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Abstract. Positron Emission Tomography (PET) has been of utmost importance for helping
the diagnostics of neurodegenerative diseases, such as Alzheimer’s disease(AD). Radiolabeled
drugs help quantifying the amount of deposition of beta-amyloid in the brain which can be a
strong indication for AD. In this work, using data coming from an experiment at the Brain Ins-
titute with Pittsburgh Compound-B (11C-PIB) as a marker, we propose a two-tissue reversible
compartment model as a mathematical modeling in the quantitative analysis of the 11C-PIB.
Laplace Transform is applied to solve the corresponding system of differential equations for
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each compartment. Using as a reference region the cerebellum, known to be amyloid free, we
obtained an analytical solution for the Image Derived Input Function (IDAIF) as well as for
the concentration of beta-amyloid in each compartment. Our results corroborate what has been
seen in the literature.

Keywords: Laplace Transform, Image-Derived Arterial Input Function, Alzheimer Disease,
Pittsburgh Compound-B (11C-PIB)
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1 INTRODUCTION

Mathematical modeling has been of great help in studying the dynamics of several real
class problems in many areas of expertise such as Physics, Engineering, Biology among many
others (Mao, 2007). In pharmacokinetics, mathematical modeling has been also playing an
important role when compartmental models are used to determine the dynamics of radiotracers
(Hauser et al., 2015, Hauser, 2013). An important part of this process is to determine the arterial
input function which is a quantitative measure of the amount of radiotracer in the blood stream.
In this work, in particular, we compute what is called an image-derived arterial input function
(IDAIF). The IDAIF is obtained by means of a Time Activity Curve (TAC) on a reference region
in the brain (more specifically the cerebellum ( Su et al., 2015)) whose data are obtained during
an imaging scan, for example the micro Positron Emission Tomography (µPET). The reason for
using the cerebellum as the reference region is because this region is known to be amyloid free.
The presence of amyloid in the brain can be determined using radiotracers such as Pittsburgh
Compound-B [11C]PIB ( Klunk et al., 2004), among others. In the case of [11C]PIB, the
amount of amyloid plaques is estimated by considering how long it takes for the tracer to leave
a given region when compared to the reference region. The faster it leaves the region the lesser
amyloid plaques. In other words, the smaller the chance for the patient to be amyloid positive.

In the sequence, we use a differential equation to compute an IDAIF and then a system
of two differential equations solved using Laplace transform to determine the dynamics of the
radiotracer.

The transport of across the arterial blood is very fast in the first minutes and then decreases
slowly. We use the Delta de Dirac and Heaviside step functions to represent this situation and
this is the main contribution of this study. We apply the Laplace transform and the analytical
solution for two-tissue reversible compartment model is obtained.

Data used in this work was obtained from an experiment with [11C]PIB at Instituto do
Cérebro (InsCer/BraIns) at Pontifical Catholic University of Rio Grande do Sul (PUCRS) on
a healthy mouse. The µPET studies is highly applicable in the development of new drugs and
cell therapy, elucidation of pathophysiological mechanisms of neurological diseases and is a
valuable tool for studying animal models of human disease( like cancer).

2 IMAGE-DERIVED ARTERIAL INPUT FUNCTION

The Image-Derived Arterial Input Function (IDAIF) is obtained from a Time Activity
Curve (TAC) using the cerebellum (known to be amyloid free) as a reference region ( Su et
al., 2015). The IDAIF was quantifyed through the dynamics of [11C]PIB tracer which follows
a known pattern. Other ways of determining the arterial input function can be seen in Vriens et
al., 2009, Zaidi, 2006, La Forest et al., 2006.

The dynamics of the radiotracer on the reference region is governed by the differential
equation ( Su et al., 2015)

dCr

dt
= K

′

1Ca(t)− k
′

2Cr(t) (1)

where Ca(t) is the concentration of the radiotracer in the arterial blood, Cr(t) is the concentra-
tion of the radiotracer in the reference region and K1

′ > 0 and k2
′ > 0 are proportionality rates

describing, respectively, the tracer influx into and the tracer outflow from the reference tissue.
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In this case, Cr(t) will be approximated by means of nonlinear regression of the data ob-
tained from a TAC curve on a Positron Emission Tomography(PET) image, as exemplified
in Figure1 and Figure 2,(in this work we use the Biomedical Image Quantification software
PMOD).

Figure 1: Mouse µPET image.

After this, deriving Cr(t) and substituting in equation (1), we obtain Ca(t) which is the
IDAIF, given by

Ca(t) =
1

K
′
1

dCr

dt
+

k
′
2

K
′
1

Cr(t) (2)

According to Nelissen et el.(2012), the effective dose injected can be calculated as:

Ca(0) = Ci
ae

− ln2
t1/2

(t0−ti) − Ce
ae

− ln2
t1/2

(te−t0)
(3)

where Ci
a is the dose measured before injection at time ti, Ce

a is the residual dose after injection
measured at time te, and t1/2 is the half-time of the tracer.

3 LAPLACE TRANSFORM METHOD FOR TWO-TISSUE REVERSIBLE
COMPARTMENT MODEL

We consider a two-compartment model for the dynamics of [11C]PIB ( Khalil, 2011, Su
et al., 2015). The mathematical model for the problem is expressed by the system of two
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Figure 2: Discrete TAC-Cerebellum.

differential equations:

dC1

dt
= K1Ca(t)− ( k2 + k3 )C1(t) + k4 C2(t)

dC2

dt
= k3C1(t) − k4C2(t)

C1(t) = 0 , C2(t) = 0.

(4)

where Ca(t) is IDAIF considered to be known, C1(t) and C2(t) are, respectively, the concen-
tration within the nondisplaceable and displaceable compartments and K1, and k2, k3, k4 are
kinetic rate constants which have to be determined.

In order to solve the system of equations in Eq. (4), we choose to apply the Laplace trans-
form with respect to t denoting by

£ {Ci(t)} = Ci(s) =
∫ ∞

0
e−st Ci(t) dt

and

£

{
dCk(t)

dt

}
= sCi(s)− Ci(0) .

Applying the initial conditions C1(0) = 0 and C2(0) = 0 , an algebric system for C1(s)
and C2(s) is determined:

( s+ k2 + k3 )C1(s) − k4 C2(s) = K1 Ca(s)

− k3C1(s) + (s + k4)C2(s) = 0

. (5)
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which in matrix form is written as

s+ k2 + k3 −k4

−k3 s+ k4




C1(s)

C2(s)

 =


K1Ca(s)

0

 . (6)

The solution of the system (6) is


C1(s)

C2(s)

 =



s+ k4
s2 + (k2 + k3 + k4)s+ k2k4

k4
s2 + (k2 + k3 + k4)s+ k2k4

k3
s2 + (k2 + k3 + k4)s+ k2k4

s+ k2 + k3
s2 + (k2 + k3 + k4)s+ k2k4




K1 Ca(s)

0

 .

Therefore,

C1(s) =
(s+ k4)K1Ca(s)

s2 + (k2 + k3 + k4)s+ k2k4

C2(s) =
k3 K1Ca(s)

s2 + (k2 + k3 + k4)s+ k2k4

(7)

In order to determine Ci(t), i = 1, 2, we apply the inverse Laplace transform to Eq. (7).
The result is

C1(t) = £−1

{
(s+ k4)K1 Ca(s)

s2 + (k2 + k3 + k4)s+ k2k4

}

C2(t) = £−1

{
k3K1 Ca(s)

s2 + (k2 + k3 + k4)s+ k2k4

}
.

(8)

Denoting ∗ as the convolution operation, Eq. (8) can be written as

C1(t) =,£−1

{
(s+ k4)

s2 + (k2 + k3 + k4)s+ k2k4

}
∗ K1 Ca(t)

C2(t) = £−1

{
k3

s2 + (k2 + k3 + k4)s+ k2k4

}
∗ K1 Ca(t) .

(9)

Equation (9) is the analytical solution of the reversible two-compartment model for [11C]PIB,
Eq. (4). Notice that the inverse Laplace transforms are simply linear combinations of exponen-
tial functions with the exponents depending on k2, k3 and k4.
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3.1 ILLUSTRATIVE EXAMPLE
As an example of the two compartment model described above, we will apply the above re-

sults to describe the activity on the cerebellum and cortex in µPET imaging of a healthy mouse.
Data was obtained from the first experiment performed at InsCer(BraIns) using [11C]PIB. Fi-
gure1 and Figure 2 show, respectively, the image and the corresponding data extracted from
it using PMOD, a Biomedical Image Quantification software. The final aim is to be able to
quantify the amount of β amyloid on a given brain region of a mouse/patient in a µPET/PET
scan(Kiessling et al., 2011, Basu et al., 2011).

First, let’s define the Heaviside step function H(t) and the Dirac Delta function δ(t):

H(t− a) =

 0, t < a,

1, t ≥ a.
(10)

H(t− a)−H(t− b) =

 0, t < a and t ≥ b,

1, a ≤ t < b.
(11)

δ(t− a) =

 0, t ̸= a,

∞, t = a.
(12)

From the data extracted from the µPET image, linear and nonlinear regression (Arnold,2015,
Battes et al., 1988, Cunnigham, 1993) was used to find the best fitting for the given data of the
region of reference (cerebellum)(as seen in figure 3).

Cr(t) = 1183.569 t
[
H(t− 0.5× 10−5)−H(t− 5/60)

]

+ [H(t− 5/60)−H(t− 60) ] 94.451e−0.0152 t .

Discrete TAC-Cerebellum
Fitted TAC-Cerebellum
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Figure 3: Cr(t) : Fitted TAC-Cerebellum

Afterwards, the IDAIF was computed, as described in section 1.2, with rate constants K1
′ =

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering

R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianpolis, SC, Brazil, November 5-8, 2017



11C-PIB Compartment Model with Image-Derived Arterial Input Function

0.08 and k2
′ = 0.2 using a symbolic and algebraic computational software (Maple) and Eq. (1),

as

Ca(t) = 14794.617 t [ δ(t− 0.5× 10−5)− δ(t− 5/60) ]

+2958.923 t [H(t− 0.5× 10−5)−H(t− 5/60)]

+14794.617[H(t− 0.5× 10−5)−H(t− 5/60) ]

+1180.648 e−0.0152tδ(t− 5/60) + 218.137 e−0.0152tH(t− 5/60) .

(13)

The IDAIF obtained in equation (13) is shown in figure 4, along with Cr(t).

Ca(t):Input Function
Fitted TAC-Cerebellum
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Figure 4: Ca(t): IDAIF and Cr(t)

Finally, under the condition that K1/k2 = K1
′/k2

′, we suppose that the kinetic rate constans
K1 = 0.1, k2 = 0.25, k3 = 0.1, and k4 = 0.075. Then, computing the inverse Laplace
transform in equation (9) using MAPLE, the explicit expressions for the concentration within
the nondisplaceable and displaceable compartments C1(t) and C2(t) can be given as:

C1(t) = e−0.2125 t (cosh 0.1625 t− 0.846 sinh 0.1625 t)

C2(t) = 0.6153 e−0.2125 t sinh 0.1625 t .

(14)

which is the analytical solution of the two-tissue reversible compartment model (4) and shown
in figure 5. The choice of the constants is based on a relationship that they are known to satisfy
(Arnold, 2016, Bates, 1988, Kiessling et al., 2011).

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering
R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianpolis, SC, Brazil, November 5-8, 2017



E. Hauser, G. Venturin , E. Manica , S. Greggio , E. Zimmer, J. Costa

Ca(t):Input Function
Fitted TAC-Cerebellum
C1(t):nondisplaceable compartment
C2(t):displaceable compartment
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Figure 5: Solution of the two-tissue reversible compartment model in Eq.(4).

4 CONCLUSION AND FUTURE WORKS

In this work we used data from a µPET image scan to determine the dynamics of the ra-
diotracer [11C]PIB on the cerebellum and cortex of a healthy mouse. Using Laplace transform
we computed the solution of a set of two differential equations of a two-tissue reversible com-
partment model. Parameters used for the solution were theoretical and were based on Su et
al.(2015), although our initial goal was to estimate these parameters through known mathemat-
ical techniques and available data.

As future work, we would like to apply these results to quantify β amyloid in PET imaging
in the diagnosis of Alzheimer’s disease. Differently to what was done here, we would like to
approximate Cr(t) by means of nonlinear regression of the data obtained from a TAC curve on
a Positron Emission Tomography(PET) image, as piecewise function

Cr(t) = (H(t− t0)−H(t− t1))Cf (t) + (H(t− t1)−H(t− t2))CI(t) +H(t− t2)Cs(t),
where Cf (t), CI(t) and Cs(t) are the concentration of the radiotracer on the reference region, re-
spectively, for the fast, intermediate and slow stages and H(t) is the Heaviside function defined
in Eq.(10).

The improvement of mathematical models for the study of Alzheimer’s disease is of the
utmost importance, since most of the procedures today rely on invasive procedures and subjec-
tive tests. It is still a long shot before major significant results will improve the diagnosis of the
disease, despite the efforts of many researchers worldwide.
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