
IP Core to Leverage RTOS-Based Embedded Systems
Reliability to Electromagnetic Interference

D. Silva1, L.B. Poehls1, J. Semião2,3, I. C. Teixeira2,4, J.P. Teixeira2,4, M. Valdés5, J. Freijedo5, J.J. Rodríguez-Andina5, F. Vargas1
1PUCRS, Brazil

2INESC-ID Lisboa, 3Univ. of Algarve, 4IST/TUL, Portugal
5Univ. of Vigo, Spain

paulo.teixeira@ist.utl.pt, jjrdguez@uvigo.es, vargas@computer.org

Abstract— The use of Real-Time Operating Systems (RTOSs)
became an attractive solution to simplify the design of safety-
critical real-time embedded systems. Due to their stringent
constraints such as battery-powered, high-speed and low-voltage
operation, these systems are often subject to transient faults
originated from a large spectrum of noisy sources, among them,
the conducted and radiated Electromagnetic Interference (EMI).
As the major consequence, the system’s reliability degrades. In
this paper, we present a hardware-based intellectual property
(IP) core, namely RTOS-Guardian (RTOS-G) able to monitor the
RTOS’ execution in order to detect faults that corrupt the tasks’
execution flow in embedded systems based on preemptive RTOS.
Experimental results based on the Plasma microprocessor IP
core running different test programs that exploit several RTOS
resources have been developed. During test execution, the
proposed system was exposed to conducted EMI according to the
international standard IEC 61.000-4-29 for voltage dips, short
interruptions and voltage transients on the power supply lines of
electronic systems. The obtained results demonstrate that the
proposed approach is able to provide higher fault coverage and
reduced fault latency when compared to the native fault detection
mechanisms embedded in the kernel of the RTOS.

Keywords- Hardware-Based Approach, Intellectual Property
(IP) Core, Real-Time Operating System, Reliable Embedded
System, Electromagnetic Interference (EMI).

I. INTRODUCTION
Nowadays, several safety-critical embedded systems

support real-time applications, which have to respect stringent
timing constraints. In general terms, real-time systems have to
provide not only logically correct results, but temporally
correct results as well [1]. The high complexity of real-time
systems has increased the necessity to adopt Real-Time
Operating Systems (RTOSs) in order to simplify their design.
Typically, these systems exploit some important facilities
associated to RTOSs’ native intrinsic mechanisms to manage
tasks, concurrency, memory as well as interrupts. In other
words, RTOSs serve as an interface between software and
hardware.

At the same time, the environment’s always increasing
hostility caused substantially by the ubiquitous adoption of
wireless technologies represents a huge challenge for the
reliability of real-time embedded systems [2,3]. Note that if

these systems are powered by battery, the yielded reliability is
even more fragile. In detail, external conditions, such as
Electromagnetic Interference (EMI), Heavy-Ion Radiation
(HIR) as well as Power Supply Disturbances (PSD) may cause
transient faults on electronic systems [4][5][6][7]. Currently,
the consequences of transient faults represent a well-known
concern in microelectronic systems. The International
Technology Roadmap for Semiconductor (ITRS) predicts
increasing system failure rates due to this type of fault for
future generation of integrated circuits [10]. In this scenario, it
is worth noting that transient faults may affect not only the
application running on embedded systems, but also the RTOS
executing the applications. Affecting the RTOS, this kind of
fault can generate scheduling dysfunctions that could lead to
incorrect system behavior [1].

Up to now, several solutions have been proposed in order to
deal with the reliability problems of real-time systems
[11][12][13][14]. However, it is important to observe that such
solutions provide fault tolerance only for the application level
and do not consider faults affecting the RTOS that propagate
to the application tasks [1]. Typically, these techniques are
focused on detecting errors (on the application level) that
corrupt data manipulated by the processor and/or induce
application illegal control-flow execution. Regarding faults
affecting the RTOS that propagate to application tasks, about
21% of them lead to application failure [1] and then, are liable
to be detected by such type of solutions. Generally, these
faults tend to miss their deadlines and to produce incorrect
output results. Moreover, the work presented in [8]
demonstrates that about 34% of the faults injected in the
processor’s registers led to scheduling dysfunctions. Indeed,
about 44% of these dysfunctions led to system crashes, about
34% caused real-time problems and the remaining 22%
generated incorrect system output results. To conclude, the
fault tolerance techniques proposed up to now represent
feasible solutions, but they do not guarantee that each task
respects its deadline.

In this paper we present a hardware-based approach to
monitor the RTOS’s execution flow in order to detect
scheduling misbehavior. In more detail, the proposed approach
provides detection of faults that can change the tasks’

EMC Compo 2011 - 8th Workshop on Electromagnetic Compatibility of Integrated Circuits, November 6-9, Dubrovnik, Croatia

Copyright IEEE 2011 119

execution flow in embedded system based on RTOS. In a
previous work [15][16], the authors presented an Infrastructure
Intellectual Property (I-IP) able to detect faults affecting the
task’s execution time and the task’s execution flow of an
embedded system running an RTOS based on the Round-
Robin scheduling algorithm. As a further development, the
present paper improves the previous work by providing the I-
IP with fault detection capability for Preemptive RTOSs as
well. Thus, a new I-IP, named RTOS-Guardian (RTOS-G),
has been developed to monitor the tasks’ scheduling. It is
important to highlight that the RTOS-G represents a generic
passive solution and consequently does not interfere with the
execution flow of the RTOS embedded into the system. To
evaluate the effectiveness of the proposed approach and to
compare its fault detection capability against the native
(software) fault detection mechanisms of the RTOS, we
developed 5 different benchmarks exploiting several RTOS
resources. In the sequence, we performed fault injection
experiments applying conducted EMI according to the IEC
61000-4-29 international standard. Finally, the area overhead
and error detection latency have been estimated.

II. BACKGROUND
RTOSs represent a key to many embedded systems and

provide a software platform upon which to build applications.
A RTOS is a program that schedules execution in a timely
manner, manages system resources, and provides a consistent
foundation for developing application code [17]. Basically,
RTOSs can be classified in hard-RTOSs and soft-RTOSs. The
main difference between the two categories is that a soft-
RTOS can tolerate latencies and responds with decreased
service quality while the hard-RTOS has to respect its
deadlines, otherwise tasks' execution fails. In general terms,
RTOSs provide four basic services to the application service:
(1) time management, (2) interrupt handling, (3) memory
management and (4) device management.

In order to optimize CPU usage, the application program is
structured by the operating system as a set of processes. Note
also that some operating systems support an additional
structure level named task. A task can be defined as a single
process or as a set of processes with data dependencies
between them. Thus, tasks generally have some sort of
temporal constraints on their behavior. The exact nature of
these constrains depends on the scheduling model. A deadline
is the time instant at which a process must finish its execution.
The period of a task is the time interval between initiating two
successive executions. Generally, a process can be in one of
the following three states: blocked, ready or running. Further,
the transfer of CPU execution from one process to another one
is called Context Switch (CS).

Every RTOS has a wide range of facilities (namely, system
resources), which simplify the design of real-time applications
by offering native mechanisms to manage tasks, concurrency,
memory, time as well as interrupts. In comparison to other
(not real-time) operating systems, the efficient use of the CPU

is considered the more critical and the more important issue in
a RTOS. For instance, upon accessing a given embedded
system resource during the execution of a task, the former
mentioned mechanisms might force the task to wait for a
semaphore release or some other external event before
proceeding accessing the system resource. In this context,
preemptive RTOSs perform a CS to force the CPU to execute
another task that was labeled ready to run and therefore
guarantee a more efficient usage of the CPU time. If there is
more than one task ready to run, the decision will be made on
the basis of task priorities.

Most RTOSs use scheduling algorithms based on the
Round-Robin algorithm, which assigns equal Time Slices
(TSs) to each task and executes them without priority in
circular order [18]. However, in a typical real-time
application, there will be tasks that must provide responses at
a shorter time than others. Considering this situation, RTOSs
usually implement a Preemptive algorithm with priority
support. This results in a dynamic scheduling order and
ensures time consistency for critical tasks.

Figure 1. Preemptive scheduling algorithm

Figure 1 shows the preemptive algorithm’s behavior with an
example of three tasks. Task1 and Task2 have been given the
same priority, while Task3 has been assigned with a higher
one. As specified, the TS is always the same [18] and we
assume that the first two tasks do not posses external
dependencies. Task3 is blocked and waiting for an external
event, but during the execution of Task1 this dependency is
solved (at time ts) and therefore the scheduler stops the current
task (Task1) to start executing Task3. Since this task has the
highest priority, it will be executed completely before
returning to the interrupted Task1. This temporary interruption
of the executed task is called preemption. It is important to
point out that preemption will take place only if a task with
higher priority than the executing one is ready to run.
However, if all ready tasks have the same priority, the Tick (a
system global synchronization signal) will divide the CPU
time between these tasks in equal time slices and no
preemption takes place.

III. THE PROPOSED HARDWARE-BASED APROACH
This paper presents a new passive real-time scheduling

monitoring approach able to detect faults affecting the RTOS
running on embedded systems. The hardware-based approach
has been implemented using a new I-IP, named RTOS-

EMC Compo 2011 - 8th Workshop on Electromagnetic Compatibility of Integrated Circuits, November 6-9, Dubrovnik, Croatia

Copyright IEEE 2011 120

Guardian (RTOS-G). Different from the version presented in
[15][16], the new RTOS-G monitors the task’s execution flow
according to the preemptive algorithm. Figure 2 depicts the functional
block diagram of the RTOS-G.

Figure 2. Functional block diagram of the RTOS-G

The RTOS-G is connected to the embedded system’s bus in order
to monitor the following information: Start, Tick and Interrupt
signals as well as the RAM addresses accessed during the execution
of the application code. In more detail, the RTOS-G is composed of
five functional blocks. The Task Controller (TC) identifies the task in
execution based on the address accessed by the microcontroller
during the application’s execution. At every clock cycle, the TC
compares the address on the bus with the addresses associated to each
task. If the accessed address is related to a task, the signal Task
receives the corresponding task’s number. The Function Identifier
(FI) analyses the functions executed during the task scheduling
process in order to check the scheduling process execution order.
Finally, the FI identifies the event that triggered the scheduling
process based on that order (e.g., occurrence of a Tick signal, IO
request or semaphore acquisition). The block named List Monitor and
Error Generator (LMEG) receives the Scheduler_Event signal and
the Task in execution. Based on this information the LMEG classifies
all tasks in two separate lists, ready tasks and blocked tasks, each one
organized according to their state and priority. The LMEG
implements the scheduling algorithm and indicates errors when a
scheduling misbehavior is detected. As the last blocks, the two
Content-Addressable Memories (CAM1 and CAM2) save the lists
generated by the LMEG module. The tasks labeled ready are stored
in CAM1 while the tasks labeled as blocked are saved in CAM2.

To implement preemption, the algorithm with priority support
keeps a list of all tasks labeled ready (ready-list). The tasks are sorted
by their priority. Therefore, every time a CS takes place and a
scheduling event is performed, the (ready) task marked with the
highest priority is executed. The complexity of monitoring this kind
of behavior relies on keeping track of the ready-list: its elements must
not have any pending IO requests or semaphore objects still to be
acquired. In order to acomplish this task (keeping track of the ready-
list), the RTOS-G should monitor not only the task addresses, but
also the addresses related to the kernel synchronization, including:
SemaphoreLock() and SemaphoreUnlock(). These functions lock and
unlock a previously created synchronization object which is passed
by parameter to the related functions. However, it is not possible for
the RTOS-G to monitor the parameters of function calls; only the
addresses of the functions are captured by the RTOS-G.
Consequently, the described solution does not monitor all possible
fault conditions. To counteract this limitation, an execution flow
analysis is adopted as solution, since the function parameters remain
unknown. In this solution, the RTOS-G observes the order in which

the functions are being called to infer the ready-list constraints. To
illustrate this mechanism, Figure 3 shows a situation where Task1 is
running and tries to acquire a semaphore. The system call is
performed and the RTOS kernel realizes that the semaphore is
already locked. In order to prevent the system from going into a
deadlock as well as to increase the CPU usage, the kernel performs a
CS calling another task into execution. The resulting execution flow
for an already locked semaphore consists of: SemaphoreLock() and
ReSchedule(). When the RTOS-G detects this flow, it will infer that
Task2 is running and therefore is taken out from the ready-list. A
similar analysis can be performed for other situations, always
concentrating all efforts in keeping the detection algorithm generic
enough for any RTOS or processor. As further positive effect, this
type of analysis has rendered dispensable the Tick signal. In more
detail, the RTOS-G detects the Tick by recognizing the following
execution flow: Interrupt() and ReSchedule().

Figure 3. Execution flow analysis performed by the RTOS-G

IV. EXPERIMENTAL RESULTS
The fault detection capability of the RTOS-G with respect to the

RTOS native fault detection mechanisms has been evaluated applying
conducted EMI according to the IEC 61.000-4-29 international
standard. In the next paragraphs, it will be presented the case study
developed, the approach adopted for fault injection and a discussion
related to the obtained results.

A. Case Study
To evaluate the hardware-based approach we adopted a case study

composed of a Von Neumann 32-bit RISC Plasma microprocessor
running an RTOS (www.opencores.org). The Plasma microprocessor
is implemented in VHDL and has, with exception of the load/store
instruction, an instruction set compatible to the MIPS architecture.
Moreover, the Plasma’s RTOS adopts the preemptive scheduling
algorithm with priority support composed of the following three
states: blocked, ready and running. The Plasma’s RTOS provides a
basic mechanism able to monitor the task’s execution flow and
manage some particular situations when faults cause misbehavior of
the RTOS’s essential services, such as stack overflow and timing
violations. This mechanism is implemented by a function named
assert(). Generally, when the argument of the assert() function is
false, the RTOS sends an error message through the standard output.

For the fault injection experiments, we developed five different
benchmarks that exploit great part of the resources offered by the
Plasma’s RTOS (i.e., the use of message queues, semaphores and
interrupts). Figure 4 shows the block diagram associated to the five
benchmarks implementing the following tasks:

• BM1: 8 tasks access and update the value of a global variable,
which is protected by a semaphore. Indeed, another global
variable is accessed by an interrupt. The 8 tasks are assigned to
the following different priorities: 1, 2, 3, 4, 1, 2, 3 and 4,
respectively. The interrupt has the maximum priority.

EMC Compo 2011 - 8th Workshop on Electromagnetic Compatibility of Integrated Circuits, November 6-9, Dubrovnik, Croatia

Copyright IEEE 2011 121

• BM2: 4 tasks access and update the value of a global variable,
which is protected by a semaphore. The fifth task communicates
with a sixth one through a message queue. Further, an interrupt
accesses a global variable. The 6 tasks have the following
priorities: 1, 2, 3, 4, 5 and 6, respectively, and the interrupt has
the maximum priority.

Figure 4. Functional block diagrams of the five benchmarks

• BM3: 2 tasks access and update the value of a global variable,
which is protected by a semaphore. One task communicates with
another task through a message queue. Two further tasks access
and update the value of a second global variable, which is
protected by a mutual exclusion semaphore (MUTEX). Finally,
an interrupt communicates with a last task throughout a message
queue. The 7 tasks have the following priorities: 1, 2, 3, 4, 5, 6
and 7, respectively and the interrupt has the maximum priority.

• BM4: 4 tasks access and update the value of Global_Variable_1,
which is protected by a semaphore. There is also a
Global_Variable_2 that is accessed by 4 other tasks. Tasks 1 and
4 share both variables. Finally, three other tasks (T7, T8 and T9)
communicate with a last one (T10) throughout a message queue.
Tasks 1 to 6 have priority equal to 1, Tasks 7 to 9 have priority 2
and Task 10 holds priority 3.

• BM5: the last benchmark is the most complex of the five
experiments and consumes the largest amount of RTOS
resources. In this benchmark, an interrupt communicates with a
task (T1) via a message queue. Then, T1 communicates with
Tasks T2 and T3 via two other message queues, which in turn
send messages to Tasks T4, T5, T6, T7 T8, T9 and T10,
respectively, by means of queue resources as well, as depicted in
figure 4. In this scenario, Task 1 has priority equal to 1, Tasks 2
and 3 equal to 2, Tasks 4 and 5, equal to 3, Tasks 6 to 9 equal to
4, and finally, Task 10 holds the highest priority: 5.

B. Fault Injection Setup
To perform the conducted EMI experiments, we developed a fault

injection environment according to Figure 5. In more detail, FPGA 1
is composed of the Plasma microprocessor running the benchmarks
and the RTOS-G IP that monitors the tasks’ execution flow.

The ChipScope inside FPGA 2 receives two different signals: (1)
the number of the current task in execution and (2) the error signal.
Finally, the third block, named FPGA_clk, generates the clock signal
to the whole system.

Figure 5. Fault injection environment

Fault injection campaigns were generated according to the IEC
61.000-4-29 standard by applying voltage dips to the FPGA 1 core
Vdd pins. The nominal core Vdd is 1.2 volts. During the experiment,
the IC peripheries remained at their normal voltage levels, i.e., 3.3
and 2.5 volts. Voltage dips were randomly injected at the FPGA 1 Vdd
input pins at a frequency of 25.68 kHz and consisted of dips of about
10.83% of the nominal Vdd. For voltage dips larger than this value, we
observed the lost of the FPGA configuration.

C. Results’ Discussion
We performed 1000 fault injection experiments for each

benchmark, totalizing 5000 experiments. It is important to point out
that an experiment finishes when a fault is detected by the RTOS or
the RTOS-G. In this scenario, we are not able to guarantee that the
observed erroneous outputs represent the total number of the faults
injected during the experiments. This situation can be attributed to the
fact that the adopted fault injection approach does not allow the
effective control of the number of faults injected. Though, those
faults that did not produce errors at the system output were
considered as “fail-silent faults”.

During the fault injection campaign, we classified the error´s
behaviors as follows:

• Error_1: a blocked task is executed.
• Error_2: the task in execution does not appear on the monitor

task’s list.

EMC Compo 2011 - 8th Workshop on Electromagnetic Compatibility of Integrated Circuits, November 6-9, Dubrovnik, Croatia

Copyright IEEE 2011 122

• Error_3: the task in execution is not the one with the highest
priority on the task list.

• Error_4: the Tick does not trigger the scheduling process.
• Error_5: the scheduling process was triggered without a Tick

signal.
• Error_6: no interruption occurs upon an interrupt signal event
• Error_7: an interruption occurs even if no interrupt signal was

produced
• Error_8: a scheduling event does not cause the rescheduling of

the tasks in the list
• Error_9: the tasks of the list were rescheduled without

occurrence of a scheduling event.

Figure 6 depicts the effect of the injected faults on the tasks’
execution flow related to BM1 as detected by the RTOS-G. This
figure indicates the relative number of errors measured when the
system was executing the concerned benchmark. For example,
44.44% of the times executing BM1 the system stopped with faulty
behavior during Task1. In this case, Task1, just as Task5 with
53.55%, was assigned to the lowest priority equal to 1. It is
interesting to note that during the interrupt’s execution (Int) with the
maximum priority no errors occurred at all.

Benchmark 1

0.001.200.000.200.400.10

53.55

0.10

44.44

0%

10%

20%

30%

40%

50%

60%

t1 t2 t3 t4 t5 t6 t7 t8 Int

Figure 6. Tasks’ behavior for BM1

Figure 7 shows the behavior of the tasks during execution of BM2
under the influence of PSD. Looking at this figure, we observe that
22.72% of the times executing BM2, an error was identified during
the idle state, which is labeled with the lowest priority equal to 0.

Benchmark 2

6.11

9.11
12.21

3.10

22.72

6.81

17.72

22.22

0%

5%

10%

15%

20%

25%

Idle t1 t2 t3 t4 t5 t6 Int
Figure 7. Tasks’ behavior for BM2

The effect of faults injected into the system during execution of
BM3 and the related error behavior of the tasks are observed in figure
8. As shown in this figure, 50.16% of the times executing BM3 the
RTOS identified a faulty behavior during the execution of Int. In this
benchmark, the Int was labeled with a maximum priority.

Figures 9a and 9b show the behavior of the tasks during execution
of BM4 and BM5, respectively, under the influence of PSD. Looking
at figure 9a, we observe that almost 18.00% of the times executing
BM4, an error was observed during the execution of Task 4. Similar
error occurrences were observed for the execution of Task 1 (14%)
and the idle state (13%). All of them were labeled with the lowest
priority equal to 1. For figure 9b, we observe that most of the errors
occurred during the execution of Tasks 6 and 5 (almost 50% and
20%, respectively). These tasks held priorities equal to 3 and 4,
respectively. It is worth noting that during the execution of Task 10,

which held the highest priority (5), no error occurrence was observed.
Benchmark 3

50.16

4.462.944.03
9.47

3.48 4.68
6.09

14.69

0%

10%

20%

30%

40%

50%

60%

Idle t1 t2 t3 t4 t5 t6 t7 Int
Figure 8. Tasks’ behavior for BM3

Benchmark 4

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

idle t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Benchmark 5

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

idle t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

(a) (b)

Figure 9. Tasks’ behavior for BM4 and BM5 (error occurrence per task)

While analyzing the experimental results, we can underline the
following points:

a) We observed that the use of more complex RTOS resources
causes a higher error occurrence probability. In other words, the
system is more likely to suffer from an error when the task in
execution requires more complex resources from the RTOS. It is
interesting noting that during the execution of the function “queue”,
the RTOS kernel executes a “semaphore” function as well. Therefore,
a task using a message queue requires more complex RTOS resources
than that one using only a semaphore.

b) Note that the priority level of tasks using the same RTOS
resources has no direct influence on the error probability.

c) Regarding the RTOS-G fault detection capability, the results
demonstrate that for all benchmarks the detection rate is nearly 100%
(Table I), except for BM5 that there was 6.4% of the observed errors
that were only detected by the RTOS native fault detection
mechanisms. This RTOS-G detection escape can be explained by the
fact that the RTOS-G, as the case for the Plasma processor, is also an
embedded logic block in the FPGA. Thus, being exposed to power-
supply voltage transients as well. However, it should be noted that
since the RTOS-G is much smaller and build-up with a much less
complex logic than the Plasma processor, it is more robust to Vdd
transients. This reasoning may also explain the very low error
detection rate of the RTOS native mechanisms (70.5%) against the
one of the RTOS-G (93.6%).

d) Note also that as long as more complex resources of the RTOS
kernel are used, the higher error detection rate can be yielded by the
native fault detection mechanisms implemented in the Plasma’s
RTOS (assert() function). This reasoning is easily observed in Table
I, moving from BM1 (2.4%) to BM5 (70.5%), and can be explained
because such native fault detection mechanisms are called by the
kernel every time it runs its resources (to check the proper execution
of message queues and semaphores).

e) As the disturbance (insertion of voltage dips on the Vdd power
bus) results basically on the increase of propagation delays in a
uniform way through the logic circuit (FPGA), we do expect these
faults to be delay faults. In this scenario, most of these faults induce
multiple errors not only during the task dataflow execution (for

EMC Compo 2011 - 8th Workshop on Electromagnetic Compatibility of Integrated Circuits, November 6-9, Dubrovnik, Croatia

Copyright IEEE 2011 123

example, corrupting results provided by the Arithmetic and
Logic Unit – ALU) but also during the scheduling process
controlled by the RTOS (thus, manifesting themselves as
missing deadlines). This reasoning explains the high fault
detection capability yielded by the RTOS-G.

TABLE I
RESULTS OBTAINED BY FAULT INJECTION EXPERIMENTS

Benchmark RTOS Kernel [%] RTOS-G [%] Faults detected only
the RTOS [%]

BM1 2.4 99.9 -
BM2 25.9 100 -
BM3 45.8 100 -
BM4 60.4 100 -
BM5 70.5 93.6 6.4

Average 41.0 98.7 6.4

The proposed approach has also been evaluated with respect
to the introduced overhead. We computed that the area
overhead associated to the RTOS-G (333 LUTs) with respect to
the Plasma microprocessor (3306 LUTs) is only 10%. We
assume that this number tends to further decrease when
considering more complex microprocessor architectures. For
larger cores, one can expect the corresponding area overhead to
shrink to values lower than 10% because the size of the I-IP
core is basically dependent on the kernel complexity (i.e.,
number of resources, or functions, existing in the RTOS kernel
and how they are correlated). It is also important to highlight
that each of the two adopted CAMs is able to store 14 task
information and accounts for 60% of the total I-IP area. In case
the overhead is a critical issue, the CAMs can be placed
externally. In this case, the RTOS-G’s logic block introduces
only 4% of overhead.

To conclude the evaluation process, it was also estimated the
RTOS-G fault latency with respect to the one of the native
mechanisms implemented by the Plasma’s RTOS (namely,
assert() function). The obtained results indicate that the
average RTOS-G latency represents only 2% of the latency
yielded by the RTOS. This time was measured by means of the
ChipScope tool in terms of processor clock cycles.

V. CONCLUSIONS
In this paper we proposed a hardware-based approach to

detect transient faults affecting the task’s execution flow and
the task’s execution time of RTOS-based embedded systems.
In general terms, the proposed approach targets transient faults
affecting the task scheduling process of the RTOS. It was
developed an I-IP named RTOS-G to perform on-line detection
of such type of faults. It was also implemented fault injection
campaigns to evaluate the effectiveness of the proposed
approach. The main contribution of this paper consists of
drastically improving the robustness of RTOS-based embedded
systems operating in harsh environments like those where the
electronics is exposed to conducted EMI noise. The proposed
approach provides nearly 100% fault coverage, introducing
only 10% area overhead. The fault detection average provided

by the native RTOS functions was observed to be around
41.0%, whereas for the proposed I-IP this number raised up to
98.7%. These numbers are sustained by fault injection
campaigns according to the IEC 61.000-4-29 international std.
Furthermore, the introduction of the RTOS-G drastically
reduces the fault detection latency to a level of only 2% of the
native RTOS’ latency.

Future work includes the extension of this approach to multi-
processor systems on a chip (MPSoCs).

REFERENCES
[1] N. Ignat, B. Nicolescu, Y. Savari, G. Nicolescu, “Soft-Error

Classification and Impact Analysis on Real-Time Operating Systems”,
IEEE Design, Automation and Test in Europe, 2006.

[2] E. Touloupis, J. A. Flint, V. A. Chouliaras, D. D. Ward, “Study of the
Effects of SEU Induced Faults on a Pipeline Protected Microprocessor”,
IEEE TC, 2007.

[3] S. Ben Dia, R. Ramdani, E. Sicard, “Electromagnetic Compatibility of
Integrated Circuits – Techniques for Low Emission and Susceptibility”,
Springer, 2006.

[4] J. Freijedo, L. Costas, J. Semião, J. J. Rodríguez-Andina, M. J. Moure,
F. Vargas, I. C. Teixeira, and J. P. Teixeira, “Impact of power supply
voltage variations on FPGA-based digital systems performance”, Journal
of Low Power Electronics, vol. 6, pp. 339-349, Aug. 2010.

[5] J. Semião, J. Freijedo, M. Moraes, M. Mallmann, C. Antunes, J.
Benfica, F. Vargas, M. Santos, I. C. Teixeira, J. J. Rodríguez-Andina, J.
P. Teixeira, D. Lupi, E. Gatti, L. Garcia, F. Hernandez, “Measuring
Clock-Signal Modulation Efficiency for Systems-on-Chip in
Electromagnetic Interference Environment”. 10th IEEE Latin American
Test Workshop (LATW’09), March 2009.

[6] G. Miremadi, J. Torin, “Evaluating Processor-Behavior and Three Error-
Detection Mechanisms Using Physical Fault-Injection”, IEEE
Transactions on Reliability, Vol. 44, N° 3, Sept. 1995.

[7] J. Arlat, Y. Crouzet, JU. Karlsson, P. Folkesson, E. Fuchs, G. H. Leber,
“Comparison of Physical and Software-implemented Fault Injection
Techniques”, IEEE Trans. on Computer, Vol. 52, N. 9, Sept., 2003.

[8] D. Mossé, R. Melhelm, S. Gosh, “A non-preemptive real-time scheduler
with recovery from transient faults and its implementation”, IEEE Trans.
on Software Engineering, Vol. 29, N°. 8, pp. 752-767, August, 2003.

[9] B. Nicolescu, N. Ignat, Y. Savaria, G. Nicolescu, “Analysis of Real-
Time Systems Sensitivity to Transient Faults Using MicroC Kernel,”
IEEE Transactions on Nuclear Science, Vol. 53, N° 4, August 2006.

[10] http://public.itrs.net
[11] S. Gosh, R. Melhem, D. Mossé, J. Sarma, “Fault-tolerant Rate

Monotonic Scheduling”, Journal of Real-time Systems, Vol. 15, N° 2,
Sept. 1998.

[12] P. Mejia-Alvarez, D. Mossé, “A responsiveness approach for scheduling
fault-recovery in real-time systems”, 5th Real-Time Technology and
Applications Symposium, pp. 83-93, 1999.

[13] V. Izosimov, P. Pop, P. Eles, Z. Peng, “Design optimization of time- and
cost-constrained fault-tolerant distributed embedded systems”, IEEE
Desgin Automation and Test in Europe, pp. 864-869, 2005.

[14] Ph. Shirvani, R. Saxena. E.J. McCluskey, “Software-implemented
EDAC protection against SEUs”, IEEE Trans. on Reliability, Vol. 49,
N° 3, pp. 273-284, Sept. 2000.

[15] J. Tarrillo, L. Bolzani, F. Vargas, “A Hardware-Scheduler for Fault
Detection in RTOS-Based Embedded Systems”, IEEE 12th
EUROMICRO Conference on Digital System Design, 2009.

[16] J. Tarrillo, L. Bolzani, F. Vargas, E. Gatti, F. Hernandez, L. Fraigi,
“Fault-Detection Capability Analysis of a Hardware-Scheduler IP-Core
in Electromagnetic Interference Environment”, IEEE 7th East-West
Design & Test Symposium, 2009.

[17] Q. Li, C. Yao, “Real-Time Concepts for Embedded Systems”, CMP
Books, San Francisco, CA, USA, 2003.

[18] A. Silberschatz, P. B. Galvin, and G. Gagne, “Operating System
Concepts”, John Wiley & Sons, 1997.

[19] “IEC 61.000-4-29: Electromagnetic compatibility (EMC) – Part 4-29:
Testing and measurement techniques – Voltage dips, short interruptions
and voltage variations on d.c. input power port immunity tests”, First
Edition, 2000-01. (www.iec.ch).

EMC Compo 2011 - 8th Workshop on Electromagnetic Compatibility of Integrated Circuits, November 6-9, Dubrovnik, Croatia

Copyright IEEE 2011 124

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

