the-art regarding computing

power, due the high density of processing cores, and the support of parallel communications among

them due the presence of the NoC as the communication infrastructure.

Current commercial many-cores can reach tens to hundreds of PEs [TIL13][CLE13][INT13].

Intel recently announced the Xeon Processor E5-2699 [INT16], a many-core with 22 physical cores.

There is an estimation of ITRS [ITR15] that the number of PEs will reach more than 1,000 after 2025.

This prediction is possible due to recent advances in the transistors’ fabrication [IBM17a][LOU17]

and new computation demands that push forward the edges of technology, like virtual reality, new

smartphone applications, robotic, internet of things, and cloud computing. Therefore, it is

noticeable the potential that many-core systems have, and its relevance for research.

NoC-based many-cores are a concept that emerged in the beginning of the last decade

[HEM00][BEN02] and evolved through several contributions in academic and industrial works. The

research field in many-cores is broad, due to its high complexity, multidisciplinary, and its tight

design requirements. Verification and debugging, programming models, fault tolerance, security,

power reduction, energy reduction, aging, and QoS (Quality of Service) are examples of current

research areas in the NoC-based many-core SoCs.

General purpose many-core are systems where the application set is unknown at design-time,

as in office and entertainment markets, smartphones, and other devices were applications can be

installed and removed during the system’s life. The system’s developer does not know which

application will be inserted into the system. Thus, the system must be smart to detect the

application profile and to dynamically allocate its resources according to the applications’ real-time

constraints, providing QoS.

While to provide QoS for systems with few PEs (less than a dozen) seems to be solved in the

research community, QoS for large-scale many-cores is an open research topic. This fact occurs due

to challenges as management bottlenecks, communication and computation unpredictability, and

process variability [SHA14]. Unpredictability is a relevant factor in adopting self-adaptive

techniques. As the number of components increase, the number of events and transactions

triggered by several protocols, management, monitoring, and data exchange also increases, making

the process of predict them at design-time impracticable. In such systems, task mapping is only the

first step to provide QoS, and a self-adaptive property is indispensable to increase the system’s

resilience regarding performance. Process variability can also affect QoS. For example, a core that

is not working at the same frequency of other cores may induce deadline misses if a real-time task

with tight constraints is allocated in this core. A self-adaptive technique can detect the QoS

20

violations and migrate the task to another PE. Such challenges require a comprehensive and self-

adaptive QoS support to meet, at run-time, the different QoS levels of the user’s applications. To be

comprehensive, the QoS support must cover both the communication and computation resources.

To be self-adaptive, the system itself must be able to detect QoS violations and act on the resources

to restore the QoS levels. Related works have self-adaptive proposals covering only one level of QoS.

The goal of this Thesis is to propose a self-adaptation QoS infrastructure and management for many-

core systems, covering both the computation and communication levels. The proposed design can

be divided into infrastructure and management scopes. The infrastructure scope concerns the

design of techniques that enable the system’s resources to be reconfigured at run-time. The

management scope concerns high-level management, implemented in software, that is self-aware

of the resources and applications and can trigger self-adaptations to ensure QoS. The next two

paragraphs detail the contributions of this Thesis, covering the infrastructure scope at both

computation and communication level.

At the computation level, the proposal consists of a low overhead task migration protocol and

a dynamic real-time task scheduler. The task scheduler was designed based on the LST (Least Slack

Time) algorithm and adopts a hierarchical organization, with the concepts of local schedulers, and

a global scheduler. The local scheduler runs at each core allocating CPU resources according to the

tasks’ RT constraints (period, deadline, execution time). The global scheduler is included as part of

the self-adaptive QoS management at computation level, which can decide to migrate a task at run-

time if the local scheduler cannot ensure QoS. The main feature and novelty of the proposed task

scheduler is to support at run-time the change of the task’s RT constraints (period, deadline,

execution time), providing high flexibility to the task by enabling fine-tuning of its RT workload. The

task migration protocol is based on task recreation. It has a low overhead due to the choice of not

copy the messages produced by the migrated task. The produced messages data remain in the

original PE and are delivered on-demand. The task migration works to ensure computation QoS by

acting in the CPU allocation control. The task scheduler works to ensure computation QoS by acting

in the CPU utilization control.

At the communication level, the proposed design is a Circuit-Switching (CS) approach

managed through the Software-Defined Networking (SDN) paradigm. CS is supported by

configurable SDN routers organized in a Multiple Physical Network (MPN). The SDN routers have a

small area footprint, implementing Elastic Buffers as storage input units, and supporting the SDN

paradigm. The SDN paradigm removes the control logic from the router level (hardware), assigning

it to a high-level management called CS-Controller (software). The CS-Controller abstracts to the

rest of the system the CS management, it is responsible for searching CS paths and configuring the

SDN routers, defining the network paths. The SDN-based CS works to ensure communication QoS

by acting in the NoC allocation control.

Those techniques compose the QoS-driven infrastructure at computation and communication

levels. The other contribution of this Thesis comprises a distributed self-adaptive QoS management.

21

The QoS management is implemented by high-level software algorithms and heuristics that run

distributed at the manager PEs.

The QoS management is based on the ODA (observe, decide, act) paradigm. The Observation

is supported by three classes of monitoring messages sent from the PEs running real-time tasks to

manager PEs. The manager PE is self-aware about the status of applications and system’s resources

and executes heuristics that can decide to reconfigure QoS when necessary. The Decisions can be

reactive as well as proactive, and fire orders to start the last phase of the ODA paradigm, the

actuation. The Actuation is handled by the QoS-driven infrastructure and concerns the physical

reconfiguration of the system’s resources at both the communication, by setting up a new circuit-

switching connection between two communicating tasks, and computation level, by migrating a task

to another core and scheduling a task according it requested RT constraints.

To support proactive decisions, this Thesis proposes an online application profile learning

technique, which continually learns about the communication and computation profile of each real-

time task at run-time.

The overall results show that the proposed self-adaptive QoS management can restore the

QoS level for the applications with a low overhead over the applications execution time. A set of

experimental results are presented throughout this Thesis. A broad evaluation, assuming several

known applications benchmarks (presented in Chapter 6) shows that even under several

disturbances of QoS at both computation and communication levels, the execution time of the

application is restored near to the optimal scenario, with 99.5% of deadline misses mitigated.

1.1 Hypothesis Development

The Author’s research starting at the end of his Master course and finishing at the beginning

of the Ph.D. explored QoS separately at communication [RUA15a] and computation [RUA14a] levels.

In Ruaro et al. [RUA14a] the Author proposed a run-time adaptation focusing on QoS

computation, through task migration and a Round-Robin task scheduler with priorities. The key idea

was to act individually at PE scope. A monitoring infrastructure (implemented in hardware and

software) observes the latency and throughput of RT tasks. When a QoS violation is detected, the

QoS management tries to remove BE tasks that can be running together the affected RT tasks. If

there is no best-effort (BE) task to migrate, the heuristic searches for other RT tasks to migrate. The

goal is to mitigate the interferences of the affected task, without migrating it directly, but acting

indirectly, removing tasks sharing the same PE. If task migration is impossible due to the lack of

available resources, the option is to increase the scheduling priority of the affected task. Results

showed that the throughput of the affected task is restored after detecting interferences, with a

small reaction time due to the QoS management. A limitation of this work is the absence of a real-

time task scheduler, which can improve the CPU utilization and ensure more accurate QoS

fulfillment, by handling specific RT constraints, like period, deadline, and execution time.

22

In Ruaro et al. [RUA15a] the Author proposed and evaluated a run-time adaptation focused

on QoS of communication, through dynamic flow priorities and CS establishment. This research was

based on the communication infrastructure proposed by [CAR11][CAR14], a network with

duplicated physical channels, support to CS, and two levels of flow priorities (high and low). The

network has two channels: channel 0 and channel 1. Channel 1 is used by low priority flows, and

channel 0 is used by high priority flows, or by one CS connection, which allocates all channel 0 for a

given CS path. Based on the same latency and throughput monitoring infrastructure of [RUA14a],

the goal was to dynamically adapt the priority for a given flow according to the number of QoS

violations. If this action is not enough to fulfill the communication QoS, the management tries to

establish a CS connection. While this technique is effective to provide QoS in low congested

scenarios, its main limitation is the low path diversity provided by the duplicated physical channel

network. When a CS is established, all the communication flows using channel 0 are switched

automatically to channel 1, increasing the congestion on channel 1.

The mentioned research motivated the Author to perform a broad literature review

(presented in Chapters 4, 5, and 6) to study self-adaptive techniques covering QoS at both

computation and communication levels. The related works pointed to a significant gap: "a many-

core architecture that provides QoS in a comprehensive, scalable, and self-adaptive design,

addressing the management and reconfiguration of resources at the computation and

communication level." This gap was increasingly confirmed with the advances in the state-of-the-

art review, leading to a central question of how to design such kind of support. This study enabled

to propose the Thesis hypothesis:

A comprehensive, scalable, and self-adaptive QoS support can be achieved by

proposing reconfigurable QoS techniques covering both computation and

communication levels, and by a management that is based on the self-adaptive

model [SHA09][DUT16a][DUT16b][ANZ17], the ODA paradigm [HOF13], and the

distributed resource management [KRA12][CAS13].

The self-adaptive model [SHA09][DUT16a][DUT16b][ANZ17] provides the necessary

properties to implement subsystems to reach self-adaptiveness gradually. The ODA paradigm

[HOF13] comprises the steps involved in the execution of the QoS management, presenting an

organized structure to develop the components for self-adaptation comprehensively. The

distributed resource management [KRA12][CAS13] provides scalability to the system by adopting a

cluster-based organization.

 Other related works contributed to the formulation of the Thesis hypothesis. At the

communication level, the choice to adopts CS, implemented in a multiple physical network (MPN)

design, was motivated by the previous conclusions in literature [EJA13][YOO13][LIU15], which

compare MPN with SDM and TDM designs. Authors [EJA13][LIU15] compare MPN to SDM. With an

equivalent bandwidth implementation, MPN increase area in O(n), while SDM increases O(n²). The

path delay increases with the number of sub-channels (SDM) in O(n), while stays unchangeable for

23

MPN. Yoon et al. [YOO13] evaluate virtual channels (TDM) with MPN, concluding that MPNs have a

simpler implementation, lower area, and simpler floorplan.

The high flexibility that the SDN paradigm shown for computer networks [KIR13] motivated

the proposition of an SDN-based organization at the SoC context, and its use to manage CS

connections. Thus, the proposition of an on-chip CS-Controller, as a module that abstracts the CS

connection from other system components, enables to create a generic and modular CS support,

fitted to the high-level management required in self-adaptive systems.

At the computation level, the proposition of task migration and the task scheduler was

motivated by gaps found during the state-of-the-art review. Regarding the task scheduler, the main

observed gap was the lack of support for the run-time modification of the RT constraints, instead of

using static constraints during the whole application execution. This dynamic workload behavior is

present in, e.g., multimedia applications [JAV14]. Regarding task migration, the main challenge was

to propose a low overhead protocol, since the QoS management could require many task migrations

simultaneously, and related works have limitations in task migration techniques for distributed

memory systems.

1.2 Thesis Goals

The general goal of this Thesis is to propose a self-adaptive QoS support for a many-core

system that covers QoS at computation and communication levels. This general goal is divided into

specific goals:

1. A low-overhead task migration protocol for distributed memory many-cores;

2. A dynamic RT task scheduler;

3. An SDN-based Circuit-Switching;

4. A high-level self-adaptive QoS management at computation and communication levels

To enable the high-level self-adaptive QoS management, an infrastructure needs to be

addressed, covering computation and communication. Goal 1 concerns the proposition and

implementation of the infrastructure to support task migration. Goal 2 concerns the proposition

and implementation of the infrastructure to support an RT task scheduler. Goals 1 and 2 cover the

QoS-driven techniques at the computational level. Goal 3 concerns the proposition and

implementation to support CS, covering QoS-driven technique at the communication level. Finally,

goal 4 is related to the proposition of the self-adaptive QoS management over these proposals.

24

1.3 Thesis Contributions

The main contributions of this Thesis are the following items:

1. Low overhead task migration protocol [RUA17b] (Chapter 4);

2. Dynamic RT task scheduler [RUA15b][RUA16a] (Chapter 4);

3. SDN-based CS management [RUA17a][RUA18] (Chapter 5);

4. Self-adaptive QoS management at computation and communication level (Chapter 6).

 Side contributions arising from the work required to achieve the specific goals include:

5. DMNI: a specialized network interface for many-cores [RUA16b] (Chapter 2);

6. A many-core debugging framework [RUA14b][RUA16c] (Chapter 2).

The side contributions are not directly linked to QoS, but provide mechanisms to improve the

general system performance, which is the case of the Direct Memory Network Interface (DMNI),

and supported the Author throughout the validation processes to debug the many-core platform,

which is the case of the debugging framework.

1.4 Thesis Organization

This Thesis proposal is organized as follows. Chapter 2 presents assumptions and general

concepts in such a way to make the Thesis self-contained. Chapters 3 details architectural features

of the reference many-core system. Additionally, this Chapter presents the contribution DMNI and

the debugging framework, which are part of the baseline many-core system. Chapter 4 presents

contributions of Thesis at the context of the QoS infrastructure at computation level. Chapters 5

presents contributions of Thesis at the context of the QoS infrastructure at communication level.

Chapter 6 presents contributions comprising the self-adaptive QoS management. Chapter 4, 5 and

6 have a similar organization, with a state-of-the-art, description of QoS techniques, and

conclusions. Chapter 7 presents the general conclusion of the Thesis and directions for future work.

Appendix A presents the Author’s publications during the Ph.D. period.

25

2 ASSUMPTIONS AND GENERAL CONCEPTS

This Chapter presents assumptions and general concepts used in this Thesis. Other specific

concepts are detailed in the next Chapters.

2.1 Network-on-Chip

A Network-on-Chip (NoC) [HEM00][BEN02] is an on-chip communication infrastructure to

interconnect Intellectual Property (IPs) components – Figure 1(a), decoupling the computation from

communication. The NoC structure contains routers and wires. Routers have the function to

implement the network control logic, as depicted in Figure 1(b), which defines the path for each

exchanged packet between a source and target PE, routing a packet from an input port to an output

port. Wires have the function to interconnect routers, and to connect each router with its local IP.

R

IP

R

IP

R

IP

R

IP

R

IP

R

IP

R

IP

R

IP

R

IP

(a) Many-Core interconnected by a NoC (b) NoC s router overview

IP – Intelectual Property
R - Router

Figure 1 – (a) Network-on-Chip as interconnection infrastructure for a Many-core SoC. (b) a 5-port router
overview [MOR04].

Due to the benefits of NoCs compared to bus-based connections, as parallelism and scalability,

NoCs has been evolved from university prototypes to full commercial synthesis flows [MIC17]. For

example, IBM’s TrueNorth neuromorphic chip has 5.4-billion transistors, where 4,096 cores are

connected through a NoC, aiming the design of a brain-inspired computer [IBM17b].

The main features of a NoC are the topology, routing algorithm, flow control, and switching

mode [MOR04]. Regarding topology, currently stand-out the 2D-mesh topology, due to its easy

implementation and scalability. Regarding the routing algorithm, turn-based algorithms (as XY,

West-first, Negative-first) are mostly used, due to its simplicity, low area footprint, minimum path

length, and deadlock-free features. A common example of flow control method is the synchronous

credit-based, which provides lower latency compared to handshake methods. The most used

switching mode is the wormhole packet-switching (PS) since it requires the smaller amount of space

in buffers and avoids the reservation of network resources for a large amount of time.

This Thesis adopts the Hermes [MOR04] PS router, with a 2D mesh topology, XY routing

algorithm, credit-based flow control and wormhole packet-switching.

26

2.2 Many-Core

Many-core [WOL08] is a system-on-chip composed of several PEs, interconnected by a NoC.

The term many-core is related to the presence of several PE units in a single chip. Another definition

for many-core is MPSoC (Multiprocessor System-on-chip), the switching from the label "multi" to

"many" cores/processors is due to the growing number of PEs on the same chip. However, this

nomenclature is not well defined in the literature, because works mix the terms MPSoC, multi-core,

and many-core. This work adopts the many-core term, assuming systems from a dozen to hundreds

of cores.

Many-cores can be classified into two large groups: heterogeneous and homogeneous.

• Homogeneous many-cores: divided into asymmetric and symmetric architectures. In

symmetric many-cores, all PEs have the same architecture and are replicated over the

system. Example of asymmetric homogeneous many-core is the big.LITTLE

architecture, developed by ARM [ARM17][GUI17]. In this architecture, the system has

two PE types, "LITTLE" PEs are designed for power efficiency while "big" PEs are

designed for performance. The workload distribution between "LITLE" and "big" PEs is

managed at run-time according to the applications’ profile and the system budgets.

• Heterogeneous many-cores: different PEs architectures are assumed, as GPPs, GPUs,

DSPs, and ASIPs.

Heterogeneous many-cores target specific applications, because their PEs (or some of them)

are specialized to a given application profile. On the other hand, homogeneous many-cores

(symmetric or asymmetric) target general-purpose applications, such as multimedia and office

applications’ classes, and use the replication of processing components to increase its processing

power. Homogeneous many-cores have advantages over heterogeneous due to the possibility to

achieve better load balancing, fault tolerance, time-to-market (due to the redundancy of

components), and the support of easy task migration protocols. Currently, the industry already

designs homogeneous many-core from a dozen to thousands of cores. Some examples are the 72

PEs chip from Tilera [TIL13], and KiloCore composed of 1000 PEs [BOH17].

While this Thesis adopts a symmetric homogeneous many-core as the baseline architecture,

this does not limit (after some modifications) the applicability of the techniques herein proposed

for heterogeneous or asymmetric many-cores. The homogeneous many-core is only used as a proof-

of-concept.

2.2.1 Computation and Communication Resources

Resources of a many-core system can be divided into computation and communication parts.

Figure 2 presents an example of a PE architecture, its components, and the division between the

computation and communication resources. Computation resources are related to data processing,

collecting and manipulating data inputs to create a meaningful information that is available as data

27

output. Distributed memory many-core systems have their computational resources located inside

the PE instance, composed basically by a CPU and a local memory. A shared memory system has its

computational resources decoupled from the PE instance. They assume an off-chip memory or a

memory instantiated as on-chip IPs. Hybrid memory systems assume a shared memory and a small

local memory (cache memory) within the PE, which is used to speed-up instruction access and to

reduce the communication load [MAD16]. Besides the CPU and memory, a Direct Memory Access

(DMA) or Direct Memory Network Interface (DMNI) [RUA16b] also can be adopted to improve

memory transactions.
L

o
c
a

l
M

e
m

o
ry CPU

NI

R

DMA

Computation resources

Communication
resources

Figure 2 – Example of the components of a many-core Processing Element (PE), divided into computation
resources (local memory, CPU, and DMA) and communication resources (router, wires, and NI).

Communication resources are concerned in transmitting the inputs and outputs of the data

processing system. The communication resources correspond to the NoC resources, which can be

assisted by a Network Interface (NI) to make the interface between the PE and the NoC. The NI

decouples computation from communication, receiving data from local memory and converting to

the NoC packet format, and converting NoC packets in inputs for the computational resource.

This Thesis proposes QoS techniques that reconfigure computation and communication

resources. The computational resources comprise the CPU utilization (RT task scheduler) and CPU

allocation (task migration) at run-time. At the communication level, this Thesis proposes multiples

physical networks-on-chip (MPN), and the run-time management of the MPN resources.

2.3 Real-Time Applications

Real-time applications [LIU00] have timing constraints to finishes its jobs. A job can be defined

as a segment of computation and/or communication that applications need to execute, for example,

a loop iteration, the resolution of a mathematical equation, sorting an array, etc. Real-time

applications can be characterized according to their job execution frequency: as periodic, aperiodic,

sporadic. Periodic applications request to execute their jobs continually in fixed periods of time.

Aperiodic applications request to execute their jobs continually in unfixed periods, but with a

minimal interval of job release. Sporadic applications do not have a continual execution of their jobs,

28

they can request to execute they at any time, and there is not a guaranteed that the application will

request to execute again, i.e., there is not a minimum time between jobs release.

Another classification of RT applications concerns deadlines: hard RT and soft RT. A deadline

is a temporal constraint that indicates when the system must finish the execution of the application

job. Hard RT applications do not tolerate any deadline miss, they are safe-critical applications and

are commonly implemented in dedicated parts of the system. An example of hard RT application is

a self-driving car algorithm, which can not miss deadlines to take its decisions, with the consequence

of injury a human life. On the other hand, soft RT application tolerates some deadline misses. The

number of tolerated deadline misses is not a constant, it depends on the application characteristics.

Nevertheless, the system must work to avoid all deadline miss. Business and multimedia

applications are well known applications from this class. Consider an audio-video decoder running

on a smartphone. The system must work to deliver 30 frames per second to the end user, but if the

frame rate drops for a brief moment to 29 or 28, this may not have critical impact to the end user.

Applications that do not have any deadline to finish their jobs are classified as Best Effort (BE).

The system explores the idle time of the CPU or the slack time of RT application to execute those

applications.

This Thesis assumes BE and soft RT applications with periodic, aperiodic and sporadic job

releases. The support for the three job classes is due to the possibility of tasks to change its period,

deadline and execution time at run-time.

2.4 Quality of Service for Performance

Quality of service (QoS) for performance is a system capability to dedicate some of its resource

to fulfill the RT constraints of the applications [CAR11].

The term QoS originated from telecommunication networks, where QoS constraints are

related to the communication throughput and latency of interconnections. For many-core systems,

the concepts of QoS assumes a broader definition, covering not only communication but also

computation resources. The communication QoS is focused in the allocation of communication

resources (routers and wires), according to the application communication characteristics, as

latency, throughput, jitter, and the application communication graph between its tasks. Flow

priorities and circuit-switching are the most adopted techniques to perform this support. The

computation QoS for many-cores is focused on allocating CPU resources. This support is mainly

enabled by RT task schedulers, task mapping, and task migration techniques. Chapter 4 and 5 detail

the most adopted techniques in literature to provide QoS at computation and communication

levels.

Beside QoS for performance, there are also other QoS targets: examples are the QoS support

against system failures (fault tolerance) and data integrity (security). This Thesis focuses on QoS for

performance, addressing QoS at the communication and computation levels.

29

2.5 Self-awareness and Self-adaptation

Challenges that the design of the next many-core generations must address include the

presence of hundred to thousand cores in a single chip, tightly application-specific QoS constraints,

physical budgets for power and temperature, and low energy consumption. Design-time phases are

the first steps to deal with such challenges. A large-scale system, due to its high level of

unpredictability about the resources usage, requires autonomy to be aware of its resources and be

the actor of run-time adaptation to fulfill constraints. Thus, the system must be self-aware, meaning

that it must have the autonomy to observe the status of its resources and running application,

gathering the necessary information to start a reconfiguration when necessary. While in an adaptive

system the adaptation process may be triggered from the outside, e.g., by an application

management layer or a human operator, a self-adaptive system identifies the triggering condition

and initiates the adaptation process.

Recent works address these challenges, by investigating and proposing modular self-aware

infrastructures and architectures for many-cores. The main goal is to provide a unified self-aware

design phase, which is generic, avoiding the necessity to design a new self-awareness system for

each new project [DUT17]. Models based on a closed loop have been addressed, as the one

presented in Figure 3 [SAR15][DUT16b]. This kind of self-awareness model implements the ODA

(Observe, Decide, Act) paradigm, enabling the system to be continually working toward a better

understating of its behavior. Different layers implement independent self-awareness subsystems

[DUT16b], with submodules for observation (by virtual and physical sensors), decision (adaptation

policies composed of heuristics aware of design and applications constraints) and actuation

(infrastructure support to reconfigure the hardware and the software level). A dedicated network

can be assumed to enable fast communication of management packets, avoiding interference in the

application flows [DUT16b]. One of the main advantages of this model is that each layer of the many-

core can be made self-aware and self-adaptive, as detailed in Figure 3.

A recent survey conducted by Professor Axel Jantsch (Technological University of Vienna) and

co-Authors provides a comprehensive overview related to the research status and challenges in self-

awareness for SoCs [JAN17b]. The Authors present a precise definition and review of terms such as

self-awareness, self-adaptation and other definitions required to construct such functionalities.

Figure 4 reviews the pyramidal organization related to self-x functionalities to achieve self-

adaptiveness [SHA09]. Self-optimization is related to the ability to tuning system resources to satisfy

the requirements of different applications. Self-configuration is the capability related to the

infrastructure support that enables the system to be reconfigured at run-time. At the top of the

pyramid is self-adaptiveness. This functionality is related to the system ability to decide when and

which resource to adapt to fulfill a given constraint. Other self-x properties such as healing and

protection can be supported, covering fault-tolerance and data integrity, respectively. Note that for

the system to be self-adaptive it needs to be self-aware.

30

Figure 3 - Cross-layer virtual sensing and actuation at different layers of Cyber-Physical SoC (an
example of many-core) [SAR15][DUT16b].

Figure 4 – Self-adaptiveness hierarchical organization [SHA09].

This Thesis is based on the self-x concepts to propose the self-adaptation QoS support at

communication and computation levels, detailed in Chapter 6.

2.6 ODA Paradigm

The Observe-Decide-Act (ODA) is a method to implement self-adaptation, proposed in

Hoffman et al. [HOF13] (SEEC Framework) at the SoC context, which consists in implement a closed

loop (Figure 5) of observation, decision, and actuation, enabling the system to be self-aware as well

as self-adaptive. Observation is implemented by information provided by monitors/sensors and

sporadic feedbacks that are sent to a high-level management (software). The application developer

defines goals/constraints to the application at design-time, and that must be met at run-time. The

management module reads these goals comparing them to the received monitoring information.

31

Figure 5 – ODA loop providing self-awareness and enabling self-adaptation [HOF13].

Decision is implemented by a high-level management module, which is aware on the situation

and can determine how to adapt, for example, if a given task is losing QoS, deciding on which

resource to act to restore the QoS level. Actuation is implemented by a QoS-driven infrastructure

(such as real-time task scheduler, task migration protocols, circuit-switching designs), and by

systemic protocols, which work to reconfigure the computation or/and communication resources

at run-time. The actuation is triggered in the decision phase.

The ODA paradigm enables to implement a comprehensive self-adaptive management

because it divides the subsystems by their roles, providing scalability for inserting future features,

and also helps the validation of the self-adaptive implementation.

2.7 Distributed Resource Management

The high number of resources to manage can quickly overload a single manager of a many-

core. A scalable management design method consists in dividing the management of the system in

regions. Each manager handles a cluster of PEs [CAS13][GOT16]. This organization also enables to

implement hierarchical management, as proposed by Faruque et al. [FAR10] and depicted in Figure

6. A low-level management is applied at the PE level, such as task scheduling and monitoring. The

monitored information is sent to cluster managers, which concentrate these information enabling

to have a holistic view the cluster. A third level can be inserted by assuming a global manager, which

can receive high-level information from cluster managers, providing a systemic view. The global

manager takes coarse grain decisions, like choosing which is the best cluster to receive a new

application or managing reclustering protocols that change the shape of the cluster at run-time.

This Thesis assumes a distributed resource management implemented on dedicated

managers. The management is divided into three levels, as proposed in some works of literature

[FAR10][CAS13][GOT16]. Chapter 3 provides more details related to this infrastructure.

32

Figure 6 – Overview of distributed resource management proposed by [FAR10] to dynamically control the
temperature on many-cores.

2.8 Monitoring

Monitoring means observation, i.e., the capability of the system to observe a given behavior

and to enable self-adaptation. The literature presents many monitoring proposals [KOR13].

Monitoring for thermal, power and energy management are the most explored monitoring

techniques in the literature. These techniques guide managers to balance the on-chip temperature

or voltage by monitoring such parameters directly [RAN15][ZHA11][WAN10], or indirectly, through

the monitoring of the communication frequency [FAR10], or memory accesses [GRA13]. Monitoring

for fault-tolerance and reliability has also been proposed, measuring parameters as soft error

failures, and wear-out of devices [ZHA11][LIU14a].

There are some proposals specific for QoS monitoring. In general, the QoS-driven monitoring

targets two performance parameters: (i) performance constraints; (ii) system resource availability.

QoS monitoring can be applied at the task level in hardware [STA11] or software [SAI10].

Monitoring uses as constraints data obtained by a profiling step at design-time. At run-time, the

monitored performance is compared to the constraints defined at design-time. In this context, a

common technique is to observe the communication buffers. Stan et al. [STA11] monitor the

communication buffers in the memory space. Matos et al. [MAT10a] monitor the communication

buffers to apply buffer resizing. Faruque et al. [FAR12] apply buffer resizing and includes an adaptive

route allocation algorithm. Communication buffer monitors can be implemented exclusively into

the NoC [MAT10a], or into the NI [FAR12][KOR12][MOT12].

Kornaros et al. [KOR12] propose an NI monitor that can be software programmed to serve

QoS. The proposal describes a cluster manager monitor, a hardware unit that concentrates the data

from the low-level NI monitors, and generates interrupts to a generic management system when a

predefined threshold is violated. Motruk et al. [MOT12] propose an NI monitor to collect

information about the usage of the system shared resources. Monitoring is used to achieve

composability in a shared-memory many-core by using temporal and spatial division.

There are also proposals focusing on generic monitoring infrastructures [AMB13]

[FAT11][FIO10][KRA12]. The main strategy to achieve monitoring scalability, low area overhead, and

low intrusion is to adopt a hierarchical monitoring organization [FAT11][KRA12]. Monitors can be

33

divided into hierarchical levels, each one handling different granularities of the monitored data.

Such approaches include hybrid monitors (mixed hardware/software implementation) because they

can combine the non-intrusiveness of hardware monitors (at lower levels), with the system’s view

and flexibility of the software monitors (at higher levels).

A representative work is the proposal of Kramer et al. [KRA12] that addresses a scalable

monitoring infrastructure for many-cores. The Authors describe a hybrid monitoring organized in

three levels, as presented in Figure 7(a). At the lower level, several Associative Counters Arrays

(ACAs) can be attached to different hardware or software components of a PE - Figure 7(b). The ACA

extracts system’s performance parameters, as communication rate, buffer occupancy, and the

number of instructions. ACAs send the monitored data to a Lower Level Monitoring unit (LLM). An

LLM acts as an interface between the ACAs and high-level monitoring.

Figure 7 – Kramer et al. [KRA12] hierarchical and hybrid monitoring.

An advantage of hierarchical monitoring over centralized approaches is that its organization

is easily settled with a cluster-based resource management [GOR13][GUA10][FAR10]. The lower

level monitor units can be attached to PEs, medium levels monitors can be attached to cluster

managers, and high-level monitors can be attached to a system many-core manager.

The key issue to support run-time monitoring implementations is the ability to program

monitors dynamically. Such feature can be easily achieved in software monitoring [SAI10] or can use

memory-mapped registers in hardware proposals [KOR12][AMB13][FIO10][STA11].

Another recent monitoring metric for many-cores is the task slack time monitoring. Slack time

monitoring (STM) is an important metric to enable QoS adaptation focused on computation. It can

be used together with an RT scheduler to observe the task, or CPU slack time (idle time monitoring).

STM at the task level computes the slack time based on an earlier task execution completion. The

literature shows that such approaches can be applied to energy management through DVFS

[LI13][KOT10], which can be combined with task migration [SIN13a]. Paterna et al. [PAT12] propose

an energy-efficient task allocation method considering process variation. That work mentions STM

34

for RT tasks based on a frame rate monitoring of multimedia applications, however, without

detailing the implementation.

This Thesis adopts monitoring methods targeting self-adaptive techniques: deadline miss

monitoring, latency miss monitoring, CPU slack-time monitoring, and application profile monitoring.

While the monitoring implementations are not original contributions, they are fundamental to

enable the self-adaptive techniques herein proposed.

2.9 Final remarks

 The list presented below summarizes the assumptions adopted in the current Thesis:

• NOC: Hermes PS router, with a 2D mesh topology, XY routing algorithm, credit-based flow

control and wormhole packet-switching.

• Many-core: symmetric homogeneous many-core.

• Application types: BE, and soft-RT applications with periodic, aperiodic and sporadic job release.

• QoS: target applications' performance.

• Self-adaptation: paradigm adopted to meet QoS at communication and computation levels.

• ODA: method to implement a comprehensive self-adaptive management.

• Distributed Resource Management: 3-layer structure to ensure scalability for the proposed

methods.

• Monitoring: deadline miss monitoring, latency miss monitoring, CPU slack-time monitoring, and

application profile monitoring.

35

3 REFERENCE MANY-CORE ARCHITECTURE

The HeMPS platform (http://www.inf.pucrs.br/hemps/) is the reference many-core

architecture adopted in this Thesis. HeMPS is an open-source many-core architecture framework

developed by the GAPH research group, used to implement and evaluate proposals for many-cores.

The Author of this Thesis contributed significantly to the development of the last versions of HeMPS

(since version 7.0). Figure 8(a) overviews the HeMPS architecture.

The application repository is an off-chip memory used to store the applications that will enter

in the system at run-time. The system has a set of homogeneous PEs, organized in clusters. Each

cluster has a Manager PE (MPE), dedicated to management purposes, as task mapping and

application admission control. The MPE can receive other algorithms to gather monitoring

information and to manage the system at run-time. This Thesis implements the self-adaptive

algorithms in the MPEs kernels.

M

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

M

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

M

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

M

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

M
Cluster Manager Processor
- MPE

S Slave Processor - SPE

Cluster: the cluster size is defined at design time. At runtime, the manager can borrow
resources from neighbor clusters increasing its size

L
o

c
a

l
M

e
m

o
ry

CPU

DMNI

(a) (b)

PS

Application
Repository

Figure 8 – Baseline many-core architecture. (a) system architecture [RUA17a]; (b) PE architecture.

Slave PEs (SPE), execute user’s tasks, with inter-task communication and multitasking support.

The differentiation between MPE and SPE occurs at the software level, with each one having a

different kernel (small operating system). Figure 8(b) overviews the PE’s hardware architecture. All

PEs have a dual-port scratchpad memory, a CPU, and a DMNI (Direct Memory Network Interface)

connected to PS router (an original Hermes router [MOR04]). The DMNI merges the functionalities

of the NI with a DMA module, reducing control logic and buffering, and creating a direct path

between the NoC and memory. The system can also support other SPE architectures enabling

heterogeneity. This Thesis assumes a homogeneous symmetric architecture, as stated in the

previous Chapter.

http://www.inf.pucrs.br/hemps/)

36

This Chapter contains five sections:

• Section 3.1 – describes the applications' model.

• Section 3.2 – reviews the main features of the operating system running in the processing

elements (kernel).

• Section 3.3 – explains the communication method between tasks, based on message passing.

• Section 3.4 – presents one of the side contributions of this Thesis, the Direct Memory Network

Interface (DMNI) [RUA14b].

• Section 3.5 – describes the modular verification, corresponding to the second side contribution

of this Thesis [RUA16b].

3.1 Applications' Model

Figure 9 presents an application model example. An application A is modeled as task graph:

A= {T, D}, where T= {t1, t2, ..., tn} is the task set. The set D represents the application descriptor, which

contains the communicating task pairs (CTP). The CTPs of the application presented in Figure 9 are:

tA→tB, tA→tC, tB→tD, tC→tD. A given task may be in 3 states: (i) ready, the task is ready to be executed;

(ii) waiting, the task is blocked waiting for a message delivery; (iii) running, the task is running, using

the CPU and changing its dynamic memory sections.

Task

A

Task

B

Task

C

Task

D

TaskA:
 TaskB
 TaskC
TaskB:
 TaskD
TaskC:
 TaskD

App.

Descriptor Send(&msg, TaskB)

Send(&msg, TaskC)

Receive(&msg, TaskA)

Send(&msg, TaskD)

Receive(&msg, TaskA)

Send(&msg, TaskD)

Receive(&msg, TaskB)

Receive(&msg, TaskC)

Figure 9 - Application Model Example [RUA17a].

The reference many-core system has a task scheduler supporting BE applications only. One of

the contributions of this Thesis, presented in Chapter 4, provides the RT application support by

proposing an original RT task scheduler.

3.2 Kernel (Distributed Operating System)

Figure 10 presents the kernel hierarchy of the HEMPS, implementing a distributed

management. As previously mentioned, the system has three types of kernels: SPEs and MPEs. There

is also one specific version of MPE, called SMPE (S stands from System). The SMPE implements exactly

the same functionalities of the MPE, with the addition of other functions that perform a system

management, controlling the interface with the application repository and a heuristic to assign new

applications to the clusters [CAS13].

37

SPE SPE SPE SPE

MPE SMPE

Applications Applications Applications Applications

SPE : Slave PE is a kernel dedicated to support the execution of the applications
MPE : Manager PE is a kernel dedicated to the management of an SPE cluster
SMPE : System Manager PE is a MPE kernel that also implements the interface to the
Application Repository

SPE SPE

MPE

Applications Applications

Application
Repository

Figure 10 – Kernel Hierarchy of HeMPS.

Clusters have a dynamic size, i.e., clusters can change their size at run-time if the number of

applications’ tasks is greater than the number of available cluster’s resources (local memory page

of a given PE). This capability is supported by a reclustering protocol [CAS13] implemented between

MPEs that allows to borrow resources from a cluster to another.

3.2.1 Application’s Admission Management

The kernels (SPE, MPE, SMPE) implement an application admission protocol presented in Figure

11. When an application request to execute in the system, the application repository interrupts the

SMPE. The SMPE handles the interruption retrieving the application description D and executes a

cluster mapping algorithm, which selects the appropriate cluster to receive the application (based

on the cluster’s occupation). The SMPE sends the application description D to the MPE of the selected

cluster. The MPE receives the application description, maps the tasks into SPEs and requests to the

SMPE the tasks object code. The SMPE handles such request configuring the application repository to

transfer the object tasks code to the SPEs. When an SPE receives a task code, it sends a message to

its MPE informing the successful load of the task code. The MPE receive these messages from each

SPE with the application tasks. When all tasks are loaded, the application is released by the MPE to

execute in SPEs.

App. Repository SMPE MPE SPE

Cluster
Selection

App.
Mapping

NEW APP REQUEST

APP DESCRIPTOR

OBJ CODE REQUEST

TASK ALLOCATION

TASK ALLOCATED

TASK RELEASE

OBJ CODE COPY

Figure 11 – Application Admission Protocol.

38

3.2.2 Inter-task Communication Management

The SPE supports multitasking, interruptions, context saving and provides a communicating API

for tasks by implementing two MPI-like primitives: Send and Receive. The Receive is a blocking

primitive called by the consumer tasks. The Receive generates a MESSAGE_REQUEST packet to the PE

of the producer task, which deliveries the data by sending a MESSAGE_DELIVERY packet when the

producer task calls the Send primitive. When a consumer task calls the Receive, it goes to a waiting

state until the reception of the message from the producer tasks.

Each SPE kernel has a message FIFO, named pipe, which stores the messages produced by the

running tasks. The kernel of the producer tasks manages the pipe. When a MESSAGE_REQUEST arrives

at the producer kernel, it searches for the message in the pipe. If the message is in the pipe, the

message is delivered to the consumer task. If the message is not in the pipe, the kernel stores the

message request, and when the producer task calls the Send primitive, the produced message is

forwarded to the consumer task.

3.2.3 Multitasking Management

The SPE kernel support multitasking using a paging mechanism, which divides the memory into

fixed-size pages during the kernel’s boot. Figure 12(a) present the PE architecture detailing the

logical division of local memory. Page 0 stores the kernel, and the remaining pages the applications'

tasks. The number and size of pages (equal for all pages) are defined at design-time. Figure 12(b)

details the memory structure for each page. The page has static and dynamic data sections. The

static section is called text, which stores the task’s object code. The dynamic sections are composed

of the data (initialized date), bss (uninitialized data) and stack. This memory structure is defined by

the compiler (e.g., GCC).

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

S

S

S

PE

CPU
page 3

task

page 2
task

page 1
task

page 0
OS

DMNI
PS

Processing Element - PE

M
em

o
ry

text

data

bss

stack

S
ta

tic
 m

e
m

o
ry

s
e
c
tio

n
D

y
n
a

m
ic

 m
e
m

o
ry

 s
e

c
tio

n
s

(b)

Uninit ialized data

Ini tiali zed data

Figure 12 – Memory paging organization [RUA17b].

3.3 Communication between PEs

The communication between PEs occurs through unicast messages. The kernel manages the

communication by sending and receiving packets. Packets may be related to the user inter-task

39

communication model, or to the system management. Figure 13 details the packet and message

structures. From the NoC point of view, the packet has a header and a payload. The packet header

has the target router address and the payload the packet size. From the kernel point of view, a

message has:

• message header: encapsulates the packet header and the payload size and adds other

control fields useful by the kernel, as the service header, which informs the service

type (e.g., message delivery, message request, task allocation);

• message payload: optional field. It holds raw data used in the service header context

(e.g., user data of a message delivery or an object code of a task allocation service).

Target
Address

Payload
Size

Service
Header

Service Payload (optional)

Packet header Packet payload

Message header Message payload

Figure 13 – Packet and message structures [RUA17b].

Figure 14 presents the flow to send and to receive a packet between two different PEs. When

the kernel of the producer PE needs to send a packet, it calls a send_packet() function that programs

the DMNI to start to send the packet, coping the data from memory and transmitting to the NoC.

At the consumer side, when the DMNI receives a packet it interrupts the processor. The interruption

handler calls the read_packet(), which programs the DMNI to read the packet coping it from the

NoC to memory. Once the packet is completely received, the kernel executes functions related to

the contents of the packet. For example, if the packet has data to a user task t, the packet (message

in the user task context) is written in the t memory space, and t is scheduled to execute. The next

Section presents more details about the API functions send_packet() and read_packet().

Producer PE Consumer PE

Hardware

µKernel

DMNI

Send

Need to send
a packet:

send_packet()

LO
C

A
L

M
EM

O
R

Y

DMNI
programing

Network On Chip

DMNI

Receive

DMNI
programing

Interruption

LO
CA

L M
EM

O
R

Y

Receive the
packet:

read_packet()

Paylo. Size
Payload ...

Header

Paylo. Size
Payload ...

Header

Figure 14 - Inter-PE communication flow [RUA16b].

40

3.4 Direct Memory Network Interface (DMNI)

As previously mentioned, the integration of many-core SoC with a NoC requires an NI. The

goal of the NI is to make the interface between computation and communication, an interface

between the processor and the NoC that implements the communication protocol to send and

receive packets. Figure 15(a) shows a many-core architecture. Figure 15(b) presents a typical PE

architecture with an NI integrated on the PE.

The architecture of Figure 15(b) is inherited from bus-based architectures and commonplace

in NoC-based many-core designs. The processor has interfaces with different modules (NI, DMA),

and the software has APIs to control each one. The processor programs the DMA writing in memory

mapped registers the initial memory address and the block size to transfer. After programming the

DMA module, the processor resumes the execution while the DMA transfers data to/from memory.

For performance reasons, DMA is broadly used in systems that support real-time applications

[LAP11].

(a) 6x6 MPSoC instance

(b) PE Architecture
PE PE PE PE PE PE

PE PE PE PE PE PE

PE PE PE PE PE PE

PE PE PE PE PE PE

PE PE PE PE PE PE

PE PE PE PE PE PE

Processor

LO
CA

L M
EM

O
R

YNI DMA
Router

Processor

LO
CA

L M
EM

O
R

YDMNIRouter

(c) Proposed PE with DMNI

Figure 15 – Many-core and PE organizations [RUA16b].

Several works in the literature mention a design including a DMA and an NI [PAL12][ARN14].

Derin et al. [DER13] briefly mention an NI with DMA capability, but the work only groups the two

modules, without an effective integration. Molnos et al. [MOL12] mention the use of a DMA to send

and receive data between two memories (local and shared) through the NoC, without design details.

Attia et al. [ATT11] present a pipelined NI architecture for NoCs. The work presents a modular

design, separating the injection and extraction path between the IP and the network sides. The

proposed design outperforms other works in terms of latency and power, but the analysis is

restricted to the NoC and the NI, without evaluating a complete system. Chouchene et al. [CHO11]

add a low-power technique in the NI design of [ATT11], using a stoppable clock technique. The NI is

turned off when there is no data to be handled.

41

Designs proposed in Matos et al. [MAT10b] and Swaminathan et al. [SWA12] target

heterogeneous many-cores by using asynchronous communication architectures. Das et al. [DAS12]

propose a fault-tolerant NI to be used in SDM (Spatial Division Multiplexing) NoCs, with serializers

and deserializers to support the spatial division concept.

Kariniemi et al. [KAR10] propose an NI aiming to reduce the interruption frequency in the

Micronmesh many-core by an interrupt batch mechanism. The results demonstrated a throughput

improvement with longer messages. The work assumes the use of a DMA to improve

communication latency but without specifying implementation details. Fanfga et al. [FAN10]

propose an NI design combining a Lookup Table (LUT) mechanism and DMA features. The proposal

is focused on the packet reception process. The tag segment of the LUT (programmed by the CPU)

is compared with the tag information in the packet, and if matches, the address stored in the LUT

can be used to start the DMA transfer directly. The goal, as in Kariniemi et al. [KAR10], is to reduce

the interruption handler overhead. The Authors evaluate the latency to receive packets, with

performance gains in larger packets.

 Chen et al. [CHE10] and Ma et al. [MA15] employ an NI named DMC (Dual Microcoded

Controller), targeting architectures with distributed shared memory organization. The DMC is a

programmable hardware module that connects the memory, processor, and NoC. The DMC

programming is eased using a microcode approach within two mini-processors. One mini-processor

is used to handle local memory requests and the other to handle remote memory requests, by

accessing the virtual shared memory space. A synchronizer ensures atomic memory access between

the two mini-processors.

Some proposals for NoC-based many-cores does not assume a DMA implementation [ATT11]

[CHO11][MAT10b][SWA12][DAS12], focusing only on the NI design. Other works separate the DMA

from the NI [PAL12][ARN14] or lack implementation details [DER13][MOL12][KAR10]. Works

focusing on the integration of both modules, either lack validation data [FAN10] or cover specific

implementations [CHE10][MA15]. As our proposal, works [KAR10][FAN10][CHE10] explore an NI

design including a system perspective, identifying bottlenecks not addressed in previous works, as

the cost to handle interruptions by the processor attached to the router NoC.

3.4.1 DMNI Design

This Section presents one of the side contributions of this Thesis. The goal of this proposal is

to merge both modules (NI and DMA), into a new one, named Direct Memory Network Interface

(DMNI), as shown in Figure 15(c). The main contribution is to give a specialized interface for NoC-

based many-cores that directly connects the NoC router to the internal memory using a single

module. The DMNI supports simultaneous packet reception and transmission, managed by a

memory access arbiter, which interleaves the memory access when the send and receive modules

are both active. A simplified programming interface exposes the DMNI services to the software

layer.

42

A relevant feature of the DMNI is the access to two distinct memory blocks to transfer a

packet. This feature is important because some transmissions between two PEs can come from two

distinct memory regions, as, the message header and the message payload of the packet structure

early explained.

Figure 16 details the DMNI architecture. The DMNI has three main modules: send, receive, and

arbiter. The arbiter manages the memory accesses for both modules, enabling simultaneous send

and receive operations. The kernel controls the DMNI through memory-mapped registers (MMRs).

The DMNI design is generic because it enables to send and receive any type of data, not necessarily

related to the message structure presented in Figure 13.

N
o

C
 rou

te
r lo

cal p
o

rt

DMNI

Memory
Access
Arbiter

Send

Receive

Interruption
signal

MMR

Processor - DMNI
programming interface

Send packet

Receive packet

Copy FROM mem.

Copy TO mem. LO
C

A
L M

EM
O

R
Y

Figure 16 – DMNI architecture [RUA16b].

 Send Module

This Section details the process related to the producer PE (left side of Figure 16). The role of

the send module is to inject a packet into the NoC. The particular feature of this module is the

possibility to transfer two memory blocks as a single transfer.

Figure 17 presents the send_packet() function provided in the DMNI API. It receives,

respectively, the first and second memory sizes and addresses. If the DMNI is transmitting a packet

(DMNI_SEND_ACTIVE=1), the procedure stays at line 2 until the release of the DMNI module. At lines

3 and 4, the first memory block is configured. If the message has a payload, at lines 6 and 7, the

second memory block is configured. At line 8, it is written the operation type, i.e., read from

memory. Finally, at line 9, the DMNI is released to start the packet transmission.

1. void send_packet(mem_size_1, mem_addr_1, mem_size_2, mem_addr_2){
2. while (MemoryRead(DMNI_SEND_ACTIVE));

3. MemoryWrite(DMNI_SIZE, mem_size_1);

4. MemoryWrite(DMNI_ADDRESS, mem_addr_1);

5. if (mem_size_2 > 0){

6. MemoryWrite(DMNI_SIZE_2, mem_size_2);

7. MemoryWrite(DMNI_ADDRESS_2, mem_addr_2);

8. MemoryWrite(DMNI_OP, READ);

9. MemoryWrite(DMNI_START, 1);

10. }

Figure 17 – Send_packet() function, executed in the kernel of the processor [RUA16b].

43

Figure 18 presents the Finite State Machine (FSM) controlling the Send module. Initially, the

FSM waits for the configuration of the MMRs (WAIT state) by the send_packet() function. When lines

8-9 of the function are executed, the FSM goes to the LOAD state, and the FSM assert a send_active

signal to the arbiter to request access to the memory. The LOAD verifies if the local port of the router

may receive data (credit=1) and if the arbiter allows a read operation (read_enable=1). If both

conditions are satisfied, the data is read from memory and injected into the router local port (state

COPY_FROM_MEM). Whenever the arbiter or the local port disables the transmission, the FSM returns

to the LOAD state. The FSM sends the first memory block and then changes the address pointer to

the second memory block (if configured) to transmit the remaining data.

WAIT LOAD
COPY
FROM
MEM.

END

NoC credit = 0 or
read_enable = 0

msg

msg

DMNI_ADDRESS

DMNI_ADDRESS_2

D
M

N
I_

SI
ZE

D
M

N
I_

SI
ZE

_2

DMNI_START = 1 and
DMNI_OP = read

N
o

C
 ro

u
te

r lo
cal p

o
rt

Figure 18 - FSM controlling the send module [RUA16b] .

Figure 19 presents the transmission of a packet configured with two memory regions: one

starting at address 0x910 with contents {1, 7, A1, A2, A3}, and the second one starting at address

0x8c8 with contents {B1, B2, B3, B4}. Between cycles 3 to 10, the first memory block is transmitted

(signal data_out). At cycle 11, the send_size becomes zero, changing the mem_addr signal to the

second memory region, and the second part of the packet is transmitted. The gap to change the

memory region is only two clock cycles. In a standard implementation (DMA+NI), which requires

programming the DMA twice, the minimal gap is 22 clock cycles, penalizing the transmission of

packets with a small payload.

Figure 19 - Packet transmission by accessing two memory blocks [RUA16b].

44

 Receive Module

This section details the process related to the consumer PE (right side of Figure 16). Figure 20

details the receive module. It contains two FSMs and a 16-flit buffer. The buffer depth is

parameterizable at design-time.

When a packet arrives at the local port of the NoC router, the HEADER state reads the first flit

of the packet, interrupting the processor (the interruption is not masked in order to avoid the packet

to stall the NoC path). Next, the PAYLOAD_SIZE state reads the payload size and advances to the DATA

state, which reads the remaining flits of the packet. The buffer receives all incoming flits. The NoC

stalls when the buffer becomes full.

N
o

C
 ro

u
te

r lo
cal p

o
rt HEADER

PAYLOAD
SIZE

DATA

payload size > 0
BUFFER

WAIT
COPY

TO
MEM.

END

msg

DMNI_SIZE > 0

DMNI_ADDRESS

D
M

N
I_

S
IZ

E

DMNI_START = 1 and
DMNI_OP = write

SW interruption

Figure 20 - FSM controlling the receive module [RUA16b].

Figure 21 presents the interruption handler process (read_packet() function). The

read_packet() function writes into MMRs the amount of data to receive (line 2), the memory

address to store the packet (line 3), the DMNI operation (line 4), and a start command (line 5). The

kernel waits the complete reception of the packet (line 6) to safely read the packet content from

memory, and executing the actions related to the packet service.

1. void read_packet (init_addr, packet_size)

2. MemoryWrite(DMNI_SIZE, packet_size);

3. MemoryWrite(DMNI_ADDRESS, init_addr);

4. MemoryWrite(DMNI_OP, WRITE);

5. MemoryWrite(DMNI_START, 1);

6. while (MemoryRead(DMNI_RECEIVE_ACTIVE));

7. }

Figure 21 – Read_packet() function, executed in the kernel of the processor [RUA16b].

The write and start conditions start the FSM at the top of Figure 21 (lines 4 and 5 of the

read_packet()). This FSM transfer the data stored in the buffer to the local memory (state

COPY_TO_MEM). To write into the memory, this second FSM asserts the receive_active signal to the

arbiter to request access to the memory. The arbiter can grant access to the memory by asserting

the signal write_enable. If the arbiter does not grant access to the memory, the FSM stays blocked

45

in the COPY_TO_MEM state.

Note that both FSMs of the receive module work in parallel. The first one receives data from

the NoC storing the flits into the buffer, and the second one reads the buffer storing the data into

the memory.

 Memory Access Arbiter

The arbiter enables concurrent memory accesses to receive and to send packets. With such

feature, the PE may receive new data and concurrently inject new packets into the NoC, interleaving

the memory accesses. A round-robin (RR) arbiter enables this feature, by controlling two signals:

read_enable (send) and write_enable (receive). A timer (DMNI_TIMER) controls the amount of time

each module may access the memory.

 Figure 22 presents the FSM controlling the arbiter. A signal named round selects the module

to grant access. The receive and send FSMs assert the signals send_active and receive_active,

respectively. When the arbiter goes to SEND state, the read_enable signal is asserted, enabling the

send module to access the memory. The FSM stays in this state while send_active is asserted, or the

timer expired and the other module requested access to the memory. Note that the arbiter may

stay in the SEND state for periods larger than the timer limit if the other module does not request

access to the memory. The RECEIVE state has the same behavior of the SEND state. When the FSM

returns to the ROUND state, the round signal inverts, changing the order to verify which module must

be served.

ROUND

SEND

RECEIVE

send_active = 0 OR
(current_timer >= DMNI_TIMER
 AND receive_active = 1)

receive_active = 0 OR
(current_timer >= DMNI_TIMER
AND send_active = 1)

Figure 22 – FSM controlling the arbiter module [RUA16b].

Figure 23 presents the arbiter operation. For the sake of clarity, the DMNI_TIMER was

configured to 5 cycles (cc). At the cc=2, the receive_active becomes true, signalizing to the arbiter

that the send module needs to be stopped, and the RR scheduling executed. Note the timer value

at this cc (0xF) is larger than the DMNI_TIMER (5) because only the send module is active. The RR

execution occurs at cc=3, the timer returns to zero, the round signal is inverted, the read_enable

becomes false, and the arbiter releases the receive module by activating the write_enable signal.

The RR executes again at cc=10, and now the send module is released (receive_active1). This

interleaved operation continues while both receive_active and send_active signals remain asserted.

46

Figure 23 - Memory access scheduling [RUA16b].

3.4.2 DMNI Results

The DMNI was implemented using synthesizable VHDL, integrated into the reference many-

core previosly presented. The baseline design, with separated modules, is named DMA+NI.

 Latency to transmit packets

Figure 24 presents the latency to transmit packets with different sizes. The latency is

measured from the moment when send_packet() is invoked up to the end of the execution of the

read_packet(). Note that this latency includes the network latency, the interruption handling, and

the context saving. The network latency represents a small fraction in the total latency,

corresponding to 5 clock cycles per hop (in non-congested scenarios).

It is possible to observe that in both scenarios the latency grows linearly with the packet size.

DMNI had a latency decrease of 116 cycles per 128 flits compared to DMA+NI. This reduction comes

from two main reasons. The first one is related to software. For the DMA+NI implementation, the

processor must wait the transmission of the first memory section and then program the DMA to

transmit the second memory section. Using the DMNI, the processor programs once the memory

regions, without be blocked due the transmission of the first section. The second reason is related

to hardware. The unified DMNI design can transmit 1 flit per clock cycle, while in the DMA+NI it is

necessary 2 clock cycles to inject one flit into the NoC due to the interface protocol between the

two modules.

Figure 24 – DMNI and DMA+NI latency comparison [RUA16b].

47

A second latency evaluation concerns the latency in a real application, an MPEG decoder. The

latency to decode one frame with the DMNI presented a reduction of 12.3% compared with

DMA+NI. Further, the impact on the application execution time of MPEG is 15% lower with the DMNI

design. Such results highlight the performance improvement offered by the DMNI, which specializes

and simplifies the PE design.

 Area and State-of-the-Art Comparison

Both designs, DMA+NI and DNMI, were synthesized using the Cadence ASIC design flow for a

65nm CMOS technology and prototyped in FPGA (Xilinx XC5VLX330), both using 100 MHz of clock

frequency. Table 1 presents the area for the proposed DMNI, DMA+NI, and related works (those

that have area report).

Comparing the baseline design (DMA+NI) with the proposed DMNI, there is a small area

reduction (3.47%) when targeting an ASIC implementation. On the other side, for FPGAs, an

important reduction in the number of flip-flops is observed – 48%, with an increased number of

LUTs – 11.5%. The reduction observed in the number of flip-flops comes from the smaller number

of registers required by the DMNI implementation.

Comparison to related works is difficult due to different specific goals and use different

technologies. Observing the table, works from [DER13] and [MA15] (that use a DMA and a NI) have

similar FPGA area results compared with DMNI.

Table 1 – Area comparison related to NI implementations [RUA16b].
Author FPGA/ASIC Work Goal LUTs FFs Area

[DER13] FPGA (Xilinx XC6VLX240T)
Network Adapter
(DMA + NI)

879 577 N/A

[CHO11] FPGA (Xilinx XC5VLX30)
Power-efficient NI (Credit
Based)

420 590 N/A

[MAT10b] ASIC (0.18um) Asynchronous NI N/A N/A 18735 um2

[MA15] FPGA (Zynq7000) Programmable NI (DME) 1163 313 N/A

Baseline design FPGA (Xilinx XC5VLX330) / ASIC
(65 nm)

Standard PE arch. 682 787 22141 um2

This proposal Unified design - DMNI 761 409 21371 um2

3.5 Debugging

Previous Sections focused on the architectural features and protocols of the reference many-

core platform. This Section details the proposition of a modular verification framework where it is

possible to debug high-level computation and communication events in a many-core concurrently.

It was used to validate and to debug the implementation of the reference many-core features,

previously described, corresponding to the second side contribution of this Thesis.

The debugging framework has two contributions. The first one is a generic Data Extraction

Layer, named DEL, which collects computation and communication events from the simulated

many-core and stores such data into a database. The process of data extraction can be integrated

with RTL, TLM, or virtual platforms descriptions. Such flexibility comes from an abstraction of the

target many-core architecture implemented by DEL, which defines a generic data extraction method

48

combined with a standard database insertion. The second contribution is a graphical debugging

toolset that explores the debugging database generated by DEL to create several GUI used for high-

level communication and computation debugging. The data extraction (back-end) is decoupled from

the graphical debugging tools (front-end), enabling the development of other custom front-end

debuggers (graphical or not).

The originality of this proposal is a generic and scalable approach for data collection combined

with a graphical toolset for debugging, it can be used jointly with state-of-the-art debugging

methods acting as a complementary debugging approach.

Table 2 presents works related to NoC and many-core debugging. Debugging methods for

many-cores and NoCs have gained increased attention due to the increased processor density,

which makes the debugging process even more complex.

Table 2 - Related works in NoC and many-core debugging [RUA16c].

Work Data Extraction Target Debugging
Many-core
description

Scalability
concern

DB GUI

[MUR14] event inside cores Parallel Software Concurrency
Virtual
Platform

No, 4 cores No No

[GEO14] software API Software Errors
Virtual
Platform

Yes, 32 cores No Yes

[WEN12] core events Parallel software data race
Virtual
Platform

Yes, 64 cores No No

[CUE12] breakpoints Multimedia App. periodic conflicts RTL No, 3 cores N/A Yes
[PRA11] SW instrumentation Generic Observation RTL No, 3 cores No No

[HED11] virtual HW events Parallel software data race
Virtual
Platform

Yes, 16 cores No No

[NEI12] NI NoC transactions and data race RTL No No No
[FRI14] at run-time by a host unit Visualize core logs RTL (FPGA) Yes, 45 cores No No
[ALH10] router links NoC link usage statistics RTL (FPGA) Yes, 16 cores No Yes

[MÖL10] router links NoC usage statistics RTL No, 9 cores No Yes

This Thesis router links, CPU events Communication / Computation RTL and Virtual Yes, 400 cores Yes Yes

Data extraction (2nd column of Table 2) addresses how the debugging method collects the data

to be used in the debugging process. Some works extract data from the cores, enabling the debug

of parallel applications [MUR14][GEO14][WEN12][CUE12][PRA11][HED11]. Others works adopt a

communication-based data extraction by extracting data from the NoC links [ALH10][MÖL10] or the

NI (Network Interface) [NEI12] to debug the communication events. This current proposal extracts

the data from the router’s links covering communication debug and extracts CPU events to cover

computation debug. This approach provides a broad view of the system resources. Non-intrusive

monitors extract these computation and communication events.

The target of debugging (3rd column) corresponds to the focus of the debugging. Three main

debugging methods are identified in the literature: (i) parallel software debuggers; (ii) NoC

debuggers; (iii) FPGA emulation. Most of the works adopt parallel software debug. Other works

focus on improving the debug over FPGA implementations [FRI14][ALH10], and the works

[ALH10][MÖL10] debug the NoC structure (NoC debuggers). The proposed method mixes the debug

of computation and communication resources.

49

The many-core description (4th column), is related to abstraction level adopted to model the

many-core. Authors [MUR14][GEO14][WEN12][HED11] adopt virtual-based platform descriptions.

Such choice enables to speed up the simulation time to direct all debugging efforts to improve the

software development. Other platforms are designed at the RTL level, with some proposals

including FPGA emulation [FRI14][ALH10]. As the proposed framework adopts a generic data

extraction, the designer implements the DEL according to the platform model. Therefore, both HDL

models or virtual models are supported.

The scalability column (5th column) evaluates whether the debugging methods can handle

large-scale data sets. The proposed framework leverages scalability by adopting a database (DB –

6th column of Table 2) to provide an efficient solution (described in the Results section) to access

structured data with SQL queries.

The graphical representation (GUI) of the system events (7th column) eases and reduces the

time spent debugging. Cueva et al. [CUE12] propose a simple GUI to observe the periodicity conflict

between applications. Alhonen et al. [ALH10] and Moller et al. [MÖL10] propose graphical tools to

generate NoC statistic. All the aforementioned works adopt simple graphical interfaces. The

proposed framework presents several GUIs allowing a fast interpretation of the monitored system

events.

3.5.1 Data Extraction Model

Figure 25 details the proposed data extraction model. It contains DEL and the database. The

upper part of Figure 25 corresponds to a standard simulation environment. It assumes a generic

NoC-based many-core, with a set of PEs interconnected by a NoC. The software part contains the

kernel and a set of applications to execute on the system.

Database

Communication
Table

Computation
Table

Database

Communication
Table

Computation
Table

Simulator

Many-core Description
(RTL, TLM, Virtual)

Proposed Debugging

Graphical Tool Set

Operating

System object

code

Set of

applicatons

object code

platform.cfg

packet.cfg

CPU.cfg

Data Extraction Layer
(DEL)

waveforms

Log files

GDB

queries

table insertions

Figure 25 - Overview of the proposed debugging data extraction method [RUA16c].

A simulator receives the hardware and software parts of the system, simulating it using some

50

hardware description abstraction. A set of analysis may be executed according to the adopted

simulator, as waveforms, log files, and GDB. This Thesis follows a different approach by proposing a

generic DEL to extract communication and computation events and save them into a database

following a standard structure (subsection 3.5.1.1). The front-end debugging tools communicate

with the database according to a management protocol detailed in subsection 3.5.1.2.

 DEL: Data Extraction Layer

The DEL collects data generated by the simulation and inserts them into database tables (e.g.

latency, throughput, selected functions). Communication events are represented by packets arriving

in the NoC router’s input port. Computation events are specific software addresses executed into

CPU. Such events enable to achieve a holistic view of the platform functional behavior. The DEL can

be seen as the interface between the many-core platform and a front-end debugger (graphical or

not), decoupling both parts of the system.

To achieve non-intrusiveness over the application execution, the DEL is implemented as a part

of the hardware platform. This part is used only during the simulation at design-time, and it is

removed for synthesis or prototyping. The DEL operation comprises two parts: monitoring and

database insertion. The monitoring is in charge to extract the system data. For communication data,

sniffers are implemented inside the router instance monitoring all input ports. The computation

data extraction is implemented in a similar fashion, sniffing the CPU instruction address.

The database insertions are done directly from the hardware in the same process of the

monitoring. The DEL can vary according to description level of the target platform. An RTL SystemC

simulation enables database insertions directly from the SystemC code. A VHDL simulation can use

a SystemC wrapper to execute the same task. The implementation of the DEL is a responsibility of

the designer, once that it knows the platform details.

The data created by the DEL must follow a standard format to enable the insertion of the

monitored events into the debugging database. The database implements two different tables. One

for storing the communication (monitored packets) and the other for computation events

(monitored addresses).

 Database Management

The database is modeled in SQL. The communication and computation tables are created at

the beginning of a new simulation. Figure 26 shows the sequence diagram for a new debugging

scenario detailing the database management protocol necessary to the interaction between the

Simulator, DEL, database, and front-end debugger.

At step 1, the simulator initializes the DEL; at step 2, DEL connects to the database server and

creates a new database scenario for that simulation. A backup of previous databases is also created

at this step. At step 3, the front-end debugger can start a new debugging session, setting up a new

connection with the database. The database connection of the DEL, at step 2, and the connection

of the debugger, at step 3, are performed using a 5-tuple {hostname, remote_port, scenario_name,

51

user, password}. After the connection of the debugger with the database in step 3, the debugging

can start, in step 4. The DEL extracts the platform communication and computation events and

inserts into the database (step 5). The front-end debugger can read such information, at step 6, by

requesting information from the database using SQL queries.

Data
Extraction
Layer (DEL)

Database
Simulator

(RTL, TLM,

Virtual)

Connect DB
scenario

1

2

3

45

6

.

.

.

.

.

.

.

.

.
.
.
.

Front-end
Debugger

Figure 26 - Sequence diagram for database management [RUA16c].

3.5.2 Graphical Debugging Toolset

The proposed graphical debugging toolset (referenced from this point as debugger) works by

reading communication and computation events stored in the database and converting such data

into graphical information.

The focus of the debugger is to provide high-level awareness of the system status to the

designer, enabling the analysis of computation and communication events. Figure 25 detailed the

debugger inputs. The debugger receives configuration files at the initialization and performs queries

over the communication and computation database tables.

 Configuration Files

The debugger uses three configuration files: platform, services, cpu. These files can be

generated automatically during the system compilation phase.

The platform file configures the debugger by providing parameters about the many-core

architecture (e.g. size of the system) and the application tasks’ set. The set of tasks to be executed

in the many-core are listed as a tuple {task name, identifier}.

The service file contains the services supported by the platform. A service identifies the

function of a given packet, and a protocol is defined by a set of services. For example, the message

exchange protocol requires two services: MESSAGE_REQUEST and MESSAGE_DELIVERY. Each line of the

52

service file contains a tuple {service name, identifier}.

The cpu file describes the CPU addresses to be monitored. These addresses are monitored by

the DEL, which generates computation events to informs that the addresses were executed.

Examples of observation points are the addresses of the scheduler, system calls, task execution,

interruption handler.

 Main View

The main view shows an overview of the many-core architecture. By using this view, the

system designer can debug the communication behavior, as NoC routing and link utilization, to

validate system management protocols or task communication messages, and supervise parallel

communications.

Figure 27 illustrates the view for a 4x4 many-core with 2x2 clusters. The green PEs represent

cluster managers, the orange PE represents the cluster manager with access to the application

repository (global manager), the blue PEs execute user applications. Each PE of this view contains

the input channel utilization of each router port. Those values represent the percentage of the

channel bandwidth usage, computed for a fixed time window (parameterizable in the tool).

Figure 27 – Main View: throughput and communication event views [RUA16c].

The zoom in PE 1x3 (Figure 27) details the channel utilization. It is possible to observe that the

south port of the PE router has a channel utilization equal to 2.89% in this particular time window.

Each packet traveling into the PS NoC is displayed with a red arrow according to the packet

advances to the next PE. The packet traces are colored in red. Figure 27 shows three packets

traveling in the NoC at the time 71,225 (observed into Speed Control panel): 1x0 to 0x1, 1x2 to 1x3,

53

and 2x3 to 3x3.

 Mapping View

Figure 28 presents the mapping view addressing computation debugging. With this view, the

designer can validate task mapping algorithms, view the occupation of the PEs, and observe the task

execution status.

Tasks belonging to the same application have the same color. Each task is displayed according

to its name and ID detailed in the platform file. The designer can choose to see all task status, only

the running tasks, or only the terminated tasks (tasks that already finished its execution). Tasks are

displayed dynamically as they are mapped.

Figure 28 - Mapping view for a scenario with 4 applications, each one represented by a different color
[RUA16c].

 CPU Utilization View

The CPU utilization view addresses computation debugging. It enables the designer to verify

the CPU use by different software parts over the time. The logged CPU events are related to kernel

functions and the execution of a task. The addresses are described in the cpu file.

Figure 29 shows an example of the CPU utilization view for the PE 0x3. The y-axis corresponds

to the monitored software events, and the x-axis the simulation time. This view also shows at the

bottom left corner CPU utilization statistics, as the total CPU simulation time, and the percentage of

CPU utilization for each kernel functions and each task executed by the CPU (in this example idtc

and iquant). With this view, the designer can validate scheduling algorithms by verifying if a given

task meets its constraints, evaluate the processing load to validate task mapping algorithms,

correlate the processor events with communication protocols. Additionally, this view enables to

54

debug kernel or software bugs.

Figure 29 - CPU Utilization View [RUA16c].

3.5.3 Results

This Section presents results using the baseline many-core platform modeled in SystemC RTL.

Applications (as DTW, MPEG, Dijkstra) and kernel are described in C language.

Figure 30 presents the debugging of a large-scale many-core (256 PEs), organized in a 16x16

PS mesh, with 4x4 clusters.

Figure 30 - Case-study debugging an MPSoC with 256 PEs [RUA16c].

The example in Figure 30 is a task allocation service, correlating the debugging of computation

and communication events. The main view enables the user to observe a TASK_ALLOCATION packet

leaving PE 0x0 (label 1 in Figure 30) and arriving at PE 6x4 (2) at time 429,138 ticks (clock cycles).

This packet carries a task’s object code. When the target PE (6x4) receives the packet, the mapping

view shows the task p3 allocated at this PE (3). The CPU view enables to observe that the kernel of

the target PE was in the idle state. At time 429,252 the kernel executes the interruption handler (4),

to consume the packet received at the local port of the router, with the task code (p3). Next, the

scheduler selects the task p3 and starts its execution (5).

2

1

3

4

6

5

429,138 ticks
1

2

3

4

5

55

Table 3 summarizes results related to simulation time and data storage, obtained from a

SystemC RTL simulation, comparing the use of the database with an approach using log files (events

stored in text files). The simulation time is penalized in 15% due to the operations to manage the

database. On the other side, the required space to store the events reduces 26%. Executing an

application in a 20x20 many-core for 10 seconds would require a data storage space of ~7 GB using

log files, and ~5 GB using the database approach.

Table 3 - Results related to simulation time and data storage, for 100 ms of simulation
(DB: database) [RUA16c].

System
size

Simulation time (sec) Data Storage (MB)

DB log files DB/log DB log files DB/log

8x8 3,131 2,740 1.14 9.41 12.39 0.76

10x10 15,546 8,446 1.84 13.34 17.55 0.76

12x12 11,299 8,261 1.37 18.41 24.60 0.75

14x14 9,354 11,470 0.82 25.13 33.98 0.74

16x16 19,660 17,880 1.10 31.96 43.71 0.73

18x18 16,993 17,146 0.99 41.78 57.29 0.73

20x20 26,552 25,886 1.03 50.87 69.98 0.73

These results advance two key points related to debugging large-scale many-cores. The first

one is the graphical representation of events generated during the simulation. It requires intuitive

tools for accelerating debugging. The proposed framework provides GUIs that enables the designer

to verify the system operation quickly. The second point is scalability since large-scale many-cores

request flexible methods to handle datasets in a structured way.

56

4 QOS AT THE COMPUTATION LEVEL

This Chapter presents the contributions of this Thesis related to computation QoS. Section 4.1

presents the state-of-the-art review. Section 4.2 presents the first contribution, a low overhead task

migration protocol. Section 4.3 presents the main contribution, the dynamic LST-based task

scheduler. Section 4.4 presents a collaborative Ph.D. work, combining the proposed task scheduler

with a run-time energy management. Section 4.5 finishes this Chapter presenting the conclusions.

4.1 State-of-the-Art

QoS at the computation level is mainly achieved by RT task schedulers at the processor level.

Table 4 presents related works targeting task scheduling and QoS constraints. Most of the many-

cores schedulers consider design-time steps integrated into frameworks [GAN13a][ROS14][BAM12]

[TAF11]. Such works often employ a Model of Computation (MoC) (e.g., PPN, DAG, and SDGA), to

model the applications at design-time. Applications are modeled as graphs, with nodes representing

the actors, i.e., the application tasks, and edges representing the application communication

dependency [BAM12][ROS14], which enables the developer to obtain accurate estimations about

the communication and computation demands of each application. This approach makes easy to

predict the applications behavior, helping to enable hard RT scheduling [DAV11]. Task scheduling

based on MoC can be static (design-time scheduling) [GAN13a][BAM12][ROS14], dynamic (run-time

scheduling) [OLI11], or both [TAF11]. Static or partial static (mixing design-time and run-time steps)

scheduling is a conservative approach to guarantee hard RT behavior. Those proposals are only

effective when the set of applications to execute in the system is known at design-time.

Table 4 – Works focused on task scheduling and QoS.
Work Focus Design-Time/Run-time QoS

[GAN13a] Processor resource scheduling framework
Design-time
Framework

Multimedia stream app
deadlines

[BAM12]
Scheduling periodic task modeled by CSDF graph using hard
RT scheduling concepts

Design-time
Framework

Throughput of periodic
task

[ROS14]
Task mapping and task scheduling framework based on
MoC

Design-time
Framework

Fulfill RT deadlines

[TAF11]
Two task scheduling algorithms for temperature
improvements while satisfies QoS

Mixed
No violation in real time
tasks

[PAR14] Handle I/O interrupts without disturbing hard RT tasks Run-time
No interference in hard
RT task

[OLI11] Dataflow MoC-based MPSoC RTOS Scheduler Run-time
Application execution
deadlines

[HWA10] Hybrid LST-based task scheduler Run-time
Application execution
deadlines

Different from a static scheduler, dynamic schedulers perform the scheduling decision at run-

time. Such behavior comes at the cost of scheduling overheads and unpredictability [PAR14][OLI11].

Pfair (Proportionate-fair) is a state-of-the-art dynamical task scheduler for many-cores that claims

to support hard RT tasks. It assumes run-time task migrations to improve system’s utilization.

Theoretically, hard RT support is achieved by assuming an excessive number of task migrations and

57

preemptions, without considering their interferences over the system. Indeed, this assumption

leads to a high overhead which makes the Pfair applicability inviable to many-cores [CHA01].

 Park et al. [PAR14] propose HPGP, a hybrid scheduler for many-cores based on Pfair. The

hybrid feature means that the Pfair algorithm is executed inside local processors combined to a

global scheduler, which makes task migrations. The goal is to reduce the number of task migrations

compared to Pfair. The manager selects the ready tasks to be scheduled into a PE. Each PE executes

a schedulability analysis. If the task is not schedulable, the core invokes the global scheduler to

perform task migration. While the scheduler is labeled as dynamical, the application set if fixed at

design-time. The proposal considers only periodic tasks with deadlines equal to their respective

periods and constant execution time. The evaluation is carried out only with four cores, which does

not enable validating the algorithm based on modern large many-cores systems.

The LST (Least Slack Time) scheduler is a task scheduler where the priorities of each job are

based on their slack time, with smaller slack times resulting in a higher priority. At a given time t,

the slack (or laxity) of a job with deadline d is equal to d - t minus the time required to complete the

remaining portion of the job. While the LST is an optimal scheduling for mono processed systems, it

was proved to be non-optimal to multiprocessor systems [LIU00]. Hwang et al. [HWA10] propose

LSTR, a dynamic scheduling algorithm based on LST, with additional features to be optimal for

multiprocessor systems. LSTR was designed to support only periodic tasks. The limitation of the

proposal is that it is based on a theoretical evaluation, not addressing system overheads.

The design of a dynamic RT scheduler for many-cores should consider, among other factors,

how to inform the RT task constraints to the system, and how to handle interruptions. The

management of interruptions may interfere with the execution of RT tasks. Interruptions can be

handled immediately using specific system routines or can be pooled at fixed and predetermined

times [HAN11]. Another alternative is to redirect interruptions handling to free cores [PAR14].

However, this option only can be useful when interruptions come from external devices and are not

related to inter-task communications. The kernel of HeMPS handles interruption immediately using

system routines, enabling to quickly handle the interruptions, reducing the time to buffer them into

the NoC, which could create a significant communication interference. However, this approach does

not enable the scheduler to support hard real-time applications.

Dynamical RT task schedulers are integrated into an RTOS (Real-Time Operating System). An

RTOS, besides the RT scheduler, must also provide support for fast preemptions, improved context

saving, and low intrusive interruption mechanism. Those features conduct to a higher-level task

execution composability and small OS execution time overhead [OLI11], opening more space to the

RT task execution.

Provide QoS to a system consists of managing its resources. A typical approach is to work with

worst-case execution time (WCET) estimation of applications to guarantee that the reserved

resources are enough to all application corner cases. However, some Authors, presented in Table 5,

argue that current mechanisms for WCET estimation are inefficient and conduct to system

58

underutilization. Thus, there are proposals focusing on relaxing WCET [NOW13][YU09] or proposing

improvements of the WCET estimation [SHA12].

Table 5 – Works focused in WCET and QoS.
Work Focus Design-Time/Run-time QoS

[NOW13] Increase MPSoC utilization by a soft worst-case estimation
Run-time time slice
manager

Full fill hard RT
constraints

[YU09] Relax worst-case estimation Design time framework Meet soft RT constraints

[SHA12]
Priority budget memory scheduler based on precise WCET
estimation

Run-time Memory access priorities

Power, energy, and temperature are critical parameters to be controlled. QoS policies become

tightly coupled with such parameters due to the growing need for energy saving and temperature

reduction. Table 6 presents works focusing on temperature, power and energy reduction, and

simultaneously providing some degree of QoS (STM stands for slack time monitoring).

Table 6 – Works focused on temperature, power and energy reduction and QoS.
Work Focus Design-Time/Run-time QoS Technique STM

[TUV13]
Run-time Adaptive task migration and
power reduction

Run-time
Meet RT task
constraints

Clock gating Yes

[HAN11] Composable OS design Design methodology
Task execution
composability

Clock gating Yes

[YUN13] Temperature aware scheduling Run-time
Preserve task
deadlines

Power gating Yes

[GAN14]
Dynamic Power Management for
temperature reduction

Run-time
Fulfill video
application latency

Power gating Yes

[JAV14]
Energy efficient pipelined MPSoC
management

Run-time
Fulfill multimedia
application
deadlines

Clock and Power
gating

Yes

[YU14] Temperature aware scheduling Run-time
Aims to increase
QoS budget

Frequency scaling No

[ABB14]
Dynamic Frequency Scaling based on
PID controller

Run-time
Fulfill real time
throughput
deadlines

Frequency scaling No

[GUI13]
Dynamic Frequency Scaling with
software management

Run-time
Fulfill real time
throughput
deadlines

Frequency scaling No

[DAS14]
Temperature aware task mapping,
scheduling and PE’s DFVS levels

Design time
Fulfill throughput
constraints

DVFS No

[KOT10]
Energy aware scheduling by exploring
task slacks

Design time using
linear programming

Fulfill task
deadlines

DVFS Yes

[MOL10]
Composable and energy efficient
MPSoC architecture

Theoretical proposal
RT application
composability

DVFS Yes

[JUN14] Energy efficient task mapping
Run-time and a design
time behavior
specification

hard RT application
constraints

DVFS No

[LI13]
Temperature aware scheduling with
task migration support

Both
Execution
deadlines

DVFS Yes

[SIN13]
Energy reduction methodology based
on slack time management

Both
RT application
throughput

DVFS Yes

There are two main classes of works that mix computation QoS policies with low power

techniques: (i) clock and power gating; (ii) DFVS. Clock and power gating techniques can be used to

the management of power [TUV13], energy [JAV14], and temperature [GAN14][YUN13]. Clock and

power gating techniques are well suited to work with task migration due to the possibility to remove

59

the workload of a hot or overused PE, opening space to apply such techniques. The PE’s slack time

can be exploited to make the processor run in low power mode, achieving significant power

reductions [TUV13][YUN13]. Clock and power gating can also be explored at the software level,

working in conjunct with a composable OS design [HAN11].

Some works opt to employ frequency scaling technique to provide QoS. This technique can be

used at design-time [YU14] or run-time [ABB14][ALM11][GUI13]. At design-time, using complex

heuristics, the methods search for the appropriated temporal scenarios where the frequency can

be scaled while satisfying QoS. This estimation requires a vast number of architectural

characteristics variables as well as a robust application’s description [YU14]. At run-time, frequency

scaling can be applied by using monitoring and run-time management modules, which tune the

processor’s frequency according to the application's deadlines.

DVFS-based techniques can gradually scale the system performance and system power and

are suitable when different QoS levels are needed. In fact, DVFS is a broadly adopted technique for

power, energy, and temperature reduction and at the same time, offering some degree of QoS.

DVFS can be applied at design-time (or offline) [DAS14] or mixing a design-time with the run-time

phase [JUN14][LI13][SIN13a]. DVFS-based task scheduler has been demonstrated efficient to save

energy and to reduce the temperature. Task and CPU slack time exploitation can be used to reduce

the impact of voltage and frequency decrease without compromise QoS [KOT10][MOL10][LI13]

[SIN13a][MAR17a].

Due to the number of PEs in many-cores, the memory access can generate bottlenecks in

shared-memory architectures [OLI11], requiring QoS techniques. Table 7 presents works focusing

on memory access scheduling QoS. QoS-aware memory scheduling mechanisms are required to

manage the memory access according to a QoS policy either to prioritize real-time tasks access

[SHA12][LIN10][KIM10][WAN14] or to provide memory access composability [LIU13].

Table 7 – Works focused on memory access scheduling QoS.

Work Focus
Design-Time/Run-

time
QoS

[SHA12]
Priority budget memory scheduler based on precise WCET
estimation

Run-time Memory access priorities

[LIN10] Hierarchical DRAM memory access scheduling Run-time Memory access priorities

[KIM10] Cluster memory access scheduling Run-time Memory access priorities

[LIU13] Memory scheduling policy based in slack time management Run-time Composability

[WAN14] Memory scheduling optimized for heterogeneous computing Run-time Memory access priorities

4.1.1 State-of-the-Art Discussion

Analyzing the reviewed works, essential features to provide QoS at the computation level

include: (i) real-time task scheduling; (ii) task slack and processing idle time monitoring; (iii) DVFS

for energy and temperature reduction; (iv) a relaxed WCET estimation.

The QoS, in the computation context, is mainly represented by RT task schedulers. Several

proposals addressed scheduling algorithm for multiprocessor systems. However, the proportion of

60

those targeting many-cores is still low and have limitations related to clock-cycle validation,

scalability, and dynamic behavior.

As dark silicon era imposes power reductions [SHA17], designers must find a way to ensure

QoS in those scenarios. DVFS outstands as the main technique to reduce energy and temperature

while allows controlling system’s performance. Some Authors also use clock or power gating

techniques. These techniques can be applied either in design-time methods or run-time managers.

In the same way, DVFS also can be applied at design-time, by expensive formal models and an earlier

and detailed system characteristics behavior, or adaptively, by using run-time power, frequency,

and voltage managers. A system monitoring scheme continuously feeds these managers, with task’s

slack time and idle time of each processor, which enables the execution of heuristics that find an

efficient tradeoff between QoS, temperature, and energy consumption.

Another recent topic in the design of many-cores is the concern by relaxed WCET. This

research is motivated by the dark silicon era that makes task mapping and task scheduling more

complex and challenging [SHA17]. Relaxing WCET can provide a significant efficiency in resource

utilization and save energy while the real-time present negligible deadline misses.

This Thesis addresses QoS at the computation level by proposing a dynamic and hierarchical

RT task scheduler based on the LST algorithm. The proposed LST scheduler is dynamic because it

supports an unknown application set (dynamic workload), and enable tasks to change its RT

constraints (period, deadline, execution time) at run-time. Faced with an RT workload change the

scheduler sent this feedback to the QoS management (also is a global scheduler), which decide to

employ an original task migration protocol. The hierarchical property is related to the organization

of the scheduler, with local schedulers (running in the SPEs) and global schedulers (running in MPEs).

The main function of the local scheduler is to manage the CPU allocation, while the main function

of the global scheduler is related to the SPEs task allocation, executing task migration during the

application execution.

The proposed task scheduler was also integrated into an original energy management

technique proposed in a collaborative work with the Ph.D. student Andre del Mestre. The QoS

manager is aware of the slack-time of the whole application and exploits this time to apply DVFS

and to save energy.

4.2 Task Migration

Self-adaptive techniques, as thermal and power management, load balancing, QoS, and fault

tolerance commonly use task migration to perform run-time management in many-core systems. In

thermal and power management [SAL14], task migration can be employed together DVFS to

distribute the tasks according to the performance of the cores. For load balancing and aging control

[JOH12][MAR11], task migration can help to distribute the workload of the system, by migrating

several tasks simultaneously to PEs with lower utilization. For QoS [ABB14], task migration may be

used to reserve CPU resources for real-time tasks. For fault tolerance [DAS13], task migration can

61

be used to move tasks running in faulty PEs.

Proposals related to task migration addressing many-core systems and assuming a distributed

memory have at least one of the following features: (i) use of checkpoints, which requires source

code annotation; (ii) task replication, with a replica of the task in one or more PEs that can receive

the task to migrate (wasting memory); and (iii) significant migration latency.

The goal of this proposal is to develop a task migration technique between PEs having the

same ISA (Instruction Set Architecture), for many-core systems with a distributed memory

hierarchy. The contribution is a protocol with a lower latency compared to the related works.

Further, this proposal eliminates the need for checkpoints, not requiring task replicas, and enable

to migrate tasks of the same applications simultaneously.

The key point to reduce latency comes from a two steps procedure. First, the text memory

section (object code) of the task to migrate, TM, is migrated separately from the dynamic memory

sections: data, bss, and stack. While the TM’s text is transferred from the source PE (SrcPE) to the

target PE (TgtPE), TM keeps running at the SrcPE being blocked only during the dynamic memory

migration. The DMNI module is programmed to copy the text section while the CPU keeps running

TM. The second step comes from an inter-task synchronization protocol, which does not migrate the

messages produced by TM. The synchronization is performed on-demand after the migration,

helping to reduce the migration data volume while ensures no message loss.

Table 8 summarizes the main features of the related works in task migration for distributed

memory many-core systems. The 2nd column details the adoption of checkpoints. Checkpoints

simplify task migration because they statically define migration points where the task context is

safely saved. These checkpoints are inserted on task’s source code, being difficult in practice to the

application developer define safe states to migrate. The 3rd column addresses the inter-task

synchronization. El-Antably et al. [ANT15] and Fu et al. [FU13] transfer all pending messages during

the migration process (FIFO copy), Canella et al. [CAN12] wait for the consumption of all messages

to execute the migration (FIFO release), and Saint et al. [SAI08] use the communication primitives

as checkpoint to enable the migration. The proposal herein presented adopts an approach similar

to the theoretic proposal of Munk et al. [MUN15]. The synchronization occurs on-demand according

to the messages request by the consumer tasks.

The 4th column of Table 8 evaluates the use of an MMU (memory management unit) in the

migration process. The adoption of MMU simplifies the migration process since the operating

system handles virtual addresses, at the cost of additional hardware. As most of the works, the

present proposal does not adopt an MMU. The memory management is simplified by using a paged

memory organization managed by the OS (operating system).

62

Table 8 - Comparison of task migration works [RUA17b].
Proposal Check. Inter-task sync MMU Migration

[MUN15] no Message forward no recreation

[ANT15] yes FIFO copy no replication

[FU13] no FIFO copy no replication

[CAN12] no FIFO release no replication

[JAH11] no N/A yes pre and post copy

[SAI08] yes Send / Receive no recreation

This proposal no Message forward no recreation

The 5th column presents how the migration process is executed. Task replication

[ANT15][FU13][CAN12] keeps a task replica at different processors. This procedure reduces the task

migration latency because the text section is not transferred, but incurs in memory overhead. Task

recreation [MUN15][JAH11][SAI08] stops the task execution, transfer the text and the context to

the target PE, and then resume the execution. Aided by an MMU, Jahn et al. [JAH11] adopt a mixed

mechanism, which pre-copies the most frequent data memory sections before the migration of the

task context, and transfers the remaining memory sections by requests sent to the SrcPE after the

task migration.

4.2.1 Proposed Task Migration

The task migration proposal is implemented as a kernel service. Figure 31 presents the task

migration protocol. The task migration is triggered when a migration order arrives at the SrcPE (the

generation of this event is out of the scope of this specific proposal). The kernel handles this order

by configuring the DMNI to transfer the TM text section (event 1). The text section is sent to the TgtPE

through a MIGRATION_CODE message (event 2). After the DMNI configuration, TM continues its

execution up to reach a safe state, where the dynamic data memory sections can be safely migrated.

The safe state is automatically defined by the kernel at run-time.

2

Task keeps running

Safe state

Task is stoped and

the context is saved

3 4

5

Context is restored

and task resume

its execution

6

1

Task recreation overhead Migration overhead

C
O

D
E

 M
IG

R
A

T
IO

N

time

SrcPE

TgtPE

M
igration order

D
A

T
A

 M
IG

R
A

T
IO

N

TM in RUNNING state TM in READY state

Figure 31 – Overview of the proposed task migration protocol [RUA17b].

Safe state definition. A given task may be in 3 states at the task scheduler perspective: (i)

ready, the task scheduler can schedule the task to execute; (ii) waiting, the task is blocked waiting

63

for a message delivery; (iii) running, the task is running, using the CPU and changing the dynamic

memory sections. A safe state is defined when TM is in the ready state. If a migration occurs during

the running state, the dynamic data memory sections are in use, corresponding to an unsafe state.

If migration occurs during the waiting state, the delivery of the requested message will arrive at the

old PE of TM, inducing a message loss. The delay to start the data migration is a function of the task

scheduler time slice and the time to the producer task to deliver the requested message.

Event 3 in Figure 31 represents TM in a safe state. The task stops, and the kernel saves the

context, transferring the context (CPU registers values) and the data memory sections to the TgtPE

by a DATA_MIGRATION message (event 4). At event 5, the DATA_MIGRATION arrives at TgtPE. At event 6,

the kernel of the TgtPE restore the TM context (by copying the DATA_MIGRATION payload to TM page),

and TM goes to the ready state. The overhead of the proposed protocol comes mainly from event 3

to event 6, which varies according to the size of the data section, and the interconnection

infrastructure. The overheads are detailed in Subsection 4.2.2 assuming a 2D-mesh NoC as the

interconnection infrastructure.

 Inter-Task Synchronization

A key feature of the task migration protocol is the synchronization of the messages exchanged

between tasks. Each SPE kernel has a task location table. The Send and Receive primitives use this

table to find the address of the communicating tasks. When TM migrates, this table must be updated

in all PEs with tasks that send and receive messages to/from TM. The update is executed on-demand

according to the following rules:

Rule 1: when TM migrates to TgtPE, all produced messages by TM stay in the pipe of SrcPE. After

TM migration, the consumer tasks continue sending MESSAGE_REQUESTs to SrcPE. If there is a message

in the pipe, the message is removed from the pipe and delivered to the consumer task. Figure 32(a)

presents this scenario. At event 1, task A migrates from PE0 to PE1. Messages produced by task A,

to tasks B and C, stay in the pipe of PE0. At event 2, task B sends a MESSAGE_REQUEST to PE0 (old

address of task A). As there is a message in the pipe to task B, this message is delivered to task B

(event 3).

Rule 2: If there is no message for the consumer task in the pipe of SrcPE, the MESSAGE_REQUEST

is forwarded to TgtPE and TgtPE deliveries the requested message to the consumer task. The kernel

of the SrcPE has the new address of TM, enabling to forward the MESSAGE_REQUEST. Figure 32(b)

presents this scenario. Task B sends a MESSAGE_REQUEST to task A (event 1), and the pipe at PE0 does

not contain messages to task B. Thus, the MESSAGE_REQUEST is forwarded to the new address of task

A (event 2). Task A at PE1 handles the request and deliveries the message to task B (event 3). Figure

32(c) corresponds to the consumption of the last message produced by TM in PE0 after the

migration.

Rule 3: The task location table is updated in the kernel of the consumer task with the TgtPE

address when a MESSAGE_REQUEST is received by SrcPE, and there is no message produced by TM in the

64

pipe of SrcPE. Thus, a MESSAGE_REQUEST is forwarded to TgtPE as in rule 2, but a second message is

sent to the kernel of the consumer task to update the task location table with the TgtPE address

(UPDATE_LOCATION message). After this update, the kernel of the consumer task uses TgtPE address

to send all requests to TM. Figure 32(d) presents this scenario. When PE0 receives a MESSAGE_REQUEST

(event 1), this message is forwarded to PE1 (event 2), and a UPDATE_LOCATION message is sent to PE2

(event 3) to update the task location table with the new location of task A (PE1). After receiving the

forwarded request, PE1 deliveries the message to PE2 (event 4).

(a) (b)

(c) (d)

PE0

PIPE:

PE2

PE1

PE3

Task A Task A

PE0

PE2

PE1

PE3

PE0

PIPE:

PE2

PE1

PE3

PIPE:
Task Cemptyemptyempty Task Cemptyemptyempty

PE0

PE2

PE1

PE3

PIPE:
emptyemptyemptyempty emptyemptyemptyempty

U
P

D
A

T
E

 L
O

C
A

T
IO

N

M
S

G
_

R
E

Q
U

E
S

T

Task Cemptyemptyempty Task Cemptyemptyempty

1

Task B Task B

2

3

Task A

Task A

Task B

M
S

G
_

R
E

Q
U

E
S

T

M
S

G
_

D
E

L
IV

E
R

Y

M
S

G
_

R
E

Q
U

E
S

T

M
S

G
_

D
E

L
IV

E
R

Y

MSG_REQUEST

1

2

1

2

2

1

3
4

Task B Task C

Task A

M
S

G
_

R
E

Q
U

E
S

T

MSG_REQUEST

M
S

G
_

D
E

L
IV

E
R

Y

M
S

G
_

D
E

L
IV

E
R

Y3

Task CTask Bemptyempty Task CTask Bemptyempty

Figure 32 – Representation of the rules involved in the inter-task synchronization [RUA17b].

4.2.2 Results

The results were conducted in an RTL SystemC description of the reference many-core system.

The migration latency is due to the task recreation step and the dynamic data migration. The task

recreation latency is constant, regardless the TM text size, once we adopt a dual-port memory and

a the DMNI (which is able to to copy two blocks of memory by making a single programming). In

systems with a single-port memory, this latency is proportional to the text size because the

processor stalls during the transference. The task recreation time is due to the time spent by the

kernel to configure the DMNI with the memory address and size of the text. Once configured the

DMNI module, TM resumes it execution while its text is injected into the NoC. This process is similar

at the destination PE, when it receives the text message, it stops the execution of the current task

and programms the DMNI. After the programming it resumes the execution of current task while

the text is copied to the local memory by DMNI. The task recreation step (DMNI configuration phase)

takes, on average, 2,700 cc (clock cycles). This value may suffer small variations due to the status of

65

the DMNI at moment of kernel request. The migration latency corresponds in fact to the time spent

to transfer the dynamic memory section. The overhead grows linearly with a complexity of O(n),

where n is the sum of all dynamic memory sections and the TM context (PC, SP, registers).

Transferring this data requires to stop TM, and restart TM at TgtPE after the end of transference.

The evaluation of the dynamic data migration latency is carried out with a synthetic task and

a variable data size. Figure 33 presents the task migration latency between PEs at 1 hop of distance

and without NoC disturbing (each NoC router takes 5 cc to route a packet header). After a constant

task recreation latency, 2,709 cc, the migration latency increases linearly with the data size,

approximately 500 cc per KB, using 32-bit NoC channels. When compared to the related works (more

details in Subsection 4.2.2.2), this value corresponds to a small task migration latency.

Figure 33 – Task migration latency according to the task data size, 32-bit NoC channels, 1 hop between PEs
[RUA17b].

 Impact of the Task Migration in the Applications’ Performance

Figure 34 presents the migration latency considering simultaneous task migration for the

MJPEG application. Each point of Figure 34 represents the latency to decode one frame with 128

bytes. The MJPEG application is modeled as a pipeline, with five tasks: input, idct, ivlc, iquant,

output. The tasks are allocated alone in different PEs, and the task migration moves tasks to idle

PEs. The curve "without task migration" corresponds to the minimal application latency that the

platform can sustain – baseline.

The migration order arrives when the simulation reaches 400,000 cc. The overhead over the

baseline latency measured at the 4th frame was (in cc) 2,282 (+4%), 7,976 (+14%), and 10,794

(+19%), for 1, 2 and 3 migrations, respectively. The latency reduction at the 5th frame comes due

the message buffering caused by the blocking of the tasks, after the migration these buffered

messages are consumed with high throughput. The application latency is restored one frame later.

The overhead over the application execution time, considering only the first 11 frames of

Figure 34, was 0.05% (600 cc of penalty) for 1 migration, and 0.6% for 2, and 3 migrations. The

overhead for 2 and 3 migrations is not cumulative due to the parallel execution of the migration in

 4000

 8000

 12000

 16000

 20000

 0 5 10 15 20 25 30

M
ig

ra
ti
o
n

 L
a

te
n

c
y
 (

c
lo

c
k
 c

y
c
le

s
)

Data section size (KB)

66

different PEs, and the inter-task message synchronization that masks the migration overhead due

to its on-demand behavior to deliveries the pending messages. For many received frames, and

frame sizes, this overhead is even smaller.

Figure 34 – MJPEG frame decoding latency for simultaneous task migrations [RUA17b].

Figure 35 explores the proposed task migration targeting QoS. The MJPEG application is

mapped dynamically on the system. At time A, a disturbing application is mapped increasing the

frame decoding latency. At time B, a QoS heuristic (out of the current scope) fires 3 concurrent tasks

migrations (all tasks belonging to MJPEG application). The migration process finishes at time C, with

the migrated tasks moved to free PEs, this restores the MJPEG latency to the baseline value. The

MJPEG execution finishes at time E with task migrations. Without disturbing, the MJPEG finishes at

time D, and with disturbing but without task migration it finishes at time F. The migration overhead

over the application was 6,152 cc for 3 simultaneous task migrations (besides the speedup of 27%

in the execution time).

Figure 35 – Task migration applied for Quality of Service at MJPEG application [RUA17b].

45000

50000

55000

60000

65000

70000

75000

3
0
0
0
0
0

4
0
0
0
0
0

5
0
0
0
0
0

6
0
0
0
0
0

7
0
0
0
0
0

8
0
0
0
0
0

9
0
0
0
0
0

It
e
ra

tio
n
 L

a
te

n
c
y
 (

c
lo

ck
 c

y
c
le

s)

Time (clock cycles)

Without task migration

With 1 task migration: ivlc

With 2 task migrations: ivlc, iquant

With 3 task migrations: ivlc, iquant, idct

0

20000

40000

60000

80000

100000

120000

140000

160000

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000

Without Disturbing

With Disturbing

Task Migration

L
a
n

te
c
y

(c
lo

c
k
 c

y
c
le

s
)

Time (clock cycles)

27% speedup

B C

ED

F

A

67

 Latency Comparison with the State-of-the-Art

Table 9 compares the proposed migration latency with results reported in the literature. This

is a approximate comparison since the works’ architectures are not exactly the same. El-Antably et

al. [ANT15] evaluate the migration overhead using a synthetic application with three tasks:

generator, processing, and consumer. The migration overhead is a function of the task size. The

minimum overhead achieved was 530,923 µs for a task size of 4KB, increasing at a rate of 42.2 µs

for each 4KB. Our proposal achieves an overhead of 4,945 cc based on Figure 33 (equal to 49.45 µs

@ 100MHz) for the same data size, at an increasing rate of 500 cc (5 µs) per KB.

Table 9 - Comparison of the migration latency against the state-of-the-art works [RUA17b].

Proposal NoC details OS Benchmark Migration Latency

[MUN15] Theoretical proposal

[ANT15] 3-D torus DNA-OS Synthetic Apps 530,923 µs

[FU13] N/A uC/OS-II Matrix Mult. 10,457 cc

[CAN12] 2D mesh in-house MJPEG 25,000 cc

[JAH11]
2D mesh

4 Gbit/s per link

CARAT
middleware

x264 / 7Zip /
robotic app.

106,505 cc
(average value)

[SAI08] 2D mesh HS-Scale OS MJPEG 919,450 cc

This proposal 2D mesh 3.2 Gbit/s per link in-house MJPEG 600-6,152 cc

Fu et al. [FU13] use a matrix multiplication benchmark to evaluate its migration protocol. NoC

details are not available. The obtained application overhead was 10,457 cc, and the migration

latency for one task was in average 7,500 cc. Our proposal achieves an MJPEG application overhead

of 600 cc for one task migration. Fu et al. do not allow more than one simultaneous task migration

and use task replication.

Cannella et al. [CAN12] adopt as the benchmark a Sobel Filter and an MJPEG decoder. The

MJPEG’s task migration latency takes 25,000 cc in that work. Our overhead for MJPEG was, in the

worst-case, equivalent to 24% to the one obtained in that work. Cannella et al. also employ task

replication and require instrumentation in the task source code.

Jahn et al. [JAH11] adopt three benchmarks: x264, 7Zip, and an embedded-systems robotic

application. With the CARAT task migration mechanism, the migration latency may vary because the

migration transfers the memory section dynamically according to the task behavior. For this reason,

the application benchmarks presented different migration latency overheads. A video application,

x264, resulted in a latency overhead 303,118 cc.

Saint et al. [SAI08] use an MJPEG benchmark. The Authors employ a task migration in one task

of the MJPEG application. The task migration process required 131.35 ms in a MIPS R3000,

corresponding to a migration latency of 919,450 cc. For comparison purposes, the scenario of Figure

34 detailed an overhead in the MJPEG decoding of 6,152 cc to migrate 3 tasks simultaneously.

68

4.3 Dynamical Real-Time Task Scheduler

A key feature of a complex system, such as a many-core, is the ability to support dynamic

workloads. Applications may have moments of heavy computational load and can have moments of

a state close to the idle, waiting, for example, an external input, as a user interaction or a message

from another task. For this reason, it is necessary to allow applications to tune the computational

workload, avoiding unnecessary resources allocation. This Section presents the main contribution of

this Thesis related to QoS at the computation level. The proposal focuses on a self-adaption

technique for many-core, proposing a dynamic Real-Time (RT) task scheduler that can support run-

time reconfiguration of the tasks’ RT constraints. This reconfiguration starts with an API that enables

the application developer to characterize the RT workload of each task at different execution points.

At run-time, according to the task execution, the API triggers changes in the task RT constraints. The

proposed task scheduler handles these changes at run-time to fulfill the new tasks’ RT constraints.

Scalability is ensured by dividing the scheduler into two hierarchical levels: SL (Local

Scheduler), and SC (Cluster Scheduler). The SL runs at the processor level within SPEs, using the LST

(Least Slack-Time) algorithm. The SC runs at the cluster level, within MPEs. The SC receives messages

from the SLs, informing the CPU slack-time, deadline violations, and RT changes. The SC implements

an RT adaptation heuristic, triggering task migrations according to RT reconfiguration or deadline

misses.

The scheduler works according to the ODA paradigm - Figure 36. The monitoring and

notification messages (CPU slack-time, deadline miss, RT changes), produced by the SLs, are the

inputs of the SC (observation), the SC executes a heuristic (decision), which can trigger an adaptation

by a task migration (actuation). This process is repeated along the execution of the applications.

Monitoring/
Notifications

Heuristic/
Action

Task
Migration

Figure 36 – Scheduler support for self-adaptation at run-time based on the ODA paradigm [RUA16a].

The task scheduler proposed in this Thesis is a dynamic scheduler, in the sense that tasks can

change its real-time constraints at run-time. The task constraints are transferred to the kernel using

task code annotation, a common approach found in the literature. Theodoropoulos et al. [THE13]

use task code annotation that are used by a run-time manager to perform task mapping. Canella et

al. [CAN12] employ task annotation to implement a task migration mechanism based on task

replication.

69

As can be observed in Section 4.1, there is a lack of works in the literature addressing dynamic

RT schedulers for large-scale many-cores. The originality of this proposal is related to the scheduler

ability to support dynamic RT reconfigurations while it satisfies the task RT constraints. Task

mapping or schedulability analysis in out of this Thesis’ scope. Such techniques are explored in the

literature [SIN13b][JUN14][PAR14] and can be easily combined with the proposed scheduler. Aware

of the current state-of-the-art, this proposal is the first to support a run-time reconfiguration of the

RT task constraints. Besides, the evaluation of the proposed scheduler is executed in a clock cycle

accurate description of the many-core system.

4.3.1 Real-Time Task Model

An m-task of a real-time application A={t1, t2, …,tm} is modeled by a task graph G(T, E), with

each vertex ti  T representing a task and the directed edge (ei, ej), denoted as eij  E, representing

the communication between tasks ti and tj. Tasks communicate using non-blocking Send and

blocking Receive MPI-like primitives (described in Subsection 3.2.2). A given task ti can assume four

states: waiting, ready, running, and sleeping. The waiting state implies that the task is blocked,

waiting for a producer task to send it a message. The ready state means that the task already

achieved its release time, and is ready to be scheduled. The running state implies that the task is

executing on the CPU. Note that, with the proposition of the task scheduler, and consequently, the

RT support, a new state, called sleeping is included in the scheduling of RT task only. The sleeping

state means that the task already finished its execution time and its period does not end yet, so the

task must be suspended.

As mentioned, the reference many-core system supports only BE tasks. This proposal adds the

support for RT tasks. BE tasks do not have time bounds and explore the slack-time of RT tasks. RT

tasks have soft temporal requirements. Figure 37 details the RT task constraints model.

Time in clock cycles

Period: p

Deadline: d

Slack time: s

Exec. time: e

... ...

Figure 37 - RT constraints model [RUA16a].

RT tasks properties definition: RT task is a 6-tuple {p, d, e, u, r, s} with a period (p), relative

deadline [LIU00] (d), execution time (e), utilization (u), remaining execution time (r), and slack-time

(s). Utilization corresponds to u = e * 100 / p. The remaining execution time is the amount of time

that the RT task has to finish it execution time within a given period.

To make the system aware of the constraints of a given RT task, the task must execute a system

call named RealTime. This RealTime system call is the API provided to the application developer to

reconfigure the RT constraints. Figure 38 presents an example of an RT task source code that

configures the RT constraints (d, p, and e) dynamically. At line 3, the RT task A calls RealTime,

70

notifying the kernel about its RT constraints. Lines 4-8 execute processing code. Due to the RT

constraints configuration, the scheduler can execute A according to the predefined RT requirements.

Next, at line 10 the task calls RealTime again to notify the scheduler about its new constraints. The

code between lines 11-15 executes according to these new constraints.

Note that the RT reconfiguration can be called in any task code point allowing the task can

change its period (characterizing an aperiodic behavior), deadline, and/or execution time. Such

behavior, where an RT task can change its RT constraints at run-time, is typical in real scenarios. For

example, a voice recognition application. The application can assume two workloads: the first one

is a listening state, where the application is waiting for the user to pronounce some sound, this state

requires a moderate RT workload. The second one is the recognition state, where the task uses voice

recognition algorithms. In this case, the application tasks can configure two workloads, with

different RT requirements. Another example, is an image decoding application, according to the

decoding frame properties, it can dynamically increase or decrease its RT constraints to decode the

frame in a specified time. This feature of dynamic RT configuration help to not waste resources,

avoiding the system always to assume the WCET scenario.

It is important to mention that the time used by the developer to configure the RT constraints

is independent of the target archiceture, such contratins can be represented by timming parameters

instead clock cycles. The platform can perform a simple conversion taking in consideration the clock

cycle period.

To handle with inter-task dependencies this proposal assumes that an iteration of a given

application defines a hyper-period, i.e., an RT application has all its tasks configured with the same

p. This hyper-period can handle with inter-task dependencies because it is composed of the sum of

the execution time of all application tasks and the worst-case of communication between the

application’s tasks.

Slave
(Local Scheduler)

TASK A

1. int main(){
2. int period = 60000, deadline = 8000, execution_time = 2000;
3. RealTime(period, deadline, execution_time);
4. for (i iterations) {
5. Receive (msg from producer task);
6. process1(msg);
7. Send (msg to consumer task);
8. }
9. period = 60000, deadline = 10000, execution_time = 8000;
10. RealTime(period, deadline, execution_time);
11. for (k iterations) {
12. Receive (msg from producer task);
13. process2(msg);
14. Send (msg to consumer task);
15. }
16. return 0;
17. }

Figure 38 - Example of a task code with run-time RT configuration. It calls the RealTime syscall twice to
configure the constraints (in lines 3 and 10) [RUA16a].

This task dependency model does not restrain the application model, accepting sequential,

71

parallel and pipelined applications. The designer can obtain the appropriated RT constraints running

the application alone in the system (profiling phase).

4.3.2 Proposed Task Scheduler

Table 10 presents the classification based on the works of [LIU00][DAV11] for the proposed

scheduler.

Table 10 - Proposed scheduler classification [RUA16a].

Criterion Classification

Organization (Global, Partitioned) Hybrid (Mixes Global, Partitioned), and clustered

Scheduling decision (Static, Dynamic) Dynamic

Allocation (Clock, Table, Priority) Dynamic Priority-driven

Migration (Job level, Task level) Task-level Migration

Processor Number (Uni.,Multi.) Multiprocessor (on chip)

Preemption (Yes, No) Yes – Priority based on task’s slack time

Supported task Periodic, aperiodic, sporadic

Real-time (Hard, Soft) Soft real-time

The SLs send messages to SC. The messages are: (i) CPU slack-time monitoring; (ii) deadline

miss; (iii) RT change. Messages (ii) and (iii) are reactive messages, sent when a task misses a

deadline, or when a task calls the RealTime syscall, respectively. The slack-time messages are

generated periodically.

CLUSTER
SCHEDULER

(MPE)

LOCAL
SCHEDULER

(SPE)

LOCAL
SCHEDULER

(SPE)

LOCAL
SCHEDULER

(SPE)

LOCAL
SCHEDULER

(SPE) ...

High-level Scheduling:
inside MPE

Low-level Scheduling:
inside SPE

Task Migration 1. CPU Slack Time
2. Deadline miss
3. RT change

Figure 39 – Hierarchical scheduler organization [RUA16a].

The CPU Slack-Time Monitoring (STM) provides to the Sc the actual slack-time of each SPE’s

CPU. The STM has a hardware/software implementation at each SPE. The hardware part corresponds

to a timer, which generates an interruption to the kernel according to a monitoring window. This

monitoring window is configurable at design-time and can be adjusted to provide a tradeoff

between NoC communication load and the STM update frequency. The software part corresponds

to a slack-time counter and a monitoring interruption handler function. When the STM timer

interrupts the kernel, the kernel achieves the amount of time that CPU stay in idle, computes a

percentage of this time over the monitoring window, sends a message with the current slack-time

to SC, and reset the hardware slack-time counter.

72

 Cluster Scheduler (SC)

The SC has the goal of handling the messages sent by the SPEs and execute the RT adaptation

if necessary. Each message has a different treatment. For the slack-time messages, the SC only

updates the percentage of the idle state of each SPE. For deadline miss messages the SC executes a

heuristic called RT_adaptation, which can select a new processor to migrate the penalized task.

Finally, for RT change messages, the SC verify if the current processor of the task has enough

utilization to execute the task, if not, as well as occurs for deadline miss message, the SC executes

the RT_adaptation heuristic.

The RT_adaptation heuristic works as a set of decision layers applied to the SPE of the cluster

as represented in Figure 40(a). Figure 40(b) presents the heuristic’s pseudo-code. As input it receives

the set CSP = {P(ci) - M} (corresponding to set of SPEs in the cluster), and the task t to be migrated into

a given element of CSP. As output the algorithm returns the selected SPEs, corresponding to the new

SPE to receive the task t. If no one SPE is available to receive the task, the adaptation process is

suspended, the affected task will start to miss deadlines triggering the adaptation process again

until an available processor can be found.

The decision functions only select the SPE which fulfill the function’s requirement. The

following decision functions are used:

▪ utilization: selects the SPE(s) that have a remaining utilization enough to receive the task t;

▪ max_avg_ST: selects the SPE(s) with the largest average CPU slack-time, information obtained

from STM;

▪ min_RT_task: selects the SPE(s) with the minimum number of RT tasks allocated to it;

▪ min_abs_ST: selects the SPE(s) with the largest absolute CPU slack-time measured at the last STM

window;

▪ min_alloc_tasks: selects the SPE(s) with the minimum number of allocated tasks.

Finally, in line 6, the first SPE in CSP is selected to receive task t. Using this heuristic, the SC takes

advantage of the monitored slack-time of its slave processors (lines 2 and 4), together with the RT

metrics (line 1 and 3). The information provides a trade-off between the processor’s RT utilization

and load balancing. After the execution of the heuristic, a task migration order is sent to the current

SPE of task t, and the task is migrated to the selected processor s.

S S S

S S S

M S S

S S S

S

S S

task t

RT_Adaptation (Csp, t, s)
Input: Csp, t

Output: s

begin

1: Csp= Csp utilization(Csp, t)

2: Csp= Csp max_avg_ST(Csp)

3: Csp= Csp min_RT_task(Csp)

4: Csp= Csp min_abs_ST(Csp)

5: Csp= Csp min_alloc_tasks(Csp)

6: s = first(Csp)

end

(a)
S S

S

S

S

(b)

S

Csp

s

Figure 40 - (a) layered decision flow. (b) RT_adaptation heuristic [RUA16a].

73

Note that SC in this proposal individually performs the role to make RT adaptations, covering

self-adaptation at computation level, the SC role was integrated into a unified self-adaptive QoS

management that will be presented in Chapter 6.

 Local Scheduler (SL)

Assuming the task model in Subsection 4.3.1, the SL executes as a conventional LST scheduler

[LIU00]. The LST algorithm was chosen because it has been proved optimal for single cores, and due

to its support to deadlines different from the period, which is not supported in EDF (Earliest Deadline

First). Note that the multiprocessor scheduling problem can be reduced to the single core problem,

due the presence of the SC, which acts as a high-level manager, migrating a task when the SL that is

not able to provide its RT requirements.

The RT tasks have scheduling priority over BE tasks. RT tasks are scheduled according to its

least slack-time priority. If there are two or more RT tasks with the same slack-time, a round-robin

algorithm is used to select the next scheduled task. BE tasks are scheduled only by the round-robin

algorithm.

As the system uses an MPI-like communication API, some tasks (either BE or RT) can be in a

waiting state. In this state, BE tasks are blocked. However, when an RT task goes to the waiting

state, the SC handles the RT task as a sleeping task, i.e., the scheduler verifies the end of task period,

but do not update its remaining execution time neither schedules the task. When the task receives

the requested message, the kernel changes the state of the task to ready and calls the SL. The

scheduler then updates the slack-time and the remaining execution time for all its RT ready tasks,

scheduling the task using the LST priority.

Most schedulers use a fixed scheduler timer (ST), or quantum, to schedule the tasks

[LIU00][PAR14] (for example, EDF uses fixed time slices). This quantum is the interval between the

scheduler calls. The proposed SL adopts a variable ST. Setting the appropriate ST is challenging,

because it may induce deadline misses caused by excessive scheduler executions. The proposed

method to compute ST is executed after selecting a given task to be scheduled ts. The goal is to let

ts run, minimizing scheduler interruptions but without compromising other RT tasks. Let  be the

set of RT tasks allocated into a given SPE, except by ts.

The ST value is computed applying the following steps:

1. Selection of the first end of period for all sleeping and waiting tasks s  , using Equation 1:

Stc1= {
Ct- first_end_of_perido(s1…sn), n>0
ts(r), n =0

 (1)

where 𝐶𝑡 is the current system time, and n is the number of tasks s  . The value Stc1 ensures

that the scheduler will be called at the first end of period of a task si  . The Stc1 value ensures

a scheduler call to awake a sleeping task or to verify if a waiting task missed a deadline. The

default value, if n=0, is the remaining execution time of ts, which is stated by ts(r).

2. Selection of the minimum slack-time: minST() for all ready tasks r  , using Equation 2:

74

 Stc2= {
minST(r1…rn), n >0
ts(r), n = 0

 (2)

where n is the number of tasks r  . The Stc2 value ensures the execution of ts up to the end

of the smallest slack-time of a task ri  .

3. Selection of the scheduler timer ST, using the Equation 3:

 𝑆𝑇 = min (𝑆𝑡𝑐1, 𝑆𝑡𝑐2, 𝑡𝑠(𝑟)) (3)

If ts(r) is smaller than the previously computed values, it is adopted as the quantum value. After

selecting ST, tasks ts start their execution using the ST value as quantum.

4.3.3 Results

Results were obtained using a clock-cycle accurate RTL SystemC model of the reference many-

core. Results use two latency metrics:

▪ Task iteration latency, time to execute a task iteration, which can e.g. be a loop.

▪ Application iteration latency, time for an application to execute its hyper-period.

 CPU Slack-Time Monitoring

The evaluation of the STM includes: accuracy and performance overhead. The accuracy

evaluation employs an 8x8 dimension many-core, divided into four 4x4 clusters. To estimate the

SPEs slack-time, the SPEs received only RT tasks. Figure 41(a) presents the annotated utilization for

each SPE (%). Figure 41(b) presents the monitored slack-time achieved from STM (%). It is possible

to note that the monitored slack-time is in practice the remaining utilization of Figure 41(a), with

the sum of SPEs utilization with the monitored slack-time reaching to 99%. The remaining 1% is

related to kernel overheads. Such results demonstrate the accuracy of the monitored slack-time.

9 11 34 7 81 77 82 10 90 88 65 92 18 22 17 89

6 29 15 10 57 5 62 14 93 70 84 89 42 94 37 85

21 55 15 44 12 25 80 24 78 44 84 55 87 74 19 75

MPE 58 86 6 MPE 6 12 14 MPE 41 13 93 CM 93 87 85

16 47 12 67 69 13 66 9 83 52 87 32 30 86 33 90

50 5 10 14 29 15 14 46 49 94 89 85 70 84 85 53

9 19 9 74 81 11 12 54 90 80 90 25 18 88 87 45

MPE 40 79 59 MPE 27 15 46 MPE 59 20 40 CM 72 84 53

(a) SPs utilization (%) (b) Monitored SPs slack-time (%)
Figure 41 – (a) SPEs utilization using RT tasks. (b) Monitored SPs slack-time. Each square with a number

represents an SPE [RUA16a].

To evaluate the performance overhead due to STM, a 12x12 many-core divided into nine 4x4

clusters was used in experiments, running a mix of RT and BE applications. The monitoring window

was set to 10 ms. Figure 42 presents the STM overhead for each SPE. This overhead is related to the

time required to handle the STM interruption and to send the slack-time message to the SC. As can

75

be observed, the overhead in most SPEs falls between 100 and 150 clock cycles (cc), with an average

of 132 cc. There are a few large values, which can be explained by NoC congestion, forcing the packet

to wait for the router to be released. The overhead in the MPE to handle the STM packets was 1620

cc (only software execution). Such result shows the small penalty to monitor the slack time.

0

50

100

150

200

250
0

2 4 6 8
10

12
14

16
18

20
22

24

26

28

30

32

34

36

38

40

42
44

46
48

50
52

54
56

58
606264666870727476

78
80

82
84

86
88

90
92

94

96

98

100

102

104

106

108

110
112

114
116

118
120

122
124

126128130132134

latency
(clock cycles)

SPE number

Figure 42 – STM overhead for SPEs in a 12x12 many-core [RUA16a].

Different STM windows were evaluated: 1, 2, 5 and 10 ms. The cost of handling a monitoring

message by SC does not change with the STM window. Reducing the monitoring window may reduce

the time to adapt the system, at the cost of increased processing in MPE, due to the larger number

of packets to deal. The monitoring window is a design choice, enabling to establish a trade-off

between reaction time and performance overhead in the manager processors.

 Real-Time Adaptation Support

This Subsection evaluates the RT adaptation support, observing the scheduler behavior when

a RealTime syscall occurs. Figure 43 presents the CPU utilization for a given SPE running two RT tasks:

t1 and t2. At the beginning of the execution, both tasks configure its RT constraints: t1(u)=20%,

t2(u)=30%. Near 52 ms, t2 changes its RT constraints, configuring t2(u)=65%. It is possible to note that

after the second RealTime, t2 executes for a longer period, corresponding to the utilization

configured in the second RealTime call.

76

Figure 43 - Change in the CPU time utilization during an RT adaptation (rectangles represent the CPU
utilization) [RUA16a].

Figure 44 presents the task iteration latency for t1 and t2, considering the scenario presented

in Figure 43. It is possible to note that the t1 latency is not affected when the t2 workload increases,

demonstrating the capability of the SL to preserve the RT constraints in a shared CPU scenario. The

small peak near 52 ms observed in the graph occurs due the RT adaptation process. Figure 44(b)

shows that after t2 request more CPU resources the latency decreases in the same proportion.

Figure 44 - Task iteration latency change during an RT adaptation. (a) t1 latency. (b) t2 latency [RUA16a].

 Real-Time Adaptation with Task Migration

This Subsection presents an RT adaptation scenario using task migration (Figure 45). The same

scenario of the previous Section is used. However, the second RT configuration of t2 exceeds the

SPE‘s CPU utilization: t2(u)=85%. This utilization, plus t1(u), would result in a CPU utilization equal to

105%. When SC receives the RT change message related to the second t2 RT change, it detects that

the CPU utilization in the SPE is above 100%, and executes the RT_adaptation (Figure 45(b)) to select

an SPE with enough remaining utilization (neighbor PE at 1 hop of distance).

77

Figure 45 - Change of the CPU time occupation during an RT adaptation with task migration. Task t2 start to
execute in SPE 2 when the RT constraint changes [RUA16a].

Figure 46(a) and Figure 46(b) present the task iteration latency for t1 and t2, considering the

scenario presented in Figure 45. It is possible to observe the negligible impact of RT adaptation even

with task migrations taking place. Observing the chart of Figure 46(a) is possible to note that near

52 ms t2 call the second RealTime, inducing a task migration from SPE 1 to SPE 2 (Figure 46 (b)). The

total time between the start of RT adaptation until the end of task migration was 8906 cc, with 2651

cc (29.7%) required to the RT adaptation process, and 6255 cc (70.3%) required to the task migration

protocol.

Figure 46 - t1(a) and t2(b) task iteration latency during an RT adaptation with task migration [RUA16a].

Note that in this experiment t1 is not impacted by the t2 migration. Besides the low overhead

of the task migration protocol, another factor that contributes to this non interfecerence is due t1

is in sleeping state when the order to migrate t2 arrives at SPE 1. The protocol is fast enough to ensure

t2 migration until the next job release of t1.

78

 Real-time Applications Execution Time Evaluation

This Subsection evaluates two RT applications: DTW (computation intensive, six tasks) and

MPEG (communication intensive, five tasks). These applications – named target applications, were

evaluated in the presence of disturbing applications (RT and BE). The goal is to observe the scheduler

behavior with multiple tasks allocated in the same SPE and the impact of the disturbing applications

over the target applications.

Initially, the target applications execute alone in the system aiming to collect the reference RT

constraints for its tasks (profiling step). Next, new simulations were performed aiming to insert RT

interference over the target applications. The functionality of the target and disturbing applications

is not important in this scenario. The goal is to observe how the insertion of either RT or BE

interferences affect the RT quality provided by the proposed task scheduler over the target

applications. Figure 47 depicts the results for DTW application. Each bar shows the results over

different interferences. In the minimal bar, the disturbing tasks are only communicating, not

presenting significative CPU interference over the DTW tasks. For the bars from 10% RT to 90% RT,

the disturbing applications are set to induce interference by setting RT constraints through the

RealTime syscall. The percentage represents the amount of the remaining CPU utilization left by the

target tasks, which was explored by the disturbing task. Thus, the available time to execute

disturbing tasks, tdisturb, corresponds to Rt(p)- Rt(e), where Rt is the target task. The experiments vary

tdisturb from 10% (0.1* tdisturb) to 90% (0.9 * tdisturb).

Figure 47(a) presents the DTW average application iteration latency. The first column presents

the minimal latency, next columns present the interference of an RT disturbing application varying

tdisturb from 10% (10% RT) to 90% (90% RT), the column "BE" corresponds to a BE application

interference with tdisturb equal to 100%. The last column presents the latency when a round-robin

scheduler (i.e. without RT support) is used. Is possible to observe that for all RT disturbing scenarios

the DTW latency close to the minimal latency (36220.03 cc.), with an average latency increase of

2%, and a standard deviation of 316.4 cc. Such results demonstrate the scheduling ability to preserve

the RT application constraints even with high RT resource sharing load. BE disturbing applications

do not influence the latency values. Disabling the RT support the latency increase 97.13% compared

with the minimal latency, demonstrating the importance of the RT scheduler to meet deadline

constraints on this scenario. The deadline miss rate for DTW with RT interferences was 0.66%, and

for the disturbing application (which is also an RT application) was in average 2.7%. Figure 47(b)

presents the DTW execution time. The results are similar to the latency results. The additional

column "minimal–no STM", corresponds to the scenario to obtain the minimal latency, but disabling

the STM. Note the negligible impact of STM monitoring, increasing the application execution time

by 0.4% (adopting, as worst-case, STM window of 5 ms).

79

Figure 47 - (a) DTW application latency over disturbing. (b) DTW execution time over disturbing [RUA16a].

The application iteration latency observed in the MPEG application is similar to the DTW

application. All latencies with RT disturbing remain close to the latency of the minimal scenario

(55358.5 cc.), with an average latency increase of 0.5% and standard deviation equal to 181.1 cc.

The frame rate achieved in the minimal scenario was 178 frames per 100ms. With RT disturbing

applications, the frame rate has presented a maximum of 2 frames decrease compared to the

minimal scenario. Disabling the RT support, the frame rate drops to 81 frames per 100ms. The

impact of STM monitoring in the MPEG application was 0.07% (STM windows of 5 ms). The deadline

miss rate for MPEG with RT disturbing application was 0.18%, and for the disturbing application was

equal to 2.1%.

The deadline miss difference between the disturbing application and the RT application occurs

because the disturbing application is computationally intensive, which makes such application more

sensitive during RT scheduling. This same observation can be used to explain the difference of

deadline misses between DTW and MPEG.

 Real-time Applications Latency Time Evaluation

This Subsection evaluates how the latency of the RT application is affected faced to run-time

events of interferences. The DTW application is mapped on the system and starts its execution at

the beginning of the simulation, the MPEG start at 15ms. Three BE applications are inserted at 25ms,

35ms, and 45ms.

The graph of Figure 48(left) represents the latency for each MPEG iteration (frame decoding).

This latency is collected at the last MPEG task (output).

As can be observed, the RT support scenario provides a reduction of 209.3% of the iteration

latency compared with the scenario without RT support. Is possible to observe the high degree of

interference caused by BE application in this experiment. The RT scenario ensures a latency of 45.8%

higher in comparison to the optimal scenario.

80

Figure 48 – (left) MPEG iteration latency; (right) DTW iteration latency [RUA15b].

The graph presented in Figure 48(right) addresses the DTW iteration latency. The effect of the

RT support for DTW application is easily observed. The scenario with RT support can maintain the

application requirements even with the load of the BE applications. The average latency increases

only 1.43% comparing the RT support against the optimal scenario. The average latency reduction

comparing the RT support against without RT is 97.7%.

As shown in Figure 48, the proposed scheduler can sustain the RT constraints of tasks. The

high impact of disturbing over the MPEG application occurs because this application is highly

communicating, which allows that the disturbing caused by BE applications can be observed. In the

case of DTW, which is computation intensive, the scheduler can prevent deadline misses even in a

high computation disturbing. As the scope of the scheduler is, essentially, computation resource

management, it is expected the behavior shown in both graphs. This analysis emphasizes the need

to complement a real-time scheduler with a run-time QoS mechanism at communication level.

4.4 Energy Management combined to Real-Time Task Scheduling

The proposed task scheduler was integrated into a run-time energy management technique

[MAR17a][MAR17b]. The goal of the work is to propose an adaptive run-time energy management

designed to support soft RT applications, called RT-REM. The energy management observes the

energy per PE and exploits the slack-time of RT application to guide task mapping, task migration

and to apply DVFS while meeting the application’s RT constraints.

4.4.1 DVFS Design

The DVFS is applied at the computational resources (CPU and local memory). To support DVFS,

the original DMNI design presented in Section 3.4 was modified, as overviewed in Figure 49. The

DMNI can support two different frequency domains between the NoC and the PE. The main goal of

such design is to enable PEs to work at different frequencies while the NoC transmits packets using

the nominal frequency.

81

Application
Repository

S S S S S S

S S S S S S

M S S M S S

S S S S S S

S S S S S S

M S S M S S

Nominal
frequency

Scaled
frequency

Router

M
E
M
O
R
Y

Clock
generator

DMNI

MIPS-like
processor

Voltage Island

S – Slave PE - SPE

M –Manager PE - MPE

Figure 49 - A 6x6 instance of the reference many-core system, with four 3x3 clusters [MAR17b].

The work creates a set of voltage and frequency levels that can be applied at run-time, each

level is called vf-pairs (from voltage and frequency pairs): (1.1V, 4ns), (1.0V, 4.5ns), (0.9V, 5.5ns).

Such values were obtained from the Liberty files and timing analyses of the components netlist.

4.4.2 Power/Energy Characterization and Energy Profiling

Energy monitors extract the energy during time windows from the processor, memory, and

router. These energies values are obtained based on a characterization phase (at design time),

performed to each component. The processor’s characterization classifies the ISA (arithmetic,

logical, shift, etc.) achieving average power (mW) and energy (pJ) for each instruction class.

The router’s characterization is similar to the processor’s characterization. As the router

adopts wormhole PS and credit-based flow control, the packet’s header reserves the channel

temporally until the end of the packet. Thus, the switching activity of the router can be classified in

idle (0% of activity) and active (100% of activity), with each activity class presenting its energy

(dynamic and leakage values). The memory characterization is performed by the CACTI-P tool [LI11].

The CACTI-P tool enables distinct model types of memories, generating estimations as access time,

silicon area, and power.

After the characterization phase, an energy profiling phase is performed considering the vf-

pairs and the characterization step. The energy profiling enables the system developer to know the

minimum and maximum energy that an SPE can consume (best and worst cases). This knowledge is

useful to calibrate the run-time energy management algorithms. Figure 50 presents the energy

consumption for each SPE component. The histograms assume three supply voltages according to

the vf-pairs, and a sampling window equal to 1 millisecond. The histograms show the consumption

of the three main modules (processor, router, and memory). When the system operates at "max

energy" (processor running applications) and router transmitting data, the processor is responsible

for half of the consumed energy, and roughly 30% for the memory, and 20% for the router. For "min

energy" (processor and router in idle states), the parcel due to the router increases because its

frequency is not reduced.

82

Figure 50 – Energy profiling of the PE for all voltage supplies. The total energy (y-axis) corresponds to the
energy spent in a monitoring window of 1 ms [MAR17b].

4.4.3 Energy Monitoring and Estimation

Hardware and software components make the energy monitoring. At the hardware level,

registers count the number of instruction classes (by monitoring the processor and the memory),

and the number of flits (by monitoring the router), periodically, according to a given time window.

These values are read by the kernel of the SPEs periodically after the end of each monitoring window.

The SPE uses the received data to perform estimation functions, computing the dynamic and leakage

energy of the processor, memory, and router.

4.4.4 Application’s Slack-time Monitoring

The RT support assumes the previously described LST task scheduler. Figure 51 details how to

compute the application slack time. The ART(p) is the application hyper-period. ART(x) is the

application execution time, corresponds to the time to execute all tasks during one ART(p). This time

is composed of the CPU usage and the communication overhead between tasks. ART(s) is the

application slack time, which corresponds to the difference between ART(p) and ART(x).

The reference (RT constraints) ART(p) and ART(x) are provided by the syscall RealTime. The

RealTime is called inside each task. Note that by removing the deadline field from RealTime the

proposal assumes only periodic task with their deadlines equal to the period.

The current ART(p), ART(x), and ART(s) are computed at run-time by monitoring, triggered by a

syscall inserted on the task’s code, called PeriodMonitoring. This function sends the current time to

the MPE (which executes the energy management), allowing MPE to measure the current ART(x),

ART(s) and ART(p) for each application, and to detect when a hyper-period is violated. This syscall is

required in the first task (e.g., task a in Figure 51(b)) and the last task (e.g., task e in Figure 51(b)) of

each application. Figure 52 presents an example of task’s code calling the RealTime and

PeriodMonitoring. As can be observed the RealTime is called once, at the beginning of the loop. The

PeriodMonitoring is called at the end of the loop, enabling the system to measure the QoS at each

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

1.1V
(A)

1.0V
(B)

0.9V
(C)

1.1V
(D)

1.0V
(E)

0.9V
(F)

E
n

e
rg

y
 (

n
J
)

Max Energy Min Energy

Memory

Processor

Router

33%

32%
31% 37%

32% 27%

50%

49%

47%
36%

39%
41%

16%

18%

21%

26%

29%

32%

83

iteration.

a

b1 b2

c

d1

e

d2

(a)

a
b1

b2
c

d1

d2

e

Time
RT task running in a PE
delayed by DVFS

RT task running in a PE
at nominal frequency

tRT(x)

ART(x) ART(s)
ART(p)

(b)

Figure 51 - Task graph of an RT application (a) and its scheduling (b) [MAR17b].

Figure 52 - Code snippet for the last RT task of an application [MAR17b].

4.4.5 Run-time Energy Management (RT-REM)

The RT run-time energy management implemented within MPE¸ it consists of heuristics that

act during the application admission (task mapping), and at run-time according to RT constrains

changes or hyper-period violations. During the application admission, the SMPE redirect the

application to the cluster with the lowest energy consumed, balancing the energy at the system

level. During the task mapping phase, the MPE of the cluster performs a task mapping heuristic based

on a set of cost functions, which aim to select SPEs with the lower number of RT task running on it,

and the minimal energy consumed. This approach balances the energy at the cluster level.

At run-time, after the task mapping, the MPE detects when a given task change its RT

constraints (due to a RealTime syscall) and executes the RT-REM of Figure 53 to set the appropriated

vf-pair for the PEs running the task. The MPE receives the new RT constraints of the task and uses it

to compute the task’s utilization tRT(u) according to line 4 of Figure 53. Two thresholds are used to

guide the DVFS process based on the obtained tRT(u). HIGH_UTILIZATION: tRT(u) corresponding to

more than 70% of ART(p); LOW_UTILIZATION: tRT(u) corresponding to less than 30% of ART(p). The

ART(p) is the constraint to meet in RT applications. As the voltage scaling introduces delays on the

task’s execution time, RT-REM heuristic selects vf-pairs based on tRT(u) assuming a low utilization

task is less likely to generate ART(p) violations than a high utilization one.

84

Besides RT changes, the MPE can also detect hyper-period violations (from the syscall

PeriodMonitoring), in such case, the MPE reset the vf-pair of all application tasks to the nominal

voltage.

Figure 53 – RT-REM Heuristic [MAR17b].

 PEs running at 1.0V and 0.9V delays a task execution by 12.5% and 37.5%, respectively, due

to the frequency reduction. Thus, an SPE running a task with high utilization operates at the nominal

voltage (lines 5-6) while an SPE running a task with low utilization, operates at vf-pair (0.9V, 5.5ns),

delaying the task by 37.5% (lines 7-8).

4.4.6 Results

Figure 54(a) presents the hyper-period of an RT application, the baseline execution time (black

curve) and the execution time using RT-REM (red curve). The green line represents the application

hyper-period. The hyper-period defined by RealTime for each iteration is 60K clock cycles. The

distance from the baseline execution time curves to the hyper-period corresponds to the application

slack-time. The baseline execution time presents a significative slack-time. Using RT-REM, after the

definition of the vfpairs, the slack-time reduces because the SPEs running the application are delayed

due to the frequency reduction, with few violations in the hyper-period (smaller than 10% of the

hyper-period value). Figure 54(b) plots the energy consumed by the system for the baseline and the

system with RT-REM. As the simulation advances the energy savings increases, reaching 22% after

executing 100 iterations of the applications.

The variability in the execution time observed in both scenarios (baseline and REM) are

induced by branches of the application, kernel events, interruptions, and network congestion.

85

Figure 54 - Execution time and energy of an RT application with and without REM for 100 iterations
[MAR17b].

Table 11 presents the evaluation of hyper-period violations and energy savings for systems

having up to 144 PEs. Five many-core systems (first column), divided into different cluster sizes

(second column), run the applications set. The number of RT and BE tasks to process is the same of

the number of SPEs of the many-core (third column). For instance, the 6x6-many-core has one SMPE,

three MPEs, and 32 SPEs. The fourth column presents the number of executed task migrations.

Table 11 – Violations of hyper-periods and energy savings of RTREM compared to the baseline system
[MAR17b].

Many-core
size

Cluster
size

Number of tasks
for each type

Number of task
migrations

Violations of
hyper-period

Energy
savings

6x6 3x3 32 3 1,47% 15%

8x8 4x4 60 6 2,09% 18%

9x9 3x3 72 8 1,84% 20%

12x12 3x3 128 8 1,87% 18%

12x12 4x4 135 14 1.97% 18%

The fifth column of Table 11 shows the percentage of hyper-period violations (the execution

of the applications in the baseline system does no present violations. The RT-REM produces a small

number of hyper-period violations (< 2.1 %), with an amplitude inferior to 10% of the defined

constraint. This result shows that the proposed RT-REM is suitable for soft-RT applications. For

example, few hyper-period violations decoding a video frame do not affect the performance of the

applications [FEG07]. The last column of Table 11 presents the energy savings, for a simulation time

of 50ms. The average energy reduction observed is in average 18%. The energy saving is

proportional to the amount of execution time. Therefore, for applications execution for long

periods, important energy savings are expected.

86

4.5 Conclusions

This Chapter presented background about QoS at the computation level and the contributions

of this Thesis in this context.

The proposed task migration [RUA17b] achieves results towards to demystify the high-cost of

the task migration in distributed memory many-core systems, presenting a low latency protocol

compared to the State-of-the-Art. Additional relevant features of the task migration proposal

include: there is no need to replicate the code of the tasks; it is not necessary to modify the source

code neither to add checkpoints; support to simultaneous migrations; and correct inter-task

synchronization without migrating produced messages. A direction for future work is to evaluate

the protocol with others self-adaptive techniques, as fault-tolerance.

The proposed dynamic task scheduler [RUA15b][RUA16a] is self-adaptive, supporting dynamic

task RT constraints and CPU slack-time monitoring. The evaluation demonstrated an ability to fulfill

RT applications with soft deadlines even for communication or computation intensive applications

with the interference of other RT applications. The average latency increase was 2%, even assuming

scenarios with 90% of CPU dedicated to disturbing RT applications. Such results demonstrate the

scheduling ability to preserve the RT application constraints even with high RT resource sharing load.

The STM presented a negligible impact on the execution time of application, with the worst

execution time increase of 0.4%. Future works include integrating the scheduler with a task mapping

and schedulability analysis algorithm.

The integration of the task scheduler to an energy management [MAR17b] reduces the

consumed energy in many-core while executing soft RT applications meeting the applications’

constraints. The proposed energy management executes monitoring (hyper-period slack time),

decision (RT-REM heuristic), and actuation (DVFS and task mapping/migration). As shown in the

results Section, the proposal is the scalable, with similar energy savings for different system sizes

(from 36 up to 144 PEs), producing a small number of hyper-period violations (<2%). Future works

include: (i) define consumption limits to cope with dark silicon issues; (ii) include other actuation

techniques, as power gating; (iii) evaluate the approach for SOI technologies.

87

5 QOS AT THE COMMUNICATION LEVEL

This Chapter addresses the contributions of this Thesis covering QoS at the communication

level. Section 5.1 reviews the state-of-the-art. Section 5.2 presents the proposition and evaluation

of the Software-Defined Networking (SDN) for NoC-based many-cores. Section 5.3 presents a CS

infrastructure and management based on the SDN paradigm. Section 5.4 presents the results.

Section 5.5 finishes this Chapter presenting the conclusions and direction to future works.

5.1 State-of-the-Art

Table 12 presents the state-of-the-art related to QoS of communication. A common approach

in the literature is to employ flow priority [KAK11][WIS11][CAR14][WAN12][JOV13][PAL12][GRO12]

(third column). Flow priority enables differentiated treatment of packets according to different

priorities. For instance, high priority packets can first receive the access to an output port by the

arbiter or can to explore adaptive routing algorithms [CAR14]. Flow priority mechanisms are

effective to offer a simple QoS support, where some deadlines may be missed, as in soft real-time

applications. Most techniques that implement flow priority use Packet-Switching (PS), being

susceptible to inter-packet interference and increased jitter.

The most adopted option to provide a robust QoS support is the end-to-end path reservation,

employing a connection-oriented Circuit-Switching (CS) communication [LUS11][WIN11][STE12a]

[PAL12][JOV13][CAR14][ZHA14][RUA15a]. CS is widely adopted in NoC-based many-cores to

guarantee RT constraints at the communication level, being employed since 2004 with MANGO

[BJE05] and AEthereal [GOS05] NoCs. CS communication reserves the NoC resources along the path,

as links, buffers, and crossbar. It ensures that communication will not suffer traffic interference from

other flows, providing guaranteed throughput, minimal latency and jitter to the communication

flow. The path reservation is performed by a setup phase – which verify the resource availability

and perform the reservation, and a release phase – which consists in releasing the reserved

resources. The NI commonly manages the connection establishment and release phases. In

summary, the differences between flow priorities and CS and is that flow priority assumes

communication sharing and CS reserves the communication resources exclusively to a given flow.

There are two main approaches to implement CS. One reserves a single physical channel to a

given flow [ZHA14][CAR14], where the flits are forwarded in a pipeline fashion up to the destination,

without arbitration and routing overheads. The other approach is also known as Virtual Circuit

Switching (VCS, or as mentioned in some works Switched Circuit Switching). Different from

traditional CS, this technique allows sharing the physical channel with more than one flow. It ensures

guaranteed services by isolating the flows spatially or temporally.

88

Table 12 – State-of-the-art about works addressing communication QoS.

Work Focus QoS Technique
QoS

Guarantees

QoS
implementation

place

[KAK11]
Fault tolerance and QoS for
NoC

Flow Priority using 2 physical channels
BE with
soft
guarantees

Router level

[WIS11] QoS for prioritized packets Priority-based Switch allocator
Latency of
real time
packets

Router level

[WAN12]
High throughput QoS-
Aware router

Arbitration with dynamic congestion control and
adaptive routing using multi physical channels

GS Router level

[RUA15a] Run-time QoS Adaptation
Run-time flow priority and CS adaptation
according with monitored communicating task
flow

BE and RT
Router/NI/OS
level

[GRO12] QoS topology-aware NoC
Elastic Buffers / Flow priorities/Dedicated QoS
routers / VC and Preemptive Virtual Clock

BE and RT

NoC level:
topology and
router
implementation

[JEO12] Memory Access Sharing Priority-based QoS-Aware memory controller -
Memory
Controller

[PAL12] Hybrid Switching Flow priority and CS using VC BE and RT Router Level

[CAR14] Different QoS Services Flow Priority and CS using 2 physical channels BE and RT Router level

[ZHA14]
Bufferless NoC with QoS
guaranties

CS support and four services classes separated
according to the traffic type and four priority
levels managed by two stage routing algorithms

Real-time
traffic QoS
guarantees

Router level with
IP support

[SAL11] QoS Router
Priority-based scheduler supporting allocating VC
according GS flows

BE and RT Router level

[JOV13]
HW/SW integration to QoS
control at the application
level

QoS API that expose NoC QoS services of flow
priorities and CS using VC at application level to
openMP and ocMPI programming model

Guaranteed
Services

System level,
integrated in all
instances

[OUY10]
QoS NoC for real-time
flows

Flit scheduling (LFS) and flow control (FRS),
supporting TDM connection

BE and RT Router level

[BEY13]
HW/SW bridge
infrastructure for connect
NoC-based system

TDMA connections thought dedicated input ports
and dedicated buffer to connection flow control
in RT traffics

BE and RT

Software layer
expose the QoS
services to the
IPs

[STE12a] TDM NoC with QoS support Distributed routing and TDM CS support Only RT Router level

[HE14] Power Efficient QoS
Design time TDM scheduling and shortest path
definition using a ILP algorithm

BE and RT Design time

[ROS14]
DSE(Design Space
Exploration) QoS
framework

Includes TDMA scheduling based in the worst
case communication analyses and bus bandwidth

Real-time
RT

Bus-based
system

[EJA13] NoC with CS support
SDM (Spatial Division Multiplexing) with 1, 2 or 4
sub-channels and sub-networks.

BE and RT
Router and NI
level

[LUS11] QoS for RT applications
NoC with PS + CS using SDM up to 7 physical
channels

BE and RT Router level

[FAN11] QoS for NoC routers
Dynamic VC allocation and NI flow injection
control

BE and RT
Router and NI
level

[WIN11] Run-time VC allocation
A NoC Manager unit allocates at run-time
guaranteed service VCs

BE and RT
Router and NoC
level – global
management

[PAL12] Hybrid Switching
Two VC one for PS and other for CS managed by
NI

BE and RT
Router and NI
level

[SAM14]
Guaranteed Services based
in a connection oriented
technique

Flit-to-flit routing based in reservation and
routing management table that uses the flit ID

BE and RT Router level

[MAT14] Multi-switching in NoCs
Router change two CS modes according with the
path wire timing delay

Real-time
flows

Router level

[SEI14]
Elastic buffer architecture
for NoCs

Elastic Buffer with VC support BE Router level

[YAO14]
QoS support in bufferless
NoC

Flit with high priorities are less deflected and not
throttled

Soft
guarantees

Router level with
IP support

[HEI12]
High management
communication QoS

Cluster regions are created to limit the number
VC into the region

BE and RT
OS - Dedicated
Managmnt. Unit

89

 VCS is more flexible in terms of resource utilization than conventional CS since a single

physical channel can be divided into virtual channels (VC) or virtual links. The VC separation is

performed by flow control techniques applied during the channel allocation, and by different buffer

organizations [PAS08]. VC implement blocking prevention using techniques for temporal link

scheduling applied in routers and NI. Its major benefit is it higher resource utilization due to the flit

interleaving of different packets in the same physical link. The VC technique can also be used as an

alternative to avoid packet blocking in the wormhole flow control [PAS08]. As drawbacks, VC-based

CS have increased complexity and power consumption against conventional CS [YOO13] due to the

necessity of multiplexing of the physical channels over the time.

An option to implement VC flow control is to use one buffer for each VC [SAL11][PAL12],

with VC used to BE flows and the others to GS flows. This approach has a high silicon cost due to the

buffer size increase and requires complex scheduling implementation to avoid conflicts between

different scheduling along the path [PAS08]. Another alternative to implementing the VC flow

control is to assign the entire physical channel to a single buffer, and the VC flow control is

performed by the Time Division Multiplexing (TDM) technique [LER05][OUY10][STE12a][BEY13]

[HE14].

TDM is typically used as a VCS technique in NoC and buses. Its purpose consists in to divide

the channel bandwidth into time slots. Each VCS connection receives an exclusive time slot

according to its bandwidth requirements. TDM also reduces the buffer size due to the consecutive

time slot allocation in the routers [LER05]. The flits that are crossing a path will be scheduled to not

stall into the routers, and thus not requiring buffering. However, TDM-based designs suffer from

high power demand and routers’ complexity [LER05].

An alternative to TDM is Spatial Division Multiplexing (SDM). In SDM [LER05][LUS11][EJA13]

the channel sharing occurs spatially instead temporally. SDM technique divides the wires between

routers' channels, creating sub-physical channels at run-time. This enables to establish and to

release a connection with a lower management effort when compared with TDM because in SDM

the routers' configurations are performed at the beginning of the connection and remain active until

its release, and in TDM the router configuration (TDM wheel) needs to be updated at each time

slice. The major problem of the SDM is the switch complexity due the necessity to support the

dynamic reconfiguration of wires [LER05].

Recent works showed the benefits to adopts a simpler alternative to support CS by using

multiples instances of simple NoCs. Such design creates Multiples Physical Networks (MPN)

[EJA13][LIU15][YOO13]. Authors [EJA13][LIU15] compare MPN to SDM designs. With an equivalent

bandwidth implementation, MPN increases the area following an O(n) complexity, while SDM

increases O(n²). The path delay increases with the number of sub-channels (SDM) with a complexity

O(n), while remains unchangeable for MPN. The work of Yoon et al. [YOO13] presents a comparison

of MPN and VC. They conclude that MPN presents a better area scalability and critical path flexibility

to use in DVFS, also MPNs scale better regarding power dissipation regarding new technology nodes.

90

For distributed traffic patterns, VCs have a high sustained throughput and latency. However, when

the traffic generates hotspots, MPNs have a better throughput.

Other works also provide QoS with CS with differentiated proposals: mixing multiple

channels with SDM [LUS11], MPN with TDM [EJA13], TDM with SDM [LUS12], the IDMA technique

proposed by [SAM14], or the adaptive CS buffering of [MAT14].

Table 13 compares qualitatively the CS NoC designs found in the literature. TDM has a higher

adoption [OUY10][STE12a][BEY13][HE14]. However, the TDM drawback is its large area overhead

due to the router's tables required to store the time slot assignment of each flow. Further, a

switching algorithm is needed to be executed at each time slice, contributing to increases the

dynamic power consumption. Another TDM limitation is the scheduling flexibility because each flow

allocation must fit in the TDM wheel running at each router. If one router of the path has the time

slot used by another flow, the CS establishment is suspended.

Table 13 – Comparison CS NoC designs.
Virtual CS
Technique

Channel
sharing

Main drawbacks Main advantages
Literature
adoption

TDM Time
Expensive router’s tables, higher
power, switching needed at each
time slice, limited scheduling

Simple implementation. High literature
adoption

++++

SDM Spatial
Serialization and de-serialization in
the NI, large router area

Simple connection and easy CS control into
routers

++

MPN Not
Inflexibility to manage high variety
of throughput grains.

Easy and simple implementation,
floorplaning, place and routing. Low area,
low critical path, flexibility to frequency
scale

+++

IDMA ID
Expensive router’s tables, high
routing overhead (2x clock
Athereal), low adoption

Ease multicast. Low granularity +

TDM+SDM
Time and
Spatial

High management overhead, Low
literature adoption

Low granularity +

The SDM was proposed after TDM for NoCs, with the goal to reduce power and area compared

to TDM. However, some works achieve SDM by defining statics sub-channels between routers, and

the NoC acts as a set of disjoint NoC configured at design-time [EJA13]. By the other hand, Leroy et

al. [LER05][LER08] propose a multistage SDM NoC based on an adaptive switch. This proposal

supports dynamic CS bandwidth and adapts the bandwidth according to the flow requirements at

the cost of a complex switching mechanism. Is easy to conclude in that work that the complexity of

the switches required for SDM can make it applicability for SoC inviable if a low granularity of SDM

is assumed. Leroy et al. [LER05] also compared the SDM with a TDM NoC implementation, showing

lower power (-8%) and area in SDM (-31%), at the cost of a higher critical path (+ 37%).

MPNs have an increasing adoption over the last years [FAN11][WAN12][CAR14]. MPNs have

the advantage of simple implementation, low area and easy floorplanning [YOO13]. However, MPNs

have the drawback of static bandwidth per channel once that the number of MPNs is defined at

design-time with a fixed bandwidth. The design can benefit from frequency scale or DVFS techniques

to speed up or slow down an specific MPN. This approach is well fitted with the current dark silicon

91

context, where some system resources need to be turned off due to excessive power dissipation.

As alternative CS designs, the proposal of IDMA [SAM14] appears to be interesting due to the

flexibility of multiples CS flow sharing the same link. The proposal adopts a flit routing based on flit’s

ID. IDM uses the packet header to reserve the required bandwidth to a given flow. Next, the routing

is performed flit-to-flit by using an ID tag inserted at each flit. The ID is the same for all flits belonging

to a packet. The router uses the ID to select the output port and provides the appropriated

bandwidth to each flow, based on a routing reservation table, which is configured at run-time by

the header. Results showed success to meet the flow's bandwidth requirement and a low area if

compared with Ethereal NoC, which employs VCS using TDM.

As another option of CS design there is the exploratory study of Lusala et al. [LUS11], which

merges TDM and SDM. This work adopts a TDM over an SDM concept. This approach leverages to a

complex NoC design, divided into sub-channels that are defined at design time with each sub-

channel multiplexed over the time. The work concludes that increasing the number of sub-channels

on the SDM+TDM NoC creates a higher impact into the NoC area compared to the increased number

of slots in a TDM NoC.

Recently, new bufferless-based designs for NoCs have been proposed. Elastic Buffers (EB)

enable to reduce the power and area overhead due to the buffers by employing a latch-based design

[MIC11]. This implementation creates a distributed FIFO along the communication path and allows

to remove the credit protocol, which is required in wormhole flow control. To implement the

forwarding mechanism between each EB a ready-valid handshake is employed. This control logic is

smaller compared to traditional routers' switch allocators [MIC11]. EB can provide QoS either mixing

them with VCS [GRO12] or using a VCS with EB [SEI14]. In this Thesis, and as will be detailed in next

Sections, an original design combines EB with MPNs.

Another buffer-centered approach is to design bufferless NoC. Bufferless NoC removes the

routers’ buffers and saves area and power. Deflection or retransmissions techniques perform the

correct packet communication. However, QoS is sacrificed. Some recent works have addressed QoS

in bufferless approaches by using a priority-based deflection [ZHA14][YAO14].

Other works address communication QoS by a high-level communication management.

High-level management is required to provide a system view over the communication

infrastructure, and thus, providing communication QoS by run-time resource management. The

implementation of the management protocol can be in central processor as in Winter et al. [WIN11],

which presents and evaluates different implementations of a central hardware unit at the NoC level,

named NoCManager. The manager allocates at run-time guaranteed service VCs to flows. The

NoCManager contains the status of all links and is responsible for finding a CS path in the NoC.

Authors argue that the central NoCManager is superior to the distributed technique. Besides this

conclusion, the Authors mention scalability issues and point out a hierarchical method as future

work.

92

High-level communication management also can be exposed to user’s task by APIs

[HEI12][CAR14][MOT11][SAP14][JOV13]. In Heisswolf et al. [HEI12] for example, it was proposed a

decentralized policy to NoC management and communication resource allocation according to the

application requirements, informed by an API. The policy consists in to create NoC regions (Figure

55) to limit the VC number inside the region by allowing a maximum number of VC assigned to flows

GS and BE. The NoC regions are defined with the OS support that is responsible for configuring each

router. This approach enables to configure a VC limit in entire regions or only the region border,

aiming to accurately distribute the VC budget over the applications running inside the regions.

Figure 55 – Cluster regions which can tune the number of VC [HEI12].

The high-level QoS management is supported by a software implementation that consists of

a mapping aware of application QoS constraints, jointly with a distributed QoS management within

the OS of PEs, which defines the NoC regions.

5.1.1 State-of-the-Art Discussion

QoS targeting communication constraints for many-cores received many proposals in the last

decade. Observing the reviewed works, it is possible to observe the adoption of the following

techniques:

▪ flow priority;

▪ end-to-end throughput guarantees using CS;

▪ area efficient buffer approaches;

▪ high-level communication management.

93

Several proposals for QoS at the communication level have hardware implementations.

These proposals can divide the flow priority into different classes, provide CS by mainly using TDM,

SDM or MPN, and area efficient approaches centered in the buffer design. Observing the state-of-

the-art related to CS NoCs, it is possible to find several design options. The TDM and SDM have a

high capacity to meet the QoS levels. The drawback of such proposals is scalability, due to the area

and power overheads. As shown by [YOO13], the use of MPNs can equally compete, and in some

scenarios to overcome VC-based approaches.

With the increasing number of PEs on the same die, has emerged the need to provide high-

level QoS management. Therefore, QoS becomes to be managed at the system level and some

system services exposed to applicationm developer [CAR14]. At system level by run-time QoS

management policies, and at developer level by QoS APIs that exposes the hardware services.

However, assigning to the application’s developer the job to configure the QoS statically is not a

suitable solution. Self-adaptive systems are the alternatives, where the constraints are monitored

at run-time, and a manager act over the system resources to meet the constraints. Thus, the

application developer only has the role to inform the application’s constraints to the system,

without the need to act directly on the system resources.

This Chapter proposes techniques to achieve QoS at the communication level, aware of the

main characteristics previously stated in the state-of-the-art. First, Section 5.2 proposes an SDN

technique for NoCs, targeting high-level communicating management. At the hardware level, this

Thesis proposes an MPN design with routers based on EB, enabling run-time reconfiguration and

low area overhead. At the software level, a NoC-Controller implements the SDN paradigm by

defining at run-time the paths in the MPN. Next, Section 5.3 proposes the adoption of CS targeting

end-to-end throughput guarantees achieving QoS at the communication level. The SDN architecture

is the support to implement the CS proposal. A CS management protocol implemented in a CS

controller defines the CS paths. Section 5.4 evaluates the SDN architecture and the CS protocol.

5.2 Software-defined Networking (SDN) for NoC-based Many-Cores

SDN is a computer network paradigm that has as the central concept the routers'

simplification. The diversity of routers available on the market of computer networks made difficult

the process to configure and manage a network, motivating the SDN development. Figure 56

overviews a classical SDN organization [JAR14]. SDN was conceived assuming simple architectures,

moving the control logic from the router to a high-level manager, called Network Controller,

implemented in software. With this paradigm, routers act as simple forwarding units, programmed

by the controller at run-time according to network policies defined by the user or the network

status.

94

Physical

Layer

R2

R0

R3

R1

Physical

Layer

R2

R0

R3

R1

Control

Layer
Network Controller

QoS
Load

Balancing
Security

Control

Layer
Network Controller

QoS
Load

Balancing
Security

Application

Layer User s ApplicationUser s Application

Application

Layer User s Application

Figure 56 – SDN organization, and its adoption for NoC design [RUA17a].

The same scenario may occur today in the context of many-core systems. NoC designs

targeting QoS adopt large buffers, several virtual channels, and complex arbitration/routing

schemes [LER08][YOO13] to meet the applications' requirements. The complexity of current NoCs

motivated this research to explore SDN applied to many-core systems, with potential advantages to

reduce the NoC cost (area and power [SHA17]) concomitantly with a flexible management (e.g., QoS

policies defined by software). Also, SDN can provide better reusability because routers are generic

and simple hardware components, configured by software.

Recent works started to explore the SDN paradigm for SoC communication. Cong et al.

[CON14] propose an SDNoC architecture where the control plane is deployed as a distributed unity

at each router. The routers' control plane exchanges messages to implement the communication

management protocol and to define the path for the flows. That work presents few details related

to the architecture and no RTL validation. Sandoval et al. [SAN15] propose an SDN organization with

three layers: operating system, network operating system, and infrastructure. The work assumes

routers that can have the routing algorithm defined by the SDN controller. Flows that are not

managed by the SDN controller use the XY routing algorithm. Work [SAN16] evaluated the

configuration time for several routing algorithms, implementing them in the SDN controller. Results

showed that the performance of the SDN to configure the routers varies according to the routing

algorithm and the injection rate. For congested scenarios, worst results were obtained with adaptive

routing algorithms. Scionti el al. [SCI16] propose the SDN architecture to explore dynamic changes

in the network topology. Each PE has specific instructions to control the network topology by

software, including switch off the links which are not used. The SDN paradigm is implemented by

these specific instructions and not by an SDN Controller. Table 14 compares de SDN proposals for

NoCs.

95

Table 14 – Related works on SDN architectures for Many-Core SoCs.

Works Implementation Details RTL Validation SDN Controller

[CON14] Few Details No One per router

[SAN15][SAN16] Arch. organization overview Yes (SystemC) One per system

[SCI16] Only router level details Yes N.A.

This Thesis Arch. organization and implementation Yes (VHDL, SystemC) One per system

The SDN architecture herein proposed covers two gaps observed in the literature. The first

one is in to provide a comprehensive SDN architecture, describing the hardware and software layers.

The second one is the SDN evaluation against a state-of-the-art hardware method for defining the

paths. The proposed SDN provides a generic and flexible architecture to manage the communication

in many-core systems and to provide differentiated communication services. This Thesis is focused

on the QoS service by establishing CS. Other services could be supported, for example, fault-

tolerance, security, and load balancing.

5.2.1 SDN Architecture Overview

Figure 57(a) presents the proposed layered SDN organization for the many-core context. The

application layer has the users' applications. The middleware layer contains the embedded OS

(kernel) and the NoC-Controller (NC). The NC implements the SDN services to the kernel. Figure

57(b) presents the SDN-based communication directions. The kernel asks the NC to define paths.

The NC set the paths by configuring SDN routers, which act as a forwarding unit, linking an input

port to an output port. The NC configure several SDN routers to make a path. After the connection,

the kernel injects/receives the applications’ data by using the local port of the SDN router connected

to it.

Middleware

Layer

Application

Layer

Physical

Layer

0x2

0x1

1x2

1x1

Physical

Layer

0x2

0x1

1x2

1x1

User s Application

kernel

Call API primitives

 Send/Receive data

Configure Services

Request Services

Call API primitives

 Send/Receive data

Configure Services

Request Services

NoC-Controller

QoS Fault T. ...

S

E

N

W

L
E W N S LE W N S L

N S W - EN S W - E

In

Out

E W N S L

N S W - E

In

Out

Interface de

Configuração

S

E

N

W

L
E W N S L

N S W - E

In

Out

Interface de

Configuração

Applications

NoC Controllerkernel

SDN Router

(b) SDN-based communication
(a) Layered view for the proposed SDN paradigm in a

many-core organization

Software

Hardware

Figure 57 – (a) Layered view of the SDN paradigm in a many-core organization; (b) SDN-based
communication [RUA17a].

Despite the advantages of the SDN-based management, it also imposes an important

challenge that is the software overhead to manage NoC flows at run-time. The layered SDN

96

organization proposed in Figure 57(a) helps to mitigate this issue by assuming two main principles:

i. the NoC Controller provides differentiated communication services (QoS on this

Thesis), being decoupled from the PS architecture. The system may work with the

kernel and the PS NoC, independently of the SDN infrastructure;

ii. the NoC Controller is a parallel system service of the kernel.

Figure 58 presents details the physical layer and the modifications required to support the

SDN paradigm. Figure 58(a) shows a standard many-core architecture, with PEs connected to one

PS router (R in the Figure). Figure 58(b) presents the SDN architecture, with an NC managing the

connection between SDN routers (SR). Figure 58(c) shows the integration of the SDN architecture to

the many-core architecture. The communication architecture presented in Figure 58(c) corresponds

to MPNs, with one PS network and a set of SDN networks, named subnets. The PS network is used

for management packets and to transmit data packets when there is no path between two PEs. It

also has the role of configuring the SRs.

SR

SR

SR

SR

SR

SR

SR

SR

SR

SR

SR

SR

SR

SR

SR

SR

SR

SR

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

NoC-Controller

R

PE

SR

SR

R

PE

SR

SR

R

PE

SR

SR

R

PE

SR

SR

R

PE

SR

SR

R

PE

SR

SR

R

PE

SR

SR

R

PE

SR

SR

R

PE

SR

SR

NoC-Controller
(a) (b) (c)

Figure 58 – Integration of the SDN in a standard NoC-based many-core architecture. (a) Standard NoC-
based many-core architecture, (b) proposed SDN-based architecture (c) integration of the SDN in a NoC-

based manycore architecture.

5.2.2 Hardware Architecture – SDN Router

Figure 59 details the proposed SR. According to the SDN paradigm, the SR should act as

forwarding unit. To reduce area, Elastic Buffers (EB) [MIC11][MIC13] replace input buffers – Figure

59(a). The router has five inputs and five output ports (East, West, North, South, Local). Each input

port has one EB. An EB contains a master and a slave latch, controlled by the EB control logic. The

master latch is enabled when the clock signal is low, and the slave latch when the clock signal is

high. This latch-based design allows the latches to be used as two independent storage locations.

An EB uses a ready-valid handshake protocol. The ready signal notifies the upstream router that the

current EB can receive a flit in its master latch. The valid signal notifies the downstream router that

current EB has a flit to transmit. A flit is transferred to the downstream EB when both the ready and

valid are asserted at the rising clock edge.

97

The EBs retains data for one clock period, avoiding long wires, ensuring a reduced clock period.

EBs also enable to reduce the silicon cost compared to a two-slot FIFO [MIC13], once EBs need only

one master-slave flip-flop instead of two.

Figure 59(b) details the SR architecture. Besides the EB, each port has an upstream req signal

employed by the consumer PE to request data from the producer PE. The req is used for the inter-

task communication, being asserted when the consumer task requests a message to the producer

task (this replaces the MESSAGE_REQUEST packet).

data_in data_out

ENS

valid_in valid_out

ready_outready_in

ENM

clock
E1 E2

Enable

Master

Latch

D Q

Enable

Slave

Latch

D Q

E1 = !a + b

E2 = !a_m . b_m
valid_out = a + b

ready_in = E1
a = !ready_out . (a + b)

b = (valid_in . ready_out) + (!a . !b .

valid_in) + (!valid_in . !ready_out .b) +

(a . !b . ready_out)

EB Control Logic

(a) Elastic-Buffer (EB)

Configuration

Interface

Upstream

crossbar

IRT ORT Set

ORT / IRT Config.

Table Indexes:

E = 0

W = 1

N = 2

S = 3

L = 4

F(Free) = 5

N F F F FORT(Out)

0 1 2 3 4

Downstream

crossbar

F F E F FIRT(In)

0 1 2 3 4

EB

E(0)

EB

W(1)

EB

S(3)

EB

L(4)

3 3

(b) SDN Router (SR)

EB

N(2)

data_out

req_in

valid_in
ready_in

req_out

valid_out
ready_out
data_in

d
a

ta
_

o
u

t

re
q

_
in

v
a

lid
_

in
re

a
d

y
_

in

re
q

_
o

u
t

v
a

lid
_

o
u

t
re

a
d

y
_

o
u

t
d

a
ta

_
in

d
a

ta
_

o
u

t

re
q

_
in

v
a

lid
_

in
re

a
d

y
_

in

re
q

_
o

u
t

v
a

lid
_

o
u

t
re

a
d

y
_

o
u

t
d

a
ta

_
in

data_out

req_in

valid_in
ready_in

req_out

valid_out
ready_out

data_in

data_out

req_in

valid_in
ready_in

req_out

valid_out
ready_out

data_in

Figure 59 - (a) EB architecture [MIC11][MIC13], (b) SDN router architecture, with 5 EB [RUA17a][RUA18].

The SR has internally two crossbars to connect the upstream (ready, req) and the downstream

(valid, data) signals between the input and output ports. They are configured by the Input

Reservation Table (IRT) and Output Reservation Table (ORT), respectively. Each table is a 5-entry

array (number of input ports) with 3 bits at each slot (enabling to store six states: E, W, N, S, L, Free).

In Figure 59(b), the North inport is forwarding data to the East outport. A configuration interface

enables to programs the IRT and ORT tables. This interface is the key feature to make the router

simple, avoiding logic for routing and arbitration modules. After configuring the SR routers, data is

transmitted in streaming without interferences by the path.

Figure 60 presents the process to configure an SR. The SDN configuration is independent of

the PE architecture once the configuration process does not include the NI. The NC sends through

the PS network a configuration packet to program the IRT/ORT tables. Each configuration packet

has 3 flits: header, with the target address and a flag specifying that the packet must be consumed

by a given SR and not by the NI; payload size, which is always 1; configuration, with 3 fields: input

port, output port, SDN network number. It is not necessary to clear the IRT/ORT tables because the

configuration process is managed by software.

98

L
o

c
a

l
M

e
m

o
ry

CPU

PS

SR

SR

NI
header

payload
size

PS control flits SDN config.

NoC-Controller

in|out|
sub-net

Figure 60 – PE architecture and configuration process of an SR [RUA17a].

5.2.3 Software Architecture

The software architecture concerns the implementation of the NC, which handles path

establishment requests generated by the kernel. As the NC is decoupled from the kernel (Figure 57),

it can also can handle path requests from other system’s components. Algorithm 1 presents the

pseudo-algorithm of the NC.

Algorithm 1: NOC-CONTROLLER (NC)

Input: Source, Target
begin
1: while TRUE do
2: path_request = read_path_request()
3: if path_request == VALID then
4: path[], subnet = SEARCH-PATH(Source, Target)
5: if path[] ≠ Ø then
6: configure_SDN_routers(path[], subnet)
7: send_ack_to_requester(subnet)
8: else
9: send_nack_to_requester()
10: end if
11 end if
12: end while
end

The NC continuously observes for new path requests (lines 1 and 2 of Algorithm 1). If there is

a request (line 3), the NC calls the SEARCH-PATH algorithm at line 4. The role of the SEARCH-PATH

algorithm is to define a path between a source and a target PE, implementing the control logic of

the network (removed from the router to make it simple) according to a given path definition policy,

for example, to fulfill QoS. The SEARCH-PATH algorithm returns the path[], which consists of an array

composed of the path routers’ addresses, and the selected sub-net of the MPN. If the path is valid

(path[] ≠ Ø), the NC configures each SR of the path by sending the configuration packet (line 6). Next,

at line 7, the NC sends an ack message to the OS (requester). If the path cannot be defined (path[]

== Ø), the algorithm sends a nack to the requester at line 9.

99

5.3 Circuit-Switching (CS) based on the Software-defined Networking (SDN) Paradigm

This proposal aims to provide QoS support by adopting the CS approach managed by the SDN

paradigm. CS has an initial phase called connection (or setup), which searches and allocates the

path's resources. The connection phase is the subject of several researches, with the goal to reduce

the connection latency. Table 15 presents related works on CS NoCs with proposals addressing the

search path method. The 2nd column details the hardware infrastructure to support CS. Most

techniques are based on the TDM and SDM approaches. The 3rd column of Table 15 presents the

resulting path length of the search path mechanism. Minimal path length corresponds to the

Manhattan distance between the source and target PEs. Deterministic search uses a deterministic

routing algorithm, as XY. The shortest path searches for all possible paths in the NoC, returning the

minimal path between the source and target PEs. Works [LER08][STE12b][LUS11] addresses only

minimal or deterministic search methods. Such approaches limit the path exploration, thus reducing

the success rate to establish the CS connections. Works [LIU15][CHE16][LIU14b] adopt the search

for shortest paths. This approach increases the success rate to establish CS connections because the

search space increases.

Table 15 - Related works on CS NoCs, with search path proposals [RUA17a].

Works CS Path Length Implementation Organization Target

[STE12b] TDM Minimal SW Centralized NoC

[CHE16] TDM Shortest HW Centralized NoC

[LER08] SDM Deterministic SW/HW Centralized NoC

[LIU14b][LIU15] TDM/MPN Shortest HW Distributed NoC

[LUS11] SDM Deterministic HW Distributed NoC

This Thesis MPN Shortest SDN-based Centralized System

Works that search for the shortest path use dedicated hardware implementations (4th

column), with centralized or distributed approaches (5th column). Chen et al. [CHE16] propose a

centralized design, implementing a dedicated hardware unit to establish the connection. Liu et al.

[LIU14b] implement a distributed approach called Parallel Probe that uses a flood-based search,

eliminating redundant paths, and achieving a constant setup time per hop. That work was extended

to MPN and SDN [LIU15].

Most proposals address CS at the NoC level and CS infrastructures with hardware-centered

connection algorithms and constant setup time. Hardware-based search path designs are faster

than software approaches, at the cost of increased silicon complexity. Software-based solutions are

scarce because the search path evaluation has as target the NoC context (6th column) with a

comprehensive CS management not being addressed.

This Section presents a CS infrastructure and management based on the SDN paradigm

previously described. This Section proposes a CS-Controller. The CS-Controller is an instance of the

NoC-Controller dedicated to QoS services. The CS-Controller defines the paths by running a SEARCH-

PATH based on the Hadlock’s algorithm [HAD77] and configuring SDN routers of the MPN at run-

100

time. The CS-Controller handles requests from the MPE to establish connections during the RT

application admission and to release connections when the application finishes its execution. After

the CS establishment phase, the RT applications start their execution with all task exchanging data

by dedicated CS paths, established during the application admission. This approach brings two main

benefits: (i) removes the overhead to execute several connections and releases during the

application lifetime, e.g., for each decoded frame [LER08]; (ii) provides communication predictability

and QoS during the application lifetime, once each path is dedicated to serve one flow.

The CS technique herein proposed adopts a software-based search path algorithm, proposing

a high-level CS management based on the SDN paradigm. This proposition fills a lack in the related

works regarding a systemic and self-aware CS support for applications, i.e., aiding the CS

provisioning from the applications’ beginning up to its ending.

5.3.1 CS-Controller

The CS-Controller is an instance of the NoC-Controller implementing the QoS service by

managing CS establishment and releasing at run-time. Figure 61 presents a many-core architecture

example detailing the presence of the CS- Controller (CS). The MPN is used for CS connections, with

the SDN routers managed by the CS-Controller. The CS-Controller is developed as a system task and

mapped in the most central SPE of the system.

M

S

S

S

S

S

S

S

S

S

S

S

S

S

S

CS

M

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

M

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

M

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S
Multiple Physical NoC: 1 PS
and n CS subnets

M
Cluster Manager Processor
- MPE

S Slave Processor - SPE

L
o

c
a

l
M

e
m

o
ry

CPU

PS

SR

SR

DMNI

Figure 61 – Proposed many-core, with the SDN-based CS.

A distributed implementation of the CS-Controller seems to be a natural choice because it

distributes the search path computation load in several instances of the controller. However, we

observed in experiments that one single unit of CS-Controller does not represent a bottleneck for

CS establishment in system’s sizes up to 400 PEs (maximum system size assumed in the evaluations).

The reason for this performance is due to the low complexity of the SEARCH-PATH algorithm. Its

computation time, in the average case, grows linearly with the system size. Additionally, a

distributed implementation assuming one CS-Controller for each cluster creates a communication

101

bottleneck between the CS controllers to obtain a systemic view of the system. The CS controllers

need to communicate between them when it is necessary to create paths that cross the clusters

borders. It is possible to adopt a distributed version of the CS-Controller for larger systems (> 20x20)

without the cooperation between CS-Controllers, at the cost of reducing the path search

exploration.

The CS-Controller executes two actions: (i) searches and configures CS paths; (ii) release CS

paths. Equation 4 presents the memory storage requirements of the CS-Controller (in bytes).

𝑆𝑚𝑒𝑚 = (𝑅𝑛 ∗ 𝑆𝑛 ∗ [𝑝 + 1]) + 3 ∗ 𝑅𝑛 (4)

where: Rn is the number of routers, Sn is the number of SDN subnets, and p is the number of ports

per router (5 - N, S, E, W, L_IN) plus one representing the input port of the NI (L_OUT). The first

multiplication of the Equation 4 computes the amount of data required to store the status of the

input port for each SDN router, in a 3-dimensional array called inport. The inport stores zero when

a given port is free, or the pathID, when the port is allocated. The {3*Rn} multiplication corresponds

to the size of inherited variables from the Hadlock’s algorithm (propagation, neighbors, and detour).

Section 5.4.5 evaluates the memory storage requirements of the CS-Controller.

5.3.2 SEARCH-PATH Algorithm

The SEARCH-PATH algorithm implements a heuristic that explores the path diversity of the

MPN to select a subnet and a pathID from a source S to a target T.

The Hadlock’s algorithm is a sub-function of the SEARCH-PATH algorithm. It searches for a

path at each subnet. The Hadlock’s algorithm is a grid routing search method, proposed in Hadlock

[HAD77] and described in Sherwani [SHE05], originally used in VLSI synthesis. It is a bread-first

algorithm that makes it expansion guided by a detour number d, assigned for each visited node. For

minimal paths, d(T)=0. The detour number is increment according to the number of hops away from

the minimal path. When a path P is found, the length of P, len(P), connecting S and T is defined

according to Equation 5.

len(P)= MS(S,T) + 2 * d(T) (5)

where: MS(𝑆, 𝑇) is the Manhattan distance between S and T.

Figure 62 present the SEARCH-PATH algorithm. The algorithm initially searches minimal paths

in all subnets. A min_path variable controls the Hadlock’s algorithm search path mode. When

min_path is TRUE, the Hadlock’s search is limited to minimal paths (d(T) = 0), when min_path is

FALSE, the Hadlock’s search is released to find the shortest path (d(T) > 0), if it exists.

Initially, line 2 sets min_path as TRUE. The first round of the loop (lines 4-16) explores all SDN

subnets, stopping when a minimal path is found. Line 5 tests if the source (L_IN) and target (L_OUT)

routers’ interface with the DMNI are free or not. If TRUE, the Hadlock’s algorithm is called (line 6),

returning the pathID if a path was found, 0 otherwise. If all subnets were explored and no minimum

102

path exists (line 12), the algorithm switches the search to non-minimal paths (min_path=FALSE), at

lines 13-14. The search stops at the first path found. By employing this approach, the complexity of

the SEARCH-PATH is O(Rn
2) in the worst case and O(Rn) in the best case.

Algorithm 2: SEARCH-PATH

Input: S, T

Output: pathID, subnet

begin

1: pathID = 0

2: min_path = TRUE

3: subnet = 0

4: while subnet < Sn do

5: if inport[S][subnet][L_IN]== 0 and inport[T][subnet][L_OUT]==0 then

6: pathID = HADLOCK(S, T, min_path)

7: if pathID > 0 then

8: break

9: end if

10: end if

11: subnet = subnet + 1

12: if subnet == Sn and min_path == TRUE then

13: subnet = 0

14: min_path = FALSE

15: end if

16: end while

17: return pathID, subnet

end

Figure 62 - SEARCH-PATH algorithm [RUA17a].

When the Hadlock’s algorithm reaches router T, it executes the retrace phase to define the

path’s routers. This phase is used to store the pathID in the inport structure (software allocation),

and to configure the CS routers (hardware allocation).

5.3.3 RELEASE-PATH Algorithm

The RELEASE-PATH algorithm uses the pathID stored in the inport array to release the

connection. For each path, the algorithm removes the pathID value associated with the allocated

input ports, setting it to 0 (free). The release phase is only executed in software. It is not necessary

to clear the IRT/ORT tables because the software manages the allocation. The RELEASE-PATH is a

simple algorithm with complexity O(len(P)).

The CS-Controller exposes to the system the CS services (connection and release) generically

because it only requires the source/target addresses to make connections. Thus, it also can handle

requests from other IPs (rather than MPEs), without a software stack (a kernel for example).

Additionally, as the IPs are not involved in the process to configure the SDN router, the connections

can be established between generic IPs (memories, GPUs, I/O modules).

103

5.3.4 CS Management Protocol

Figure 63 presents the sequence diagram detailing the protocol for CS connection and release,

detailing the relationship between the components of the system and how they work together to

provide CS for the RT applications. The CS management is performed for each new RT application.

It is performed in parallel to the application admission management (Subsection 3.2.1).

CTP end

Request CTP Release

End tasks loading

CS fail

New App Descriptor

Configure CS
Routers IRT/ORT

Request CTP Connection

Request tasks OBJ code

Set CTP (selected subnet)

CS sucess

MPE CS-Controller Path s CS Routers

Map Application s tasks

SEARCH-PATH(S, T)

App Repository SPEs (S and T)

Path Found?

For each CTP do:

A
p

p
lic

a
ti

o
n

 a
d

m
is

si
o

n

Releses App to RUN

Path Found?

RELEASE-PATH(S, T, pathID, subnet)

C
S

 C
o

n
n

e
c
ti
o

n
 P

ro
to

c
o

l
C

S
 R

e
le

a
s
e

P
ro

to
c
o

l

CTP
uses PS

Figure 63 - CS management protocol [RUA17a].

When a new RT application requests to execute in the system at run-time, the App. Repository

sends the app descriptor to an MPE, which execute a task mapping heuristic to select the SPE to each

application’s task. Next, the MPE requests to the App. Repository to load the object code of the

mapped tasks into its corresponding SPEs (application admission phase). The load of the task code

uses the PS subnet. In parallel to the load of the tasks’ code, the MPE requests connections to CS-

Controller.

Best-effort applications do not have timing bounds and use the PS subnet. RT applications

request CS for all CTPs (communicating task pairs). For each CTP, the MPE requests the CS-Controller

to establish a connection between the source and target SPEs. The CS-Controller executes the

SEARCH-PATH algorithm and returns to the MPE if the CS establishment failed (returning 0) or

succeeded (returning the pathID and subnet). If succeeded, the MPE sends messages to the S and T

SPEs, notifying the selected subnet. This message configures the kernel of S and T SPEs to inject and

receive data by CS in the configured subnet. If failed, the CTP’s communication uses the PS subnet

104

by default. When both the CTPs’ allocation finishes, and the tasks are allocated into SPEs (each task

notifies the MPE when it is ready), the MPE releases the application sending a message to each task

to start the execution.

When a task finishes, the SPE notifies the MPE the end of a given CTP. If the CTP communicates

through CS, the MPE uses the task identifier (unique for each running task), to recover the subnet

and pathID, and requests the CS-Controller to release the connection through the execution of the

RELEASE-PATH algorithm.

5.4 Results

In this section, we evaluate the silicon area, power, performance, memory requirements, and

latency of the proposed SDN-based CS. The many-core hardware is described in VHDL (for synthesis

– Cadence’s Genius) and RTL SystemC (for performance evaluation of large-scale systems).

Applications and kernel are implemented in C language.

5.4.1 Performance Evaluation

The experimental setup addresses many-core sizes from 64 PEs (4 MPEs, 60 SPEs) to 400 PEs (16

MPEs, 384 SPEs), with three SDN subnets configurations: 4, 6, 8. The PS routers use 32-bit flits, and

the CS routers 16-bit flits. Results use the following definitions:

Path Diversity (PD): number of available CS paths (equation 6).

PD = #PEs * #SDN subnets
(6)

Path Exploration (PEX): percentage of CS requests w.r.t the path diversity (equation 7).

PEX =
CS requests

PD

(7)

Success Rate: percentage of established connections per CS requests (equation 8).

success rate =
CS connections

CS requests

(8)

The performance evaluation addresses several scenarios with different RT benchmarks: DTW

(Dynamic Time Warping – pattern recognition algorithm), MPEG decoder, MPEG-2 decoder, and

VOPD. Figure 64 presents the applications’ communicating graph. We selected a heterogeneous set

of applications aiming to create a fair evaluation. Each SPE executes simultaneously two tasks. The

evaluated scenarios execute several instances of the applications in such a way to have all SPEs

executing two tasks (system occupation equal to 100%). These scenarios enable to stress the SDN

infrastructure. Real-life scenarios hardly run with a system occupation equal to 100%, also mixing

105

best-effort application (which do not need CS) and RT applications.

MPEG

DTW

RECOG

P1

P2

P3

P4

BANK

INPUT IVLC IQUANT OUTPUTIDCT

ARM IDCT2

STRIMPEM

UPSAMP VOPREC

PAD

VOPME

IQUANT

VLD RUN ISCAN ACDC

VOPD

SPLIT

IVLC IQUANT IDCT

FIR

JOINMPEG-2

ADPCM_DEC

Figure 64 - Communicating task graph of the applications’ benchmarks [RUA17a].

Table 16 details the results. The 1st and 2nd columns present the scenario’s configuration. The

3rd column presents the number of tasks executing for each scenario. The 4th column presents the

PD for each scenario.

Table 16 - Results for simulations with 100% of RT applications and a 100% of system occupation [RUA17a].
1 2 3 4 5 6 7 8 9 10

Scenario
– system

size

SDN
nets

Simultaneous
Running

Tasks

Path

Diversity
(PD)

CS
requests

(PEX)

Success
Rate

Manhattan
Distance

Avg. | Std.Dev | Max.

Hops
Avg. | Std.Dev | Max.

SEARCH-PATH
time

Avg. | Worst.

App. Start
Overhead
Avg. (ms.)

8x8

(64 PEs)

4

120 (100%
occupation)

256 127
(49%)

94.4% 2.6 | 1.6 | 8 2.8 | 1.9 | 14 4258 | 48614 1.4

6 384 127
(33%)

99.2% 2.7 | 1.6 | 8 3821 | 13166 1.6

8 512 127
(24%)

100% 2.6 | 1.6 | 8 3725 | 12158 1.1

16x16

(256 PEs)

4

480 (100%
occupation)

1024 623
(60%)

88.6% 2.5 | 2.0 | 21 2.7 | 2.1 | 21 5336 | 52965 3.1

6 1536 623
(39%)

97.7% 2.6 | 2.1 | 22 5326 | 102433 3.9

8 2048 623
(30%)

99.8% 2.5 | 2.0 | 21 5220 | 38361 3.5

20x20

(400 PEs)

4

768 (100%
occupation)

1600 916
(57%)

90.94% 2.7 | 2.1 | 26 3.0 | 2.7 | 30 8521 | 486180 4.0

6 2400 916
(38%)

98.25% 2.7 | 2.3 | 26 7716 | 174033 4.5

8 3200 916
(28%)

100% 2.7 | 2.1 | 26 7121 | 107214 2.9

5.4.2 Success Rate

The 5th column of Table 16 presents the number of CS requests and the achieved PEX. The

number of CS requests is a function of the applications’ graph. Increasing the number of SDN

subnets decreases the PEX due to a higher PD. For example, the 20x20 scenarios generate 916 CS

106

requests, resulting in a PEX =57% for 4 subnets, and a PEX=28% for 8 subnets. This result shows the

rich path diversity provided by the MPN design. Even with a system occupation of 100%, the amount

of CS requests is below the PD. The 6th column of Table 16 presents the success rate. The success

rate increases with the number of subnets, due to the higher PD. The scenarios with 6 and 8 subnets

reach a success rate superior to 97%. Figure 65(a) presents the success rate as a function of the PEX

(bottom x-axis) and CS request (top x-axis), for scenario 20x20:6 (most complex scenario). This

scenario has a PEX=38%, with a success rate of 98.25% (highlighted in the Figure).

Figure 65 – (a) success rate for 20x20:6 CS subnets; (b) SEARCH-PATH execution time for 20x20:6 [RUA17a].

The mapping heuristic also contributes to the high success rate. This Thesis adopts a task

mapping heuristic which distributed the RT tasks in free PEs [RUA16a]. Other heuristics [SIN13b]

may increase the proximity of the communicating tasks, contributing to increasing the success rate

further.

The achieved success rate can be compared to related works that address the shortest path

search [LIU15][CHE16][LIU14b]. It is worth to mention that each proposal uses a different method

to evaluate the success rate. Our success rate is computed according to the number of CS requests.

In Liu et al. [LIU14b], the success rate is computed according to the router rate, a parameter that

refers to the portion of clock cycles in which a node is used for transferring data. In Chen et al.

[CHE16] the success rate is computed according to the requested BW. Work of Liu et al. [LIU15] does

not present the success rate. Additionally, works [CHE16][LIU14b] addresses TDM while ours use

MPN.

In Liu et al. [LIU14b] it is presented the success rate for a 16x16 mesh with a master percentage

of 20% and 50%. The master percentage is similar to ours PEX. Our success rate for PEX =50% is 92%

(20x20:4, worst scenario), while Liu et al. [LIU14b] achieves 30% of success rate with a master

percentage=50%. That work also evaluates the HAGAR solution with the same configuration, which

reaches a success rate near to 28%.

In Chen et al. [CHE16] the authors vary the requested BW to evaluate the success rate. The

Authors also considers a background traffic (bk) as the percentage of used TDM slots. The bk can be

roughly compared to ours PEX. Assuming 20% of bk, the success rate achieved for a requested BW

of 16% (maximum presented) was 82% for a 4x4 mesh. Our success rate for an 8x8 mesh with the

PEX of 20% was 100% regardless the number of subnets (4, 6 or 8).

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35

CS requests (%)

S
u
c
c
e
s
s

R
a
te

(%
)

Path Diversity Exploration - PEX (%)
(a)

0 20 40 60 80 100

0

20000

40000

60000

80000

100000

120000

140000

0 5 10 15 20 25 30 35

CS requests (%)

S
E

A
R

C
H

-P
A

T
H

 T
im

e
 (

c
lo

c
k
 c

y
c
le

s
)

Path Diversity Exploration - PEX (%)(b)

Worst cases

Average and best cases - success rate > 98.5%
up a PEX = 31.3% and CS requests = 82%

97,5

98,0

98,5

99,0

99,5

100,0

0 10 20 30 40

zoom

107

5.4.3 Path Length

The 7th column of Table 16 presents the Manhattan distance between communicating tasks.

It is worth to note that the average and standard deviation values for the scenarios are similar,

regardless the system size. The main cost function of mapping heuristics is to place tasks belonging

to the same application near to each other. As the system occupation increases, the number of

contiguous regions to map the tasks reduces, explaining the maximum hop number.

The 8th column of Table 16 presents the path length (hops). The algorithm succeeds to

establish short paths, reducing the interference for the next connections, which contributes to

increasing the success rate.

5.4.4 SEARCH-PATH Execution Time

The 9th column of Table 16 presents the SEARCH-PATH execution time, in clock cycles (cc),

including the execution time of the algorithm and the configuration of the SDN routers through the

PS subnet. For all 20x20 scenarios (worst cases evaluated scenarios), the higher average value is

8,521 cc or 8.5 s@100 MHz. Figure 65(b) plots the SEARCH-PATH execution time as a function of

the PEX (bottom x-axis) and CS requests (top x-axis), for 20x20:6 scenarios, respectively. Compare

Figure 65(a) with Figure 65(b). The execution time in Figure 65(b) remains near 7,029 cc up to a

PEX=31.3% (third quartile). After this point, the minimal paths become scarce, requiring the search

of non-minimal paths. With a PEX=38%, the execution time reaches the worst case, failing to

establish some connections.

Figure 66 presents the average execution time for the SEARCH-PATH algorithm as a function

of the number of PEs and SDN subnets. In this scenario was used random source and target

addresses generation (random task mapping), thus presenting a pessimistic evaluation. The

execution time grows linearly with the system size at an average rate of 33.27 cc/PE. The 10th column

evaluates the impact of the CS establishment phase on the applications’ start time. In the worst

scenario, applications were delayed by 4.5 ms. This delay only occurs when the applications begin

the execution, being not noticed by the end user during the application execution. Some related

works [LER08][LIU14b] may assume a new CS connection for each message, with an overhead

proportional to the communication volume.

Figure 66 - SEARCH-PATH average execution time for the worst scenarios [RUA17a].

0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200 250 300 350 400

S
E

A
R

C
H

-P
A

T
H

 t
im

e
 (

c
lo

c
k
 c

y
c
le

s
)

Nº Processing Elements (PEs)

4 CS subnets

6 CS subnets

8 CS subnets

108

5.4.5 Memory Footprint

Figure 67 presents the memory footprint as a function of the number of the PEs. This memory

usage includes data (Equation 4) and code of the CS-Controller. The memory requirement increases

at a linear rate of 0.03, 0.05, and 0.06 KB/PE, for 4, 6, 8 SDN subnets, respectively. The total storage

required for a 20x20:8 system is 19.22 KB, a small amount of memory for a many-core system.

Figure 67 - CS-Controller memory requirement [RUA17a].

5.4.6 Application’s Latency Evaluation

Figure 68 presents the frame decoding latency of the MPEG-2 decoder using scenarios: PS

without disturbing traffic (PS Baseline); PS with disturbing traffic (PS+Disturbing); CS.

Figure 68 - MPEG-2 start time and frame decoding latency [RUA17a].

The PS+Disturbing scenario shares the PS NoC with packets from other applications, resulting

in increased frame decoding latency and jitter. The CS scenario presents a constant and predictable

latency, with a latency smaller than the PS Baseline scenario due to the streaming behavior of the

CS routers, transmitting one flit/cycle (without routing and arbitration logic). Note that the

application executes faster using CS, despite the delay to start. The results of Figure 68 addresses

an application running for only 39.9 ms. The impact of the delay to start the application is even more

negligible for longer execution time.

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400

T
o
ta

l
M

m
e
o
ry

 F
o

o
tp

ri
n
t
(K

B
)

Nº Processing Element (PEs)

4 CS subnets

6 CS subnets

8 CS subnets

(c)

40000

45000

50000

55000

60000

65000

70000

75000

80000

0 1000000 2000000 3000000 4000000

F
ra

m
e
 D

e
c
o
d

in
g

 L
a

te
n
c
y
 (

c
c
)

Time (cc)

PS Baseline

PS+Disturbing

CS

Start Time:
PS Baseline = 1.9 ms
PS+Disturbing = 1.9 ms
CS = 2.1 ms (+13%)

Finish Time:
PS Baseline = 39.9 ms
PS+Disturbing = 42.7 ms
CS = 39.7 ms (-0.5%)

109

5.4.7 Comparison of the SDN-based CS to a Hardware-based Approach

The SDN-based CS was compared regarding latency to set a path and quality of paths (success

rate) to a state-of-the-art search path mechanism called Parallel-Probe (PP) [LIU12], which is

hardware implemented.

The PP method adopts a dedicated NoC responsible for finding the paths. As shown in Figure

69(a), each PE receives a PP router, connected to neighbors PP routers and locally to the SDN routers

(SRs) (note that in this case the SR, although it is the same hardware component, is configured by the

PP router instead the CS-Controller). Figure 69(b) presents an example of the search method, with

router 1 being the source and router 9 the target. The PP method finds the shortest path by

propagating a wave of probes, which floods the PP network and unveils the shortest path by

selecting the first probe to reach the target. When the first probe reaches the target, a backtracking

process starts, releasing the other pre-allocated paths, and setting up the current path by

configuring the SRs. The PP method enables to find the shortest path within a constant setup time

of 3*D+6 clock cycles, where D is the Manhattan distance between the source and target PP routers.

L
o

c
a

l
M

e
m

o
ry

CPU

PS

SR

SR

NI

PP

1 2

4 5

7 8

3

6

9

1 2

4 5

7 8

3

6

9

(a)

(b)

Figure 69 – (a) PE architecture including the Parallel-Probing router. (b) Example of PP algorithm [LIU12].

The CS-Controller acts only as a synchronizer in the PP implementation. As in the SDN

implementation, the CS-Controller receives CS requests. These requests are stored in a FIFO because

the PP network handles one propagation at a time. If there is a request in the FIFO, the CS-Controller

handles it by sending a message to the source SPE kernel to start the PP method. The message

contains the target address and the subnet that the SPE should use (the subnet is selected according

to the subnet utilization, selecting the less used subnet). The SPE starts the PP propagation by

configuring its PP router. When the propagation reaches the target, the backtracking process starts.

During the backtracking, the pre-allocated SRs not belonging to the path are released, and the SRs

belonging to the path are configured using the programming interface. When the backtracking

reaches the source PP router, it interrupts the SPE’s kernel. If the search fails, the SPE tries the next

subnet, until finding a path. When this process finishes, the SPE sends a message to the CS-Controller,

reporting success or failure. As in the SDN implementation, after the search path process, the CS-

Controller sends a ack/nack to the MPE (the CS requester).

110

Table 17 presents the results, addressing many-core sizes from 36 to 256 PEs (1st column,

system size-cluster size), with three SDN subnet configurations: 4, 6, 8 (2nd column). Each SPE can

execute simultaneously two tasks. The evaluated scenarios execute several benchmarks instances

(DTW, MPEG, MPEG-2, VOPD) in such a way to have all SPEs executing 2 tasks (system occupation

equal to 100%), with the goal to stress the paths’ diversity of subnets. The 3rd column presents the

total number of requested paths by the selected benchmarks, i.e., the total number of CTPs. The 4th

column corresponds to the method: PP or the proposed SDN.

Table 17 – PP and SDN evaluation, path length and connection time, for 6x6 to 16x16 many-core systems.
Success rate: (min hops + non min hops)/N# paths.

System size:
Cluster size

N# of SDN
subnet

N#
Paths

Method
Avg
hops

Hops Success Rate
(%)

Connection time (clock cycles)

min non min. not found Avg Std dev Max

6x6:3x3

4

70

PP 2.25 65 2 3 95.71 450 237 1,248

SDN 2.24 64 2 4 94.29 2,840 1,663 8,637

6
PP 2.31 66 4 0 100 435 252 1,800

SDN 2.20 70 0 0 100 2,946 2,036 16,792

8
PP 2.20 69 1 0 100 377 214 1,800

SDN 2.20 70 0 0 100 2,913 2,103 16,284

8x8:4x4

4

127

PP 2.57 113 9 5 96.06 467 265 1,252

SDN 2.60 119 3 5 96.06 3,765 3,111 25,810

6
PP 2.48 122 5 0 100 420 215 1,801

SDN 2.40 127 0 0 100 5,084 5,324 27,793

8
PP 2.45 124 3 0 100 401 199 1,511

SDN 2.40 127 0 0 100 5,166 5,645 29,465

12x12:4x4

4

328

PP 3.03 269 28 31 90.55 501 311 1,247

SDN 3.02 273 21 34 89.63 5,094 5,570 61,557

6
PP 2.85 304 20 4 98.78 443 288 1,835

SDN 2.70 323 1 4 98.78 4,772 3,392 42,024

8
PP 2.76 318 9 1 99.70 406 243 2,431

SDN 2.67 327 0 1 99.70 4,468 2,514 26,077

16x16:4x4 8 623
PP 2.62 608 12 3 99.52 423 289 2,486

SDN 2.62 620 0 3 99.52 5,453 3,522 48,542

The 5th column presents the avg hops, which corresponds to the average distance between a

CTP. The SDN and PP methods present similar results (difference smaller than 5%), showing the

effectiveness and scalability of the proposed software method compared to the hardware method.

The reduced average number of hops is due to the mapping heuristic, which maps communicating

tasks near to each other [SIN13b]. Next, the table presents the number of minimal, nonminimal, and

not found paths. The SDN slightly overcomes the PP when evaluating the path length, since from 6

CS subnets all found paths were minimal for 6x6 and 8x8 systems, 98.5% for a 12x12:8 system, and

99.52% for a 16x16:8 system. The column not found is related to non-established paths. As

expected, smaller number of SDN subnets induces a larger number of failures. The 9th column

corresponds to the success rate. For small to medium systems sizes, 6 subnets were enough to find

all paths. For large system sizes (12x12 and 16x16), 8 SDN subnets enabled to route more than 99%

of the paths. In summary, the SDN method has a similar success rate to establish connections

compared to the hardware implementation, with a slight advantage related to the path length

(higher number of minimal paths).

111

The last 3 columns compare the latency to search the CS paths. The PP latency presents a small

variation (small standard deviation values). On the other hand, the SDN latency tends to increase

with the system size. The highest average latency was 5,453 and 501 clock cycles (cc) for SDN and

PP, respectively. This is expected since the comparison occurs between software (SDN) and

hardware (PP) implementations. If we assume CS connections established at the beginning of the

application execution, with connections staying active during the application lifetime, the SDN

search path latency only impacts on the application startup. For example, consider a system running

at 500 MHz (T = 2ns), an average latency equal to 5,000 cc, and an application with 10 CTPs. The

total latency would correspond to 100 µs, and would not be noted by the end user. We argue that

SDN can be a viable option for communication management, with reduced area and management

flexibility, features that hardware-centric techniques are not able to provide.

Graphs in Figure 70 detail the search path latency (Y-axis) as a function of the system

occupation (X-axis), for scenario 8x8-4x4:8. All other experiments present similar behavior. As

mentioned, the PP latency presents a small variation (Figure 70(a)). The average search path latency

is 401 cc, and only 5 paths (3.9%) presents a latency higher than 630 cc. The latency increases when

the available paths become scarce, inducing the search mechanism to explore alternative CS

subnets. SDN presents a more significant variation in the search path latency (Figure 70(b)), due to

the features of the Hadlock’s algorithm, which increases the search space according to the failures

to set a given path. The latency stays below 5,000 cc for 82.7% of the paths. As in the PP method,

the SDN achieves worst latency when the system occupation increases, reaching 29,465 cc in the

worst result.

Figure 70 – Search path latency for PP (a) and SDN (b) - 8x8-4x4:8 system size.

5.4.8 Area and Power of the SDN Router

Table 18 compares the SDN router with a low-area PS router, for different flit widths. The PS

router is configured as follows: 8-flit buffer depth, round-robin arbitration, XY routing, no virtual

channels. The SDN router corresponds, in average, to 21% of the area and 16% of the power of the

PS router. The area and power difference increase with the flit size.

112

Table 18 - Gate number (comb. and seq. gates), area (m2) and estimated power (W) for the CS and PS
routers (28 nm SOI technology @1GHz, using the Cadence ASIC design flow) [RUA17a].

Flit width

5-port SDN router 5-port PS router

Comb.
gates

Seq. gates
Area
µm2

Power
µW

Comb. gates Seq. gates
Area
µm2

Power
µW

8 398 135 907 701 1079 472 3521 3683

16 517 215 1267 1154 1672 832 5948 6121

32 802 375 2011 1334 2927 1552 10921 10606

Such results show the low cost to adopt multiple physical networks based on simple design of

SDN routers. Consider a PS router configured as follows: 32-bit flit width, 8-flit buffer depth, round-

robin arbitration, XY routing, no virtual channels. The area of this router is 10,921 µm2. As reported

in the literature, the adoption of 2 virtual channels (VCs) almost doubles the router silicon area of

the PS router [MEL05]. One SR with 32-bit flit, as detailed in Figure 59, requires 2,011 µm2. As the

current work adopts 16-bit flits to reduce the MPN area while providing a sufficient throughput, the

SR requires 1,291 µm2. Thus, the a MPN composed of 1 PS and 8 SDN subnets has a silicon area

equivalent to a 2-VC packet switching NoC. Such result demonstrates the low cost to adopt MPNs

compared to TDM-based NoCs, achieving similar results achieved in literature [YOO13].

The Parallel-Probing technique achieves better latency for search path, however, presents an

additional area incurred by the presence of the dedicated PP router inside the PE instance. Such

area increases according to the number of subnets and can be quantified as 800, 962 and 1,130 µm2

for 4, 6, and 8 SDN subnets respectively. The overhead of the PP router is equivalent to one SR. Thus,

replacing the PP method by the SDN enable to create one additional subnet in the network, used

for application data instead search path management, which contributes to increasing the

communication throughput between cores.

5.5 Conclusions

This Chapter presented a background about QoS at the communication level and the

contribution of this Thesis in this context.

This research investigated the pros and cons of the SDN paradigm, evaluating the proposal in

a cycle-accurate many-core model. The work fills a lack in the literature by proposing a generic SDN

architecture, addressing both hardware and software implementation details [RUA17a]. The

reference hardware implementation (PP) enables fast connection establishment (small latency),

with a small area overhead. Comparing the proposed SDN to the PP, we observe a similar path

quality (i.e., average number of hops), with a slight improvement in the number of minimal paths,

and higher latency. The higher latency is not an actual drawback since the latency only affects on

the application startup (in the order of µs). The advantages of adopting SDN include simple

hardware architectures, reusability, and management flexibility, features not available in hardware-

centric approaches.

This research also proposed self-adaptive CS managed through the SDN paradigm for many-

cores. This approach enabled to design a simple CS infrastructure, with configurable SDN routers

113

based on Elastic-Buffers. The adoption of a systemic CS management fills the gap in the literature

related to the evaluation only at the NoC context. This proposition provides permanent CS for the

RT applications, providing communication predictability and QoS. The search path based on the

Hadlock’s algorithm, plus the rich path diversity offered by the MPN, enabled the proposal to

achieve a connection success rate higher than 97% for MPNs with 6 and 8 subnets executing real

applications.

Future work includes the proposition and evaluation of other communication management

policies using the SDN paradigm herein proposed, as fault-tolerance and security.

114

6 SELF-ADAPTIVE QOS MANAGEMENT AT COMPUTATION AND
COMMUNICATION LEVEL

This Chapter details the main contribution of the Thesis, corresponding to the high-level

management that offers self-adaptiveness for QoS at both the computation and communication

levels. The Author developed this part of the Thesis during an internship in the ICT (Institut für

Computertechnik) in TU Wien (Technische Universität Wien), Vienna – Austria, from April 2017 to

September 2017, supported by CAPES-PDSE program. During this period, the Author deepened the

knowledge related to self-awareness models with the SoC group under the supervision of Prof. Dr.

Axel Jantsch [JAN17a]. Professor Jantsch, as well as the SoC group, have expertise in self-awareness,

advancing the understanding about the means to implement and organize such property in the SoC

environment. Related work about self-awareness related to this group and cited by this Thesis

include [ANZ17][DUT16a][DUT16b]. Additionally, professor Jantsch has a significant experience in

the NoC field, being as one of the Authors that formulated this concept [HEM00], and co-Author of

the following works that are referenced by this Thesis: [EJA13][LIU14b][LIU15][LIU16][MA15].

The high-level QoS management herein proposed is only possible due the QoS techniques

previously presented at computation and communication levels. The proposal presented in this

Chapter modifies the organization of the QoS management presented in the previous Chapters. The

Cluster Scheduler (described in Section 4.3) and the CS Management Protocol (described in Section

5.3) implement the high-level management for QoS at computation and communication levels,

respectively. These managers were replaced by a unified QoS management herein presented,

deciding by task migrations and CS at run-time.

6.1 Introduction

Many-core systems provide outstanding processing power [BOH17], but also pose challenges

for temperature management, energy consumption, security, and quality of service (QoS). Due to

the high amount of resources to manage and the unpredictability that many-core SoCs have, self-

adaptive properties become fundamental to address such challenges [DUT16a].

Related works [QUA16][PAR14][MAN10][RUA15a][WIN11][ABO13][JOV13][RUA17a]

[RUA17b][JUN14] on self-adaptation mechanisms for QoS in many-core SoCs focus on techniques

addressing either communication (NoC) or computation (CPU). The focus of this proposal is to

ensure QoS for soft real-time applications through a self-adaptive QoS management. The QoS

management is aware of system’s communication and computation resources and acts reactively

and proactively at both levels. The QoS management receives QoS fulfillment monitoring data

(deadline miss, latency miss) and an application QoS feedback (notifications about run-time

workload changes), enabling the QoS management to act reactively according to the severity of the

events. Additionally, this Thesis proposes an Application Profile Learning (APL) technique, which on-

the-fly learns about the communication and computation profile for each RT task. This feature

115

enables the QoS management to assume also a proactive behavior guided by the computation and

communication that each RT application demands.

The main contributions of the proposal presented in this Chapter are as follows:

▪ A self-adaptive QoS management for soft real-time applications that acts reactively and

proactively, and covers both computation and communication levels;

▪ An Application Profile Learning mechanism, which traces the application tasks' profile at

run-time and provides this information to the QoS management.

6.2 State-of-the-Art

This Section discusses related works according to the two contributions: the APL at the scope

of application profile extraction, and self-adaptation for QoS of performance.

6.2.1 Related Works in Application Profile Extraction

Works [JUN14][QUA16] propose to obtain the applications’ task graph mixing design-time and

run-time steps, a dynamic mechanism has access to the application graph, using it to optimize run-

time decisions, such as application remapping. This approach simplifies the work of run-time

techniques because it provides a detailed application profile. However, it inserts more complexity

during the application development; hence, the developer is in charge to provide the application

profile correctly to the system. Ganeshpure et al. [GAN13b] propose a full run-time technique that

extracts the communication task graph of the applications. A middleware implements this

extraction by observing the execution phases for each task.

Our proposal adopts a more flexible approach. As in Ganeshpure et al. [GAN13b], the

middleware (kernel) extracts the behavior of the tasks. Differently from [GAN13b], which uses less

than 200 iterations to profile the application, our technique is continuously learning about the

application profile due to continuous monitoring. This feature enables to support applications with

dynamic behaviors, i.e., the workload changes at run-time (common in multimedia applications).

Additionally, we are concerned with scalability, as the APL follows a hierarchical organization with

monitors at the task level (at each core) that send information to the QoS management (cluster

manager).

6.2.2 Related Works on Self-Adaptation for QoS

Several proposals in the literature provide run-time QoS mechanisms for many-core systems,

with self-adaptive techniques, targeting resource management (dynamic mapping, task migration,

task scheduling, flow priority, and CS. Table 19 presents the self-adaptive QoS proposals most

related to this Thesis.

Works [QUA16][PAR14][RUA16a][JUN14] adopt task remapping/migration to answer to

workload changes or real-time violations, addressing QoS at computation level. Some works

116

[JUN14][QUA16] adopt a hybrid task remapping heuristic, assuming that application characteristics

are known at design-time. In contrast, we assume the application set is unknown at design-time.

The proposed APL enables the system to learn about the running applications, creating an online

profile. In Jung et al. [JUN14], applications can tune the workload at run-time by using an API. This

feature provides high flexibility to an application to change its workload. Our work also enables such

workload reconfiguration by an API, where each task can change its real-time constraints.

Table 19 – Related Works on Self-Adaptive QoS for Many-Cores

Works QoS Focus Method Technique

[JUN14] Computation Dynamic Specification Behavior and Dynamic Mapping Task Remapping

[QUA16] Computation Dynamic mapping based on prediction Task Migration

[PAR14] Computation Hierarchical Scheduler Task Migration

[RUA16a] Computation Dynamic Task Scheduler Task Migration

[MAN10] Communication Bandwidth self-adaptation Flow priority

[JOV13] Communication Expose NoC QoS services by a API Flow priority / CS

[ABO13] Communication Proactive CS establishment CS

[RUA15a] Communication Self-Adaptive QoS Management Flow priority / CS

[RUA17a] Communication SDN-based self-adaptive QoS management CS

Most works assume a hierarchical management organization [QUA16][PAR14][RUA16a],

which distributes the management load by adopting a cluster-based organization, with a set of cores

managed by a cluster manager. Our proposal also adopts a hierarchical organization, with slave

cores running the user's applications and sending monitored/feedback data to a cluster manager,

which executes the QoS management.

While the aforementioned works satisfy the computation constraints and also try to reduce

the communication cost by mapping tasks closer to each other, these approaches address

communication QoS indirectly and are not able to handle unpredictable events that can disturb the

traffic in the network, e.g., a task migration packet crossing the communication path between two

RT tasks. To mitigate this disturbance works focusing only on computation QoS should migrate the

affected tasks to other processors, instead to act directly on the communication level.

Works [MAN10][RUA15a] address QoS at the communication level. Several works develop

techniques to implement a QoS-driven infrastructure considering only the NoC (e.g.

[WIN11][ABO13]). Joven et al. [JOV13] expose the communication QoS support to the software layer

enabling the developer to define the QoS constraints. Abousamra et al. [ABO13] observe the

message requests to set proactive CS, used for future message deliveries. Authors in Mangano et al.

[MAN10] propose a self-adapting mechanism that exposes the hardware through a set of registers

to program the QoS constraints for a bus-based SoC. Work of Ruaro et al. [RUA15a] proposes a self-

adaptive flow priority management and CS establishment based on latency and throughput

constraints. Authors of [RUA17a] propose a run-time CS based on a Software-Defined Networking

(SDN) paradigm, enabling to establish CS paths during the whole application lifetime.

117

As also can be observed in related works, task migration and CS stand out as techniques to

provide QoS at computation and communication levels, respectively. The novelty of the proposal

presented in this Chapter is a unified self-adaptive QoS management addressing QoS of

computation (task migration) and communication (CS) for soft real-time applications. Additionally,

we propose a dynamic Application Profile Learning technique, which enables to take proactive

decisions.

6.3 Application Profile Learning (APL)

This Section details the Application Profile Learning (APL). The APL has its implementation

divided into two hierarchical levels. The lower level, implemented in the SPEs, and the higher level,

implemented in the MPEs. At each SPE, the kernel monitors the tasks’ profile at run-time. The kernel

monitors for each task t the following parameters: (i) computation, Tp, the part of time where t is

using the CPU; (ii) communication, Tm, the part of time where t is blocked, waiting for a requested

message from a producer task; (iii) idle time, Ti.

The monitoring extracts the relative amount (percentage) of Tm, Tp, and Ti, for each task

periodically, over non-overlapping windows, where Tm + Tp + Ti = 1. The task scheduler computes Tp

and Ti. The communication API computes Tm. Tm is computed from the perspective of the consumer

task, evaluating the time spent between the requisition of a message until its reception. Tm is a

function of three factors: (i) the time spent on the producer task to generate the requested message;

(ii) the message size; (iii) the NoC congestion. Note, that the communication percentage is

computed only for the received messages because the kernel adopts a non-blocking send operation

(produced but not consumed messages are locally stored in a buffer). In scenarios with congestion

in the NoC, the observed communication profile tends to increase when the consumer task spends

more time waiting for messages. This behavior helps to mitigate network congestion because the

management will pay more attention to affected communications.

Each SPE sends the monitored profile periodically to its MPE, which implement the APL upper

level. The MPE handles the received profile by applying an accumulated mean of the received profile

with the past profiles. The self-adaptive QoS management uses the resulting value to estimate the

profile of each task.

Consider as an example the task graph of Figure 71(a) and assume that each task executes the

same computation load periodically. Figure 71(b) presents the profile graphs according to the APL

method. Task A does not receive packets from other tasks, thus Tm = 0. Tasks B and C receive packets

from task A, resulting in a mixed profile with Tp = 26% and Tm = 15% (tasks B and C have similar

graphs). Finally, task D has two communication flows, receiving packets from tasks B and C. In task

D the communication is higher, as depicted in the graph of Figure 71(b).

118

TaskA

TaskB

TaskC

TaskD

Send(&msg, TaskB)
Send(&msg, TaskC)

Receive(&msg, TaskA)
Send(&msg, TaskD)

Receive(&msg, TaskA)
Send(&msg, TaskD)

Receive(&msg, TaskB)
Receive(&msg, TaskC)

(a)

% comm. % comp.

Task B

% comm. % comp.

Task C

% comm. % comp.

Task D

% comm. % comp.

Task A
0

10

20

30

40

50

60

70

80

90

100

0 20 40 60

P
er

ce
n

ta
ge

 o
f

ti
m

e

Profile samples

IDLE COMM

COMP EXPECTED-IDLE

EXPECTED-COMP EXPECTED-COMM

observed profile

expected

profile

(learned)

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60

P
er

ce
n

ta
ge

 o
f

ti
m

e

Profile samples

IDLE COMM

COMP EXPECTED-IDLE

EXPECTED-COMP EXPECTED-COMM

observed profile

expected

profile

(learned)

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60

P
er

ce
n

ta
ge

 o
f

ti
m

e

Profile samples

IDLE COMM

COMP EXPECTED-IDLE

EXPECTED-COMP EXPECTED-COMM

observed profile

expected

profile

(learned)

(b)

Figure 71 – (a) Example of a task communicating graph of an application. (b) Overview of the application
profile learning method.

6.4 Self-Adaptive QoS Management

This Section details the self-adaptive QoS management. The approach is distributed,

implemented inside each MPE. It adopts the ODA (Observe, Decide, Act) paradigm [HOF13]. The ODA

method includes a loop that is constantly aware of the system status. It is generic and can be

adapted to different many-core architectures. Figure 72 summarizes the main contribution of this

proposal, by presenting an overview of the self-adaptive QoS management.

Manager Processor - MPE

M

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

QoS fullfilment monitoring
(deadline/latency miss)

System running

T
ask M

igra
tio

n

Adaptation Manager

ObservationDecisionActuation

CS-
Controller

Task
Mapping

Le
arn

in
g

Self-awareness
core

Feedback (RT change)

Enviroment Monitoring
(APL)

C
S

C
o

n
figu

ra
tio

n

Figure 72 – Organization of the self-adaptive QoS management.

Observation: There are three message classes sent by SPEs to the QoS management: feedback,

environment monitoring, and QoS fulfillment monitoring. Feedback messages provide performance

figures related to the tasks. The tasks generate the feedback messages, reporting changes in the RT

constraints (period, deadline, execution time). The tasks may update at run-time the RT constraints

using the RealTime API, enabling flexible workloads [RUA16a][JUN14]. The environment monitoring

messages allow the manager to gather periodic information about the status of the resources and

applications. These messages include the APL data. QoS fulfillment monitoring messages warn the

119

manager about violations of the QoS fulfillment. These messages address both communication

(packet latency miss) and computation (deadline miss) levels.

Decision: The self-awareness core implements the awareness by accessing: (i) observation

messages; (ii) tasks’ location (provided by the task mapping heuristic); (iii) CS paths (provided by the

CS-Controller); (iv) statistics obtained from the APL. This rich information set allows for accurate

run-time decisions. The self-awareness core acts as a trigger deciding which system component is

the target of the adaptation and when the adaptation occurs. The self-awareness core decides

reactively as well as proactively. The Adaptation Manager (AM) handles the decisions, reconfiguring

the system resources. Thus, the AM acts as the actuator managing the adaptation process.

Actuation: The AM manages task migration and CS (establishment/releases) protocols,

according to decisions made by the self-awareness core. These protocols change physically the

resources of computation and communication. The AM also ensures that the resources will be

correctly updated after the adaptation to be used by the self-awareness module in future decisions.

Figure 73 presents the self-adaptation flow. The method is similar to a health check-up, with

quick and complete check-ups. The quick check-up acts like when a symptom appears, such as a

feedback message notifying an RT constraint modification or a deadline/latency miss, leading to

reactive actions. According to the received message, there are two quick check-up functions, one to

deal with computation events (RT change and deadline miss) and the other one to deal with

communication events (latency miss). The complete check-up enables to evaluate the application

behavior in detail, analyzing all application’s tasks instead only one or one CTP. It may be triggered

by the quick-checkup function leading to a reactive action, or it is invoked periodically (by the routine

overhaul trigger), potentially leading to proactive actions.

Self-adaptation

Self-aware
Analysis

Latency miss

Routine Overhaul

Circuit-SwitchingTask Migration

Observation:

Decision:

Actuation:

RT change / Deadline miss

quick_checkup
Communication

quick_checkup
Computation

APL

complete_checkup

Task s profile

Figure 73 – Self-adaptation QoS management flow, executed by the manager processors.

The self-adaptive QoS management has its decision part implemented by the quick and

complete check-up algorithms. The algorithms adopt the following design-time parameters:

1. cpu_TH: maximum allowed CPU utilization per processor;

2. comp_profile_TH: threshold percentage used to recognize a high computation profile
task;

120

3. comm_profile_TH: threshold percentage used to recognize a high communication profile
task;

4. comp_profile_sum_TH: threshold percentage used to fire a proactive adaptation,
corresponding to the total load of the tasks on a given processor;

5. deadline_TH: maximum percentage of deadline misses in a sampling period;

6. latency_TH: maximum number of latency misses for a given Communicating Task Pair
(CTP).

6.4.1 QUICK-CHECKUP Algorithms

The feedback and QoS fulfillment monitoring messages fire the quick check-up algorithms,

presented in Algorithms 2 and 3.

The goal of the QUICK-CHECKUP-COMPUTATION algorithm is to evaluate when it is necessary

to migrate some task due to a computation interference. The algorithm inputs are the task

identification (task) and the CPU address executing the task (task_cpu). Line 1 computes the CPU

utilization where the task is running, and line 2 calculates the deadline miss rate (percentage) for

the task. The deadline miss rate is the relationship between the number of missed deadlines divided

by the number of tasks’ periods since the last application adaptation. Line 3 of the Algorithm verifies

the task status using these two parameters (cpu_util and deadline_miss_rate). If the cpu_util or the

deadline_miss_rate is higher than the predefined thresholds (cpu_TH and deadline_TH), the

decision is to migrate the task. If the migration fails (no available processor), the COMPLETE-

CHECKUP (line 5) is called.

Algorithm 2: QUICK-CHECKUP-COMPUTATION

Input: task, task_cpu

begin

1: cpu_util = get_cpu_utilization(task_cpu)

2: deadline_miss_rate = get_deadline_miss_rate(task)

3: if cpu_util > cpu_TH or deadline_miss_rate > deadline_TH then

4: if task_migration(task) = FALSE then

5: COMPLETE-CHECKUP(task’s application)

6: end if

7: end if

end

The goal of the QUICK-CHECKUP-COMMUNICATION algorithm is to evaluate when it is

necessary to establish CS connections for some CTPs due to a communication interference. The

algorithm receives as input a CTP, with a producer (prod_task) and consumer (cons_task) task

identifiers. Line 1 obtains the total number of latency misses since the last application adaptation.

When the latency misses exceed 2*latency_TH (line 2), the COMPLETE-CHECKUP is invoked. If the

latency misses exceed latency_TH (line 4) the algorithm tries to establish a CS path between

prod_task and cons_task. Note, that in Algorithm 3 the call of the COMPLETE-CHECKUP only occurs

if the CS establishment fails.

121

Algorithm 3: QUICK-CHECKUP-COMMUNICATION

Input: prod_task, cons_task

begin

1: ctp_latency_count = get_ctp_latency_number(prod_task, cons_task)

2: if ctp_latency_count > 2*latency_TH then

3: COMPLETE-CHECKUP(task’s application)

4: else if ctp_latency_count > latency_TH then

5: CS_configuration(prod_task, cons_task)

6: end if

end

6.4.2 COMPLETE-CHECKUP Algorithm

The main goal of the proposed QoS management is to reduce the reactive actions, acting

proactively when possible to avoid future QoS violations. Algorithm 4 presents the COMPLETE-

CHECKUP algorithm, which receives as input an application identifier. This algorithm has two

operating modes, reactive and proactive.

Algorithm 4: COMPLETE-CHECKUP

Input: application

begin

1: task_migration_list = Ø

2: task_rank[] = computes_task_score(application)

3: if task_rank[] ≠ EMPTY then

4: selected_task = get_high_task_score(task_rank[])

5: task_migration(selected_task)

6: else

7: for ti ∈ application do

8: comp_task_num = get_num_comp_task(ti_cpu)

9: if comp_task_num > 1 or get_comp_sum(ti_cpu) ≥ comp_profile_sum_TH then

10: task_migration(ti)

11: task_migration_list = ti

12: end if

13: end for

14: for ti ∈ application and ti ∉ task_migration_list do

15: if get_comm_profile(ti) ≥ comm_profile_TH or get_comm_profile(ti) ≥ get_comp_profile(ti) then

16: for ctpi ∈ C which ti is consumer do

17: prod_task = get_producer(ctpi)

18: if prod_task ∉ task_migration_list and ctpi = PS then

19: CS_configuration(prod_task, ti)

20: end if

21: end for

22: end if

23: end for

24: end if

end

122

The activation of the reactive mode occurs when a quick checkup algorithm fails, including the

code lines 2 to 5. Line 2 ranks the application tasks according to the QoS violation severity, using

Equation 9.

r𝑇= 𝑑𝑚 + 𝑙𝑚 + 10(𝑢𝐶𝑃𝑈 > 𝑐𝑝𝑢_𝑇𝐻 ? 1: 0) (9)

where: rT is the task rank, dm is the number of deadline misses, lm is the number of latency misses,

uCPU is the CPU utilization where the task is executing.

According to Equation 9, the rank of a given task is higher when it is running on a CPU with a

utilization higher than cpu_TH. Line 4 selects the most critical task, (i.e., the one with the highest

rank), and the task migration is fired to selected_task (line 5). Note that the reactive mode acts only

in one task of the application. As one single QoS adaptation can affect the whole application

performance, gradual steps are preferable to simultaneous adaptations.

The activation of the proactive mode occurs periodically (lines 7-23). The trigger to activate

the COMPLETE-CHECKUP algorithm in this mode is the overhaul routine, which calls the COMPLETE-

CHECKUP at the end of ten hyper-periods of the application. This number is a trade-off, a higher

value reduces the COMPLETE-CHECKUP calls, delaying the time to take proactive actions; and

smaller values increase the MPE CPU usage. The proactive mode starts as in the reactive mode,

ranking the tasks according to Equation 9. As the COMPLETE-CHECKUP was invoked by the overhaul

routine and not by quick checkup algorithms, it is expected that the task_rank[] set be empty, i.e.,

all application tasks are fulfilling their constraints. The proactive mode acts first on the computation

(lines 7-13) and then on the communication (lines 14-22).

At the computation level, for each task ti of the application, the algorithm verifies if there are

more than two high computation tasks in ti's core (tasks exceeding comp_profile_TH), or if the sum

of the computation profile for all tasks sharing ti's core exceeds comp_profile_sum_TH (line 9). If

true, ti is migrated to a free processor (line 10), and the task identifier is added to the set

task_migration_list. The goal is to reduce the CPU sharing between high computation tasks

proactively. Also, as tasks may change their RT constraints dynamically, this action can prevent

deadline misses when a given task increases the CPU utilization.

At the communication level, for each task ti of the application that is not in the

task_migration_list, the algorithm verifies if ti's communication profile exceeds comm_profile_TH

or is higher than the computation profile (line 15). If true, ti is a candidate to have its communication

mode changed to CS. The loop in lines 16-21 sets CS for each CTP that has ti as a consumer task. Line

18 verifies if the producer task is not in task_migration_list and if communication is assigned to the

PS network. If this condition is true, a CS is established.

In summary, the proactive QoS actions try to reduce the CPU sharing between high

computation tasks and to establish CS mode between tasks with a high communication profile.

123

6.5 Results

The many-core system is modeled at the RTL level (VHDL and SystemC), and all software

components are implemented in C language. The RT benchmarks correspond to real applications’

previously addressed, as DTW and MPEG-2. Synthetic tasks run in parallel on the system with the

purpose to induce computation and communication disturbances. The experiments adopt the

following parameters: cpu_TH=99%, comp_profile_TH=50%, comp_profile_sum_TH=75%,

comm_profile_TH=10%, deadline_TH=1%, latency_TH=2.

6.5.1 Comparison with Single Objective QoS Managers

This section compares this proposal with works covering self-adaptive QoS of communication

[RUA15a] and computation [RUA16a]. Figure 74(a) shows a mapping scenario using the DTW

application with interference at both computation (task A) and communication levels (df1). The

interference of computation occurs from 20ms to 55ms, where task A increases its utilization from

10% to 50%. The interference of communication occurs from 66mm to 90ms.

P1
P4

RC

P1

P1
P2

P3

BK

df1

P1

P1

A

(a)

0

20000

40000

60000

80000

100000

120000

0 20 40 60 80 100

It
er

a
ti

o
n

 L
a

te
n

cy
 (

cl
o

ck
 c

yc
le

s)

Time (mill iseconds)

Communication Disturbance

Run-time CS stablishment for the
disturbed CTPs

df1

Computation Disturbance
disturb. = 10% disturb. = 50% disturb. = 10%

(b)

0

20000

40000

60000

80000

100000

120000

0 20 40 60 80 100

It
er

a
ti

o
n

 L
a

te
n

cy
 (

cl
o

ck
 c

yc
le

s)

Time (mill iseconds)

Communication Disturbance

Run-time task migration of task A

df1

Computation Disturbance
disturbing = 10% disturbing = 50% disturbing = 10%

df1

disturb. = 10% disturb. = 50% disturb. = 10%

(c)

0

20000

40000

60000

80000

100000

120000

0 20 40 60 80 100

It
er

a
ti

o
n

 L
a

te
n

cy
 (

cl
o

ck
 c

yc
le

s)

Time (milliseconds)

Communication Disturbance

Proactive QoS adaptation points - covering
the computation and communication levels

Reactive QoS adaptation - CS
stablishment between disturbed CTPs

df1

Computation Disturbance
disturb. = 10% disturb. = 50% disturb. = 10%

(d)

Figure 74 - Comparison with [RUA15a] and [RUA16a]: (a) scenario setup; (b) iteration latency of [RUA15a];
(c) iteration latency of [RUA16a]; (d) iteration latency of the proposed work.

Figure 74(b) shows results from [RUA15a]. The work establishes run-time CS for the disturbed

CTPs, but it cannot mitigate the computation interference induced by task A. Figure 74(c) shows the

results from [RUA16a], which counteracts the computation disturbance by migrating task A to

another processor, but the communication interference remains. Figure 74(d) shows the results of

the proposed work, which mitigates both computation and communication interference using

proactive and reactive actions.

124

6.5.2 Application Profile Learning Overhead

The APL is implemented at the MPE level since the learning process is spread across multiple

manager processors. However, at the SPE level, the APL can penalize the tasks’ execution time due

to the monitoring process. The kernel adopts two actions to minimize this overhead: (i) the

monitored profile transmission occurs preferably in idle periods of the SPE; (ii) each SPE uses a

different counter to trigger the sending of the information, thus distributing the monitoring load.

Figure 75(b) compares the overhead of the APL on application's execution time with a

different number of tasks running at the same PE. This scenario uses two applications, Figure 75(a):

DTW (Dynamic Time Warping algorithm recognizing 2500 patterns), and MPEG-2 (to decode 500

frames/audio arrays). The functionality of the application is not relevant, only the number of tasks

per PE. The APL messages are transmitted from SPE to MPE at each 10 ms.

0

50

100

150

200

250

300

350

APL Disabled APL Enabled APL Disabled APL Enabled

DTW MPEG-2

Ex
ec

u
ti

o
n

 t
im

e
(m

il
li

se
co

n
d

s)

1 Task/PE 2 Tasks/PE 3 Tasks/PE 4 Tasks/PE
DTW

RC

P1

P2

P3

P4

BK

SP

IV IQ ID

FI

JOMPEG-2

AD

(a)

(b)

Figure 75 - (a) DTW and MPEG-2 application task graphs. (b) Overhead evaluation of the application profile
learning.

All tasks in the "APL enabled" scenarios have the APL monitoring enabled, with an expected

overhead at each core increasing according to the number of tasks per PE. However, the results

show that the impact on the application execution time is negligible. The worst overhead is achieved

in the MPEG-2 scenario, with 3 tasks/PE, corresponding to an increase of 0.0024% in the application

execution time.

6.5.3 Self-Adaptive QoS Adaptation Evaluation

This subsection evaluates the proposed QoS management. Figure 76(a) shows the MPEG-2

task mapping, represented by blue circles. Tasks D1 and D2 share the CPU with tasks SP and IV,

respectively. They belong to another QoS application, exemplifying a disturbance at the

computation level. The red arrows denote disturbances of communication, other messages that

interfere with the application flows. On the y-axis of Figure 76(b)-(d) shows the latency of one

iteration of the MPEG-2 application, measured at the task JO (joint). The QoS constraint is 5,800

clock cycles, corresponding to the time to decode one audio/image frame of 576 bytes. Bars below

the x-axis represent the CPU utilization of task D2 (computation disturbance) and when the

disturbing flows occur (communication disturbance).

125

P1

SP

IQIV

AD

P1

ID

JO

FI

df1

df3

df2

D1

D2

(e)

(a)

MPEG-2 APL at time of 15ms

Tasks
Computation

profile
Communication

profile

SP 2 0

IV 70 3

IQ 9 11

ID 10 17

AD 60 2

FI 27 21

JO 3 43

10000

30000

50000

70000

90000

110000

130000

0 20 40 60 80 100

It
er

a
ti

o
n

 L
a

te
n

cy
 (

cl
o

ck
 c

yc
le

s)

Time (mill iseconds)

D2 util. = 10% D2 util. = 28% D2 util. = 50% D2 util. = 10%

df1 df2 df3

Computation Disturbance

Communication Disturbance

All adaptations disabled

10000

30000

50000

70000

90000

110000

130000

0 20 40 60 80 100

It
er

a
ti

o
n

 L
a

te
n

cy
 (

cl
o

ck
 c

yc
le

s)

Time (mill iseconds)

D2 util. = 10% D2 util. = 28% D2 util. = 50% D2 util. = 10%

df1 df2 df3

Computation Disturbance

Communication Disturbance

Reactive QoS adaptation points
- covering the computation and
communication levels

Proactive adaptations disabled

10000

30000

50000

70000

90000

110000

130000

0 20 40 60 80 100

It
er

a
ti

o
n

 L
a

te
n

cy
 (

cl
o

ck
 c

yc
le

s)

Time (mill iseconds)

D2 util. = 10% D2 util. = 28% D2 util. = 50% D2 util. = 10%

df1 df2 df3

Computation Disturbance

Communication Disturbance

Proactive QoS adaptation points - covering
the computation and communication levels

Reactive QoS adaptation - CS
stablishment between SP → AD

(b)

(c)

(d)

Figure 76 - Evaluation of the self-adaptive QoS management over the MPEG-2. (a) App. mapping. (b) No
adaptation, deadline miss = 20.3%. (c) Only reactive adaptations, deadline miss = 2.3%. (d) Proactive and

reactive adaptations, deadline miss = 0.5%. (e) APL for MPEG-2 at 15ms of simulation.

The first evaluated scenario has all QoS adaptations disabled - Figure 76(b). When the CPU

utilization of task D2 increases, at 25 and 40 ms, the latency increases due to the CPU sharing. In the

same way, disturbing flows affect the latency. Note that when flow df3 is active the task D2 presents

a low CPU utilization and the latency also increases. This result shows that the communication

disturbance also impacts the QoS constraint.

The second evaluated scenario (Figure 76(c)) activates only reactive adaptations. When D2

increases its CPU utilization from 10% to 28%, the total SPE utilization reaches 98% (28% + 70% from

task IV). The task migration is not immediately triggered because the CPU utilization remains below

cpu_TH. Thus, task IV starts to generate deadline misses, and the QoS management decides to

migrate task IV to a free processor at 31.4ms. Also, flow df1 induces latency misses in the flows

SP→IV and SP→AD, making the QoS management to decide to establish CS for these flows at 30.3

126

and 32ms. There is no impact on the latency when D2 increases its utilization to 50% because task

IV was previously migrated. Flow df2 induces latency misses in the flow AD→FI, resulting in a new

CS establishment at 49.2ms. As the CS establishment for one CTP affects in average 150 clock cycles

of the application's latency, its effect is not perceptible in the graph. Finally, flow df3 starts,

disturbing three MPEG-2 flows: IQ→ID, FI→JO, and ID→JO. The consequence is several latency

misses, and CSs are reactively established for all penalized pairs at 66.5, 67.4 and 68.5 ms. Note that

after the reactive adaptations the QoS level is restored.

The third evaluated scenario activates proactive and reactive adaptations - Figure 76(d). The

first call to the COMPLETE-CHECKUP occurs at 15ms due to the execution of the overhaul routine,

with the learned profile presented in Figure 76(e). The COMPLETE-CHECKUP decides to migrate

proactively task IV because it is sharing the CPU with D2 and the sum of its computation profile is

higher than comp_profile_sum_TH (at 17,6ms). Additionally, according to the obtained profile, tasks

ID, FI, JO, and IQ have a high communication profile (higher than comm_profile_TH). Therefore, the

QoS management proactively establishes CS for the flows: IQ→ID (18.5 ms), AD→FI (18.6 ms),

ID→JO (19.1ms), FI→JO (19.7 ms), and IV→IQ (23 ms). This scenario also has a reactive QoS

adaptation, which is a CS establishment between SP→AD at 32 ms due to the disturbance caused

by df1. The QoS management did not establish CS's previously since the APL revealed that AD has a

communication profile smaller than the comm_profile_TH.

Comparing deadline miss rates in all three scenarios, we observe a miss rate of 20.3% when

QoS is disabled, 2.3% when only reactive adaption is used, and 0.5% with both proactive and

reactive adaptions.

While Figure 76 shows the MPEG-2 case in detail, Figure 77 summarizes results for 8

benchmarks. It compares execution time (a), and deadline miss rate (b), for: (i) baseline scenario;

(ii) DIST - disturbances and no QoS mechanism; (iii) REACT - disturbances and only reactive QoS

enabled; (iv) P+R - disturbances and both QoS mechanisms enabled (proactive + reactive). The

disturbances consist of 2 tasks providing computation disturbance (randomly mapped within PEs

running benchmark's tasks), and 3 disturbing communication flows. Compared to the baseline

execution time, the DIST increases the execution time, on average, by 224.7% (severe disturbance).

Applying QoS management, the execution time is restored close to the baseline: 13.8% for REACT

and 2.4% for P+R above the baseline. Note that REACT exhibits a higher average execution time than

P+R, highlighting the benefit of proactive actions. As Figure 77(b) shows, the deadline misses were

reduced, on average, by 98% for REACT, and 99.5% for P+R, with a rate below 0.6% for all P+R

benchmarks.

Those experiments show the synergy between proactive and reactive actions. The proactive

adaptation reconfigures the system according to the application profile learning,

preventing/minimizing future deadline misses due to interference. The reactive actuation operates

during the learning period or responds to unpredictable disturbing events.

127

19,1% 44,1% 11,2% 33,4% 27,4% 49,7% 24,7%

0

1

2

3

4

5

6

7

8

9

10

Application Benchmark

D
e

a
d

lin
e

 m
is

s
ra

te
 (%

)

DIST REACT P+R

(b)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Application Benchmark

N
o

rm
a

liz
e

d
 E

xe
cu

ti
o

n
 T

im
e Baseline DIST

REACT P+R

(a)

Figure 77 - Benchmark evaluation: (a) execution Time; (b) deadline miss rate.

6.5.4 Self-Adaptive QoS Trade-off

Subsection 6.5.1 showed that the QoS manager must act in both computation and

communication conjointly. Subsection 6.5.3 presented the effectiveness of the proposed method to

provide QoS for a set of benchmarks in the presence of disturbing events. This last evaluation

stresses the proposed method, with all PEs executing tasks with QoS constraints, and increasing the

CPU utilization gradually. This evaluation adopts three synthetic applications, with different profiles:

(i) COMP – computation intensive (66% comp., 10% comm.); (ii) COMM - communication intensive

(32% comp., 61% comm.); (iii) HYB – hybrid, a mix of computation and communication profile (45%

comp., 30% comm.).

The simulated workload corresponds to 5 applications executing simultaneously: 1 COMM, 1

COMP, and 3 HYB. The applications were randomly mapped in a cluster with 16 PEs (1 MPE and 15

SPEs). The SPEs were configured to run 2 tasks concurrently. To use all SPEs of the cluster, all SPE

received two tasks. With such configuration, task migration is disabled due to the full system usage.

All applications start their execution at the beginning of the simulation, with a warm-up period of

10 ms. After the warm-up period, each SPE has 10% of CPU utilization (5% from each mapped task).

As the simulation advances, all tasks increase its CPU utilization steadily. The utilization increases by

5% for each task at each 10 ms, resulting in a total CPU utilization increase of 10% at each 10 ms.

Figure 78(a) presents the deadline miss rate for this experiment (y-axis: percentage of

deadline misses, x-axis: CPU utilization per SPE). The deadline miss rate remains 0 up to 80% of CPU

utilization. After 80% of CPU utilization, all applications start to miss deadlines. Due to the system

unpredictably behavior with a higher CPU utilization, some application misses more deadlines than

others (Apps 3, 4, 6). As task migration is not possible due the full system occupation, this result

showed the effectiveness of the task scheduler to ensure QoS at computation level. The proposed

method can ensure QoS for several applications running concurrently, even with a large CPU

utilization (80% in this scenario).

Figure 78(b) presents the latency miss rate. All applications start their execution

communicating using the PS NoC. As the simulation advances, the QoS management aided by the

application profile learning, identify the applications’ profile and set CS to the COMM and HYB

128

applications, reducing the latency miss to less than to 0.5%. The exception is the COMP application

(App 5), which continues using the PS NoC because it does not satisfy the requirements for proactive

CS. With the increase in the CPU utilization, this application receives one latency miss at each 10ms,

resulting in latency miss rate of 12.5%. As App 5 is computation intensive, this latency miss does not

impact the deadline misses, as can be observed in Figure 78(a), not justifying the establishment of

CS.

Figure 78 – QoS provisioning trade-off: (a) Deadline miss rate; (b) Latency miss rate.

This experiment enabled to observe the QoS provisioning trade-off at the computation and

communication levels in a stressed scenario. The computation QoS starts to be affected after 80%

of CPU utilization. The method ensures communication QoS for all communication sensitive

applications by establishing CS at run-time. The adoption of an MPN provides sufficient CS paths

even in a cluster with all SPEs running the maximum number of tasks.

6.6 Conclusions

This Chapter proposed a dynamic profiling and self-adaptive QoS management for soft real-

time applications. A run-time application learning profiling (APL) technique allows the QoS

management system to take proactive actions, and when necessary, react to cope with the

interference induced by the dynamic workload. The low overhead of the APL demonstrates that

run-time techniques can be used to characterize applications.

The results show two relevant facts. First, mechanisms for regulating both communication and

computing are essential for the overall QoS management. Second, proactive techniques can ease

the avoidance of future deadlines and latency misses.

While we have demonstrated the benefits of the proposed APL and QoS management in a

specific setting, there is little in the NoC, the PEs, and the middleware, that we require for our

techniques to work. Hence, we expect similar benefits on very different platforms, which, however,

should be demonstrated in future work.

(a) (b)

129

7 CONCLUSION

This Thesis incrementally proposed and developed solutions to meet QoS constraints. Initially

considering computation and communication in a separate way (Chapters 4 and 5), and then

merging the techniques to build a comprehensive solution (Chapter 6).

7.1 QoS at the Computation Level

Chapter 4 explored QoS techniques at the computation level, including task migration and a

dynamic task scheduler. The task migration protocol has as main feature the absence of code

checkpoints; adopts task recreation, which reduces the memory overhead due to the absence of

task replicas in potential target PEs; and transmits the task messages to the new PE on-demand.

Experimental results showed that the latency to migrate one task is lower that in related

works, and the proposed protocol achieved a low overhead in the applications execution time:

0.05% for 1 migration, and 0.6% for 2 and 3 migrations while ensuring correct inter-task message

synchronization.

The proposed task migration protocol is important towards demystifying the high penalties to

adopt task migration in distributed memory systems. This is a significant achievement for self-

adaptive techniques, since frequent task migrations may occur, and a low overhead protocol

reduces the adaptation overhead.

The proposed dynamic task scheduler ensures a flexible RT time support for soft-RT

applications. The scheduler has a hierarchical organization, with a cluster and a local scheduler. The

local scheduler controls the CPU usage according to the task constraints, at the PE scope. When the

local scheduler cannot meet the constraints, it warns the cluster scheduler, which can decide to fire

a task migration, moving the task to a PE with more CPU availability. The main feature and

contribution of the scheduler concerns the support to change at run-time the tasks' constraints

(period, deadline, execution time).

Experimental results showed that the task scheduler is efficient to support soft RT

applications, without deadline miss up to 80% of CPU utilization. Additionally, the scheduler handled

dynamic workloads with tasks changing the RT constraints at run-time, and when necessary,

migrating the task to another PE with a low overhead due to the low cost of the task migration

technique.

The dynamic feature of the scheduler is important for many-cores because it allows a fine-

grain QoS tuning at the computation level, enabling a better QoS management due to the avoidance

of resource overuse. This is fundamental in the dark silicon era, where software development and

execution must be efficient to offset the power and temperature restrictions.

130

7.2 QoS at the Communication Level

Chapter 5 explored QoS techniques at the communication level, introducing the Software-

Defined Networking (SDN) paradigm to the many-core context, and addressed QoS by providing a

run-time CS management based on the SDN infrastructure.

The motivation to adopt the SDN paradigm is its flexibility to manage network resources at

run-time. The SDN approach transfers the hardware complexity of the network control to a software

layer called Network Controller (NoC Controller). The underlying hardware supporting the SDN

paradigm is an MPN NoC, with area and power efficient SDN routers.

The NoC Controller handles the requests to define paths, search the paths, and configure the

MPN’s routers in the paths. The NoC Controller is a generic concept related to the system

management based on the SDN paradigm. This Thesis proposed a NoC-Controller called CS-

Controller, which finds shortest paths using the Hadlock’s algorithm for RT applications during the

application admission management phase. The goal is to set CS for all application’s flows before the

application start its execution. At the end of the application, all connections are released. A CS

management protocol ensures the communication between the MPE, CS-Controller, and the SPE

running the applications’ tasks.

Experimental results showed that the low cost of MPN combined to the routers design based

on Elastic Buffers enable to create a rich path diversity for the SDN management, achieving a

connection success rate higher than 97% for MPNs with 6 and 8 subnets. Additionally, the SDN

paradigm when compared to a state-of-the-art search path mechanism achieved a similar path

quality (i.e., average number of hops), with a slight improvement in the number of minimal paths,

and higher latency. The higher latency was expected since the comparison was done assuming a

software-based approach against a hardware-based approach. The overhead is not an actual

drawback since the latency only affects the application startup (in the order of µs). The advantages

of adopting SDN include simpler hardware architectures, reusability, and management flexibility,

features not available in hardware-centric approaches.

The features provided by the SDN approach enables to create a self-awareness of the

communication resources on-chip. Other important feature offered by the SDN-based NoC

management it the hardware simplicity, which leads to a high degree of hardware reusability. Each

SDN router is a simple unit, with the goal to link a given input port to an output port, according to

the definition made in software and stored in a table inside the router.

7.3 QoS at both Computation and Communication Levels

Chapter 6 unified the QoS management, integrating the communication and computation

techniques. The proposed management gathers several system and application information at run-

time to create a self-awareness of computation and communication resources combined to the QoS

fulfillment monitoring of the applications. Additionally, an application profile learning was able to

observe the profile of the application on-the-fly. Based on all this information the QoS management

131

can act reactively, as well as proactively. Reactively, when a given task or CTP loses a deadline or

latency constraint. Proactively, by early identifying if a given task has a computation or

communication profile, allocating resources to the task before future QoS violations.

Experimental results showed the capability of the proposed self-adaptive QoS management

to act reactively and mainly, proactively, avoiding potential QoS violations due to the identification

of the correct tasks profile. In a scenario executing several benchmarks, the deadline miss rate

stayed below 0.6% even with severe interferences at the computation and communication levels.

The application profile learning achieved an accurate observation of the task profile with an

insignificant overhead (0.0024% in the application execution time), demonstrating that run-time

techniques can be used to characterize applications.

Comprehensiveness and self-adaptation are essential features for the next generation of

many-cores due to the high complexity of such designs. Comprehensiveness enables defining trade-

offs when multi-objective optimizations are required, such as a power, temperature, and QoS. Self-

adaptation is essential to deal with challenges as unpredictably, dynamic workloads, and lack of

composability.

7.4 Side Contributions

This Thesis presented two side contributions not related to QoS.

The DMNI enabled to create a direct link between the memory and the NoC router. The

processor manages the DMNI, allowing to speed-up the communication between PEs. Experimental

results showed that the DMNI speed-up the application execution time up to 12.3% when compared

to a traditional PE architecture, with a DMA and NI modules (inherited from bus-based

architectures). Such design optimizes the communication performance of NoC-based many-core

systems, being important for the proposed QoS techniques.

The proposal of a graphical framework for many-core debugging presented a generic and

intuitive way to decrease the validation time of system techniques (as the ones proposed in this

Thesis), intuitively and holistically. The DEL layer defines a generic data extraction method combined

with a standard database. The graphical windows enable to observe what is occurring during the

simulation without looking into long log files or waveforms. A set of windows covering both

debugging of computation and communication levels creates an intuitive debugging environment.

7.5 Hypothesis Support

The Introduction of the Thesis stated the following hypothesis:

A comprehensive, scalable, and self-adaptive QoS support can be achieved by proposing

reconfigurable QoS techniques covering both computation and communication levels, and by a

management that is based on the self-adaptive model [SHA09][DUT16a][DUT16b][ANZ17], the ODA

paradigm [HOF13], and the distributed resource management [KRA12][CAS13].

132

Comprehensiveness was achieved by addressing the communication and computation levels

at both the infrastructure scope (task scheduler, task migration, and SDN-based CS) and

management scope (the self-adaptive QoS management). Related works so far address specific

techniques for communication or computation separately. Acting only in the computation

contributes significantly to the system performance. However, due to the number of PEs, the NoC

traffic can impact significantly on overall applications' performance, requiring holistic techniques.

Due to the unpredictable profile of general-purpose applications, it is necessary to profile

them at run-time and have tools to provide the correct resource allocation according to the

application needs. This Thesis advanced the state-of-the-art related to this issue. The proposed self-

adaptive QoS management supports the self-adaptation QoS stated in hypothesis, by presenting a

run-time resource reconfiguration according to the RT tasks QoS monitoring status (reactively), and

its profile (proactively). All these features were deployed according to the ODA paradigm, enabling

a better understanding of the adaptation flows, and a better organization of the components.

The QoS techniques and management were distributed in a cluster-based organization, which

ensure scalability to the proposal. This organization proved to be scalable, thanks the distribution

of the resource management load [CAS13].

Based on the presented techniques throughout this Thesis and supported by the experiments,

the Author concludes that the hypothesis was fulfilled.

7.6 Future Works

Future works include the gaps identified in the Thesis’ proposals, presented in the next

subsections.

7.6.1 Memory Access QoS

The DMNI was designed to support the parallel transmission of data to PS and SDN routers.

However, the read and write memory access are atomic operations performed by the DMNI.

Assume that two QoS flows are sending data in streaming from memory to SDN routers. The DMNI

will provide the same priority for them. A priority-based memory access control over an MPN design

is a relevant research that can fulfill this gap. The control can communicate with the task scheduler

to know which QoS flow is more urgent, assigning higher priority to it.

7.6.2 A distributed implementation of SDN Controllers

The CS-Controller evaluations target many-core up to 400 PE (20x20 dimension). For larger

system sizes, the SDN Controller can be deployed distributed at each cluster. However, if they not

communicate among them, the SDN-based management will be performed in individual clusters

without a global awareness of the network status. To implement system awareness of the SDN

control in higher system dimensions, it is required the research and development of a distributed

implementation of the SDN Controller. Such global awareness is challenging, once the protocols to

133

synchronize the network status among SDNs spreads over the cluster has the potential to cause a

high communication overhead or a high latency to answer for a requested service.

7.6.3 Comprehensiveness is the key word

In the Author’s opinion, current self-adaptive techniques, focused on only one scope

(computation or communication), are mature in literature. The increasing complexity of many-cores

will require increasingly degrees of comprehensiveness. This Thesis made one step towards a

comprehensive system by integrating self-adaptation for QoS of the computation and

communication resources. However, other self-adaptive mechanisms can be integrated. At the

computation level, aging-aware task mapping can be assumed; at the communication level, other

NoC controllers can be developed, targeting fault tolerance and communication security, for

example. Additionally, systemic energy and temperature management are necessary, and they need

to interact with the QoS heuristics to reach a good trade-off between applications performance

constraints and system budgets.

134

REFERENCES

[ABB14] Abbas, N.; Ma, Z. "Run-time Parallelization Switching for Resource Optimization on an

MPSoC Platform". Design Automation for Embedded Systems, vol. 18-3, Sep. 2014, pp.

279-293.

[ABO13] Abousamra, A.; Jones, A. K.; Melhem, R. "Proactive circuit allocation in multiplane

NoCs". In: DAC, 2013, pp. 1–10.

[ALH10] Alhonen, A.; Salminen, E.; Nieminen, J.; Hämäläinen, T. D. "A scalable, non-interfering,

synthesizable Network-on-chip monitor". In: NORCHIP, 2010, pp. 1-6.

[ALM11] Almeida, G.M.; Busseuil, R.; Carara, E. A.; Hébert, N.; Varyani, S.; Sassatelli, G.; Benoit,

P.; Torres, L.; Moraes, F.G. "Predictive Dynamic Frequency Scaling for Multi-Processor

Systems-on-Chip". In: ISCAS, 2011, pp. 1500-1503.

[AMB13] Ambrose, J. A.; Cassisi, V.; Murphy, D.; Tuo, L.; Jayasinghe, D.; Parameswaran, S.

"Scalable performance monitoring of application specific multiprocessor Systems-on-

Chip". In: ICIIS, 2013, pp. 315-320.

[ANT15] El-Antably, A.; Gruber, O.; Rousseau, F.; Fournel, N. "Transparent and portable agent-

based task migration for data-flow applications on multi-tiled architectures". In:

CODES+ISSS, 2015, pp. 183-192.

[ANZ17] Anzanpour, A.; Azimi, I.; Götzinger, M.; Rahmani, A. M.; TaheriNejad, N.; Liljeberg, P.;

Jantsch, A.; Dutt, N. "Self-awareness in remote health monitoring systems using

wearable electronics". In: DATE, 2017, pp. 1056-1061.

[ARM17] ARM. "big.LITTLE technology". Available at: https://developer.arm.com/technologies/

big-little, November 2017.

[ARN14] Arnold, O.; Fettweis, G. "Adaptive run-time management of heterogeneous MPSoCs:

Analysis, acceleration and silicon prototype". In: SoC, 2014, 4p.

[ATT11] Attia, B.; Wissem, C.; Noureddine, A.; Zitouni, A.; Torki, K.; Tourki, R. "A new pipelined

network interface for Network on Chip with latency and jitter optimization". In: ICM,

2011, pp. 1-6.

[BAM11] Bamakhrama, M.; Stefanov, T. "Hard-real-time scheduling of data-dependent tasks in

embedded streaming applications". In: EMSOFT, 2011, pp. 195-204.

[BAM12] Bamakhrama, M.A.; Zhai, J.T.; Nikolov, H.; Stefanov, T. "A methodology for automated

design of hard-real-time embedded streaming systems". In: DATE, 2012, pp. 941-946.

[BEN02] Benini, L; Micheli, G. "Networks on chips: a new SoC paradigm". Computer, vol. 35-1,

Jan. 2002, pp. 70–78.

135

[BEY13] Beyranvand, A. N.; Molnos, A.; Martinez, M. E.; Goossens, K. "A hardware/software

platform for QoS bridging over multi-chip NoC-based systems". Parallel Computing, vol.

39-9, Sep. 2013, pp. 424-441.

[BJE05] Bjerregaard, T.; Sparso, J. "A router architecture for connection-oriented service

guarantees in the Mango clockless network-on-chip". In: DATE, 2005, pp. 1226-1231.

[BOH17] Bohnenstiehl, B.; Stillmaker, A. J.; Pimentel, J.; Andreas, T.; Liu, B.; Tran, A. T.; Adeagbo,

E.; Baas, B. M. "KiloCore: A 32-nm 1000-Processor Computational Array". IEEE Journal of

Solid-State Circuits, vol. 52-4, Apr. 2017, pp. 891–902.

[BUR10] Burgio, P.; Ruggiero, M.; Esposito, F.; Marinoni, M.; Buttazzo, G.; Benini, L. "Adaptive

TDMA bus allocation and elastic scheduling: A unified approach for enhancing

robustness in multi-core RT systems". In: ICCD, 2010, pp. 187-194.

[CAN12] Cannella, E.; Derin O.; Meloni, P.; Tuveri, G.; Stefanov, T. "Adaptivity Support for MPSoCs

Based on Process Migration in Polyhedral Process Networks". VLSI Design, article nº 2,

Jan. 2012, 17p.

[CAR07] Carara, E.; Moraes, F.; Calazans, N. "Router Architecture for High-performance NoCs".

In: SBCCI, 2007, pp. 111-116.

[CAR09] Carara, E.; Oliveira, R.; Calazans, N.; Moraes, F. "HeMPS - a Framework for NoC-based

MPSoC Generation". In: ISCAS, 2009, pp. 1345-1348.

[CAR11] Carara, E. "Serviços de Comunicação Diferenciados em Sistemas Multiprocessados em

Chip Baseados em Redes Intra-Chip". Tese de Doutorado, Programa de Pós-Graduação

em Ciência da Computação, PUCRS, 2011, 107p.

[CAR14] Carara, E. A.; Calazans, N. L. V.; Moraes, F. G. "Differentiated Communication Services

for NoC-Based MPSoCs". IEEE Transactions on Computers, vol. 63-3, Mar. 2014, pp. 595-

608.

[CAS13] Castilhos, G.; Mandelli, M.; Madalozzo, G.; Moraes, F. "Distributed resource

management in NoC-based MPSoCs with dynamic cluster sizes". In: ISVLSI, 2013, pp.

153-158.

[CHA01] Chandra, A.; Adler, M.; Shenoy, P. J. "Deadline fair scheduling: bridging the theory and

practice of proportionate fair scheduling in multiprocessor systems". In: RTAS, 2001, pp.

3-14.

[CHE10] Chen, X.; Lu, Z.; Jantsch, A.; Chen, S. "Supporting Distributed Shared Memory on multi-

core Network-on-Chips using a dual microcoded controller". In: DATE, 2010, pp. 34-44.

[CHE16] Chen, Y.; Matus, E.; Fettweis, G. P. "Trellis-search based Dynamic Multi-Path Connection

Allocation for TDM-NoCs". In: GLSVLSI, 2016, pp. 323-328.

136

[CHO11] Chouchene, W.; Attia, B.; Zitouni, A.; Abid, N.; Tourki, R. "A low power network interface

for network on chip". In: SSD, 2011, pp.1-6.

[CLE13] CLEARSPEED. "CSX700". Available at: http://www.clearspeed.com/products/

csx700.php, December 2013.

[CON14] Cong, L.; Wen, W.; Zhiying, W. "A configurable, programmable and software-defined

network on chip". In: WARTIA, 2014, pp. 813–816.

[CUE12] Cueva, P. L.; Bertaux, A.; Termier, A.; Méhaut, J. F.; Santana, M. "Debugging embedded

multimedia application traces through periodic pattern mining". In: EMSOFT, 2012, pp.

13-22.

[DAS12] Das, A.; Kumar, A.; Veeravalli, B. "Fault-tolerant network interface for spatial division

multiplexing based Network-on-Chip". In: ReCoSoC, 2012, pp. 1-8.

[DAS13] Das, A.; Kumar, A.; Veeravalli, B. "Communication and Migration Energy Aware Design

Space Exploration for Multicore Systems with Intermittent Faults". In: DATE, 2013, pp.

1631-1636.

[DAS14] Das, A.; Kumar, A.; Veeravalli, B. "Temperature aware energy-reliability trade-offs for

mapping of throughput-constrained applications on multimedia MPSoCs". In: DATE,

2014, pp. 1-6.

[DAV11] Davis, R.I.; Burns, A. "A survey of hard real-time scheduling for multiprocessor

systems". ACM Computing Surveys, vol. 35-4, Oct. 2011, 44p.

[DER13] Derin, O.; Cannella, E.; Tuveri, G.; Meloni, P.; Stefanov, T.; Fiorin, L.; Raffo, L.; Sami, M.

"A system-level approach to adaptivity and fault-tolerance in NoC-based MPSoCs: the

MADNESS project". Journal Microprocessors & Microsystems, vol. 37-6. Aug. 2013, pp.

515-529.

[DUT16a] Dutt, N.; Kurdahi, F. J.; Ernst, R.; Herkersdorf, A. "Conquering MPSoC complexity with

principles of a self-aware information processing factory". In: CODES+ISSS, 2016, pp. 1-

4.

[DUT16b] Dutt, N.; Jantsch, A.; Sarma, S. "Toward Smart Embedded Systems: A Self-aware System-

on-Chip (SoC) Perspective". ACM Transactions on Embedded Computing Systems, vol.

15-2, Feb. 2016, 27p.

[DUT17] Dutt, N.; Rahmani, A. M.; Jantsch, A. "Empowering autonomy through self-awareness in

MPSoCs". In: NEWCAS, 2017, pp. 73-76.

[EJA13] Ejaz, A.; Jantsch, A. "Costs and benefits of flexibility in spatial division circuit switched

networks-on-chip". In: NoCArc, 2013, pp. 41-46.

137

[FAN10] Fangfa, F.; Xin'na, H.; Jinxiang, W.; Mingyan, Y. "A novel communication strategy

between PE and NI in NoC-based MPSoC". In: RCSLPLT, 2010, pp.374-377.

[FAN11] Fan, W.; Xiang, L.; Hui, S. "The QoS mechanism for NoC router by dynamic virtual channel

allocation and dual-net infrastructure". In: ICCP, 2011, pp. 1-5.

[FAR10] Faruque, M. Al; Jahn, J.; Ebi, T.; Henkel, J. "Run-time Thermal Management Using

Software agents for Multi- and Many-Core Architectures". IEEE Design & Test, vol. 27-6,

Sep. 2010, pp. 58-68.

[FAR12] Faruque, M. Al; Ebi, T.; Henkel, J. "AdNoC: Run-time Adaptive Network-on-Chip

Architecture". IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20-

2, Feb. 2012, pp. 257-269.

[FAT11] Fattah, M.; Daneshtalab, M.; Liljeberg, P.; Plosila, J. "Exploration of MPSoC Monitoring

and Management Systems". In: ReCoSoC, 2011, pp. 1-3.

[FEG07] Feghali, R.; Speranza, F.; Wang, D.; Vincent, A. "Video quality metric for bit rate control

via joint adjustment of quantization and frame rate". IEEE Transactions on Broadcasting,

vol. 53-1, Mar. 2007, pp. 441-446.

[FIO10] Fiorin, L.; Palermo, G.; Silvano, C. "A Monitoring System for NoCs". In: NoCArc, 2010, pp.

25-30.

[FRI14] Friederich, S.; Heisswolf, J; Becker, J. "Hardware/software debugging of large scale

many-core architectures". In: SBCCI, 2014, pp. 1-7.

[FU13] Fu, F.; Wang, L.; Lu, Y.; Wang, J. "Low Overhead Task Migration Mechanism in NoC-based

MPSoC". In: ASICON, 2013, 4p.

[GAN13a] Gangadharan, D.; Chakraborty, S.; Zimmermann, R. "Quality-aware media scheduling on

MPSoC platforms". In: DATE, 2013, pp. 976-981.

[GAN13b] Ganeshpure, K.; Kundu, S. "On run-time task graph extraction in MPSoC". In: ISVLSI,

2013, pp. 171-176.

[GAN14] Gangadharan, D.; Teich, J.; Chakraborty, S. "Quality-aware video decoding on thermally-

constrained MPSoC platforms". In: ASAP, 2014, pp. 256-263.

[GEO14] Georgiev, K.; Martin, V. M. "MPSoC Zoom Debugging: A Deterministic Record-Partial

Replay Approach". In: EUC, 2014, pp. 73-80.

[GOR13] Gorski, P.; Timmermann, D. "Centralized traffic monitoring for online-resizable clusters

in Networks-on-Chip". In: ReCoSoC, 2013, pp.1-8.

[GOS05] Goossens, K.; Dielissen, J.; Radulescu, A. "Aethereal network on chip: concepts,

architectures, and implementations". IEEE Design & Test of Computers, vol. 22-5, Sep.-

Oct. 2005, pp. 414-421.

138

[GOT16] Götzinger, M.; Rahmani, A. M.; Pongratz, M.; Liljeberg, P.; Jantsch, A.; Tenhunen, H. "The

Role of Self-Awareness and Hierarchical Agents in Resource Management for Many-Core

Systems". In: MCSOC, 2016, pp. 53-60.

[GRA13] Grammatikakis, M.D.; Papagrigoriou, A.; Petrakis, P.; Kornaros, G. "Non-intrusive NoC

DFS for Soft Real-Time Multimedia Applications". In: DSD, 2013, pp. 60-63.

[GRO12] Grot, B.; Hestness, J.; Keckler, S.W.; Mutlu, O. "A QoS-Enabled On-Die Interconnect

Fabric for Kilo-Node Chips". IEEE Micro, vol. 32-3, May-Jun. 2012, pp. 17-25.

[GUA10] Guang, L.; Bo Yang; Plosila, J.; Latif, K.; Tenhunen, H. "Hierarchical power monitoring on

NoC - a case study for hierarchical agent monitoring design approach". In: NORCHIP,

2010, pp. 1-6.

[GUI13] Guindani, G.; Moraes, F.G. "Achieving QoS in NoC-based MPSoCs through Dynamic

Frequency Scaling". In: SoC, 2013, pp. 1-6.

[GUI17] Guikang Chen, X. Li.; Wen, W. "Energy-efficient execution for repetitive app usages on

big.LITTLE architectures". In: DAC, 2017, pp. 1-6.

[HAD77] Hadlock, F. O. "A shortest path algorithm for grid graphs". Networks, vol. 7-4, Jan. 1977,

pp. 323-334.

[HAN11] Hansson, A.; Ekerhult, M.; Molnos A.; Milutinovic, A.; Nelson, A.; Ambrose, J.; Goossens,

K. "Design and implementation of an operating system for composable processor

sharing". Microprocessors and Microsystems, vol. 35-2, Mar. 2011, pp. 246-260.

[HE14] He, H.; Yang, G.; Hu, J. "Algorithms for power-efficient QoS in application specific NoCs".

In: ISLPED, 2014, pp. 165-170.

[HED11] Hedde, D.; Petrot, F. "A non-intrusive simulation-based trace system to analyze

Multiprocessor Systems-on-Chip software". In: RSP, 2011, pp. 106-112.

[HEI12] Heisswolf, J.; Zaib, A.; Weichslgartner, A.; Konig, R.; Wild, T.; Teich, J.; Herkersdorf, A.;

Becker, J. "Hardware-assisted Decentralized Resource Management for Networks on

Chip with QoS". In: IPDPSW, 2012, pp. 234-241.

[HEM00] Hemani, A.; Jantsch, A.; Kumar, S.; Postula, A.; Öberg, J.; Millberg, M.; Lindqvist, D.

"Network on chip: An architecture for billion transistor era". In: NORCHIP, 2000, 8p.

[HOF13] Hoffman, H. "Seec: A Framework for Self-Aware Management of Goals and Constraints

in Computing Systems". Tese de Doutorado, Department of Electrical Engineering and

Computer Science, Massachusetts Institute of Technology (MIT), 2013, 172p.

[HWA10] Hwang, M.; Choi, D.; Kim, P. "Least Slack-time Rate First: New Scheduling Algorithm for

Multi-Processor Environment". In: CISIS, 2010, pp. 806-811.

139

[IBM17a] IBM. "IBM Research Alliance Builds New Transistor for 5nm Technology". Available at:

https://www-03.ibm.com/press/us/en/pressrelease/52531.wss, September 2017.

[IBM17b] IBM. "TrueNorth's - Brain-inspired Computer". Available at:

http://www.research.ibm.com/articles/brain-chip.shtml, November 2017.

[INT13] INTEL. "Teraflops Research Chips". Available at:

http://www.intel.com/pressroom/kits/Teraflops/index.htm, December 2013.

[INT16] INTEL. "Intel® Xeon® Processor E5-2699 v4". Available at:

http://ark.intel.com/products/91317/Intel-Xeon-Processor-E5-2699-v4-55M-Cache-

2_20-GHz?_ga=1.154754040.1577199730.1471540418, August 2016.

[ITR15] International Technology Roadmap for Semiconductors. "ITRS 2011 edition". Available

at: http://www.itrs.net/reports.html, April 2015.

[JAH11] Jahn, J.; Faruque, M.; Henkel, J. "CARAT: Context-aware Run-time Adaptive Task

Migration for Multi Core Architectures". In: DATE, 2011, pp. 1-6.

[JAN17a] Axel Jantsch’s web-site. Available at: http://jantsch.se/AxelJantsch, October 2017.

[JAN17b] Jantsch, A.; Dutt, N.; Rahmani, A. M. "Self-Awareness in Systems on Chip – A Survey".

IEEE Design & Test, vol. 34-6, Dec. 2017, pp. 8-26.

[JAR14] Jarraya, Y.; Madi, T.; Debbabi, M. "A Survey and a Layered Taxonomy of Software-

Defined Networking". IEEE Communications Surveys & Tutorials, vol. 16-4, Apr. 2014, pp.

1955-1980.

[JAV14] Javaid, H.; Shafique, M.; Henkel, J.; Parameswaran, S. "Energy-Efficient Adaptive

Pipelined MPSoCs for Multimedia Applications". IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 33-5, May 2014, pp. 663-676.

[JEO12] Jeong, M. K.; Erez, M.; Sudanthi, C.; Paver, N. "A QoS-aware memory controller for

dynamically balancing GPU and CPU bandwidth use in an MPSoC". In: DAC, 2012, pp.

850-855.

[JOH12] Johann, S.; Aguiar, A.; Magalhães, F.; Longhi, O.; Hessel, F. "Task Model Suitable for

Dynamic Load Balancing of Real-time Applications in NoC-based MPSoCs". In: ICCD,

2012, pp. 49-54.

[JOV13] Joven, J.; Marongiu, A.; Angiolini, F.; Benini, L.; Micheli, G. "An integrated, programming

model-driven framework for NoC-QoS support in cluster-based embedded many-cores".

Parallel Computing, vol. 39-10, Oct. 2013, pp. 549-566.

[JUN14] Jung, H.; Lee, C.; Kang, S.; Kim, S.; Oh, H.; Ha, S. "Dynamic Behavior Specification and

Dynamic Mapping for Real-Time Embedded Systems: HOPES Approach". ACM

Transactions on Embedded Computing Systems. vol. 13-4, Apr. 2014, 26p.

140

[KAK11] Kakoee, M.; Bertacco, V.; Benini, L. "ReliNoC: A Reliable Network for Priority-based On-

chip Communication". In: DATE, 2011, pp. 1-6.

[KAR10] Kariniemi, H.; Nurmi, J. "High-Performance NoC Interface with Interrupt Batching for

Micronmesh MPSoC Prototype Platform on FPGA". In: NORCHIP, 2010, pp. 1-6.

[KIM10] Kim, Y.; Papamichael, M.; Mutlu, O.; Harchol-Balter, M. "Thread Cluster Memory

Scheduling: Exploiting Differences in Memory Access Behavior". In: MICRO, 2010, pp.

65-76.

[KIR13] Kirkpatrick, K. "Software-defined networking". Communications of the ACM, vol. 56-9,

Sep. 2013, pp 16-19.

[KOR12] Kornaros, G.; Pnevmatikatos, D. "Real-Time Monitoring of Multicore SoCs Through

Specialized Hardware Agents on NoC Network Interfaces". In: IPDPSW, 2012, pp. 248-

255.

[KOR13] Kornaros, G.; Pnevmatikatos, D. "A survey and taxonomy of on-chip monitoring of

multicore systems-on-chip". ACM Transactions on Design Automation Electronic

Systems, vol. 18-2, Apr. 2013, 38p.

[KOT10] Kooti, H.; Bozorgzadeh, E. "Unified theory of real-time task scheduling and dynamic

voltage/frequency Scaling on MPSoCs". In: ICCAD, 2010, pp. 139-142.

[KRA12] Kramer, D.; Karl, W. "A Scalable Monitoring Infrastructure for Self-Organizing Many-Core

Architectures". In: DSD, 2012, pp. 42-49.

[LAP11] Laplante, P. A.; Ovaska, S. J. "Real-time systems Design and Analysis". Wiley-IEEE Press,

4th edition, 2011, 584p.

[LER05] Leroy, A.; Marchal, P.; Shickova, A.; Catthoor, F.; Robert, F.; Verkest, D. "Spatial Division

Multiplexing: a Novel Approach for Guaranteed Throughput on NoCs". In: CODES+ISSS,

2005, pp. 81-86.

[LER08] Leroy, A.; Milojevic, D.; Verkest, D.; Robert, F.; Catthoor, F. "Concepts and

Implementation of Spatial Division Multiplexing for Guaranteed Throughput in

Networks-on-Chip". IEEE Transactions on Computers, vol. 57-9, Sep. 2008, pp. 1182-

1195.

[LI11] Li, S.; Chen, K.; Ahn, J. H.; Brockman, J. B.; Jouppi, N. P. "CACTI-P: Architecture-level

modeling for SRAM-based structures with advanced leakage reduction techniques". In:

ICCAD, 2011, pp. 694-701.

[LI13] Li, X.; Jia, X.; Ju, L. "Slack-Time-Aware Energy Efficient Scheduling for Multiprocessor

SoCs". In: HPCC_EUC, 2013, pp. 278-285.

141

[LIN10] Lin, Y.; Yang, C.; Lin, T.; Huang, J.; Chang, N. "Hierarchical memory scheduling for

multimedia MPSoCs". In: ICCAD, 2010, pp. 190-196.

[LIU00] Liu, J.W.S. "Real-Time System". Prentice Hall, 1st edition, 2000, 456p.

[LIU12] Liu, S.; Jantsch, A.; Lu, Z. "Parallel probing: Dynamic and constant time setup procedure

in circuit switching NoC". In: DATE, 2012, pp. 1289-1294.

[LIU13] Liu, S.; Su, M.; Wu, R.; Li, L. "Exclusive Memory Scheduling for Multimedia MPSoC". In:

HPCC_EUC, 2013, pp. 2022-2026.

[LIU14a] Liu, W.; Wang, X; Xu, J.; Zhang, W.; Ye, Y.; Wu, X.; Nikdast, M.; Wang, Z. "On-chip sensor

networks for soft-er ror tolerant real-time multiprocessor systems-on-chip". ACM Journal on

Emerging Technologies in Computing Systems, vol. 10-2, Mar. 2014, 20p.

[LIU14b] Liu, S.; Jantsch A.; Lu Z. "Parallel probe based dynamic connection setup in TDM NoCs".

In: DATE, 2014, pp. 1-6.

[LIU15] Liu, S.; Jantsch, A; Lu, Z. "MultiCS: Circuit switched NoC with multiple sub-networks and

sub-channels". Journal of Systems Architecture, vol. 61-9, Oct. 2015, pp. 423-434.

[LIU16] Liu, S.; Lu, Z.; Jantsch, A. "Highway in TDM NoCs. In Proceedings of the International

Symposium on Networks on Chip". In: NOCS, 2015, 8p.

[LOU17] Loubet, N. et al. "Stacked nanosheet gate-all-around transistor to enable scaling beyond

FinFET". In: VLSIT, 2017, pp. 230-31.

[LUS11] Lusala, A.; Legat, J-D. "Combining SDM-BASED Circuit Switching with Packet Switching in

a NoC for Real-Time Application". In: ISCAS, 2011, pp. 2505-2508.

[LUS12] Lusala, A.; Legat, J-D. "A hybrid NoC combining SDM-TDM based circuit-switching with

packet-switching for real-time applications". In: NEWCAS, 2012, pp. 17-20.

[MA15] Ma, R.; Hui, Z.; Jantsch, A. "A packet-switched interconnect for many-core systems with

BE and RT service". In: DATE, 2015, pp. 980-983.

[MAD16] Madalozzo, G.; Duenha, L; Azevedo, R.; Moraes, F. G. "Scalability evaluation in many-

core systems due to the memory organization" In: ICECS, 2016, pp. 396-399.

[MAN10] Mangano, D.; Strano, G. "Enabling Dynamic and Programmable QoS in SoCs". In: NoCArc,

2010, pp. 17–22.

[MAR11] Marwedel, P.; Bacivarov, I.; Lee, C.; Teich, J.; Thiele, L.; Xu, Q.; Kouveli, G; Ha, S.; Huang,

L. "Mapping of applications to MPSoCs". In: CODES+ISSS, 2011, pp. 109-118.

[MAR17a] Martins, A.; Ruaro, M.; Santana, A.; Moraes, F. G. "Distributed Run-time Energy

Management for Many-Core Systems Running Real-Time Applications". Journal of Low

Power Electronics, v. 13-3, Sep. 2017, pp. 402-418.

142

[MAR17b] Martins, A.; Ruaro, M.; Santana, A.; Moraes, F. G. "Run-time Energy Management Under

Real-Time Constraints in MPSoCs". In: ISCAS, 2017, pp. 2589-2592.

[MAT10a] Matos, D.; Concatto, C.; Kologeski, A.; Carro, L.; Kastensmidt, F.; Susin, A.; Kreutz, M.

"Monitor-Adapter Coupling for NoC Performance Tuning". In: SAMOS, 2010, pp. 193-

199.

[MAT10b] Matos, D.; Carro, L.; Susin, A. "Associating packets of heterogeneous cores using a

synchronizer wrapper for NoCs". In: ISCAS, 2010, pp. 4177-4180.

[MAT14] Matos, D.; Kreutz, M.; Reinbrecht, C.; Carro, L.; Susin, A. "Adaptive multiple switching

strategy toward an ideal NoC". In: ISCAS, 2014, pp. 1014-1017.

[MEL05] Mello, A.; Tedesco, L.; Calazans, N.; Moraes, F. G. "Virtual Channels in Networks on Chip:

Implementation and Evaluation on Hermes NoC". In: SBCCI, 2005, pp. 178-183.

[MIC11] Michelogiannakis, G.; Becker, D.U.; Dally, W.J. "Evaluating Elastic Buffer and Wormhole

Flow Control". IEEE Transactions on Computers, vol. 60-6, Jun. 2011, pp. 896-903.

[MIC13] Michelogiannakis, G.; Dally, W. "Elastic Buffer Flow Control for On-Chip Networks". IEEE

Transactions on Computers, vol. 62-2, Feb. 2013, pp. 295-309.

[MIC17] Micheli, G. De; Benini, L. "Networks on Chips: 15 Years Later". Computer, vol. 50-5, May

2017, pp. 10-11.

[MÖL10] Möller, L.; Jesus, H.; Moraes, F. G.; Indrusiak, L. S.; Hollstein, T.; Glesner, M. "Graphical

interface for debugging RTL Networks-on-Chip". In: BEC, 2010, pp. 181-184.

[MOL10] Molnos, A.; Ambrose, J.A.; Nelson, A.; Stefan, R.; Cotofana, S.; Goossens, K. "A

composable, energy-managed, real-time MPSOC platform". In: OPTIM, 2010, pp. 870-

876.

[MOL12] Molnos, A.; Nejad, A. B.; Nguyen, B. T.; Cotofana, S.; Goossens, K. "Decoupled inter- and

intra-application scheduling for composable and robust embedded MPSoC platforms".

In: SCOPES, 2012, pp. 13-21.

[MOR04] Moraes, F.; Calazans, N.; Mello, A.; Möller, L.; Ost, L. "Hermes: an Infrastructure for Low

Area Overhead Packet-switching Networks on Chip". Integration, the VLSI Journal, vol.

38-1, 2004, pp. 69-93.

[MOT11] Motakis, A.; Kornaros, G.; Coppola, Marcello. "Dynamic Resource Management in

Modern Multicore SoCs by Exposing NoC Services". In: ReCoSoC, 2011, pp. 1-7.

[MOT12] Motruk, B.; Diemer, J.; Buchty, R.; Ernst, R.; Berekovic, M. "IDAMC: A Many-Core

Platform with Run-Time Monitoring for Mixed-Criticality". In: HASE, 2012, pp. 24-31.

[MUN15] Munk, P.; Saballus, B.; Richling, J.; Heiss, H. "Position Paper: Real-Time Task Migration

on Many-Core Processors". In: ARCS, 2015, 4p.

143

[MUR14] Murillo, L. G.; Wawroschek, S.; Castrillon, J.; Leupers, R.; Ascheid, G. "Automatic

detection of concurrency bugs through event ordering constraints". In: DATE, 2014, 6p.

[NEI12] Neishaburi, M. H.; Zilic, Z. "An enhanced debug-aware network interface for Network-

on-Chip". In: ISQED, 2012, pp. 709-716.

[NOW13] Nowotsch, J.; Paulitsch, M. "Quality of service capabilities for hard real-time applications

on multi-core processors". In: RTNS, 2013, pp. 151-160.

[OLI11] Oliva, Y.; Pelcat, M.; Nezan, J.-F.; Prevotet, J.-C.; Aridhi, S. "Building a RTOS for MPSoC

dataflow programming". In: SoC, 2011, pp. 143-146.

[OUY10] Ouyang, j.; Xie, Y. "LOFT: A High-Performance Network-on-Chip Providing Quality-of-

Service Support". In: MICRO, 2010, pp. 409-420.

[PAL12] Palumbo, F.; Pani, D.; Congiu, A.; Raffo, L. "Concurrent hybrid switching for massively

parallel systems-on-chip: the CYBER architecture". In: CF, 2012, pp. 173-182.

[PAR14] Park, S. "Task-I/O Co-scheduling for Pfair Real-Time Scheduler in Embedded Multi-core

Systems". In: EUC, 2014, pp. 46-51.

[PAS08] Pasricha, S.; Dutt, N. "On-Chip Communication Architectures System on Chip

Interconnect". Elsevier, 2008, 522p.

[PAT12] Paterna, F.; Acquaviva, A.; Caprara, A.; Papariello, F.; Desoli, G.; Benini, L. "Variability-

Aware Task Allocation for Energy-Efficient Quality of Service Provisioning in Embedded

Streaming Multimedia Applications". IEEE Transactions on Computers, vol. 61-7, Jul.

2012, pp. 939-953.

[PRA11] Prada-Rojas, C.; Marangozova-Martin, V.; Méhaut, J; Santana, M. "A Generic

Component-Based Approach to MPSoC Observation". In: EUC, 2011, pp. 261-267.

[QUA16] Quan, W.; Pimentel, A. D. "A Hierarchical Run-time Adaptive Resource Allocation

Framework for Large-scale MPSoC Systems". Design Automation for Embedded Systems,

vol. 20-4, Dec. 2016, pp. 311–339.

[RAN15] Ranieri, J.; Vincenzi, A.; Chebira, A.; Atienza, D.; Vetterli, M., "Near-optimal thermal

monitoring framework for many-core systems on chip". IEEE Transactions on Computer,

vol. 64-11, Nov. 2015, pp. 3197-3209.

[ROS14] Rosvall, K.; Sander, I. "A constraint-based design space exploration framework for real-

time applications on MPSoCs". In: DATE, 2014, pp. 1-6.

[RUA14a] Ruaro, M.; Carara, E. A.; Moraes, F. G. "Run-time QoS Support for MPSOC: A Processor

Centric Approach". In: SBCCI, 2014, pp. 1-7.

[RUA14b] Ruaro, M.; Carara, E. A. Moraes, F. G. "Tool-Set for NoC-Based MPSoC Debugging - a

Protocol View Perspective". In: ISCAS, 2014, pp. 2531-2534.

144

[RUA15a] Ruaro, M.; Carara, E. A.; Moraes, F. G. "Run-time Adaptive Circuit Switching and Flow

Priority in NoC-Based MPSoCs". IEEE Transactions on VLSI, vol. 23-6, Jun. 2015, pp. 1077-

1088.

[RUA15b] Ruaro, M.; Madalozzo, G.; Moraes, F. G. "A Hierarchical LST-Based Task Scheduler for

NoC-Based MPSoCs with Slack-Time Monitoring Support". In: ICECS, 2015, pp. 308-311.

[RUA16a] Ruaro, M.; Moraes, F. G. "Dynamic Real-Time Scheduler for Large-Scale MPSoCs". In:

GLSVLSI, 2016, pp. 341-346.

[RUA16b] Ruaro, M.; Lazzarotto, F.; Marcon, C.; Moraes, F. G. "DMNI: A Specialized Network

Interface for NoC-based MPSoCs". In: ISCAS, 2016, pp. 1202-1205.

[RUA16c] Ruaro, M.; Rubin, F.; Chamorra, H.; Amory, A. M.; Moraes, F. G. "A Data Extraction and

Debugging Framework for Large-Scale MPSoCs". In: ICECS, 2016, pp. 616-619.

[RUA17a] Ruaro, M.; Medina, H. M.; Moraes, F. G. "SDN-Based Circuit-Switching for Many-Cores".

In: ISVLSI, 2017, pp. 385-390.

[RUA17b] Ruaro, M.; Moraes, F. G. "Demystifying the Cost of Task Migration in Distributed

Memory Many-Core Systems". In: ISCAS, 2017, 4p.

[RUA18] Ruaro, M.; Medina, H.; Moraes, F. G. "Software-Defined Networking Architecture for

NoC-based Many-Cores". In: ISCAS, 2018, 4p.

[SAI08] Saint-Jean, N.; Benoit, P.; Sassatelli, G.; Torres, L.; Robert, M. "MPI-Based Adaptive Task

Migration Support on the HS-Scale System". In: ISVLSI, 2008, pp. 105-110.

[SAI10] Said, M. B.; Loukil, K.; Ben Amor, N.; Abid, M.; Diguet, J.P. "A timing constraints Control

technique for embedded real time systems". In: DTIS, 2010, 6p.

[SAL11] Salah, Y.; Tourki, R. "Design and FPGA Implementation of a QoS Router for NoC". In:

NGNS, 2011, pp. 84-89.

[SAL14] Salami, B.; Baharani, M.; Noori, H. "Proactive Task Migration with a Self-Adjusting

Migration Threshold for Dynamic Thermal Management of Multi-Core Processors". The

Journal of Supercomputing, vol. 68-3, Mar. 2014, pp. 1068-1087.

[SAM14] Samman, F. A. "Run-time connection-oriented guaranteed-bandwidth network-on-chip

with extra multicast communication service". Microprocessors and Microsystems, vol.

38-2, Mar. 2014, pp. 170-181.

[SAN15] Sandoval-Arechiga, R.; Vazquez-Avila, J. L.; Parra-Michel, R.; Flores-Troncoso, J.; Ibarra-

Delgado, S. "Shifting the Network-on-Chip Paradigm towards a Software Defined

Network Architecture". In: CSCI, 2015, pp. 869-870.

145

[SAN16] Sandoval-Arechiga, R.; Parra-Michel, R.; Vazquez-Avila, J. L.; Flores-Troncoso, J.; Ibarra-

Delgado, S. "Software Defined Networks-on-Chip for multi/many-core systems: A

performance evaluation". In: ANCS, 2016, pp. 129-130.

[SAP14] Saponara, S.; Bacchillone, T.; Petri, E.; Fanucci, L.; Locatelli, R.; Coppola, M. "Design of a

NoC Interface Macrocell with Hardware Support of Advanced Networking

Functionalities". IEEE Transactions on Computers, vol. 63-3, Mar. 2014, pp. 609-621.

[SAR15] Sarma, S.; Dutt, N.; Gupta, P.; Nicolau, A.; Venkatasubramanian, N. "Cyberphysical-

system-on-chip (CPSOC): A self-aware MPSOC paradigm with cross-layer virtual sensing

and actuation". In: DATE, 2015, pp. 625-628.

[SCI16] Scionti, A.; Mazumdar, S.; Portero, A. "Software defined Network-on-Chip for scalable

CMPs". In: HPCS, 2016, pp. 112-115.

[SEI14] Seitanidis, I.; Psarras, A.; Dimitrakopoulos, G.; Nicopoulos, C. "ElastiStore: An elastic

buffer architecture for Network-on-Chip routers". In: DATE, 2014, 6p.

[SHA09] Salehie, M.; Tahvildari, L. "Self-adaptive software: Landscape and research challenges".

ACM Transactions on Autonomous and Adaptive Systems, vol. 4-2, May 2009, 42p.

[SHA12] Shah, H.; Raabe, A.; Knoll, A. "Bounding WCET of applications using SDRAM with Priority

Based Budget Scheduling in MPSoCs". In: DATE, 2012, pp. 665-670.

[SHA14] Shafique, M.; Garg, S.; Henkel, J.; Marculescu, D. "The EDA challenges in the dark silicon

era". In: DAC, 2014, 6p.

[SHA17] Shafique, M.; Garg, S. "Computing in the Dark Silicon Era: Current Trends and Research

Challenges" IEEE Design & Test, vol. 34-2, Apr. 2017, pp. 8–23.

[SHE05] Sherwani, N. "Algorithms for VLSI Physical Design Automation". Springer, 2005, 3rd

edition, 572p.

[SIN13a] Singh, A.; Das, A. Kumar, A. "Energy optimization by exploiting execution slacks in

streaming applications on Multiprocessor Systems". In: DAC, 2013, pp. 1-7.

[SIN13b] Singh, A.K.; Shafique, M.; Kumar, A.; Henkel, J. "Mapping on multi/many-core systems:

Survey of current and emerging trends". In: DAC, 2013, pp. 1-10.

[STA11] Stan, A.; Valachi, A.; Barleanu, A. "The design of a run-time monitoring structure for

aMPSoC". In: ICSTCC, 2011, pp. 1-4.

[STE12a] Stefan, R.; Molnos, A.; Ambrose, A.; Goossens, K. "A TDM NoC supporting QoS, multicast,

and fast connection set-up". In: DATE, 2012, pp. 1283-1288.

[STE12b] Stefan, R.; Nejad, A.; Goossens, K. Online allocation for contention-free-routing NoCs.

In: INA-OCMC, 2012, pp. 13-16.

146

[SWA12] Swaminathan, K.; Lakshminarayanan, G.; Seok-Bum Ko. "High Speed Generic Network

Interface for Network on Chip Using Ping Pong Buffers". In: ISED, 2012, pp. 72-76.

[TAF11] Tafesse, B.; Raina, A.; Suseela, J.; Muthukumar, V. "Efficient Scheduling Algorithms for

MpSoC Systems". In: ITNG, 2011, pp. 683-688.

[THE13] Theodoropoulos,D.; Pratikakis,P.; Pnevmatikatos,D. "Efficient run-time support for

embedded MPSoCs". In: SAMOS, 2013, pp. 164-171.

[TIL13] Tilera Corporation. "Tile-GX Processor Family". Available at:

http://www.tilera.com/products/processors/TILE-Gx_Family, November 2013.

[TUV13] Tuveri, G.; Secchi, S.; Meloni, P.; Raffo, L.; Cannella, E. "A run-time adaptive H.264 video-

decoding MPSoC platform". In: DASIP, 2013, pp. 149-156.

[WAN10] Wang, Y.; Wang, Yu; Xu, J.; Yang, H. "Performance Evaluation of On-Chip Sensor Network

(SENoC) in MPSoC". In: ICGCS, 2010, pp. 323-327.

[WAN12] Wang, C.; Bagherzadeh, N. "Design and Evaluation of a High Throughput QoS-Aware and

Congestion-Aware Router Architecture for Network-on-Chip". In: Euromicro, 2012, pp.

457-464.

[WAN14] Wang, H.; Singh, R.; Schulte, M. J.; Kim, N. S. "Memory scheduling towards high-

throughput cooperative heterogeneous computing". In: PACT, 2014, pp. 331-342.

[WEN12] Wen, C. N.; Chou, S. H.; Chen, C. C.; Chen, T. F. "NUDA: A Non-Uniform Debugging

Architecture and Nonintrusive Race Detection for Many-Core Systems". IEEE

Transactions on Computers, vol. 61-2, Feb. 2012, pp. 199-212.

[WIN11] Winter, M. and Fettweis, G. "Guaranteed Service Virtual Channel Allocation in NoCs for

Run-Time Task Scheduling". In: DATE, 2011, pp. 1-6.

[WIS11] Wissem, C.; Attia, B.; Noureddine, A.; Zitouni, A.; Tourki, R. "A Quality of Service Network

on Chip based on a New Priority Arbitration Mechanism". In: ICM, 2011, pp. 1-6.

[WOL08] Wolf, W.; Jerraya, A.; Martin, G. "Multiprocessor SystemFonFChip (MPSoC) Technology".

IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, vol. 27-

10, Sep. 2008, pp. 1701-1713.

[YAO14] Yao Z.; Sui, X.; Xu, T.; Ma, J.; Fang, J.; Mckee, S.A.; Fu, B.; Bao, Y. "QBLESS: A case for QoS-

aware bufferless NoCs". In: IWQoS, 2014, pp. 93-98.

[YOO13] Yoon, J. Y.; Concer, N.; Petracca, M.; Carloni, L.P. "Virtual Channels and Multiple Physical

Networks: Two Alternatives to Improve NoC Performance". IEEE Transactions Computer-

Aided Design of Integrated Circuits and Systems, vol. 32-12, Dec. 2013, pp. 1906-1919.

[YU09] Yu, Y.; Ren, S.; Hu, X.S. "A Metric for Judicious Relaxation of Timing Constraints in Soft

Real-Time Systems". In: RTAS, 2009, pp. 163-172.

147

[YU14] Yu; H.; Syed, R.; Ha, Y. "Thermal-aware frequency scaling for adaptive workloads on

heterogeneous MPSoCs". In: DATE, 2014, pp. 1-6.

[YUN13] Yun, B.; Shin, K. G.; Wang, S. "Thermal-Aware Scheduling of Critical Applications Using

Job Migration and Power-Gating on Multi-core Chips". In: TRUSTCOM, 2011, pp. 1083-

1090.

[ZHA11] Zhao, J.; Madduri, S.; Vadlamani, R.; Burleson, W.; Tessier, R. "A Dedicated Monitoring

Infrastructure for Multicore Processors", IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 19-6, Jun. 2011, pp. 1011-1022.

[ZHA14] Zhang, N.; Gu, H.; Yang, Y.; Fan, D. "QBNoC: QoS-aware bufferless NoC architecture".

Microelectronics Journal, vol. 45-6, Jun. 2014, pp. 751-758.

148

APPENDIX A – PUBLICATIONS OF THE AUTHOR

Table 20 presents the set of publications (sorted by date) held since the beginning of the PhD.

The description column links the paper to this Thesis section, when applicable, or to the main theme

of the publication.

Table 20 – Author's publications.
Publication Description

1
Tool-Set for NoC-Based MPSoC Debugging - a Protocol View Perspective
Ruaro, Marcelo; Carara, Everton Alceu; Moraes, Fernando Gehm.
In: ISCAS, 2014.

Section 3.5

2
Run-time QoS Support for MPSoC: A Processor Centric Approach
Ruaro, Marcelo; Carara, Everton Alceu; Moraes, Fernando Gehm.
In: SBCCI, 2014.

Section 1.1

3

A Hierarchical LST-Based Task Scheduler for NoC-Based MPSoCs with Slack-
Time Monitoring Support
Ruaro, Marcelo; Madalozzo, Guilherme; Moraes, Fernando Gehm.
In: ICECS, 2015.

Section 4.3

4

Run-time Adaptive Circuit Switching and Flow Priority in NoC-Based MPSoCs
Ruaro, Marcelo; Carara, Everton Alceu; Moraes, Fernando Gehm.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, v. 23, p. 1077-
1088, 2015.

Section 1.1

5
Hierarchical Energy Monitoring for Many-Core Systems
Martins, André; Ruaro, Marcelo; Moraes, Fernando Gehm.
In: ICECS, 2015.

Section 4.4

6

A Data Extraction and Debugging Framework for Large-Scale MPSoCs
Ruaro, Marcelo; Rubin, Felipe; Chamorra, Henrique; Amory, Alexandre de Morais
Moraes, Fernando Gehm.
In: ICECS, 2016.

Section 3.5

7
Dynamic Real-Time Scheduler for Large-Scale MPSoCs
Ruaro, Marcelo; Moraes, Fernando Gehm.
In: GLSVLSI, 2016.

Section 4.3

8
DMNI: A Specialized Network Interface for NoC-based MPSoCs
Ruaro, Marcelo; Lazzarotto, Felipe; Marcon, César; Moraes, Fernando Gehm. In:
ISCAS, 2016.

Section 3.4

9

System Management Recovery Protocol for MPSoCs
Fochi, Vinicius; Caimi, Luciano; Ruaro, Marcelo; Wachter, Eduardo; Moraes,
Fernando Gehm.
In: SOCC, 2017.

High-level protocol to support fault
tolerance at the system management

level.

10

Demystifying the Cost of Task Migration in Distributed Memory Many-Core
Systems
Ruaro, Marcelo; Moraes, Fernando Gehm.
In: ISCAS, 2017.

Section 4.2

11
SDN-Based Circuit-Switching for Many-Cores.
Ruaro, Marcelo; Medina, Henrique; Moraes, Fernando Gehm.
In: ISVLSI, 2017.

Section 5.3

12

Distributed Run-time Energy Management for Many-Core Systems Running
Real-Time Applications.
Martins, André; Ruaro, Marcelo; Santana, Anderson; Moraes, Fernando Gehm
Journal of Low Power Electronics, v.13, Sep. 2017, p. 402-418.

Section 4.4

13
Software-Defined Networking Architecture for NoC-based Many-Cores
Ruaro, Marcelo; Medina, Henrique; Moraes, Fernando Gehm.
In: ISCAS, 2018, early accepted.

Section 5.2

14

Self-Adaptive QoS Management at Communication and Computation Levels for
Many-Core SoCs
Ruaro, Marcelo; Jantsch, Axel; Moraes, Fernando Gehm.
Submitted to ACM Transactions on Embedded Computing Systems (TECS), 2018

Chapter 6

149

