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A B S T R A C T

A complex application implemented as a System-on-Chip (SoC) demands extensive system level modeling. Its
implementation encompasses a large number of cores and an advanced interconnection scheme such as a
Network-on-Chip (NoC). This type of application normally requires energy efficiency and execution time
minimization, which implies high-level exploration for cores/tasks placement into the target architecture. A
Model of Computation (MoC) captures some characteristics of the applications aiming to fulfill high-level
explorations. This work analyzes MoCs employed on the static and dynamic mapping of applications onto
regular NoCs, providing a classification based on aspects of computation and communication. Additionally, this
paper discusses advantages and drawbacks of these MoCs, such as the complexity of capturing application
aspects, as well as the mapping quality. Finally, this work implements the five MoCs more applied on the
mapping and compares them applying a benchmark composed of synthetic and embedded applications running
on various NoC sizes.

1. Introduction

Deep submicron technologies allow billions of transistors inte-
grated into a single chip performing a complex System-on-Chip (SoC).
These technologies pose formidable physical design challenges for long
wires and global on-chip connections. Therefore, several designers
have proposed to change from the fully synchronous design paradigm
to the Globally Asynchronous, Locally Synchronous (GALS) design
paradigm [1,2] enabling to split the application into synchronous
domains, placing each domain inside a limited region called tile.

A Network-on-Chip (NoC) is an on-chip communication architec-
ture composed of routers interconnected by point-to-point commu-
nication channels. The NoC channels may be adapted to GALS
paradigm with asynchronous communication among synchronous
domains. Besides, a NoC enables high communication rates and more
than one parallel/concurrent communication [3].

The application-mapping problem consists in finding associations
(mappings) among elements to minimize some cost function. Let an
application be a set of m tasks or n cores running on a SoC based on
NoC. Thus, the application-mapping problem takes into account two
distinct mappings: (i) tasks into a core, i.e., task mapping; and (ii)
core, such as processor or memory, into a NoC's tile, i.e., core

mapping. The core-mapping problem allows n! solutions, whereas
the task-mapping problem allows much more possibilities since one or
more tasks may be mapped onto a single core. Given a SoC with
hundreds of cores, and possibly thousands of tasks, an exhaustive
search of the mapping problem on the solution space is unfeasible.
Thus, the optimal implementation of such application requires efficient
mapping strategies. However, some strategies do not fulfill all design
requirements due to the poor quality of the estimation tools, where an
underlying Model of Computation (MoC) [4] that does not capture
relevant aspects of applications, represents the application.

We analyze several works addressing the mapping problem for
NoC-based SoCs, considering the communication and/or processing of
an application in order to minimize energy consumption and execution
time. A scheme is proposed to classify each work according to the
underlying MoC, which determines the application complexity that
affects the time and memory usage for mapping computation as well as
for mapping quality. The most found classes of MoCs were formalized
enabling to discuss the complexity in capture the application MoC.
Besides, we show a set of mapping algorithms that implements each
application MoC and the corresponding quality of mappings. These
reasons are fundamental to found a tradeoff between modeling
complexity, computational effort, and quality of the computational
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result.
The remaining of the paper is organized as follows. Section 2

explains MoCs composition applied to the mapping, proposing a
classification scheme based on application aspects. Section 3 sum-
marizes relevant works about MoCs targeting the mapping problem.
Section 4 defines the mapping problem and architectural aspects.
Section 5 explains the basis of mapping algorithms concerning each
underlying MoC. Section 6 presents experimental results highlighting
the mapping quality of each case study, and Section 7 presents
conclusions and further discussions.

2. Composition and classification of MoCs

[5] proposed evaluating the application aspects separately to allow
efficient design space exploration. The most important aspects to be
considered in a computational system are processing, communication
and storing, because any information (e.g., data or code) is in one of
these states. Additionally, the majority of works ignores the storing
state or groups it with processing in order to build a single aspect – this
work follows this last approach.

Processing and communication are expressed regarding quantities
and relations. Quantity is a value, such as the number of bits enclosed
inside a message or as the number of milliseconds necessary to perform
a task. Order is a relation that connects events, where each event is a
quantity associated to a time stamp; and a set of events perform a total
order [6], e.g., the order of tasks executed during an application
simulation. Dependence is a relation of events relations establishing
a partial ordering. Total order comprises a unique ordering whereas
dependence comprises all possible ordering.

The complexity of extracting an application quantity or relation is
an important element to consider in choosing the MoC. The designer
may associate counters to each element of processing or communica-
tion to capture quantities (e.g., execution time, data volume). To
capture the total order, the designer needs additional queuing of
events often associated to time stamps. The application simulation
enables to obtain both, quantity and order (i.e., total order). However,
the capture of partial ordering requires analyzing application depen-
dencies, respecting all possible total orders, which implies to compre-
hend the application semantic. Additionally, it is hard to automate the
capture of partial ordering and, when done manually, it is an error
prone task.

MoCs enable to specify the semantics of computation and con-
currency of systems [6]; [4]. They have complexities that define the
easiness of capturing the application behavior, the time and memory
spent to perform the associated algorithms, the capacity of dealing with
different requirements, and the quality of achieved results.

MoCs used in the application-mapping problem are composed of
order or dependence, associated (or not) to the quantity of commu-
nication and/or processing. For instance, one can model the system
communication by a directed graph, where each vertex is a commu-
nication channel and the directed edges are communication depen-
dences. Depending on the graph's connectivity or on the information
associated to each vertex, different mapping strategies are applied, and
thus the MoC is classified accordingly. The classification and composi-
tion of MoCs for task/core mapping (Fig. 1) consider the evaluation of
application aspects (communication and processing) and quantities or
relations (quantity, order and dependence)..

Simple models are those where a single application aspect is
associated to a single quantity or relation, while composite models
are those that associate more than one quantity or relation to a single
aspect. Both, single and composite models are classified as homo-
geneous models. On the other hand, heterogeneous models deal with
communication and processing aspects together, with one or more
quantity or relation enabling to derive classes of MoCs. Since for the
same application aspect it is not possible to merge total and partial
ordering in the same model, Fig. 1 presents all possible combinations

of homogeneous models. However, Fig. 1 does not show all hetero-
geneous models; it only shows how they could be composed. The
related work section details homogeneous and heterogeneous models
that are used specifically on mapping problem (refer to Table 1).

3. Related work for MoCs for mapping

The designer may map an application onto a NoC during the design
time (statically) or during application execution (dynamically).
Sahu and Chattopadhyay [7] published a thorough study of mapping
approaches focusing on the underlying mapping algorithm. However,
their work does not discuss the underlying target application MoC,
which directly influences the mapping quality. Thus, this section
evaluates a comprehensive subset of mapping works to classify their
underlying MoC according to the scheme proposed in Section 2.

The communication aspects play a crucial role in the mapping
problem for NoCs with several cores, so the designers use MoCs mainly
to model communication behavior instead of modeling the processing.
Consequently, almost all MoCs presented in this section contain
communication aspects, and Cq is the most used model. Additionally,
just a half part of models contains processing aspects. Table 1 explains
eight classes of MoCs used on the related works.

Table 2 summarizes requirements, communication architecture,
MoC name and type of related works.

It displays the following evidences: (i) MAP (i.e., mapping type)
shows that the majority of works focus on static (ST) mapping.
However, there is a balance between dynamic (DY) and static mapping
in recent years; (ii) Design requirements displays that energy reduction
is the most explored requirement, followed by timing/latency reduc-
tion. Only few works do not focus on one of these requirements; and
(iii) practically all communication architectures are NoC mesh or at
least regular tile-based NoCs. Additionally, column MoC name (type)
shows the name of the MoC used in the related work associated with
our classification scheme.

4. Problem formulation

This section formalizes and exemplifies the five most cited MoCs
and communication architecture of Section 3, as well as the energy and
timing models for further discussions. There are some possible
variations inside each class of MoC. However, this work addresses
only the core-mapping problem; nonetheless, one may apply analogous
definitions to the task-mapping problem.

4.1. MoCs definitions

Definition 1. Communication Quantity (Cq) model is a directed
graph < C, W > . Let C ={c1, c2…, cn} be the set of vertices or
application cores, and wij ∈ ℕ* be the number of bits of all packets
sent from a core ci to a core cj, then W is {(ci, cj) | ci, cj ∈ C and wij ∈
ℕ*}, the set of edges. Each edge is labeled with the value wij, which
denotes the quantity of bits of all communications between application
cores. Cq is a homogeneous MoC based on communication aspects of
the application, i.e., on the quantity of bits exchanged between
application cores.

Aiming to show a possible variation of a given MoC, Definition 2
formalizes Cqe, which extends Cq through aggregating traffic pattern
evaluation.

Definition 2. Cqe extends Cq model, where the set of edges W ={(ci,
cj) | ci, cj ∈ C, wij ∈ ℕ*, fij ∈ ℕ} represents all communications
containing both, the amount of bits of all packets sent from core ci to
core cj (wij) and the number of bit transitions occurred during the
transmission of all packets from ci to core cj (fij).

Definition 3. Communication Quantity and Ordering (Cqo) model is
a list of message sets. Let wijq ∈ ℕ* be the number of bits of the q-th
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message sent from core ci to a core cj. Thenmq =(ci, cj, wijq) | ci, cj ∈ C
is the q-th message from core ci to core cj with wijq bits. Let M ={mq |
q ∈ ℕ*} be the set of all messages between application cores and δ be a
subset of M. Thus, Cqo ={T={(ti, δk) | δk ‡∅, ti ∈ ℕ*, i ∈ ℕ and 1≤k≤q}
∪ {Start =(0, ∅), End =(∝, ∅)}} represents an ordered list of message
sets, such that t is a time tag that marks the start time of the message
m. Two special vertices (Start and End) indicate the beginning and the
end of the application. Start and End are 2-tuples, and (tr, ts) with r ‡s
implying tr < ts is the set ordering. Cqo is a discrete event model [6]
that is classified as a homogeneous and composed model based on the
communication aspects of the application, more specifically quantity
and total order together.

Definition 4. Communication Quantity and Dependence (Cqd)
model is an acyclic directed graph < P, D > . The set P of vertices
contains all packets exchanged between each pair of communicating
cores. D is a set of edges containing all dependences of communication.
The elements of the set P are 3-tuples in the form pijq =(ci, cj, wijq),
where ci and cj ∈ C, and wijq ∈ ℕ* is the number of bits transmitted
from core ci to core cj into the q-th packet pijq with q ∈ ℕ*.
Additionally, Pij is the set of all packets sent from core ci to core cj.
Cqd represents the communication of an application composed of an
arbitrary number of cores. The direction of the edges in this graph
indicates that the destination vertex computation depends on the
communication provided by the origin vertex. In other words, the
destination vertex presents a communication dependence regarding
the origin vertex.

Definition 5. The Communication Quantity and Dependence, and
Processing Quantity (CqdPq) improves Cqd by aggregating processing
quantities. The sets of vertices and edges (P and D) are equivalent to
the ones of Cqd – Definition 4. However, elements of P on CqdPq are 4-
tuples in the form pijq =(ci, cj, tiq, wijq), where only ci, cj and wijq are
the same of Cqd, and tiq ∈ ℕ* is the computation time elapsed, since all

vertex dependences are solved until this vertex transmits its
communication.

Fig. 2 shows a synthetic concurrent application, described with MPI
(Message Passing Interface) primitives, which is distributed into four
cores {A, B, E, F}..

Fig. 3 illustrates how the five MoCs defined in this section model the
synthetic application of Fig. 2..

Fig. 3(a) shows the Cq, where C ={A, B, E, F}, and the edge labels
are wAB=15, wAF=15, wBF=40, wEA=35, wFB=15. Fig. 3(b) displays the
Cqe, where the edge labels are (wAB, fAB)=(15, 8), (wAF, fAF)=(15, 0),
(wBF, fBF)=(40, 20), (wEA, fEA)=(35, 15), (wFB, fFB)=(15, 10). Fig. 3(c)
shows a possible Cqo for the application, where the set of messages is
M={m1=(A, B, 15), m2=(E, A, 20), m3=(B, F, 40), m4=(A, F, 15),
m5=(E, A, 15), m6=(F, B, 15)}, which is partitioned in subsets δ1={m1,
m2}, δ2={m3}, δ3={m4}, δ4={m5, m6}. Then, T={(10, δ1), (20, δ2), (60,
δ3), (90, δ4)}. Fig. 3(d) depicts Cqd modeling the application, where
P={pBF1=(B, F, 40), pAB2=(A, B, 15), pEA3=(E, A, 20), pAF4=(A, F, 15),
pFB5=(F, B, 15), pEA6=(E, A, 15)}, and D={(Start, pBF1, pAB2, pEA3),
(pBF1, pAF4), (pAB2, pAF4), (pEA3, pAF4, pEA6), (pAF4, pFB5, pEA6), (pFB5,
End), (pEA6, End)}. Fig. 3(e) illustrates CqdPq modeling the applica-
tion, where P={pBF1=(B, F, 20, 40), pAB2=(A, B, 10, 15), pEA3=(E, A, 10,
20), pAF4=(A, F, 6, 15), pFB5=(F, B, 8, 15), pEA6=(E, A, 8, 15)}, and D is
the same of Cqd.

In this section, all defined MoCs can capture bits traffic, which is
one of the most important elements that contribute to the NoC
dynamic energy consumption. However, models that capture bits
transition and bits volume separately can perform better estimations,
which is the case of Cqe. The total time spent by the application
execution also affects the dynamic energy consumption, increasing the
importance of models that capture this information, for instance, Cqo
and CqdPq.

Among the models previously defined, only Cqd, Cqo, and CqdPq
can estimate the application execution time. However, Cqd is appro-
priate for modeling I/O bounded applications since these applications
are continuously transmitting packets and the processor time is less
relevant to predict packets contention. On the other hand, Cqo may
produce mappings that avoid packets contention for CPU bounded
applications, since the communication is largely spaced and errors,
inserted by a false total order provided by the model, do not affect the
estimation results. Finally, CqdPq is suitable for any application
because this model enables to predict packets contention independent
of communicating and processing features.

4.2. Communication architecture definition

Mapping approaches are useful for all communication architectures
where the cores/tasks position may affect the overall performance.
However, this paper explores the generic model of 2D-mesh NoC with

Fig. 1. Examples of some compositions of MoCs for application on mapping problems.

Table 1
Summary of MoCs used on mapping problem.

MoC MoC explanation

Cq Untimed model capturing only communication quantity of application,
i.e., number of bits transmitted between tasks/cores

Cqo Discrete event model improving Cq by capturing communication
instants, i.e., each packet has a time tag performing total ordering

Cqd Message dependence model capturing the quantity of communication
and partial order of messages

Pqd Processing dependence model that captures the deadlines of tasks
CqPq Untimed model capturing communication and processing quantities
CqPqd Improvement of Pqd by the capture of communication quantity
CqdPq Improvement of Cqd, since it also captures some computation aspects
CqoPqo Timed model that improves Cqo by capturing processing ordering
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XY routing algorithm and wormhole control flow as target architecture.

Definition 6. A Communication Resource Graph (CRG) is a directed
graph CRG = < Γ, L > , where the vertex set Γ ={τ1, τ2,…, τn} is the set
of tiles, and the edge set L ={(τi, τj),∀τi, τj ∈ Γ} gives the set of links
from τi to τj. | Γ | is the total number of tiles. CRG vertices and edges
represent routers and physical links of the NoC, respectively. The CRG
definition is equivalent to several target architectures definitions, e.g.,
the NoC topology graph [8,9] and architecture characterization graph
[10]. Fig. 4 depicts Definition 6 using a synthetic application with four
cores arbitrarily mapped onto a CRG..

4.3. Energy consumption and timing models

Dynamic energy consumption is proportional to switching activity,
arising from packets moving across the NoC, dissipating energy on the
links and on the circuits and buffers of each router. Moreover, circuits
for monitoring incoming packets also consume dynamic energy even
when the router is in the idle state. This last parcel is named idle
energy to distinguish both dynamic energies. Leakage current origi-
nates the static energy consumption that is proportional to the
application execution time and the number of transistors. Normally,
static energy is responsible for the smallest part of the energy
consumption; however, for deep-submicron technologies, the designer
cannot neglect the leakage current effect.

Table 2
Related work and their underlying MoC classification.

Work MAP Design requirements NoC MoC name (type)

[8,9] ST Bandwidth minimization Mesh, torus Core graph (Cq)
[10] ST Energy and time reduction Mesh CTG (CqPqd)
[11]; [9] ST Energy, area and time reduction Clos, torus, mesh Core graph (Cq)
[12] ST Energy saving and bandwidth reservation Mesh APCG (Cq)
[13] ST Energy and time reduction Mesh CWM, CDM (Cq, Cqd)
[14] ST Energy and time reduction Mesh CDM, CDCM (Cqd, CqdPq)
[13] ST Energy and latency reduction Mesh, torus, fat-tree ACP (Cqo)
[15] ST Energy saving Mesh ECWM (Cq)
[16]; [17]; [18] ST Energy and area reduction Mesh, torus Core graph (Cq)
[19] ST Hops minimization and thermal balance Mesh APCG (Cq)
[20] ST Energy and area reduction, QoS Ad hoc Multigraph (Cq)
[21] ST Energy saving Mesh Task graph (Pqd)
[22] DY Energy and time minimization Mesh ACG (CqPq)
[23] ST Energy saving Mesh WCTG (Cq)
[24] DY Energy, channel occupation, latency reduction Mesh CDCM (CqdPq)
[25] ST Energy reduction Regular tile MACTG (CqPqd)
[26] DY Energy and congestion reduction Mesh CTG (CqPqd)
[27] ST Energy saving Regular tile ACG (CqdPq)
[28] ST Latency minimization and throughput increase Mesh Task graph (Cq)
[29] ST Energy and latency reduction Mesh ACG (CqPq)
[30] ST Energy saving Mesh Task graph (CqPqd)
[31] DY Load balance and comm. overhead reduction Mesh ATG (CqoPqo)
[32] DY Hotspot avoidance, uniform energy consumption Mesh CTG (Pqd)
[33] ST Hops minimization Mesh TFG (Cqo)
[34] DY Energy and time saving Mesh ATG (Cqd)
[35] ST Energy and latency reduction Ad hoc Core graph (Cq)
[36] DY, ST Time saving and real-time constraints fulfilling Abstract model KPN (CqoPqo)
[37] DY, ST Energy efficiency Mesh ACG (Cq)
[38] DY Time and energy saving Mesh DAG (Cqd)
[39] DY, ST Energy saving, load balancing Mesh TCG (Cq)
[4] DY Time saving Mesh ATG (CqdPq)
[40] ST Time and energy saving, and reliability Abstract model APCG (Cq)
[41] DY Time and energy saving Mesh App. Graph (CqdPq)
[42] DY, ST Load balance, time and energy saving Mesh CWM (Cq)
[43] ST insertion loss and crosstalk noise minimization Mesh, torus CG (Cq)
[44] ST Energy efficiency, thermal hotspot avoidance 3D mesh Core graph (CqdPq)

Fig. 2. Synthetic application with {A, B, E, F} cores. Each core shows a comment of processing time and subsequent actions of send/receive. The cores operation is supposed to occur in
parallel, with synchronizing activities defined by send/receive MPI directives.
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This work computes the dynamic energy similarly to [45], but some
concepts are extended to consider static energy consumption and the
idle energy consumed by a router. The concept of bit energy Ebit is
used to estimate the dynamic energy consumption for each bit of each
packet. Two components split Ebit: bit dynamic energy dissipated on
the router and link between a router and the local core (ERbit); and bit
dynamic energy dissipated on links between tiles (ELbit) considering
regular mesh NoCs with square tiles.

Eq. (1) computes the dynamic energy consumed by a single bit
traversing the NoC, from tile τi to tile τj, where η is the number of
routers through which the bit passes. Let (xi, yi) and (xj, yj) be the
coordinates of tiles τi and τj, respectively, then η=(|xj - xi| +|yj - yi| +1)
is the number of routers of a given communication.

Ebit η ERbit η ELbit= × + ( − 1) ×h (1)

Let τi and τj be the tiles to which core ca and core cb are
respectively mapped, represented by the tuple (ca→τi, cb→τj). Thus,
for the Cq (Definition 1), Eq. (2) is the dynamic energy consumed by
communication. Furthermore, let Č be the set of all communicating
pairs, then Eq. (3) expresses the total amount of NoC dynamic energy
consumption (EdNoC) for Cq, computing the energy for all bits of all
NoC communications.

Ep w Ebit= ×abη Cq ab η( ) (2)

∑ ∑EdNoC Ep a b Č= ∀ → ∈Cq
a

C

b

C

abη( )
= 1

| |

= 1

| |

(Cq)
(3)

Cqe (Definition 2) considers not only bit quantity but also considers
the bit flips, which implies to extend Eq. (1) by separating the energy

consumed by consecutive bits that flip (Ebitη
F) or not flip (Ebitη

N).
Therefore, when using Cqe, Eq. (4) is the dynamic energy consumed by
a ca→cb communication (Epabη), and Eq. (5) expresses EdNoC.

Ep f Ebit w Ebit= ( × ) + ( × )abη Cqe ab η
F

ab η
N

( ) (4)

∑ ∑EdNoC Ep a b Č= * ∀ → ∈Cqe
a

C

b

C

abη Cq( )
= 1

| |

= 1

| |

( )
(5)

Regarding the model Cqo, Eq. (6) computes the dynamic energy
consumed by the qth packet of a ca→cb communication (Epabqη), and
Eq. (7) gives the total amount of dynamic energy consumed on NoC
operation (EdNoC), which takes into account the summation of all set
of packets δt transmitted during the instant t.

Ep w Ebit= ×abqη abq η (6)

∑ ∑EdNoC Ep a b Č= ∀ → ∈Cqo
t

T

q

δ

abqη( )
= 1

| |

= 1

| |t

(7)

The models Cqd and CqdPq (Definitions 4 and 5) employ the same
of Eq. (6) to compute the dynamic energy consumed by the qthpacket
of a ca→cb communication. Eq. (8) computes the EdNoC for both
models. The innermost summation implements the quantity of packets
transmitted for each pair of communicating cores.

∑ ∑ ∑EdNoC Ep a b Č= ∀ → ∈Cqd CqdPq
a

C

b

C

q

P

abqη( , )
= 1

| |

= 1

| |

= 1

| |

(8)

Every router dissipates static and dynamic power (PiRouter) even
in idle state. Let |Γ | be the number of tiles, each one containing a

Fig. 3. MoCs based on the synthetic application of Fig. 2.

Fig. 4. Example of a 2×2 mesh NoC with an arbitrary mapping.
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single router. Thus, Eq. (9) computes static and idle power dissipation
of a NoC (PiNoC).

PiNoC Γ PiRouter= | | × (9)

Fig. 5 exemplify the router energy consumption on idle and traffic
periods. For energy calculation, EiNoC is used as a minimum offset of
energy consumed during the entire application execution time, instead
of only the period when the router is idle. Thus, EdNoC computes only
the increase of dynamic energy consumption caused by the traffic
instead of the absolute value of energy consumption..

The routing delay and the packet delay compose the total packet
delay of the wormhole routing algorithm. The routing delay is the time
spent to create the communication path that is determined during the
traffic of the packet header. The packet delay depends on the number of
the remaining flits. Let nabq be the number of flits of the q-th packet
from core ca to core cb, which is obtained through the division of wabq

by the link width. Let λ be the clock cycle, and let tr be the number of
cycles needed for taking a routing decision, which is normally
dependent on the arbitration mechanism. Furthermore, let tl be the
number of cycles to transmit a flit through a link. The routing delay
(dRηq) and the packet delay (dPηq) of the qth packet from τi to τj, are
represented in Eqs. (10) and (11), considering that a packet goes
through η routers without contention.

d η t t t λ= ( × ( + ) + ) ×Rηq r l l (10)

d t n λ a b Č= ( × ( − 1)) × | → ∈Pηq l abq (11)

Eq. (12) is the total packet delay (dηq) obtained from the sum of
dRηq and dPηq.

d η t t t n λ a b Č= ( × ( + ) + × ) × | → ∈ηq r l l abq (12)

Cq and Cqe may only estimate the application execution time
(texec) as a minimum time spent on cores communication, which is
achieved considering nabq containing all flits transmitted from core ca
to core cb in Eq. (12). Then, texec is equal to the greatest dηq of all
cores communications. The model Cqo enables to estimate texec by the
time tag of the last set of packets (t|T|) added to the dη of the latest
packet. The computation of all dηq of all messages enables to obtain the
texec of Cqd. Finally, CqdPq improves the texec estimated with Cqd by
computing all tiq.

Eq. (13) computes EiNoC, which represents the static and idle
energy consumption of a NoC during texec.

EiNoC PiNoC texec= × (13)

Finally, Eq. (14) expresses the overall energy consumption on the
NoC (ENoC) for all defined MoCs.

ENoC EdNoC EiNoC= + (14)

Since Cq, Cqe and Cqd do not carry processing time information,
which is normally the most significant portion of time that composes
texec; these models enable to compute only the EiNoC originated from
communications. Then, for many applications, the EiNoC calculated by
these models is negligible compared to EdNoC. Consequently, only Cqo

and CqdPq provide suitable EiNoC estimations.

5. MoC influence on mapping algorithm

This section evaluates the MoC influence on the mapping algo-
rithms, regarding dynamic energy and execution time minimization.
Although this section describes the core-mapping problem, the task
mapping has similar formalization.

For all MoC evaluated, two parts divide the mapping algorithms: (i)
ObjFn is the internal part representing the mapping objective that is an
algorithm dependent on the target architecture and MoC; and (ii) an
external part that encloses ObjFn, which is an algorithm independent
of the application and the target architecture (e.g., Simulated
Annealing). Since the external part is not the focus here, the imple-
mentation of these algorithms is not discussed.

Although this work addresses the minimization of dynamic energy
consumption and execution time, the ObjFn is simplified using only the
total energy consumption, as in Eq. (14). Two parcels that represent
such requirements compose this equation: (i) the dynamic energy
consumption of the NoC - Eqs. (3), (5), (7) and (8); and (ii) the static
and idle energy consumption that is associated to the application
execution time – Eq. (13). Two parts split ObjFn: (i) a MoC dependent
algorithm and (ii) a target architecture dependent algorithm, called
NoCAlg. This disjoint implementation aims to simplify the under-
standing of each algorithmic problem.

5.1. Objective functions of Cq and Cqe

Fig. 6 describes the pseudo-code of Cq_ObjFn that is the objective
function for both, Cq and Cqe..

For each mapping, both objective functions start setting the
variable mapCost to zero, which computes the total mapping cost of
a given application description over an arbitrary core-mapping. In fact,
the mapCost for Cq and Cqe is the dynamic energy consumption
described in Eqs. (3) and (4), respectively.

Two nested loops implement both Cq_ObjFn. The outer loop (lines
2–9) searches for source vertices and the inner loop (lines 3–8)
searches for all communications of this source vertex. Each commu-
nication is an edge of the graph representing Cq or Cqe. Source and
target vertices positions (that may change in each new mapping) and
the communication weight are input parameters for Cq_NoCAlg. This
algorithm returns the estimations of energy consumed (mc) by all
component involved in the source to target communication and the
time spent (time) to transmit all flits.

The energy consumption computed on Cq_NoCAlg is the Eqs. (2)
or (4), for Cq or Cqe, respectively. Additionally, Eq. (12) computes the
time of both MoCs with nabq equal to wab divided by the NoC flit size.

Cq_NoCAlg implies a very optimistic application execution time
(texec) by considering it as the bigger value among all communications.
Then, when the algorithm finishes the loops execution, texec is equal to
the variable appTime and Cq_EiNoC is the Eq. (13).

Cq model allows good estimations of dynamic energy consumption
since it enables computing the bits volume, which is responsible for the

Fig. 5. Example of traffic periods for NoC energy calculation.
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calculus of the main parcel of energy consumption. Besides, Cqe
enables better estimations due to the bit model detailing.

5.2. Objective function of Cqo

Fig. 7 depicts the objective function for Cqo mappings
(Cqo_ObjFn), which starts each mapping setting to zero the total
mapping cost (mapCost). In fact, mapCost is the dynamic energy
consumption described in Eq. (6). Two nested loops implement
Cqo_ObjFn. The outer one (lines 2–9) searches for the list of
communications associated to a given time stamp. The inner loop
(lines 3–8) searches for all communications of the searched time stamp
(n.timeTag). Time stamps, as well as, m with source and target
vertices places and the communication weight are input parameters for
the Cqo_NoCAlg..

Fig. 8 shows Cqo_NoCAlg that is the target architecture dependent
algorithm for Cqo. Cqo_NoCAlg returns commCost and t, which are
the packet communication cost based on the energy costs of each NoC
component and the time when the packet reaches the target core,
respectively. The first loop (lines 3–6) computes the packet traffic from
the X position of source core (m.xSource) to the X position of target
core (m.xTarget). The second loop (lines 7–10) computes the
remaining communication, i.e., the packet traffic from the Y position
of source core (m.ySource) to the Y position of target core
(m.yTarget)..

ResourceCost function computes the energy consumed by links and

routers where the packet passes through, which receives as parameters:
(i) the resource current position (x, y), (ii) the communication contain-
ing source and target cores (m), (iii) the related communication weight
(inside of m variable), and (iv) the time tag (t). The algorithm adds
each energy cost to commCost, returning the sum of all costs to
Cqo_ObjFn, aiming to compute the mapCost, and commCost is the
Epabqη value of Eq. (6). Further, since Cqo_NoCAlg returns the time t
of a message, the greatest t among all messages of Cqo_ObjFn
(computed in lines 6–7 of Fig. 7) is the application execution time
(texec), and Cqo_EiNoC is the Eq. (13).

Finally, Cqo_ObjFn allows good estimations of dynamic energy
consumption since it enables computing the bits traffic. Moreover,
Cqo_NoCAlg can reasonably describe texec, enabling to estimate
EiNoC.

5.3. Objective function of Cqd

The objective function of Cqd (Cqd_ObjFn) takes into account
applications represented by the weight and by the dependence of the
communication. The dependence knowledge allows estimating packet
contentions of independent messages that concur for the same com-
munication resource at the same time. This work employs an auxiliary
structure called Communication Dependence List (CDL), which is a list
of lists representing levels of dependences among messages to achieve
an efficient manipulation of messages dependencies. Vertices on the
same level in CDL are independent and may depend only on vertices of
lower levels.

CDL is produced by applying to Cqd an algorithm similar to ASAP
scheduling [46] with following rules: (i) all messages scheduling
happens as soon as their dependences are solved; (ii) all independent
messages that are scheduled at the same time perform a dependence
level and are placed on the same list. Additionally, there is no messages
order inside a given dependence level; (iii) to each message is
associated a list of all messages that this one is dependent. For
instance, the dpList of pAF4 is {pBF1, pAB2, pEA3}; (iv) each new
dependence level is associated to the previous dependence levels by an
ordered list; (v) the algorithm finishes when all Cqd paths reach End
vertex. CDL enables to minimize Cqd_ObjFn complexity and speed up
the algorithm performance.

Fig. 9 displays the synthetic example of Cqd shown in Fig. 3(d) and
its corresponding CDL..

Fig. 10 describes two nested loops that implement Cqd_ObjFn. The
outer one (lines 2–10) searches for the list of CDL levels, starting from
Level_1 vertex until reach null. The inner loop (lines 3–9) searches for
all messages of a given level, starting from the vertex pointed by pList
until reach null. Each loop iteration calls SearchForStartTime and then
Cqd_NoCAlg functions. SearchForStartTime computes the initial time
(ti) of m, searching, within the list of dependent messages, the highest
message delivery time that occurs when the last flit of all dependent
messages reaches its target core. Cqd_NoCAlg returns the mapping
cost (mc) of the message m and its final time (tf) that are used to
compute EdNoC (mapCost) and EiNoC (Cqd_EiNoC)..

Fig. 6. Pseudo-code of Cq and Cqe objective functions.

Fig. 7. Pseudo-code of Cqo objective function.

Fig. 8. Pseudo-code of Cqo NoC algorithm.
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Fig. 11 depicts Cqd_NoCAlg algorithm that uses the information of
parameter m (i.e., the message communication weight, the source and
target vertices and a list of messages that m is dependent) to estimate

possible packet contentions. Dependent packets never concur for the
same resource. On the other hand, independent packets with the same
dependence level are candidates to concur for some resources at the
same time. The algorithm tries to avoid mappings where independent
packets concur for NoC resources increasing the mapCost..

Cqd_NoCAlg works pessimistically, i.e., if two or more packets can
concur for the same resource at the same time, the algorithm considers
that concurrences will happen. ResourceCost function implements this
functionality according to the resource position (x, y), the start time of
using the resource and the message (m), and returns the energy
consumed (ec) and the time augmented by the resource delay.
Cqd_NoCAlg starts clearing the dynamic energy consumption
(commCost). The ResourceCost annotates the time of a message in
all resources that it passes. Thus, the last resource is annotated with
last instant of time that the message is inside the NoC; and the
algorithm attributes time to the greatest message delivery time
(m.endTime).

Fig. 12 shows the operation of ResourceCost function with the same
example of Fig. 9, taking into account an arbitrary mapping {(A→τ1,
B→τ2, E→τ3, F→τ4)}..

Each router and each link contains a list of incoming packets with
the corresponding start and ending time (in clock cycles). The example
considers tr =tl =1 clock cycle, and 1 bit-length of flit; thus Eq. (12)
may be rewrote by (2×(|xj - xi| +|yj - yi|) +2+wabq) to compute the
entire packet delay without contentions. For instance, the total packet's
delay for pBF1 is 44 clock cycles (2×(|1-1|+|1-0|)+2+40).

The transmission of each packet starts as soon as all its depen-
dences are solved. For example, pAF4 depends on pBF1, pAB2 and
pEA3 that have as endTime, 44, 19 and 24, respectively. Thus, the
transmission of pAF4 starts in cycle 45. In addition, when two or more
packets concur for the same resource at the same time, the algorithm
annotates the first scheduled packet without considering contentions,

Fig. 9. The Cqd synthetic example of Fig. 3(d) and the matching CDL. In CDL, the dotted arrows and ellipses represent the list of dependence levels; Continuous arrows and circles
represent lists of messages of the same level; Continuous circle messages depend on the lists of messages represented by dashed arrows and ellipses.

Fig. 10. Pseudo-code of Cqd objective function.

Fig. 11. Pseudo-code of Cqd NoC algorithm.

Fig. 12. An arbitrary mapping for the application described in Fig. 9 and the corresponding ResourceCost taking into account the Cqd model.
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and the time of the scheduled packet postpones subsequent packets.
Cqd_ObjFn is not appropriated to compute texec since Cqd does

not take into account the processing time, but only communication
time, and consequently texec is underestimated. On the other hand,
Cqd enables to avoid contentions, reducing the dynamic energy
consumption, mainly by the reduction of buffers occupation.

5.4. Objective function of CqdPq

The objective function of CqdPq (CqdPq_ObjFn) improves
Cqd_ObjFn by exploring the processing time knowledge to estimate
the intervals that packets are occupying the NoC. Similar to the
Cqd_ObjFn approach, this algorithm starts with CDL, but inside each
level, it orders all messages according to their processing time. Fig. 13
describes the two nested loops that implement CqdPq_ObjFn..

The outer loop in Fig. 13 (lines 2–11) searches for the list of
messages of CDL, starting from Level_1 vertex until reach null. The
inner loop (lines 4–10) starts reordering messages inside the level
using CDL_Reordering algorithm and then searches for all messages of
a given level, starting from the vertex pointed by pList until reach null.
Each loop iterations calls the algorithm that returns the mapping cost
used to compute EdNoC, and the end time of the message, which is
used to compute EiNoC.

CqdPq provides the processing time that precedes each message.
This information allows the CDL_Reordering to reorder messages
producing reliable time estimations. The message reordering is per-
formed considering the time that their dependences are solved added
with the processing time that precedes the transmission of the
message. Although the parameter m of the model CqdPq carries more
information than the equivalent one of Cqd, CqdPq_NoCAlg is
practically the same of Cqd_NoCAlg. Thus, its implementation was
omitted.

Fig. 14 shows the same example of Fig. 12 with the same input
parameters, aiming to compare the implementations of ResourceCost
of models Cqd and CqdPq..

CqdPq_ObjFn improves Cqd_ObjFn, because it considers compu-
tation time, eliminating the pessimistic evaluation. Hence,
CqdPq_ObjFn enables to find better mappings, due to the accurate
knowledge of packet contention that could imply larger texec and
increases EiNoC, which is computed by CqdPq_EiNoC(appTime).

5.5. Analysis of timing complexity of MoCs

Two nested loops performing |C| iterations implement the
Cq_ObjFn function; thus, the time complexity of Cq_ObjFn is O(| C
|2). However, practical examples show that few cores comprise the
inner loop, reducing the algorithm execution time and justifying its
good performance in experimental results. Additionally, since all
messages exchanged by the same pairs of cores are computed into
single communications, this algorithm is not susceptible to the varia-
tion of the quantity of messages, but only to the quantity of commu-
nicating cores.

Two nested loops implement the Cqo_ObjFn function, where the
outer one is dependent on (| T |) and the inner one is dependent on the
number of messages dispatched by time tag event. Nevertheless, the
quantity of iterations caused by the execution of both loops is exactly
the total quantity of the application's messages; thus, the time
complexity for Cqo_ObjFn is O(| M |). Hence, the algorithm is
indirectly susceptible to the application execution time, since the more
time the application is executed, the more messages are dispatched.

The Cqd_ObjFn function involves two nested loops that search
messages within each level of CDL. This search implies exactly | M |
iterations since it corresponds to the total quantity of the application's
messages. Additionally, each one of these iterations calls the
SearchForStartTime function, which searches for each message up to
| M | −1 dependent messages. The inclusion of SearchForStartTime
into the inner loop implies that the time complexity of Cqd_ObjFn is
O(| M |2), showing that the objective functions above analyzed are
much less complex. Even so, real applications show that any message is
directly dependent on a few other messages, which reduces this
complexity.

Regarding only timing complexity aspects, the CqdPq_ObjFn func-
tion differs from Cqd_ObjFn on the outer loop that includes the
CDL_Reordering function. Although the complexity of
CDL_Reordering is O(| M |), the time complexity of CqdPq_ObjFn is
O(| M |2), because the joint execution of the nested loops implies
exactly | M | iterations, and the CqdPq_ObjFn function never reaches
the complexity O(| M |3).

6. Experimental results

The following four subsections compose this section: (i) the
acquisition of input applications; (ii) the evaluation of the achieved
mappings quality; (iii) the electrical calibration of the mapping tool;
and (iv) the achieved results.

Fig. 13. Pseudo-code of CqdPq objective function.

Fig. 14. Arbitrary mapping of application shown in Fig. 9 and a corresponding ResourceCost operation taking into account the CqdPq model.
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6.1. Generation of synthetic applications

Fig. 15 shows GraphGen (a customizable generator graph available
at CAFES framework [47] with a set of input parameters, which allow
modeling application classes that are used as input of simulation
experiments. The GraphGen parameterization is probabilistically de-
fined according to a normal distribution. For example, to set the traffic
injection rate of each core, the designer provides the mean, the
standard deviation, the maximum and minimum quantities, and then
the GraphGen creates probabilistic traffic injections. The core traffic
distribution is the same for all MoCs to characterize the same synthetic
application..

6.2. Embedded applications modeling

The experiments also encompass four embedded applications:
(PBX) a digital privative branch exchange; (MMS) a multimedia
system; (RBG) a distributed algorithm for Romberg integral calculus;
(IRS) a parallel system for object recognition through image segmenta-
tion. The following features characterize the embedded applications:
the application algorithm description (Appl), the target architecture
(Arch), and the input traffic pattern (InTr). Table 3 groups these
features into four sets, according to the next dependences: (i) number
of tasks (Appl dependence); (ii) the number of cores and tile area (Arch
and Appl dependences); (iii) bit flips (InTr dependence); and (iv)
number of communication channels, communication quantity average,
and traffic injection rate (Appl, Arch and InTr dependences). For
instance, the number of communication channels is dependent on: (i)
Appl, since the application algorithm contains channels implemented
by send/receive functions; (ii) Arch, since the tasks grouping into the
same core do not perform communications through NoC channels; and
(iii) InTr, since a given logical condition of the application algorithm
enable (or not) to send or receive a message.

Having the embedded applications in C or Java, a set of tools
provided by CAFES enables to model the application following a set of
steps shown in Fig. 16..

The application algorithm provides the number of parallel tasks,
and the designer chose the number of cores to fulfill the computation

requirements through tasks partitioning. The number of communica-
tion channels is attained after grouping tasks (for future task-core
mapping), since communicating tasks that are not grouped require a
physical path to implement the communication channel inside the
network.

Application modeling starts manually by inserting the API func-
tions (step 1), defined in the ModGen (Model Generator) package of
CAFES [47], into the application code, which enables to describe the
application behavior according to the selected MoC. For example, Cq
requires only computing the number of bits transmitted between cores.
Thus, the designer has only to link the API functions to send/receive
commands, informing the source and target cores, and the number of
transmitted bits. The API links counters and timers to each send/
receive, which enables to achieve the bit flip percentage, the average
communication quantity, and the traffic injection rate during the
application execution.

The second step is the application simulation, where the ModGen
receives an embedded application and generates output files containing
the application described according to the MoC. ModGen automatically
generates output files containing the Cq, Cqe and Cqo application
models. However, CqdPq and Cqd extraction requires an extra task to
attain the partial dependence of each communication.

Fig. 16 shows a dashed arrow that represents manual dependence
extraction. Additionally, the ModConv tool can automatically extract
Cqd having CqdPq as input model (step 3).

6.3. Electrical parameters and mapping calibration

The Mapper was calibrated to simulate the communication beha-
vior, and energy consumption of Hermes mesh NoC [48], with XY
deterministic routing, wormhole, 16-bit flits, 4-depth input buffer,
credit-based flow control and FIFO arbitration policy for input packet
selection. The following scenarios were applied: (i) idle scenario –

composed by only periods where the NoC has been idle, without
receiving any communication; and (ii) traffic scenario – consisting of
time intervals where NoC received several sets of synthetic traffic, with
controlled bit flip variations. The idle scenario extracts the parameter
PiNoC, which was obtained as an average power dissipation of one
router. The traffic scenario allows calculating the energy consumption
increases against the traffic injection load and the traffic pattern. The
influence of injection rate, packet size, and bits flip enables to estimate
the ERbit, ELbit, ERbitF, ERbitN, ELbitF and ELbitN.

Mapper tool calibration considers electrical and timing parameters,
which are influenced by the credit-based flow control and the arbitra-
tion policy. The credit-based flow control takes tl =1 clock cycle,
whereas the policy of router arbitration takes tr =3 clock cycles, on
average.

Having as target architecture a 3×3 NoC mesh with 10 mm×10 mm
square tiles, which was synthesized to 65 nm CMOS technology with
1.0 V and 1 GHz of operation frequency, Cadence RTL Compiler
allowed to estimate the following electrical parameters: ERbit
=1.35pJ, ELbit =0.43pJ, ERbitF =1.63pJ, ERbitN =0.57pJ, ELbitF

=0.57pJ, ELbitN =0.02pJ and PiNoC =0.53 mW. Note that these
parameters, although they have been calibrated for a 3×3 NoC, they
are replicable for any NoC size since the electrical features of the router
and tile characteristics are maintained.

Fig. 15. GraphGen tool for synthetic application generation.

Table 3
Description of four embedded applications.

Features PBX MMS RBG IRS

(i) Appl Number of tasks 24 34 180 48

(ii) Arch
Appl

Number of cores 5 16 55 24
Tile area (mm2) – square
format

100 25 16 9

(iii) InTr Bit flip (on average) 20.3% 47.8% 41.6% 3.8%

(iv) Appl
Arch
InTr

Number of communication
channels

12 28 110 134

Average communication
quantity (bytes)

2334 22,135 35 30,827

Traffic injection rate (on
average)

2.7% 10.2% 31.2% 25.7%

Legend: Appl – representing a feature dependent on the application.
Arch – representing a feature dependent on the target architecture.
InTr – representing a feature dependent on the input traffic.

C. Marcon et al. Microelectronics Journal 60 (2017) 129–143

138



6.4. Method applied on mapping results evaluation

The Mapper tool carries out the mapping quality assessment by
entering the MoC, the NoC size and the electrical parameters specifying
the NoC technology (Fig. 17). The tool performs each MoC mapping
algorithm returning the mapping cost (i.e., energy consumption) and
the cores placement that minimizes this cost..

The results are presented using amapping reference to evaluate the
MoCs potentialities and limitations. The algorithms that derive refer-
ence mappings are equal to those used for obtaining best mappings.
They differ only in the cost function related to the external algorithm,
which is inverted to obtain mappings that maximize the energy
consumption. Thus, for each experiment, the mapping reference
presents the highest mapping cost found.

6.5. Mapping results evaluation

All experiments show comparisons of Cq, Cqe, Cqo, Cqd and CqdPq
models on static and dynamic energy consumption minimization for
several synthetic and some embedded applications.

The experiments explore three parameters: (i) NoC size indicating
the number of application cores and the number of communication
paths; (ii) application connectivity degree implying the communication
channels quantity among application cores. Given that 0% of con-
nectivity means no communication and 100% of connectivity means

that all cores send messages to all others; and (iii) traffic injection rate
that is the average of traffic injection of all cores, which is an indicative
if an application is I/O or CPU bounded. For all next graphics of all
experiments, the value of each point represents an average of energy
consumption (i.e., dynamic, static and idle) of all applications. Values
are presented as a percentage of the difference between a reference
value (refer to Section 6.4) and the calculated average.

Fig. 18 and Fig. 19 show the first set of experiments, exploring the
influence of NoC size for the MoCs on energy consumption. The
GraphGen produces synthetic applications having on average 15% of
connectivity, 10% of injection rate, and traffic pattern modeled to
perform 50% of bit flips (e.g., 11001100110011001100). Experiments
used as target architecture the following NoCs: 3×4 (12 tiles), 5×6 (30
tiles), 8×8 (64 tiles), 10×10 (100 tiles) and 12×12 (144 tiles)...

Fig. 18 shows that Cqe is the MoC that most save dynamic energy
consumption for all NoC sizes, which is justified by the high degree of
bit flips that is captured by this model only. The communication
dependence is also important because it avoids the contention of
packets enabling to minimize the use of buffers. This aspect is observed
on the results of Cqd and CqdPq, when both are compared with Cqo
and Cq.

Fig. 19 shows how the MoCs capture the influence of NoC size on
minimization of static and idle energy consumption. Only Cqo and
CqdPq can capture core computation time with accuracy, and hence,
better estimation of static and idle energy consumption. Due to
contentions avoidance, Cqd minimizes runtime allowing slightly static
and idle energy consumption reduction. Finally, Cq and Cqe are
inappropriate to fulfill this requirement.

For all mappings algorithms, the first set of experiments points out
that the more NoC size increases, the less energy saving is achieved.
However, it happens due to the external mapping algorithm that
minimizes its efficiency with the increase of the NoC size. Therefore,
the worst mapping obtained, which is used as a reference, is not
necessarily the worst possible mapping, and the best mapping found in
each MoC mapping exploration is not necessarily the best possible
mapping. Consequently, using CPUs with more computational power

Fig. 16. Extraction flow for embedded application modeling.

Fig. 17. Energy saving results evaluation.

Fig. 18. Influence of NoC size on dynamic energy saving.
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probably will save more energy independent of the MoC mapping
algorithm.

Fig. 20 and Fig. 21 encompass the second set of experiments that
show the results of synthetic applications with a variation on con-
nectivity degree. All experiments target 8×8 NoCs, an average injection
rate of 10% and traffic modeled to perform 50% of bit flips, on average.
This set of experiments evaluates the following connectivity degrees:
0%, 5%, 10%, 15%, 30%, 50%, 70% and 100%...

Fig. 20 demonstrates that, when connectivity degree increases, the
cores mapping has no longer high influence on minimization of
dynamic energy consumption, reducing the importance of a good
MoC choice. Additionally, 0% of connectivity implies no communica-
tion and consequently no energy consumed on the communication
architecture. Furthermore, if the application has 100% of connectivity
and for all communication the same volume of communication and
time of packet injection then, regardless of the mapping, the NoC will

Fig. 19. Influence of NoC size on static and idle energy saving.

Fig. 20. Influence of application connectivity degree on dynamic energy saving.

Fig. 21. Influence of connectivity degree on static and idle energy saving.
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consume the same energy (i.e., the cost of energy will be equal for all
mapping algorithms). On the other hand, when the application has
around 30% of connectivity degree, the mappings reach the maximum
of energy consumption reduction for all mapping algorithms, and for
applications with less than 70% of connectivity degree, the choice of
MoC implies significant minimization of dynamic energy consumption.

The bit flipping influences more the dynamic energy consumption
on the links than on the routers. This fact is most evident on the chosen
target architecture, which considers relatively long links between
routers (10 mm). Therefore, similarly to the previous experiment,
Cqe model, which capture bit flip information, provides better map-
pings. However, smaller tiles and/or smaller rates of bit flip may
significantly reduce this advantage.

Fig. 21 shows that the selection of a suitable MoC implies
significant minimization on static and idle energy consumption.
Furthermore, the mapping algorithms, whose underlying MoC carries
time information, may estimate these energies accurately and in
consequence provide a better mapping. Furthermore, for more than
30% of the application connectivity degree, the importance of an
appropriate MoC selection is reduced linearly.

Fig. 22 illustrates the third set of experiments, which explores the
effect of traffic injection rate on dynamic energy consumption reduc-
tion..

This set of experiments employs an 8×8 NoC mesh to execute
synthetic applications with 15% of connectivity degree and traffic
pattern with 50% of bit flips, on average. This set of experiments
evaluates the following traffic injection rates: 5%, 10%, 20%, 40%, 80%
and 100%. For instance, 100% of traffic injection rate is acquired when
all cores are inserting flits in all clock cycles, which represents a high I/
O bounded application. Note that for this third set of experiments are
not displayed static power consumption results or the energy con-
sumption in idle since the differences between the MoCs are insignif-
icant.

Independent of the traffic injection rate, CqdPq is the model that
more minimizes dynamic energy, since it captures accurate traffic
injection time, which enables to reduce packet contentions. In scenar-
ios of low traffic injection rate, the number of pessimistic mappings
exploited by Cqd is relatively small if compared with the number of
mappings that requires low energy consumption. This behavior allows
to the mapping algorithm to choose low energy consumption mappings
(those that approximate high communicating cores/tasks) and yet
reducing contentions. As the traffic injection rate increases, the number
of pessimistic mappings also grows concerning the possible mappings
of low energy consumption. Thus, the mapping choice tends to be less
efficient.

The time tags captured by Cqo are the instants of time of packets

transmission during the application execution, but without considering
the tasks/cores placement. Consequently, the time of packets transmis-
sion obtained after mapping can differ from the ones provided by Cqo.
For low injection rates, this effect is not significant because the
communications are sparse, implying low quantity of packets into the
NoC producing contentions. Thus, Cqo allows better mappings of CPU
bounded applications than I/O bounded applications.

The models Cq and Cqe cannot capture changes in injection rate,
and their mapping algorithms tend to produce mappings that disregard
this variation. However, Cqe enables to capture the bits flip that is one
of the most important information for dynamic energy computation,
enabling to produce better mappings than the ones produced with Cq
algorithms.

Fig. 23 illustrates the fourth set of experiments comprising four
embedded applications detailed in Table 3.

This last figure shows that applications modeled with CqdPq enable
to produce mappings that most save energy, followed by Cqo mappings,
which obtain energy results around 8% less efficient than the ones
achieved with CqdPq mappings. Cqd and Cqe enable mappings that
consume about 13% more energy than the mappings achieved with
CqdPq, on average. Finally, Cq provides mappings with the smaller
amount of energy saving (22% less efficient, on average).

Using Cqe to model MMS and RBG applications, the achieved
mappings are better than the ones achieved with Cqo. This fact occurs
due to the high bit flip rate of the input traffic and the relatively high
tile size, which increases the influence of ELbit on the calculation of
total energy consumption. However, with low modeling cost, the
number of bits flip can be added to another MoC, like CqdPq,
generating a new, and potentially more efficient, MoC. On the other
hand, due to the complexity of modeling applications with dependence
information (e.g., Cqd and CqdPq) and in counterpart the facility to
model applications with both order and quantity information (e.g.,
Cqo), we conclude that a promising MoC is achieved with the
combination of the Cqo characteristics (order) with bits flip informa-
tion (quantity).

7. Conclusions

This paper addresses discussions about mapping applications onto
NoC-based SoCs. It primarily focuses on application characteristics
aiming to provide a novel classification scheme, analyzing a compre-
hensive set of Models of Computation (MoCs) to capture applications
characteristics and to enable the mappings algorithms for selecting
efficient mappings. The experimental results indicate advantages and
limitations of each MoC, although they are dependable on factors such
as the communication architecture and some characteristics of the

Fig. 22. Influence of traffic injection rate on dynamic energy saving.
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chosen applications.
Traffic features influence on the dynamic energy consumption,

mainly due to the bit flip that implies loading and unloading of
capacitances of buffers and links. Specifically, the analysis of the
communication order enables to capture packets collision, affecting
issues mostly related to the instantaneous power dissipation, and
dynamic energy consumption on the buffers of routers.

This paper shows that the communication volume essentially
influences the dynamic energy consumption due to the time necessary
to transmit all packets through NoC resources. It also influences on the
application execution time, especially for I/O bounded applications.
Nevertheless, the processing time of each core mainly influences on the
(i) estimation of application execution time, on the (ii) static energy
consumption, and on the (iii) energy consumed by the router circuits
that operate in idle periods (i.e., periods without communication),
being even more relevant for CPU bounded applications.

This paper provided a thorough comparison of MoCs leading us to
draw some major conclusions. Firstly, models that are suitable for
reasonable energy consumption estimation are presented, since all
models capture the traffic bits volume. Related to Cq and Cqe, both are
easily extracted from the application description (e.g., extracted by
straightforward simulation techniques), and both models present low
computational complexity. The Cqe enables designers to capture, with
more precision, the dynamic energy consumption by separating bits
transition and bits volume. Related to Cqo results, it might also be
extracted from the application description aggregating time informa-
tion on each communication event, i.e., the model captures an
appropriate application execution time for CPU-bounded application.
Cqd and CqdPq models capture the communication dependence
information that enables to prevent packet contention on the commu-
nication architecture. Nonetheless, Cqd is a pessimistic model being
adequate to model I/O-bounded applications.

A model that tends to generate better mapping results may be the
one that includes the bit transitions information on CqdPq, which is a
characteristic explored in Cqe. Nevertheless, CqdPq implies commu-
nication dependence information, which is hard to model by automatic
tools and error prone task when performed manually. Finally, a
worthwhile model that may be easily captured is the one that combines
the timing knowledge of Cqo with the bit pattern knowledge of Cqe.

MoCs often exploit the axes of computing and communication only,
minimizing the importance of storage, which is implicitly modeled
within computing. However, the speed of computation and storage
changes dramatically with the emerging technologies, and the mapping
activity in NoCs needs new ways of modeling applications taking into
account memory aspects, for example, temporal locality and predict-
ability. In this context, as a future work, we plan to explore MoCs that

consider the synergy of storage, communication, and computing.
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