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Abstract— The use of Real-Time Operating Systems (RTOSs) 
became an attractive solution to simplify the design of safety-
critical real-time embedded systems. Due to their stringent 
constraints such as battery-powered, high-speed and low-voltage 
operation, these systems are often subject to transient faults 
originated from a large spectrum of noisy sources, among them, 
the conducted and radiated Electromagnetic Interference (EMI). 
As the major consequence, the system’s reliability degrades. In 
this paper, we present a hardware-based intellectual property 
(IP) core, namely RTOS-Guardian (RTOS-G) able to monitor the 
RTOS’ execution in order to detect faults that corrupt the tasks’ 
execution flow in embedded systems based on preemptive RTOS. 
Experimental results based on the Plasma microprocessor IP 
core running different test programs that exploit several RTOS 
resources have been developed. During test execution, the 
proposed system was exposed to conducted EMI according to the 
international standard IEC 61.000-4-29 for voltage dips, short 
interruptions and voltage transients on the power supply lines of 
electronic systems.  The obtained results demonstrate that the 
proposed approach is able to provide higher fault coverage and 
reduced fault latency when compared to the native fault detection 
mechanisms embedded in the kernel of the RTOS. 
 

Keywords- Hardware-Based Approach, Intellectual Property 
(IP) Core, Real-Time Operating System, Reliable Embedded 
System, Electromagnetic Interference (EMI).  

I.  INTRODUCTION 
Nowadays, several safety-critical embedded systems 

support real-time applications, which have to respect stringent 
timing constraints. In general terms, real-time systems have to 
provide not only logically correct results, but temporally 
correct results as well [1]. The high complexity of real-time 
systems has increased the necessity to adopt Real-Time 
Operating Systems (RTOSs) in order to simplify their design. 
Typically, these systems exploit some important facilities 
associated to RTOSs’ native intrinsic mechanisms to manage 
tasks, concurrency, memory as well as interrupts. In other 
words, RTOSs serve as an interface between software and 
hardware.  

At the same time, the environment’s always increasing 
hostility caused substantially by the ubiquitous adoption of 
wireless technologies represents a huge challenge for the 
reliability of real-time embedded systems [2,3]. Note that if 

these systems are powered by battery, the yielded reliability is 
even more fragile. In detail, external conditions, such as 
Electromagnetic Interference (EMI), Heavy-Ion Radiation 
(HIR) as well as Power Supply Disturbances (PSD) may cause 
transient faults on electronic systems [4][5][6][7]. Currently, 
the consequences of transient faults represent a well-known 
concern in microelectronic systems. The International 
Technology Roadmap for Semiconductor (ITRS) predicts 
increasing system failure rates due to this type of fault for 
future generation of integrated circuits [10]. In this scenario, it 
is worth noting that transient faults may affect not only the 
application running on embedded systems, but also the RTOS 
executing the applications. Affecting the RTOS, this kind of 
fault can generate scheduling dysfunctions that could lead to 
incorrect system behavior [1].  

Up to now, several solutions have been proposed in order to 
deal with the reliability problems of real-time systems 
[11][12][13][14]. However, it is important to observe that such 
solutions provide fault tolerance only for the application level 
and do not consider faults affecting the RTOS that propagate 
to the application tasks [1]. Typically, these techniques are 
focused on detecting errors (on the application level) that 
corrupt data manipulated by the processor and/or induce 
application illegal control-flow execution. Regarding faults 
affecting the RTOS that propagate to application tasks, about 
21% of them lead to application failure [1] and then, are liable 
to be detected by such type of solutions. Generally, these 
faults tend to miss their deadlines and to produce incorrect 
output results. Moreover, the work presented in [8] 
demonstrates that about 34% of the faults injected in the 
processor’s registers led to scheduling dysfunctions. Indeed, 
about 44% of these dysfunctions led to system crashes, about 
34% caused real-time problems and the remaining 22% 
generated incorrect system output results. To conclude, the 
fault tolerance techniques proposed up to now represent 
feasible solutions, but they do not guarantee that each task 
respects its deadline. 

In this paper we present a hardware-based approach to 
monitor the RTOS’s execution flow in order to detect 
scheduling misbehavior. In more detail, the proposed approach 
provides detection of faults that can change the tasks’ 
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execution flow in embedded system based on RTOS. In a 
previous work [15][16], the authors presented an Infrastructure 
Intellectual Property (I-IP) able to detect faults affecting the 
task’s execution time and the task’s execution flow of an 
embedded system running an RTOS based on the Round-
Robin scheduling algorithm. As a further development, the 
present paper improves the previous work by providing the I-
IP with fault detection capability for Preemptive RTOSs as 
well. Thus, a new I-IP, named RTOS-Guardian (RTOS-G), 
has been developed to monitor the tasks’ scheduling. It is 
important to highlight that the RTOS-G represents a generic 
passive solution and consequently does not interfere with the 
execution flow of the RTOS embedded into the system. To 
evaluate the effectiveness of the proposed approach and to 
compare its fault detection capability against the native 
(software) fault detection mechanisms of the RTOS, we 
developed 5 different benchmarks exploiting several RTOS 
resources. In the sequence, we performed fault injection 
experiments applying conducted EMI according to the IEC 
61000-4-29 international standard.  Finally, the area overhead 
and error detection latency have been estimated.  

II. BACKGROUND 
RTOSs represent a key to many embedded systems and 

provide a software platform upon which to build applications.  
A RTOS is a program that schedules execution in a timely 
manner, manages system resources, and provides a consistent 
foundation for developing application code [17]. Basically, 
RTOSs can be classified in hard-RTOSs and soft-RTOSs. The 
main difference between the two categories is that a soft-
RTOS can tolerate latencies and responds with decreased 
service quality while the hard-RTOS has to respect its 
deadlines, otherwise tasks' execution fails. In general terms, 
RTOSs provide four basic services to the application service: 
(1) time management, (2) interrupt handling, (3) memory 
management and (4) device management. 

In order to optimize CPU usage, the application program is 
structured by the operating system as a set of processes. Note 
also that some operating systems support an additional 
structure level named task. A task can be defined as a single 
process or as a set of processes with data dependencies 
between them. Thus, tasks generally have some sort of 
temporal constraints on their behavior. The exact nature of 
these constrains depends on the scheduling model. A deadline 
is the time instant at which a process must finish its execution. 
The period of a task is the time interval between initiating two 
successive executions. Generally, a process can be in one of 
the following three states: blocked, ready or running. Further, 
the transfer of CPU execution from one process to another one 
is called Context Switch (CS).  

Every RTOS has a wide range of facilities (namely, system 
resources), which simplify the design of real-time applications 
by offering native mechanisms to manage tasks, concurrency, 
memory, time as well as interrupts. In comparison to other 
(not real-time) operating systems, the efficient use of the CPU 

is considered the more critical and the more important issue in 
a RTOS. For instance, upon accessing a given embedded 
system resource during the execution of a task, the former 
mentioned mechanisms might force the task to wait for a 
semaphore release or some other external event before 
proceeding accessing the system resource. In this context, 
preemptive RTOSs perform a CS to force the CPU to execute 
another task that was labeled ready to run and therefore 
guarantee a more efficient usage of the CPU time. If there is 
more than one task ready to run, the decision will be made on 
the basis of task priorities. 

Most RTOSs use scheduling algorithms based on the 
Round-Robin algorithm, which assigns equal Time Slices 
(TSs) to each task and executes them without priority in 
circular order [18]. However, in a typical real-time 
application, there will be tasks that must provide responses at  
a shorter time than others. Considering this situation, RTOSs 
usually implement a Preemptive algorithm with priority 
support. This results in a dynamic scheduling order and 
ensures time consistency for critical tasks.  

 
Figure 1.  Preemptive scheduling algorithm 

Figure 1 shows the preemptive algorithm’s behavior with an 
example of three tasks. Task1 and Task2 have been given the 
same priority, while Task3 has been assigned with a higher 
one. As specified, the TS is always the same [18] and we 
assume that the first two tasks do not posses external 
dependencies. Task3 is blocked and waiting for an external 
event, but during the execution of Task1 this dependency is 
solved (at time ts) and therefore the scheduler stops the current 
task (Task1) to start executing Task3. Since this task has the 
highest priority, it will be executed completely before 
returning to the interrupted Task1. This temporary interruption 
of the executed task is called preemption. It is important to 
point out that preemption will take place only if a task with 
higher priority than the executing one is ready to run. 
However, if all ready tasks have the same priority, the Tick (a 
system global synchronization signal) will divide the CPU 
time between these tasks in equal time slices and no 
preemption takes place.  

III. THE PROPOSED HARDWARE-BASED APROACH 
This paper presents a new passive real-time scheduling 

monitoring approach able to detect faults affecting the RTOS 
running on embedded systems. The hardware-based approach 
has been implemented using a new I-IP, named RTOS-
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Guardian (RTOS-G). Different from the version presented in 
[15][16], the new RTOS-G monitors the task’s execution flow 
according to the preemptive algorithm. Figure 2 depicts the functional 
block diagram of the RTOS-G. 

 
Figure 2.  Functional block diagram of the RTOS-G 

The RTOS-G is connected to the embedded system’s bus in order 
to monitor the following information: Start, Tick and Interrupt 
signals as well as the RAM addresses accessed during the execution 
of the application code. In more detail, the RTOS-G is composed of 
five functional blocks. The Task Controller (TC) identifies the task in 
execution based on the address accessed by the microcontroller 
during the application’s execution. At every clock cycle, the TC 
compares the address on the bus with the addresses associated to each 
task. If the accessed address is related to a task, the signal Task 
receives the corresponding task’s number. The Function Identifier 
(FI) analyses the functions executed during the task scheduling 
process in order to check the scheduling process execution order. 
Finally, the FI identifies the event that triggered the scheduling 
process based on that order (e.g., occurrence of a Tick signal, IO 
request or semaphore acquisition). The block named List Monitor and 
Error Generator (LMEG) receives the Scheduler_Event signal and 
the Task in execution. Based on this information the LMEG classifies 
all tasks in two separate lists, ready tasks and blocked tasks, each one 
organized according to their state and priority. The LMEG 
implements the scheduling algorithm and indicates errors when a 
scheduling misbehavior is detected. As the last blocks, the two 
Content-Addressable Memories (CAM1 and CAM2) save the lists 
generated by the LMEG module. The tasks labeled ready are stored 
in CAM1 while the tasks labeled as blocked are saved in CAM2. 

To implement preemption, the algorithm with priority support 
keeps a list of all tasks labeled ready (ready-list). The tasks are sorted 
by their priority. Therefore, every time a CS takes place and a 
scheduling event is performed, the (ready) task marked with the 
highest priority is executed. The complexity of monitoring this kind 
of behavior relies on keeping track of the ready-list: its elements must 
not have any pending IO requests or semaphore objects still to be 
acquired. In order to acomplish this task (keeping track of the ready-
list), the RTOS-G should monitor not only the task addresses, but 
also the addresses related to the kernel synchronization, including: 
SemaphoreLock() and SemaphoreUnlock(). These functions lock and 
unlock a previously created synchronization object which is passed 
by parameter to the related functions. However, it is not possible for 
the RTOS-G to monitor the parameters of function calls; only the 
addresses of the functions are captured by the RTOS-G. 
Consequently, the described solution does not monitor all possible 
fault conditions. To counteract this limitation, an execution flow 
analysis is adopted as solution, since the function parameters remain 
unknown. In this solution, the RTOS-G observes the order in which 

the functions are being called to infer the ready-list constraints. To 
illustrate this mechanism, Figure 3 shows a situation where Task1 is 
running and tries to acquire a semaphore. The system call is 
performed and the RTOS kernel realizes that the semaphore is 
already locked. In order to prevent the system from going into a 
deadlock as well as to increase the CPU usage, the kernel performs a 
CS calling another task into execution. The resulting execution flow 
for an already locked semaphore consists of: SemaphoreLock() and 
ReSchedule(). When the RTOS-G detects this flow, it will infer that 
Task2 is running and therefore is taken out from the ready-list. A 
similar analysis can be performed for other situations, always 
concentrating all efforts in keeping the detection algorithm generic 
enough for any RTOS or processor. As further positive effect, this 
type of analysis has rendered dispensable the Tick signal. In more 
detail, the RTOS-G detects the Tick by recognizing the following 
execution flow: Interrupt() and ReSchedule().  

 
Figure 3.  Execution flow analysis performed by the RTOS-G 

IV. EXPERIMENTAL RESULTS 
The fault detection capability of the RTOS-G with respect to the 

RTOS native fault detection mechanisms has been evaluated applying 
conducted EMI according to the IEC 61.000-4-29 international 
standard. In the next paragraphs, it will be presented the case study 
developed, the approach adopted for fault injection and a discussion 
related to the obtained results.  

A. Case Study 
To evaluate the hardware-based approach we adopted a case study 

composed of a Von Neumann 32-bit RISC Plasma microprocessor 
running an RTOS (www.opencores.org). The Plasma microprocessor 
is implemented in VHDL and has, with exception of the load/store 
instruction, an instruction set compatible to the MIPS architecture. 
Moreover, the Plasma’s RTOS adopts the preemptive scheduling 
algorithm with priority support composed of the following three 
states: blocked, ready and running. The Plasma’s RTOS provides a 
basic mechanism able to monitor the task’s execution flow and 
manage some particular situations when faults cause misbehavior of 
the RTOS’s essential services, such as stack overflow and timing 
violations. This mechanism is implemented by a function named 
assert(). Generally, when the argument of the assert() function is 
false, the RTOS sends an error message through the standard output.  

For the fault injection experiments, we developed five different 
benchmarks that exploit great part of the resources offered by the 
Plasma’s RTOS (i.e., the use of message queues, semaphores and 
interrupts). Figure 4 shows the block diagram associated to the five 
benchmarks implementing the following tasks:  

• BM1: 8 tasks access and update the value of a global variable, 
which is protected by a semaphore. Indeed, another global 
variable is accessed by an interrupt. The 8 tasks are assigned to 
the following different priorities: 1, 2, 3, 4, 1, 2, 3 and 4, 
respectively. The interrupt has the maximum priority. 
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• BM2: 4 tasks access and update the value of a global variable, 
which is protected by a semaphore. The fifth task communicates 
with a sixth one through a message queue. Further, an interrupt 
accesses a global variable. The 6 tasks have the following 
priorities: 1, 2, 3, 4, 5 and 6, respectively, and the interrupt has 
the maximum priority. 

      
 

 
 

 
 

 
 

Figure 4.  Functional block diagrams of the five benchmarks 

• BM3: 2 tasks access and update the value of a global variable, 
which is protected by a semaphore. One task communicates with 
another task through a message queue. Two further tasks access 
and update the value of a second global variable, which is 
protected by a mutual exclusion semaphore (MUTEX). Finally, 
an interrupt communicates with a last task throughout a message 
queue. The 7 tasks have the following priorities: 1, 2, 3, 4, 5, 6 
and 7, respectively and the interrupt has the maximum priority. 

• BM4: 4 tasks access and update the value of Global_Variable_1, 
which is protected by a semaphore. There is also a 
Global_Variable_2 that is accessed by 4 other tasks. Tasks 1 and 
4 share both variables. Finally, three other tasks (T7, T8 and T9) 
communicate with a last one (T10) throughout a message queue. 
Tasks 1 to 6 have priority equal to 1, Tasks 7 to 9 have priority 2 
and Task 10 holds priority 3. 

• BM5: the last benchmark is the most complex of the five 
experiments and consumes the largest amount of RTOS 
resources. In this benchmark, an interrupt communicates with a 
task (T1) via a message queue. Then, T1 communicates with 
Tasks T2 and T3 via two other message queues, which in turn 
send messages to Tasks T4, T5, T6, T7 T8, T9 and T10, 
respectively, by means of queue resources as well, as depicted in 
figure 4. In this scenario, Task 1 has priority equal to 1, Tasks 2 
and 3 equal to 2, Tasks 4 and 5, equal to 3, Tasks 6 to 9 equal to 
4, and finally, Task 10 holds the highest priority: 5. 

B. Fault Injection Setup 
To perform the conducted EMI experiments, we developed a fault 

injection environment according to Figure 5. In more detail, FPGA 1 
is composed of the Plasma microprocessor running the benchmarks 
and the RTOS-G IP that monitors the tasks’ execution flow.  

The ChipScope inside FPGA 2 receives two different signals: (1) 
the number of the current task in execution and (2) the error signal. 
Finally, the third block, named FPGA_clk, generates the clock signal 
to the whole system. 

 
Figure 5.  Fault injection environment 

Fault injection campaigns were generated according to the IEC 
61.000-4-29 standard by applying voltage dips to the FPGA 1 core 
Vdd pins. The nominal core Vdd is 1.2 volts. During the experiment, 
the IC peripheries remained at their normal voltage levels, i.e., 3.3 
and 2.5 volts. Voltage dips were randomly injected at the FPGA 1 Vdd 
input pins at a frequency of 25.68 kHz and consisted of dips of about 
10.83% of the nominal Vdd. For voltage dips larger than this value, we 
observed the lost of the FPGA configuration.  

C. Results’ Discussion 
We performed 1000 fault injection experiments for each 

benchmark, totalizing 5000 experiments. It is important to point out 
that an experiment finishes when a fault is detected by the RTOS or 
the RTOS-G. In this scenario, we are not able to guarantee that the 
observed erroneous outputs represent the total number of the faults 
injected during the experiments. This situation can be attributed to the 
fact that the adopted fault injection approach does not allow the 
effective control of the number of faults injected. Though, those 
faults that did not produce errors at the system output were 
considered as “fail-silent faults”. 

During the fault injection campaign, we classified the error´s 
behaviors as follows: 

• Error_1: a blocked task is executed.  
• Error_2: the task in execution does not appear on the monitor 

task’s list.  
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• Error_3: the task in execution is not the one with the highest 
priority on the task list. 

• Error_4: the Tick does not trigger the scheduling process. 
• Error_5: the scheduling process was triggered without a Tick 

signal. 
• Error_6: no interruption occurs upon an interrupt signal event 
• Error_7: an interruption occurs even if no interrupt signal was 

produced 
• Error_8: a scheduling event does not cause the rescheduling of 

the tasks in the list 
• Error_9: the tasks of the list were rescheduled without 

occurrence of a scheduling event. 

Figure 6 depicts the effect of the injected faults on the tasks’ 
execution flow related to BM1 as detected by the RTOS-G. This 
figure indicates the relative number of errors measured when the 
system was executing the concerned benchmark. For example, 
44.44% of the times executing BM1 the system stopped with faulty 
behavior during Task1. In this case, Task1, just as Task5 with 
53.55%, was assigned to the lowest priority equal to 1. It is 
interesting to note that during the interrupt’s execution (Int) with the 
maximum priority no errors occurred at all. 

Benchmark 1

0.001.200.000.200.400.10

53.55

0.10

44.44

0%

10%

20%

30%

40%

50%

60%

t1 t2 t3 t4 t5 t6 t7 t8 Int 

 
Figure 6. Tasks’ behavior for BM1 

Figure 7 shows the behavior of the tasks during execution of BM2 
under the influence of PSD. Looking at this figure, we observe that 
22.72% of the times executing BM2, an error was identified during 
the idle state, which is labeled with the lowest priority equal to 0. 

Benchmark 2

6.11

9.11
12.21

3.10

22.72

6.81

17.72

22.22

0%

5%

10%

15%

20%

25%

Idle t1 t2 t3 t4 t5 t6 Int  
Figure 7. Tasks’ behavior for BM2 

The effect of faults injected into the system during execution of 
BM3 and the related error behavior of the tasks are observed in figure 
8. As shown in this figure, 50.16% of the times executing BM3 the 
RTOS identified a faulty behavior during the execution of Int. In this 
benchmark, the Int was labeled with a maximum priority. 

Figures 9a and 9b show the behavior of the tasks during execution 
of BM4 and BM5, respectively, under the influence of PSD. Looking 
at figure 9a, we observe that almost 18.00% of the times executing 
BM4, an error was observed during the execution of Task 4. Similar 
error occurrences were observed for the execution of Task 1 (14%) 
and the idle state (13%). All of them were labeled with the lowest 
priority equal to 1. For figure 9b, we observe that most of the errors 
occurred during the execution of Tasks 6 and 5 (almost 50% and 
20%, respectively). These tasks held priorities equal to 3 and 4, 
respectively. It is worth noting that during the execution of Task 10, 

which held the highest priority (5), no error occurrence was observed. 
Benchmark 3
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Figure 8. Tasks’ behavior for BM3 
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Figure 9. Tasks’ behavior for BM4 and BM5 (error occurrence per task) 

While analyzing the experimental results, we can underline the 
following points: 

a) We observed that the use of more complex RTOS resources 
causes a higher error occurrence probability. In other words, the 
system is more likely to suffer from an error when the task in 
execution requires more complex resources from the RTOS. It is 
interesting noting that during the execution of the function “queue”, 
the RTOS kernel executes a “semaphore” function as well. Therefore, 
a task using a message queue requires more complex RTOS resources 
than that one using only a semaphore.  

b) Note that the priority level of tasks using the same RTOS 
resources has no direct influence on the error probability. 

c) Regarding the RTOS-G fault detection capability, the results 
demonstrate that for all benchmarks the detection rate is nearly 100% 
(Table I), except for BM5 that there was 6.4% of the observed errors 
that were only detected by the RTOS native fault detection 
mechanisms. This RTOS-G detection escape can be explained by the 
fact that the RTOS-G, as the case for the Plasma processor, is also an 
embedded logic block in the FPGA. Thus, being exposed  to power-
supply voltage transients as well. However, it should be noted that 
since the RTOS-G is much smaller and build-up with a much less 
complex logic than the Plasma processor, it is more robust to Vdd 
transients. This reasoning may also explain the very low error 
detection rate of the RTOS native mechanisms (70.5%) against the 
one of the RTOS-G (93.6%). 

d) Note also that as long as more complex resources of the RTOS 
kernel are used, the higher error detection rate can be yielded  by the 
native fault detection mechanisms implemented in the Plasma’s 
RTOS (assert() function). This reasoning is easily observed in Table 
I, moving from BM1 (2.4%) to BM5 (70.5%), and can be explained 
because such native fault detection mechanisms are called by the 
kernel every time it runs its resources (to check the proper execution 
of message queues and semaphores). 

e) As the disturbance (insertion of voltage dips on the Vdd power 
bus) results basically on the increase of propagation delays in a 
uniform way through the logic circuit (FPGA), we do expect these 
faults to be delay faults. In this scenario, most of these faults induce 
multiple errors not only during the task dataflow execution (for 
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example, corrupting results provided by the Arithmetic and 
Logic Unit – ALU) but also during the scheduling process 
controlled by the RTOS (thus, manifesting themselves as 
missing deadlines). This reasoning explains the high fault 
detection capability yielded by the RTOS-G. 

TABLE I 
RESULTS OBTAINED BY FAULT INJECTION EXPERIMENTS 

Benchmark RTOS Kernel [%] RTOS-G [%] Faults detected only 
the RTOS [%] 

BM1 2.4 99.9 - 
BM2 25.9 100 - 
BM3 45.8 100 - 
BM4 60.4 100 - 
BM5 70.5 93.6 6.4 

Average 41.0 98.7 6.4 
 

The proposed approach has also been evaluated with respect 
to the introduced overhead. We computed that the area 
overhead associated to the RTOS-G (333 LUTs) with respect to 
the Plasma microprocessor (3306 LUTs) is only 10%. We 
assume that this number tends to further decrease when 
considering more complex microprocessor architectures. For 
larger cores, one can expect the corresponding area overhead to 
shrink to values lower than 10% because the size of the I-IP 
core is basically dependent on the kernel complexity (i.e., 
number of resources, or functions, existing in the RTOS kernel 
and how they are correlated). It is also important to highlight 
that each of the two adopted CAMs is able to store 14 task 
information and accounts for 60% of the total I-IP area. In case 
the overhead is a critical issue, the CAMs can be placed 
externally. In this case, the RTOS-G’s logic block introduces 
only 4% of overhead. 

To conclude the evaluation process, it was also estimated the 
RTOS-G fault latency with respect to the one of the native 
mechanisms implemented by the Plasma’s RTOS (namely, 
assert() function). The obtained results indicate that the 
average RTOS-G latency represents only 2% of the latency 
yielded by the RTOS. This time was measured by means of the 
ChipScope tool in terms of processor clock cycles. 

V. CONCLUSIONS 
In this paper we proposed a hardware-based approach to 

detect transient faults affecting the task’s execution flow and 
the task’s execution time of RTOS-based embedded systems. 
In general terms, the proposed approach targets transient faults 
affecting the task scheduling process of the RTOS. It was 
developed an I-IP named RTOS-G to perform on-line detection 
of such type of faults. It was also implemented fault injection 
campaigns to evaluate the effectiveness of the proposed 
approach. The main contribution of this paper consists of 
drastically improving the robustness of RTOS-based embedded 
systems operating in harsh environments like those where the 
electronics is exposed to conducted EMI noise. The proposed 
approach provides nearly 100% fault coverage, introducing 
only 10% area overhead. The fault detection average provided 

by the native RTOS functions was observed to be around 
41.0%, whereas for the proposed I-IP this number raised up to 
98.7%. These numbers are sustained by fault injection 
campaigns according to the IEC 61.000-4-29 international std. 
Furthermore, the introduction of the RTOS-G drastically 
reduces the fault detection latency to a level of only 2% of the 
native RTOS’ latency. 

Future work includes the extension of this approach to multi-
processor systems on a chip (MPSoCs). 
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