
Differential Evolution on a GPGPU: The Influence of Parameters on Speedup and
the Quality of Solutions

Omar A. C. Cortes∗, Mônica S. Pais†, Filipo N. Mór‡, Andrew Rau-Chaplin§ and César A. M. Marcon‡
∗Instituto Federal do Maranhão

São Luis, MA, Brazil
Email: omar@ifma.edu.br
†Informatics Department
Instituto Federal Goiano

Urataı́, GO, Brazil
Email: monica.pais@ifgoiano.edu.br

‡Faculty of Computer Science
Dalhousie University
Halifax, NS, Canada
Email: arc@cs.dal.ca

§ Department of Computer Science
Pontifı́cia Universidade Católica

Porto Alegre, RS, Brazil
Email: filipo.mor@acad.pucrs.br, cesar.marcon@pucrs.br

Abstract—One challenge in studying the speedup perfor-
mance of evolutionary optimization techniques, particularly
in differential evolution, is that many parameters including
crossover rate, F, dimensionality, population size and the
complexity of the objective function play an important role.
In fact, these same parameters also effect the quality of the
obtained results. Therefore, it is important to understand the
interaction between these parameters in order to make good
choices for these key parameters that drive both the quality
and speedup metrics. Thus, the purpose of this paper is to
show how parameters such as crossover rate, F, dimension,
population size, and calls to evaluation functions can influence
the speedup and the quality of solutions in a differential evo-
lution algorithm in high dimension problems. The evaluation
was done using a 2k factorial analysis considering a Schwefel
Benchmark Function in a Matlab implementation running on
a general purpose GPU. Results have shown that a reasonable
speedup can be reached taking into account a high level of
programming, i.e., there are a good trade-off between the
required effort to program on GPU in Matlab and the reached
Speedup. On the other hand, results in terms of quality of
solutions showed that CPU tends to produce better outcomes
in some configurations.

Keywords-Differential Evolution; Speedup; GPU; Factorial
Analysis;

I. INTRODUCTION

Differential evolution [1] (DE) is an evolutionary opti-

mization technique that has proven to be highly effective in

a wide range of applications. It is particularly effective when

dealing with optimization in complex applications such as

reinsurance treaty optimization [2], wave form inversion [3],

vibration suppression controller [4], scheduling of a flexible

assembly line [5], etc. Given its widespread use in appli-

cations and often considerable run times it is interesting

to study its performance on parallel hardware, especially

in alternative technologies such as graphic processing units

(GPU) because nowadays even personal computer can come

equipped with GPGPU (General Purpose GPU) making this

kind of architecture easily available. In fact, the processing

power by watt offered by this kind of architecture is very

attractive [6].

In this context, it is important to notice that the DE

algorithm has its data structure mostly based on arrays,

therefore, it is suitable for execution on GPGPUs. So, in

order to use the capabilities of a GPGPU some languages are

available to different levels of programmers. The first one is

C-CUDA (Compute Unified Device Architecture) [7] where

programmers can extract all capabilities of parallelization

offered by this kind of architecture, maximizing the obtained

speedup. On the other hand, this kind of programming

language demands an expressive knowledge about the archi-

tecture, its capabilities and how to use it. A second approach

and more suitable to application programmers is the use of

Matlab which allows us to program parallel applications on

GPU at a very high level using the parallel computation

toolbox [8]; however, this approach might lead to a decrease

in the speedup that can be reached.

Thus, we investigate how changing parameters in a DE

algorithm can affect the speedup considering a high level

approach of programming. In order to do so, we analyzed

the effect of the following parameters: crossover rate, pop-

ulation size, dimension, number of calls to the evaluation

2015 IEEE International Parallel and Distributed Processing Symposium Workshops

/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPSW.2015.92

299

2015 IEEE International Parallel and Distributed Processing Symposium Workshop

978-1-4673-7684-6/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPSW.2015.92

299

function, and multiplication factor. The first one is regarded

to elements being moved from one matrix to another. The

second and third ones are related to the size of data structure

required to store the population and solutions, and apply op-

erations on, so affecting the speedup. The forth one regards

to the number of times that calls to the evaluation function

are done, particularly in GPU these calls are executed inside

the GPU, therefore affecting the speedup as well. Finally, the

fifth one can affect the quality of solutions. The quality of

solutions are analyzed considering five parameters: archi-

tecture, crossover rate, multiplier factor, population size and

calls to the evaluations function.

Both analysis are done by means of design of experiments

(DOE) [9] which is a powerful technique used for both

exploring new processes and gaining increased knowledge

of existing ones, followed by optimizing theses processes for

achieving good performance [10]. Actually, all evaluations

were done using a 2k factorial design with four and five

factors, and two levels, i.e., 24 treatments which allow us to

identify how each factor and their interaction influence on

gaining speedup.

The remainder of this paper is divided as follows: Sec-

tion II describes the related works on DE and briefly

presents the main problems in evaluating results; Section III

illustrates the DE algorithm and how it works; Section IV

shows the necessary changes into the code, the benchmark

being used in the experiments, and the factorial analysis;

finally, Section V illustrates the conclusions of this paper

and also presents the future work.

II. RELATED WORKS

The attempt of improving the speedup on DE applications

using parallel computing is not new. Tesoulis et. al. [11]

presented one of first attempts to improve the speedup on DE

using a ring topology in a parallel distributed system. Since

then, many investigations have appeared, including those one

involving GPUs.

The first versions of DE on GPGPUs were introduced

in 2010 by de Veronese and Krohling [12], Zhu [13], and

Zhu and Li [14]. All of those works were implemented in

C-CUDA and used benchmarks functions in order to show

how much speedup can be reached. Moreover, particular DE

applications on GPGPU have been investigated in works

such as [15], [16], [17], and [18]. In this context, reports

have revealed speedups between 1.5 and 120 according to

Krömer et. al. [19].

Regardless the problem being solved using DE, many

researches have no planning on their experiments, conse-

quently making impossible to reproduce them [20]. These

issues have been addressed by authors such as Rooker [22]

and Rardin [23]. In other words, it is very common to find

out researches which investigate the performance of a partic-

ular evolutionary algorithm without using a proper statistical

analysis. On the other hand, works such as [24] and [25]

used a proper statistical background in their analysis making

those experiments reproducible.

Thus, as we can notice, statistical tools for analyzing

the performance of evolutionary algorithms have not been

broadly used neither systematized into methodologies and/or

frameworks. So, in order to fill up this gap, Pais started

proposing a first framework to evaluate parallel genetic algo-

rithms in [27]. This work ended up in a doctoral thesis [21]

in which a complete methodology for experimentation in

parallel evolutionary algorithms based on multi-core archi-

tectures was published, consequently producing works such

as [20] and [26]. Then, Cortes [28] applied part of this

methodology in order to discover what parameters influence

on speedup of a Particle Swarm Optimization (PSO) [29]

algorithm running in a GPGPU.

At the best of our knowledge, there are no other works ap-

plying Pais’ methodology neither in evolutionary algorithms

nor in parallel evolutionary algorithms, particularly there are

no applications of her methodology in GPU systems other

than that one presented in [28] which is a different algorithm.

Hence, this work applies Pais’ methodology in order to

discover which parameters have more influence on achieving

speedup in a differential evolution algorithm executed in a

GPGPU with less programming effort using Matlab. As a

consequence of using Pais’ methodology our experiments

are reproducible.

III. DIFFERENTIAL EVOLUTION

The DE algorithm was proposed by Storn [1] in 1995,

being based on the difference between two individuals which

is summed up to a third one. The process is sketched

in the Algorithm 1, where the first step is to create a

population at random. Then, while the stop criteria is not

reached the vector of differences is calculated according to

the Equation 1 , where idxi is a vector with three individual

randomly chosen, and F is a multiplication factor normally

between 0 and 1. This strategy is called DE/Rand/1/bin
because Popidx3

is randomly chosen. When Pidx3
is the

best individual in the population the strategy is called

DE/Best/1/bin.

v = Popidx3 + F ∗ (Popkidx1
− Popkidx2

) (1)

The process of computing v is called mutation. After-

wards, a new individual is created in a similar way than

the discrete crossover of genetic algorithms, i.e., for each

dimension d a gene is chosen from the vector of differences

v with a probability of CR, or from the target individual i
with a probability of 1 − CR. Finally, if the fitness of the

new individual is better than the fitness of the target one then

the new individual, called indiv, replaces the individual in

the population popi.

300300

Pop← generate pop(n,d)
fit← evaluate (P k)
while (Stop Criteria is FALSE) do

for i = 1 to #pop size do
idx← select indiv(3)
v ← Popidx3 + F ∗ (Popkidx1

− Popkidx2
)

for j = 1 to dimension do
nj = rand()
if (nj < CR) then

indivj ← vj
else

indivj ← popij
end

end
fit′ ← evaluate(indiv)
if fit′ < fiti then

popi ← indiv
fiti ← fit′

end
end

end
Algorithm 1: Canonical Differential Evolution Algo-

rithm

IV. RESULTS

A. Changes in the Algorithm

Programming in a high level language usually rise up

two conflict features in parallel computing using GPUs.

On one hand, it can reduce the effort in programming

complex applications. On the other hand, it is not possible

to control the GPU execution without recurring to C-CUDA

programming. Thus, it is important to know how to extract

the better characteristics of the GPU programming in a high

level of coding.

In this context, the following practices are important in

order to have a better fit with the GPGPU hardware: (i)

using array as much as possible in GPU memory; (II)

executing functions on GPU; and, (iii) using logical indexes

in operations with arrays. So, taking that practices into

account the DE algorithm is transformed into that one

presented in Algorithm 2. A side benefit of this approach

is that it allows applications to be coded in a high-level

language like Matlab. An important detail to be aware about

is that on GPU indexation such as pop[i, j], for example, is

completely forbidden.

So, taking into account that the algorithm was imple-

mented in Matlab, the first step of DE on GPU is to create

the population at random on GPU RAM which can be

done using the function gpuArry.rand(). The evaluation

process has to be executed on GPU as well, using prefer-

ably the function arrayfun(fun,A1, ..., An), where fun
represents the evaluation function to be called and A the

respective parameters.

Afterwards, a matrix r1 is computed storing all indexes

that will be used to create the mutation vector v, which is

created at once for the entire population, i.e., the compu-

pop← generate pop on GPU(pop size,dimension);
fit← evaluate on GPU(pop);
while (#Calls to Evaluation Function is not Reached) do

r1← matrix rand indexes(pop size,3);
v ← pop[r1[:,3]] + F .* (pop[r1[:,2]] - pop[r1[:,1]]);
idx← (v > upper bounds);
v[idx]← upper bounds;
idx← (v < lower bounds);
v[idx]← lower bounds;
r2← matrix rand crossover(pop size,dimension);
idx← (r2 < CR);
pop′[idx]← v[idx];
pop′[!idx]← pop[!idx];
fit′ ← evaluate on GPU(new pop);
idx← (fit’ < fit);
pop[idx, :]← pop’[idx,:];
fit[idx]← fit’[idx];

end
Algorithm 2: Differential Evolution Algorithm on GPU

tation of the variable v is now a matrix operation, where

the symbol .∗ means an element-wise multiplication. Then,

the boundaries for each dimension are verified using logical

indexing; if one or more elements violate this constraint they

are saturated on the respective limit of the domain.

Thereafter, a random matrix used in the crossover process

is randomly created, where idx contains all indexes in which

r2 < CR, i.e., those indexes whose genes will come from

v. Whereas, !idx consists of all indexes that will come from

the current population pop. Finally, the new population is

evaluated on GPU and the individuals who present a better

fitness than current population will replace them going to a

next iteration.

B. Experiments

Two set of experiments have been conducted in order to

analyze the impact of using GPU on speedup and quality of

solutions of DE algorithm. Each set was analyzed using a

factorial analysis [9] with four and five factors, respectively.

Also, each treatment was executed 50 times in order to try to

guarantee the data normality, summing up 800 runs for the

first set of experiments related to speedup and 1600 runs

for the second one regarded to quality of solutions. The

experiment has been implemented and executed in Matlab

version 2013 using the Parallel Computing Toolbox on a

Windows 7 64-bit Operating System running on an Intel

i7 3.4 Ghz processor, with 16 GB of RAM and a NVIDIA

GPU GTS450. The factorial analysis was done using Mintab

version 17.

The problem being solved is a multimodal (it has many

local optima being hard to solve) benchmark function called

Schwefel, which is computed according to Equation 2. The

referred function has to be minimized, so assuming that x is

a vector of parameters or variables and f is the function that

we want to minimize, the problem can be mathematically

written as minx∈R f(x), where x is in a continuous space.

301301

In this specific problem the domain for each dimension

is within [-500, 500] and the minimum is calculated by

f(x) = −n× 418.9829, where n is the problem dimension.

In this context, the minimums for each level according to the

parameter dimension presented in Table I are -41898.29 and

-837965.8, respectively. Figure 1 shows a bi-dimensional

search space of Schwefel functions, where can see many

local optima.

f(x) =
n∑

i=1

−xisin(
√
xi) (2)

Figure 1. Bi-dimensional Schwefel function

1) Speedup: In order to evaluate the speedup, a factorial

analysis with four factor and two levels has been considered

in this experiment, where the following parameters were

selected: crossover rate (CR), dimension (Dim), number of

calls to the evaluation function (Calls) and population size

(PopSize). These parameters were chosen because they might

influence in obtaining the speedup since data structures are

larger, which can be a benefit in terms of speed in a GPU.

The experiment factors and their respective levels are shown

in Table I. Moreover, the parameter F was set to 0.7 in

both DE algorithms (CPU and GPU) while speedup was

evaluated.

Table I
EXPERIMENT FACTORS AND LEVELS

Levels CR Dimension Calls PopSize

Low Level (-1) 0.3 100 2× 105 500

High Level (1) 0.9 2000 106 3000

The experiment design, the speedup and the standard de-

viation are shown in Table II, where as previously mentioned

the speedup represents the average of 50 executions on

each treatment. The optimum configuration is CR = 0.9,

Dim = 2000, Calls = 105, and PopSize = 500 which

corresponds to treatment 13 leading to a speedup of 4.9351.

Three sub-optimal configuration were found in treatments 8,

9 and 11. Even though these configuration are similar, a t-

test between them using an α = 0.05 indicates that these

differences are meaningful between treatments 13 and 8,

and they are not meaningful between treatments 9 and 11;

therefore, the first configuration is really the best one.

The full model obtained by the factorial analysis is pre-

sented in Equation 3. Then a second-order linear regression

model obtained by an automatic search procedure based on

the AIC criterion results in the adjusted model is shown

in Equation 4, where non-significant effects were removed

from the model. This last adjusted model presents a residual

standard error of 0.588 on 4 degrees of freedom, and R2

was 0.928, which means that the model explains 92.8% of

the variation of the speedup. The model adequacy and its

assumptions were checked. The residuals versus predicted

values plot did not present a pattern or a structure and

the normal probability plot resembled a straight line. Also

formal tests of independence, equality of variances and

normality of residuals were performed.

Sp = 3.1162 + 0.4654CR−0.1214Dim−
0.1615Calls− 0.1319PopSize−
0.3086CR∗Dim− 0.3361CR∗Calls−
0.3664CR∗PopSize− 0.1102Dim∗
Calls+ 0.2735Dim ∗ PopSize+
0.4091Calls ∗ PopSize− 0.5011CR∗
Dim ∗ Calls− 0.09165CR∗Dim∗
PopSize− 0.1767CR∗Calls ∗ PopSize+
0.2027Dim ∗ Calls ∗ PopSize−
0.07676CR∗Dim ∗ Calls ∗ PopSize

(3)

Sp = 3.1162 + 0.4654CR−0.1214Dim
−0.1615Calls− 0.1319PopSize−
0.3086CR∗Dim− 0.3361CR∗Calls−
0.3664CR∗PopSize− 0.1102Dim∗
Calls+ 0.4091Calls ∗ PopSize−
0.5011CR∗Dim ∗ Calls

(4)

In order to make more inferences about how those pa-

rameters influence on speedup we have to look into some

factorial analysis, especially into adjusted model since it

indicates which parameters are significant in obtaining the

speedup. Further, charts that were created by the analysis are

shown in Figure 2 which represents a pareto plot, the main

effect of factors and the interaction between factors. The

pareto chart indicates that interactions between two factors

might be more important in obtaining the speedup; Even

though all of them are located before the reference line, the

adjusted model (Equation 4) presents all significant main and

interaction effects. Then, we can identify if the influence of

factors is positive or negative in the main effect figure which

302302

Table II
DESIGN, MEAN SPEEDUP AND STANDARD DEVIATION

Treat. CR Dim Calls PopSize Speedup St. Dev.
1 -1 -1 -1 -1 3.1170 0.0032
2 -1 -1 -1 1 2.2430 0.0057
3 -1 -1 1 -1 2.0716 0.0582
4 -1 -1 1 1 2.4230 0.0269
5 -1 1 -1 -1 2.5380 0.0202
6 -1 1 -1 1 2.0070 0.0268
7 -1 1 1 -1 1.9386 0.0269
8 -1 1 1 1 4.8683 0.0553
9 1 -1 -1 -1 4.6846 0.0365
10 1 -1 -1 1 3.1114 0.0061
11 1 -1 1 -1 4.6990 0.0311
12 1 -1 1 1 3.5517 0.0036
13 1 1 -1 -1 4.9351 0.0754
14 1 1 -1 1 3.5857 0.0174
15 1 1 1 -1 2.0008 0.0119
16 1 1 1 1 2.0845 0.0149

indicates that calls to evaluation function has a positive effect

on speedup, whereas the other ones have a negative impact

because they tend to reduce the speedup when we change

the respective parameters from low level to high level.

The adjusted model shows significant interaction effects,

therefore, it is necessary to identify how the speedup changes

according to it. With CR set to 0.3, when Dim changed

from 100 to 2000, the mean speedup increase by 0.1872.

With CR set to 0.9, the mean speedup decreases by 0.4301

as the Dim changed from 100 to 2000. When CR is set to

0.3, when Calls changed from 2 × 105 to 106, the mean

speedup increases by 0.1745. With CR set to 0.9, the mean

speedup decrease by 0.4976 as the Calls changes from

2×105 to 106. The effect of the interaction Calls∗PopSize
was 0.4091. With Calls set to 2 × 105, when PopSize
changed from 500 to 3000, the mean speedup decreased by

0.5409. With Calls set to 106, the mean speedup increased

by 0.2772 as PopSize changed from 500 to 3000. With CR
set to 0.3, when PopSize changed from 500 to 3000, the

mean speedup increased by 0.2345, whereas with CR set to

0.9, the mean speedup decrease by 0.4983 as the PopSize
changes from 500 to 3000.

In terms of dimension, with Dim set to 100, when Calls
changed from 2× 105 to 106, the mean speedup decreased

by 0.05135. Then, with Dim set to 2000, the mean speedup

decrease by 0.2717 as the Calls changes from 2 × 105 to

106. With Dim set to 100, when PopSize changed from

500 to 3000, the mean speedup decreases by 0.4054. With

Dim set to 2000, the mean speedup increases by 0.1416

as the Calls changes from 500 to 3000. Finally, the three

factors interaction PopSize ∗ Calls indicates with CR set

to 0.3, the interaction effect of Dim ∗Calls is 0.3909, and

with CR set to 0.9, the interaction effect of Dim ∗Calls is

-0.6113 on speedup.

All in all, keeping CR in low level and then PopSize,

Calls and Dim in high levels tend to present higher

speedups, which makes sense because the algorithm fits

better in the GPGPU architecture. On the other hand, other

combinations can also reach goods speedups.

2) Quality of Solutions: In order to evaluate the quality

of solutions some changes are mandatory in the previous

factorial design. The first one is related to dimension which

has to be fixed because the optimal solutions has to be the

same for every configuration, therefore the factor Dim was

set to 1000. The second one is to add the factor F (with

levels 0.3 and 0.7) in the analysis which can also affect

the quality of a solutions because it changes the ability of

exploration and exploitation of the algorithm. Finally, the

last modification that has to be done is to add the architecture

(Arch = {CPU,GPU}) as a factor, thus we can identify

which one produces solutions with better quality.

Table III presents the design, the mean of the 50 execu-

tions and the standard deviation, where we can observe that

the best solution was found by the following configuration:

Architecture = CPU , CR=0.3, F=0.7, Calls = 106,

PopSize = 500. After these changes it is important to

notice that in this particular case a decreasing curve has a

positive effect because the global optima is a negative value.

Figure 3 shows the factorial plots created with the results

from Table III. So, looking at the pareto chart, we can

state that the factor Calls and the interaction between

factors (excepting the interactions CR ∗Calls, F ∗Calls e

F ∗ PopSize) are potentially the most important in obtain-

ing quality in solutions. On the other hand, the variance

presented by the results does not allows us to create a

model which reflects its behavior. Thus, a two tailed t-test

comparing CPU and GPU, using α = 0.05 (−2.93 < t <
2.93), and considering that all means are the same upon the

same configurations is presented in Table III, where we can

observe that solutions in CPU (underlined) tends to be better

than in GPU when CR is set to 0.3, whereas solutions tend

to present the same quality when CR is set to 0.7. Also,

303303

Table III
DESIGN, MEAN QUALITY AND STANDARD DEVIATION

Arch CR F Calls PopSize Quality Stdev
-1 -1 -1 -1 -1 -99561.22913 8905.992217
-1 -1 -1 -1 1 -39242.5668 1593.551144
-1 -1 -1 1 -1 -102331.3489 8888.703093
-1 -1 -1 1 1 -50781.27507 7912.635914
-1 -1 1 -1 -1 -62364.11626 9274.956581
-1 -1 1 -1 1 -40861.14397 1461.503669
-1 -1 1 1 -1 -187272.5542 16969.87567
-1 -1 1 1 1 -51909.33291 2283.717489
-1 1 -1 -1 -1 -33918.06921 12270.31176
-1 1 -1 -1 1 -28024.25462 1843.27535
-1 1 -1 1 -1 -158249.4069 8781.541603
-1 1 -1 1 1 -30806.27824 1381.554256
-1 1 1 -1 -1 -34618.38043 2263.94109
-1 1 1 -1 1 -31080.21761 1544.26524
-1 1 1 1 -1 -59736.3109 13915.89955
-1 1 1 1 1 -35240.80279 1337.493624
1 -1 -1 -1 -1 -46850.86065 1593.477414
1 -1 -1 -1 1 -37403.13661 1612.08002
1 -1 -1 1 -1 -60814.56003 1927.913943
1 -1 -1 1 1 -45950.51283 1378.569687
1 -1 1 -1 -1 -53578.91429 1581.2079
1 -1 1 -1 1 -39611.77496 1425.713312
1 -1 1 1 -1 -70688.96682 1932.46718
1 -1 1 1 1 -52786.99504 1542.721017
1 1 -1 -1 -1 -31024.70727 1629.50563
1 1 -1 -1 1 -28378.46091 1910.322733
1 1 -1 1 -1 -44985.45356 1840.412803
1 1 -1 1 1 -31113.30699 1370.260155
1 1 1 -1 -1 -35291.14047 1673.76496
1 1 1 -1 1 -31162.43624 1558.8105
1 1 1 1 -1 -48298.10131 2049.629688
1 1 1 1 1 -35325.35666 1292.564049

it is important to highlight that it is not possible to create

a model in terms of quality since the standard deviation is

high.

V. CONCLUSIONS

This paper showed how parameters in a DE algorithm can

affect the speedup and the quality of solutions obtained in

a CPU and a GPGPU using a high level of programming.

Results indicated that the interaction between factors is

important when achieving speedup, especially when we take

into account the dimension and calls to evaluation function,

whereas CPU tends to present better solutions with CR set

to low level. Future work includes to analyze the effects

of parameters on speedup in a C-CUDA implementation

where programmers have more control on threads and blocks

being executed in GPU. Also, an analysis using a real world

application based on reinsurance analytics is also in mind.

ACKNOWLEDGMENT

The authors would like to thank the Instituto Federal de

Educação, Ciência e Tecnologia do Maranhão (IFMA) and

Conselho Nacional de Desenvolvimento Cientı́fico (CNPq)

for funding this research.

REFERENCES

[1] R. Storn, and K. Price, “Differential Evolution: A Simple and
Efficient Heuristic for Global Optimization over Continuous
Spaces”, Journal of Global Optimization, v. 11, 1997.

[2] O. A. C Cortes, A. Rau-Chaplin, and P. F. do Prado, “
On VEPSO and VEDE for Solving a Treaty Optimization
Problem”, IEEE Conference on System, Man, and Cybernetics,
San Diego-USA, 2014.

[3] Zhaoqi Gao, Zhibin Pan, and Jinghuai Gao, “ New Highly
Efficient Differential Evolution Scheme and Its Application to
Waveform Inversion”, IEEE Geoscience and Remote Sensing
Letters, v. 11, n.10, pp.1702-1706, 2014.

[4] H. Ikeda and H. Tsuyoshi, “Design of m-IPD controller of
multi-inertia system using Differential Evolution”, Interna-
tional Power Electronics Conference, pp. 2476-2482, 2014.

[5] L. W. H. Vincent and S. G. Ponnambalam, “A Differential
Evolution-Based Algorithm to Schedule Flexible Assembly
Lines”, IEEE Transactions on Automation Science and En-
gineering, v. 10, n.4, pp.1161–1165, 2013.

[6] S. Potluri, A. Venkatesh, D. Bureddy, K. Kandalla, and D.
K. Panda, “Efficient Intra-node Communication on Intel-MIC
Clusters”, 13th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing (CCGrid), pp.128-135, 2013.

304304

Table IV
COMPARIONS CPU VS GPU USING A T-TEST

CR F Calls PopSize CPU Stdev GPU Stdev t
-1 -1 -1 -1 -99561.229 8905.99 -46850.860 1593.48 -41.20
-1 -1 -1 1 -39242.567 1593.55 -37403.137 1612.08 -5.74
-1 -1 1 -1 -102331.349 8888.70 -60814.560 1927.91 -32.28
-1 -1 1 1 -50781.275 7912.64 -45950.513 1378.57 -4.25
-1 1 -1 -1 -62364.116 9274.96 -53578.914 1581.20 -6.60
-1 1 -1 1 -40861.144 1461.50 -39611.775 1425.71 -4.32
-1 1 1 -1 -187272.554 16969.88 -70688.967 1932.47 -48.27
-1 1 1 1 -51909.333 2283.71 -52786.995 1542.72 2.25
1 -1 -1 -1 -33918.069 12270.31 -31024.707 1629.50 -1.65
1 -1 -1 1 -28024.255 1843.27 -28378.461 1910.32 0.94
1 -1 1 -1 -158249.407 8781.54 -44985.454 1840.41 -89.26
1 -1 1 1 -30806.279 1381.55 -31113.307 1370.26 1.12
1 1 -1 -1 -34618.380 2263.94 -35291.140 1673.76 1.69
1 1 -1 1 -31080.217 1544.26 -31162.436 1558.81 0.26
1 1 1 -1 -59736.311 13915.90 -48298.101 2049.63 -5.75
1 1 1 1 -35240.8028 1337.4936 -35325.3567 1292.5640 0.32

[7] NVIDIA, NVIDIA CUDA Programming Guide 4.1,
Available in http://docs.nvidia.com/cuda/cuda-c-programming-
guide/#axzz3Hpy6xWoR. Visited on September, 2014.

[8] Matlab, “Speeding Up MATLAB Computations with GPUs”,
Available in http://www.mathworks.com/products/parallel-
computing/features.html#speeding-up-matlab-computations-
with-gpus, Visited on October, 2014.

[9] D. C. Montgomery, “Design and analysis of experiments”, 7th
ed., John Wiley and Sons, Hoboken, 2009.

[10] J. Anton, “Design of Experiments for Engineers and Scien-
tists”, Waltham-MA: Elsevier, 2014.

[11] D. Tasoulis, N. Pavlidis, V. Plagianakos, and M. Vrahatis,
“Parallel differential evolution”, Congress on Evolutionary
Computation, v. 2, pp. 20232029, 2004.

[12] L. de Veronese and R. Krohling, “Differential evolution
algorithm on the GPU with C-CUDA”, IEEE Congress on
Evolutionary Computation (CEC), pp. 17, 2010

[13] W. Zhu, “Massively parallel differential evolution - pattern
search optimization with graphics hardware acceleration: an in-
vestigation on bound constrained optimization problems”, Jour-
nal of Global Optimization, pp. 121, 2010, 10.1007/s10898-
010-9590-0. Available: http://dx.doi.org/10.1007/s10898-010-
9590-0

[14] W. Zhu and Y. Li, “Gpu-accelerated differential evolution-
ary markov chain monte carlo method for multi-objective
optimization over continuous space”, Proceeding of the 2nd
workshop on Bio-inspired algorithms for distributed systems,
New York, NY, USA, pp. 18, 2010, [Online]. Available:
http://doi.acm.org/10.1145/1809018.1809021

[15] M. Simonsen, C. N. Pedersen, M. H. Christensen, and R.
Thomsen, “Gpu-accelerated high-accuracy molecular docking
using guided differential evolution: real world applications”,
Conference on Genetic and evolutionary computation, New
York, NY, USA: ACM, 2011, pp. 18031810, 2011.

[16] C. Xiao and W. Qiming, “Modied parallel differential evolu-
tion algorithm with local spectral feature to solve data registra-
tion problems”, Computer Science and Network Technology,
v. 3, pp. 13861389, 2011.

[17] L. E. Ramirez-Chavez, C. A. Coello Coello, and E.
Rodriguez-Tello, “A gpu-based implementation of differential
evolution for solving the gene regulatory network model in-
ference problem”, Fourth International Workshop on Parallel
Architectures and Bioinspired Algorithms, Galveston Island,
TX, USA, October, 2011.

[18] A. K. Qin, F. Raimondo, F. Forbes, and Y. S. Ong, “An im-
proved CUDA-based implementation of differential evolution
on GPU”, in Proceedings of the fourteenth international con-
ference on Genetic and evolutionary computation conference,
New York, NY, USA: ACM, pp. 991998, 2012.

[19] Krömer, P. and Platoš, J. and Sńašel, V., “A Brief Survey
of Differential Evolution on Graphic Processing Units”, IEEE
Symposium on Differential Evolution, pp. 157-164, 2013.

[20] M. S. Pais, I. S. Peretta, K. Yamanaka, and E. R. Pinto, “Fac-
torial design analysis applied to the performance of parallel
evolutionary algorithms”, Journal of the Brazilian Computer
Society February, 20:6, Springer, 2014.

[21] M. S. Pais,“Estudo da Influência dos Parámetros de Algo-
ritmos Paralelos da Computação Evolutiva no seu Desem-
penho em Plataformas Multicore”, Phd Thesis, University of
Uberlândia, 2014.

[22] J. Hooker, “Testing heuristics: We have it all wrong”, Journal
of Heuristics, v. 1, pp. 3342, 1995.

[23] R. L. Rardin and R. Uzsoy, “Experimental evaluation of
heuristic optimization algorithms: A tutorial”, Journal of
Heuristics, v. 7, pp.261304, May 2001.

[24] . P. Assis, A. L. Maravilha, A. Vivas, F. Campelo,and J. A.
Ramı́rez, “Multiobjective vehicle routing problem with fixed
delivery and optional collections”, Optimization letters, v. 7,
Issue 7, pp 1419-1431, 2013.

305305

Figure 2. Pareto chart, interaction and main effects plots

[25] R. A. Lopes, R. C. Pedrosa Silva, A. R.R. Freitas, F. Campelo,
and F. G. Guimares, “A study on the configuration of migratory
flows in island model differential evolution”, In Proceedings
of the conference companion on Genetic and evolutionary
computation companion (GECCO), New York, p. 1015-1022,
2013.

[26] M. S. Pais, K. Yamanaka, and E. R. Pinto, “Rigorous
Experimental Performance Analysis of Parallel Evolutionary
Algorithms on Multicore Platforms”, Revista IEEE Amrica
Latina, v. 12, Issue 4, 2014.

[27] M. S. Pais, I. S. Peretta, G. F. M. Lima, J. A. Tavares, H.
X. Rocha, and K. Yamanaka, “Análise de Fatores Determi-
nantes no Desempenho dos Algoritmos Genéticos Paralelos
em Processadores Multinúcleos. In: X Congresso Brasileiro
de Inteligência Computacional, 2011.

[28] O. A. C. Cortes and P. F. do Prado, “Avaliação do impacto da
dimensão e do número de partı́culas no speedup em otimização

Figure 3. Pareto chart, interaction and main effects plots for quality of
results

por nuvem de partı́culas usando GPUs”, Escola Regional de
Alto Desempenho de So Paulo,2014.

[29] J. Kennedy and J. Eberhart, “Particle Swarm Optimization”,
IEEE International Conference on Neural Networks, v. 4, 1997.

306306

