nfradian cardiovascular rhythms during a 520-day simulated journey to Mars (Mars500 project)

Infradian cardiovascular rhythms during a 520-day simulated journey to Mars (Mars500 project)

Daniel E. Vigo (1,2)*, Mariano Scaramal (1), Rafael Baptista (3), Francis Tuerlinckx (2), Evgeny Bersenev (4), Omer Van den Bergh (2), André Aubert (5)
(1) Applied Neuroscience Laboratory, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Universidad Católica Argentina (UCA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
(2) Department of Psychology, Katholieke Universiteit Leuven, Leuven, Belgium.
(3) Microgravity Centre, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
(4) State Science Center of Russian Federation - Institute of Biomedical Problems of Russian Academy of Sciences, Moscow, Russia
(5) Laboratory of Experimental Cardiology and Interdisciplinary Centre for Space Studies, Katholieke Universiteit Leuven, Leuven, Belgium.

* E-mail: dvigo@conicet.gov.ar

Background

- The Mars 500 project, organized by the European Space Agency (ESA) and the Institute for Biomedical Problems (IBMP) in Moscow, was designed to simulate a 520 d mission to Mars in duration, composition of the crew, activities, full life support and communication facilities with a Mission Control.
- Although physiological infradian rhythms have been described in humans, no evidence was found about their occurrence under strict controlled situations.
- Taking advantage of the Mars 500 study, we sought to explore infradian systolic and diastolic blood pressure (SBP, DBP) and heart rate (HR) rhythms.

Methods

Subjects \& design

- Six healthy male subjects were selected to participate in the 520-d confinement study.
- Subjects were involved in 105 different scientific protocols that assessed physiological, psychological, social, ecological, and technological aspects of confinement.
- Their schedules were organized in 8-h periods of work, leisure, and sleep. No night shifts were programmed.
- The simulated timeline included entering into different successive orbits toward Mars, an egress on a simulated Martian Surface, and entering into different successive orbits toward Earth.
- Facilities comprised four $\left(550 \mathrm{~m}^{3}\right)$ hermetically sealed interconnected modules resembling a spacecraft (medical \& research, habitat, storage, lander), and a Martian surface simulator (Figure 1).
- Ambient conditions were $24^{\circ} \mathrm{C}$, relative humidity of $35-45 \%$, and artificial lightening of 50-300 lux.

Analysis

- For this protocol, SBP, DBP, and HR were assessed each morning and evening, on a daily basis.
- A Lomb-periodogram was applied to each signal to identify the main peaks that denote significant infradian rhythms.
- A three- harmonic cosinor model with a fundamental period of 520 day was fit to the data to obtain curve parameters for further exploratory analyses.

Results

- Significant infradian rhythms were found for all variables, but with different periods in most of the cases.
- The exception was a similar evening HR rhythm found in all subjects, with a (mean \pm SD) period of 198 ± 10 days, and an amplitude of 31 ± 11 $\mathrm{bpm}^{2} / \mathrm{Hz}(\mathrm{p}<0.001)$ (Figures 2-4).
- The rhythms seemed to be phase synchronized during the second third of the journey (Figure 5).
- Further analyses are being performed to exclude leakage effects in peak determination.

Figure 1: Mars-500 project facilities determination.

Figure 2: Evening heart rate of a selected crew-member. Dots denote heart rate values,
while solid line shows cosinor fit. while solid line shows cosinor fit.

Figure 4: Cosinor fit for evening heart rate of all crewmembers (grey lines), with mean and Cl 95\% (blue lines).

Figure 3: Lomb periodogram of the same subject of figure 2. The main peak denotes a period length of around 170 days.

Figure 5: Cosinor fit for standardized evening heart rate of all crewmembers.

Discussion

- Several factors may account for our results, including seasonal changes in mood, physical activity, nutrition or sleep along confinement.
- The existence of endogenous freerunning monthly cycles is difficult to prove.
- The suprachiasmatic nuclei are believed to be responsible for determining circannual biological rhythms.
- Seasonality is characterized by changes in sleep, mood and behavior and circannual rhythms had been described for autonomic variables.
- Studying human infradian rhythms may be relevant for understanding adaptation to slow changing environmental variables in health and disease.

Selected References

[^0]
[^0]: - Pérez-Lloret S, Toblli J, Vigo DE, et al. Infradian awake and asleep systolic and diastolic blood pressure rhythms in humans. J Hypertens 2006;24(7):1273-9.
 - Rakova N, Jüttner K, Dahlmann A, et al. Long-Term Space Flight Simulation Reveals Infradian Rhythmicity in Human Na+ Balance. Cell Metabolism 2013; 17, 125-131.
 - Vigo DE, Tuerlinckx F, Ogrinz B, et al. Circadian rhythm of autonomic cardiovascular control during Mars500 simulated mission to Mars. Aviat Space Environ Med. 2013; 84(10):1023-8.

