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Abstract— This paper considers the design and implementa-

tion of a discrete-time fast tracking controller for quadrotor

vehicles subject to perturbations. The proposed controller

consists of a model-based disturbance observer and a Composite

Nonlinear Feedback (CNF) controller. The CNF control law

introduces nonlinear damping to the system so that it possesses

a fast rise time without overshoot. The least square identifica-

tion method is applied to develop a model based disturbance

observer, thus decoupling the problems of track following and

disturbance rejection. Experimental results are provided in

order to validate the proposed approach.

I. INTRODUCTION

From environmental surveys [1], [2] and pollution moni-

toring [3], to agriculture and meteorological data acquisition

[4], [5], Unmanned Aerial Vehicles (UAVs) have presented

themselves as a promising technology with the potential

to significantly contribute to several interdisciplinary appli-

cations. In particular, the monitoring of power lines [6],

wireless network integration [7], tridimensional real time

mapping [8] and surveillance systems [9] are consolidated

applications. While the number of potential applications to

UAVs is already significant, it is certainly growing by the

day.

Among the commonly employed UAVs, the so-called

quadrotor has gained particularly attention due to its ver-

satility and simple construction. This vehicle comprises four

independent rotating blades that allow the system to take

off and land vertically, which makes it more attractive than

fixed wing UAVs for a number of different applications [10].

These and many other benefits inherent to quadrotors gave

rise to several of the so called flying arenas, such as the

ones at Stanford [11], MIT [12] and the Institute of Dynamic

Systems & Control (IDSC), in Zurique [13].

While numerical advanced methods for the control of these

vehicles are being implemented – such as Nonlinear Model

Predictive Control (NMPC) [14] – computationally efficient

solutions encompassing advanced controllers are still rare

in the literature. This is no surprise given the difficulty of

controlling these systems, since they are nonlinear, multi-

variable and underactuated. However, the quadrotor control

problem may be significantly simplified when hierarchically

divided. Normally, the tasks of altitude and angular position
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are considered in separate and individually controlled by

independent PID controllers [10]. Needless to say, the PID

strategy is a logical first choice for the control of these

vehicles due to the simplicity and satisfactory performance

it achieves. However, there are many advanced nonlinear

techniques that could replace the classic PID controller and

provide a significant better performance to the UAV control.

The main objective of this paper is the design and imple-

mentation of a computationally efficient high performance

controller for fast tracking quadrotor vehicles. Given this

scenario, the Composite Nonlinear Feedback (CNF) [15]

controller, also known as dynamic damping control [16], will

be adapted from its original form [17] and implemented to

the system at hand. As shown in [15] this technique is able to

achieve a performance similar to that given by time-optimal

controllers, without suffering from the effects of chattering.

This paper is organized in the following manner: Section II

presents the problem definition and the system identification;

a disturbance rejection strategy is presented in section Sec-

tion III followed by the proposed nonlienar control described

in Section IV; experimental results are shown in Section V

and concluding remarks are given in Section VI.

II. PRELIMINARIES

A. Problem Definition

The quadrotor vehicle considered in this paper is modeled

by four dynamic equations given by,

θ̈ = Iθ(v1 − v3)− bθθ̇ + fθ,

φ̈ = Iφ(v4 − v2)− bφφ̇+ fφ,

ψ̈ = Iψ(v1 + v3 − v2 − v4)− bψψ̇ + fψ,
z̈ = 1

M
(v1 + v2 + v3 + v4)− bz ż + fz,

(1)

where, θ and φ describe the roll and pitch angles, and

ψ and z represent yaw and height, respectively. Variables

vi, i = 1...4 are the upward facing forces generated by

each motor-blade pair and Iθ,φ,ψ,z are constructive constants.

Furthermore, bθ,φ,ψ,z are the kinetic friction constants, M
is the mass of the vehicle and fθ,φ,ψ,z represent external

disturbance forces along with unmodeled coupling dynamics.

These equations allow the separation of the different control

tasks such that each motor control law is given as follows:

v1(t) = vz(t) + vθ(t) + vψ(t),
v2(t) = vz(t)− vφ(t)− vψ(t),
v3(t) = vz(t)− vθ(t) + vψ(t),
v4(t) = vz(t) + vφ(t)− vψ(t),

(2)
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Fig. 1: Experimental data collected for system Identification

(ID). Top plot: measured angular velocity ẏ(k) and its

equivalent ˆ̇y(k) estimated from the identified model. Bottom

plot: input applied during system ID.

where vz(t) and vψ(t) are respectively the altitude and yaw

command signals of the vehicle, and vθ and vφ are the

respective roll and pitch commands.

The problem to be considered in this paper is the control of

θ and φ angles so that a fast tracking performance is achieved

while minimizing the disturbance signals fθ,φ. We assume

that the vehicle has a symmetric structure, i.e., Iθ = Iφ = I
and bθ = bφ = b, so that the same control strategy may be

applied to each axis. From (1), it is straightforward to see

that both,

θ̈ + bθ̇ = I(v1 − v3) + fθ
φ̈+ bφ̇ = I(v4 − v2) + fφ

(3)

may be described by the equivalent transfer function,

Y (s)

V (s)
=

I

s(s+ b)
(4)

where Y (s) is the angle being controlled (either θ of φ) and

V (s) is the torque applied to the vehicle (respectively, either

v1−v3 or v4−v2). Furthermore, a first order system is used

to describe the dynamics between the control signal U(s)
sent to the drivers, to the actual torque V (s) generated by

the rotor blades, giving rise to the following dynamics,

V (s)

U(s)
=

kv
(s+ bv)

, (5)

where kv and bv must be identified. Thus, the input-output

relation is given by (4) and (5), resulting in the third order

transfer function:

G(s) =
Y (s)

U(s)
=

I · kv
s(s+ b)(s+ bv)

, (6)

which relates the input signal U(s) to the angle Y (s).

B. Experimental Setup

The vehicle comprises a 450mm aluminum structure with

10×4.5in blades. A 2200 A/h 3S lypo battery feeds the 30 A

ESCs and the 935 rpm/V motors. The control system runs in

a 32 bit ARM Cortex M0 from STmicro running at 48 MHz

with 128 KByte flash memory. The system is instrumented

with an LSM303DLHC three axis accelerometer and an

L3GD20 three axis gyroscope that communicate with the

Cortex M0 via I2C protocol.

Since the scope of this paper is limited to the control

of the roll (or pitch) angle of the vehicle, a one degree of

freedom experimental setup was developed, i.e., two ends of

the quadrotor were fixed so that it could only rotate around

the θ (or φ) axis. All the plots shown in this paper were

experimentally obtained unless explicitly stated otherwise.

C. System Identification

The integrator included in model (6) describes the relation

between the angular velocity ẏ, directly measured by a gy-

roscope, and the angular position y, estimated from a three-

axis accelerometer. Since commercially available gyroscopic

sensors usually possess a considerable better signal-to-noise

ratio when compared to accelerometers, the former were

the sensors of choice while performing system identification

experiments on the system. Therefore, the model to be

identified is a second order transfer function relating the

input signal to the gyroscope sensor, whose discrete-time

transfer function may be readily computed by a discretization

method, e.g., Euler Forward,

Ĝẏ(z) =
b0

z2 + za1 + a0
,

where b0 = IkvT
2, a1 = T (b + bv) and a2 = 1 − T (b +

bv) + bbvT
2.

With a sample time of T = 5 ms, the data in Fig. 1 was

collected and used for system identification. In that figure, the

top plot shows the angular velocity ẏ(k) and its equivalent
ˆ̇y(k) estimated from the identified model. The bottom plot

shows the input sequence – largely based on the work in [18]

– applied during identification. A zero phase Butterworth

filter with a cut-off frequency of 10 Hz (one tenth of the

Nyquist frequency) was used to pre-process the output data1.

The resulting model is given by,

Ĝẏ(z) =
0.0231

z2 − 1.9776z + 0.9778
. (7)

It is possible to infer from the figure that the general

dynamics of the system was captured by the model. This

1This filter was only used in the post-processing of the batch data col-
lected for system identification, and not during the control implementation.

706



-

-

+
++

+
Q(z)
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Fig. 2: Discrete time disturbance compensator.

model will be used in the implementation of the disturbance

observer, described in the next section. Naturally, by inte-

grating equation (7) one finds the relation between the input

signal and the angle of the vehicle.

III. DISTURBANCE OBSERVER

Multirotor vehicles such as the one studied in this work

are subject to several perturbations ranging from wind gusts

to actuators interaction with nearby obstacles, as well as

unmodeled actuator cross coupling and parametric uncer-

tainties. In order to reduce the uncertainty related to these

undesired phenomena, we propose a disturbance observer

that allows the separation between the tracking and distur-

bance rejection tasks. The strategy implemented in this paper

is adapted from [19] and depicted in Fig. 2, where Gẏ(z)
represents the actual system and Ĝẏ(z) the approximate

model of the system as given in (7). Furthermore, Q(z) is

a low pass filter, whose order is greater or equal to that

of Ĝẏ(z). This filter servers two main purposes: besides

making the product Q(z)Ĝ−1
ẏ (z) causal, it provides a way

of limiting the actuation of the disturbance observer to a

desired bandwidth ωQ, thus avoiding the amplification of

noise acting on large frequencies.

It is easy to verify that, in the presence of the disturbance

observer and considering that Ĝθ̇(z) ≈ Gθ̇(z) in low

frequencies (below ωQ), the following relation holds,

Ẏ (z)

U(z)
= Ĝẏ(z)[Uθ(z)−D(z)(1−Q(z))] ,

where D(z) represents the Z-transform of the signal d(k). It

is obvious, thus, that by choosing Q(z) as an appropriate low

pass filter, the effects of disturbance are eliminated in low

frequencies. For this particular application a second order

filter was designed such that ωQ = 20 Hz, that is, 20% of

the Nyquist frequency:

Q(z) =
bq0

z2 + zaq1 + aq0
=

9.654× 10−3

z2 − 1.956z + 0.956
. (8)

Note that the only sensor this compensator uses is the

gyroscope because this is a high-gain strategy that requires

a good signal-to-noise ratio (SNR) in order to perform well.

Once again, the gyroscope possesses a better SNR when
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Fig. 4: Sequence of a “Doublet” input [18] generating the

outputs in Fig. 3.

compared to the accelerometer, hence this sensor alone is

used for the disturbance compensator implementation.

In order to validate the disturbance observer, we have

applied the so-called “Doublet” input sequence [18] – de-

picted in Fig. 4 – both to the open loop system and to the

strategy depicted in Fig. 2. The results are seen in Fig. 3

together with the expected output ˆ̇y(k) given by the model.

Disturbances acting on the system, along with unmodeled

nonlinear phenomena, are compensated up to a frequency

ωQ chosen according to (8).

In the absence of large model errors, disturbance observers

allow independent tuning of disturbance rejection charac-

teristics and reference tracking. Furthermore, they are more

flexible than simple integrators and do not remove 90 degrees

of phase in the resulting closed loop system. Their tuning

is directly based on the bandwidth of the low pass filter

and added degrees of flexibility include the Q filter order

and relative degree. For this and other reasons, disturbance

observers are “particularly helpful in situations where gains

need to be tuned on-line” [19].
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IV. NONLINEAR CONTROL

Every control law designed for rapid reference tracking

will face the fundamental limitations given by the system

being controlled. The most common of such limitations are

related to actuator saturation and to a limited bandwidth

available for the system [20]. The latter is due to a series

of factors related to the sampling rate, the dynamic limits

of the actuators, the so called water bed effect [21], among

others. While some of these limits impose hard constraints on

the system performance, others may be “stretched” through

techniques of nonlinear control. Since the system considered

in this paper is primarily limited by bandwidth limitations

imposed by the sensors, this is the problem dealt with by

the nonlinear control to be applied.

In order to reduce the tracking time of the system without

requiring a larger bandwidth, we propose the implementation

of a nonlinear gain-scheduled PD controller. Its objective

is the dynamic addition of damping as a function of the

tracking error. For large values of the tracking error, it is

desirable that an undamped behavior is given to the system,

so that it possesses a fast rise time. As the system reaches

the reference level, however, a damped behavior is necessary

so that excessive levels of overshoot are avoided. Controllers

that dynamically add damping to the system are referred to as

nonlinear damping [17], or Composite Nonlinear Feedback

[22], and may be implemented in the following form:

u(k) = e(k) · kp − ẏ(k)(kdu + kdd · Γ(e(k))) (9)

where e := y − r is the tracking error and kdu and kdd are

such that kdd > kdu > 0.

This controller is tunned by choosing a proportional gain

kp > 0 such that the system achieves the desired bandwidth.

This gain may be computed using the root-locus method

such that the system becomes marginally stable, for instance.

Afterwards, derivative gains kdd and kdu are sought such

the system becomes significantly damped, respectively un-

damped, in a PD type closed loop. With these gains in

hand a smooth function Γ(e) is used in order to switch the

system behavior – from undamped to damped – as the error

approaches zero. In other words, the switching function is

designed such that: (i) the system presents an undamped
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behavior given by kdu when far from the reference; (ii)
the systems presents a damped behavior given by kdd as

it approaches the reference. The nonlinear function Γ(e)
is responsible for the dynamic pole placement, since this

function must be close to zero for large values of e, and

close to one for |e| ≈ 0, a possible choice is given by,

Γ(e) =

(

1− 1

1 + eβ(γ−|e|)

)

. (10)

This function is plotted in Fig. 5 where it is clear that

|e| >> 0 implies Γ(e) = 0, and |e| ≈ 0 implies Γ(e) = 1.

Parameters γ and β respectively determine the point where

the transition from zero to one happens (Fig. 5), and the

inclination of such transition (Fig. 6). As a result, the closed

loop system will present a fast rise time without overshoot,

improving its dynamic response without increasing the over-

all bandwidth.

The control gains were chosen according to the root locus

method and are given by, kp = 0.1, kdd = 0.1 and kdu =
0.01. The nonlinear function parameters were determined

empirically, and fixed at β = 35 and γ = π/4.

V. IMPLEMENTATION

In order to implement the control strategy in (9), it is

necessary to use measurements from the output angle y = θ
(or y = φ) and its time derivative y = θ̇ (or y = φ̇). Since the

gyroscope directly measures angular velocity, it is ready to

be used in the control law. The accelerometer, on the other

hand, measures linear acceleration and its signal must be

processed in order to provide the output angle y. A simple

sensor fusion technique will be described next section in

order to estimate the correct inclination of the vehicle.

A. Complementary Filters

By measuring the linear accelerations of the vehicle it is

possible to infer the forces acting on it. In particular, when

the vehicle is at constant linear speed, the only external force

acting on it is the gravitational one. It is, then, possible to

estimate the vehicle inclination with respect to an earth fixed
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frame, according to,

ŷa =















arctan

(

ay√
a2
x
+a2

z

)

, for y = θ,

arctan

(

ax√
a2
y
+a2

z

)

, for y = φ,

(11)

where ax, ay e az are the linear accelerations at axis x,

y and z as given by the accelerometer. However, when the

vehicle is accelerating in any given direction or when noise

is present in the measurements, these estimates will present

significant errors.

A second approach to estimate y consists in the direct

integration of the gyroscope. Numerically this is performed

in the simple form,

ŷg =
Tz
z−1 ẏ (12)

where ŷg is the estimate of y (either θ or φ) obtained from

the gyroscope (respectively either θ̇ or φ̇). However, as usual

with any process of numerical integration, any biased noise

will cause this estimate to drift.

It is, therefore, clear that the estimate of the output angles

from any of these sensors acting alone will cause problems:

while high frequency noise, along with measurements caused

by any acceleration other than gravity, affects the estimate

of ŷa given by the accelerometer alone; low frequency bias

will cause the gyroscope estimate ŷg to drift. Ideally, one

would like to use the gyroscope only in high frequencies,

and the accelerometer only in low frequencies. Hence the

idea behind complementary filters, which are defined as any

pair of filters such that A(z) + B(z) = 1. In this particular

case,

A(z) =
z(1− p)

z − p
, B(z) =

p(z − 1)

z − p
.

That is, filter A(z) is a low pass filter which will be used in

the estimate of ŷa, and B(z) is a high pass filter applied to

ŷg. The filter equation becomes,

Ŷ (z) = A(z)Ŷa(z) +B(z)Ŷg(z), (13)

which, by making use of (12), may be implemented by the

simple equation:

ŷ(k) = p · ŷ(k − 1) + (1− p) · ŷa(k) + pT · ẏ(k), (14)

where p is a tuning parameter.

B. Experimental Results

In order to validate the proposed approach, the system

was subject to a step-like reference taking it from the origin

ẏ(0) = y(0) = 0 to the y = 1 rad and ẏ = 0. In

order to illustrate the benefits of the proposed approach, four

experiments were performed, as exposed in Figures 7 and 8:

1) the closed loop system using the nonlinear control law

as given in (9) (black line) is presented in both figures;

2) Fig. 7 also shows two linear PD controllers – with

u(k) = kp · e − kd · ẏ(k) as opposed to (9) – for the

undamped case with kd = 0.02, and for the damped

case with kd = 0.09;

50

0.5
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Time [kT ]

y
(k
)

[r
ad

]

Fig. 7: System response to the different control laws from

the origin to r = 1 rad. Legend: black line - proposed

controller; light grey line - undamped controller; dark grey

line - damped controller.

3) Fig. 8 shows the behavior of a linear PD controller

achieving the same level of overshoot as the nonlinear

controller due to the meticulous choice of kd = 0.033;

From Fig. 7 it is possible to verify the benefits of the

proposed approach. Note that, as expected, the undamped

closed loop system generates a fast rise time but unaccept-

able oscillatory behavior around the reference, resulting in

a system with poor performance. On the other hand, the

damped closed loop system presents no overshoot at all, but

its dynamic response is too slow. By selecting the best traits

of these linear controllers, the proposed control law is able

to achieve a fast rise time with small levels of overshoot and

oscillation, significantly improving the system performance

when compared to the linear controllers.

In order to explicit the fact that no PD gain combina-

tion is able to achieve a better response, Fig. 8 shows a

comparison between the proposed controller and a linear PD

that was specifically tuned to achieve the same overshoot as

the proposed one. It is clear that a linear controller tuned

for the same overshoot takes over twice as much time to

accommodate as its nonlinear counterpart. This is about the

same time required by the damped PD controller, and the best

performance we were able to achieve with the PD topology.

VI. CONCLUSION

This paper has developed a nonlinear discrete time control

strategy for the fast tracking of quadrotor-like vehicles. In

order to aid the system with respect to disturbance rejec-

tion and to reduce the effects of unmodeled dynamics, a

disturbance observer was implemented. Experimental results

have shown that the disturbance observer improves the

system behavior by also eliminating the effects of unmodeled

dynamics, thus generating a better fit between the system and

the model. The proposed nonlinear controller introduced a

dynamic damping term to the closed loop system so that

a fast rise time response is achieved with limited levels of

overshoot. Experimental results have been presented showing
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same overshoot as the nonlinear control law, but takes a
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that the superiority of the proposed method when compared

to traditional linear methods. A significantly faster tracking

time was achieved.

Our future work will focus on the improvement of the

remaining degrees of freedom of the system. When all con-

trol loops are working simultaneously, it may be important

to consider saturation in the actuators. Different methods

may be investigated, such as the Proximate Time Optimal

Servomechanism [23] and its dynamically damped version

[24].
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