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Abstract

The purpose of this numerical work is focused on the dynamics of a stably stratified inclined mixing layer. Both effects, stratifi-

cation and slope, are considered through relevant flow parameters. Chebyshev’s approximations and Direct Numerical Simulation

(DNS) are used in the context of linear stability analysis for different Richardson numbers and slopes. Two-dimensional temporal

and spatial simulations are employed to examine baroclinic layer and the evolution of primary and secondary Kelvin-Helmholtz

instabilities. In three-dimensional configuration, only stratification effects are considered. The numerical results show persistence

of the translative instability with formation of intense longitudinal vortices highly influenced by the Richardson number.
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1. Introduction

Stratified mixing layers develop in the interface of two parallel streams of fluid moving with different velocities and

densities. This kind of flows is often found in nature, such as in the atmosphere due to interaction among air currents

or in the mixing between fresh and salt water. The buoyancy effect reduces the perturbation growth rate while the

slope effect, for instance, due to topographical features, accelerates the developing of instabilities. The competition

between both mechanisms results in various types of instabilities depending on mixing layer density difference and

inclination. Thus, the transition to turbulence is governed by the competition between inertial and buoyancy forces,

which strongly affect the mixing layer longitudinal spreading growth. Previous results of this kind of flows were

obtained through laboratory experiments (Browand & Latigo1 1979, Thorpe15 1987), using linear stability analysis

(Hazel3 1972, Negretti et al. 10 2008), or by numerical simulations (Staquet14 2001, Smyth12 2003, Martinez et al. 9

2007), among others.

The main objective of this numerical work is to study the stratification and slope influence in stably stratified

mixing layers. Direct numerical simulation (DNS) and Chebyshev’s approximations are used to quantify the temporal
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amplification of perturbations of linear problems. For spatially-developing simulations, 2D and 3D configuration

domains are considered to follow the spatial evolution of primary and secondary instabilities and three-dimensional

vortex structures.

2. Governing equations

The fluid motion governing equations are: continuity, Navier-Stokes in the Boussinesq approximation, and mass

transport. In dimensionless, they are stated as,

�∇ · �u = 0,
∂�u
∂t
+

1

2
[�∇(�u ⊗ �u) + (�u · �∇)�u] = −�∇Π + 1

Re
�∇2�u + Ri ρ �eθ,

∂ρ

∂t
+ (�u · �∇) ρ =

1

RePr
∇2ρ, (1)

where �u = (u, v,w) is the velocity field, �eθ = (sin θ, −cos θ, 0) with the slope given by θ (Fig. 1a), Π is the

modified pressure field, and ρ the density. The reference parameters are half velocity difference (U = (U1 − U2)/2),

initial vorticity thickness (δi = 2U/|∂u/∂y|t=0,y=0) and density reference (ρ0). The Reynolds number, bulk Richardson

number and Prandtl number are defined, respectively, by Re = Uδi/ν, Ri = gΔρδi/(2ρ0U2) and Pr = ν/κ, where g is

the gravitational acceleration, Δρ the density difference, ν the kinematic viscosity and κ the molecular diffusivity.

To perform linear stability analysis, the normal modes method is employed. The non-dimensional governing linear

stability equation is given by

(φyy − α2φ) − uyy
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ρy cos θ
(u − c)2

φ − Ri
sin θ

jα(u − c)2

[
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]
= 0, (2)

where u(y), ρ(y) are the base velocity and density profiles, subscripts y and yy denote differentiation with respect to the

vertical direction, respectively, φ is the complex disturbance amplitude, α = αr is the wave-number, c = ω/α = cr+ jci

is the complex wave speed, and the amplification rate is defined by ωi = αrci. Density diffusion and viscous term

have been neglected for Eq. (2) development.

3. Initial and boundary conditions

The velocity and density base profiles are given by

u(x, y, z, t) = UC − U tanh
(

2y
δi

)
, v(x, y, z, t) = w(x, y, z, t) = 0, ρ(x, y, z, t) = − tanh

(
2y
δρ

)
, (3)

where δρ represents the initial density thickness and x, y and z are the streamwise, vertical and spanwise directions,

respectively. For temporal simulations, the convection velocity is UC = 0 and initial conditions are u = u(x, y, t = 0),

ρ = ρ(x, y, t = 0). Sinusoidal perturbation field (u′0, v
′
0) of maximum amplitude Af is added to the base velocity profile.

Boundary conditions are periodic at x = 0 and x = Lx, and free-slip at y = ±Ly/2. For spatially-developing mixing

layers, the boundary conditions are u = u(x = 0, y, z, t), ρ = ρ(x = 0, y, z, t), U1 = 3U, U2 = U and UC = (U1 + U2)/2
(Fig. 1a). In the inflow boundary condition, the velocity and density profiles (Eq. 3) are used while at the outlet, an

outflow boundary condition,
∂ϕ
∂t + UC

∂ϕ
∂x = 0 is solved where ϕ represents u,v or ρ.

4. Numerical methods

The governing equations (Eq. 1) are solved numerically using the computational code5, which is

based on compact sixth-order finite difference schemes for spatial differentiation and a second-order Adams-Bashforth

scheme for time integration. To treat the incompressibility condition, a fractional step method requires to solve a

Poisson equation. This equation is fully solved in spectral space via the use of relevant Fast Fourier Transforms.

For three-dimensional simulations, a parallel version of the computational code based on a powerful 2D domain

decomposition method is used6. The linear stability equation, Eq. (2), is solved via Chebyshev’s approximations.
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Fig. 1. (a) Mixing layer velocity and density base profiles; (b) Maximum amplification rate (Chebyshev operator); (c) Vertical disturbance temporal

evolution for different Ri (grid (128, 129), θ = 0).

5. Results

This section presents results regarding linear stability analysis and spatially-developing simulations focusing on

stratification and slope influences in the mixing layer. Linear stability analysis using Chebyshev differential operator

and DNS results are performed and compared.

5.1. Linear analysis

From Eq. (2), a third-order polynomial eigenvalue problem is obtained, where c is the eigenvalue. This problem

is then transformed into a generalized eigenvalue problem16,17. This conversion is characterized by matrices of size

3N × 3N where N is the total number of grid points. The bulk Richardson number used in analysis for linear stability

lies between 0 ≤ Ri ≤ 0.30 while the slope varies 0 ≤ θ ≤ 0.10. In Fig. 1b, for θ = 0, the maximum growth

rates present 10−4 order differences when compared with Hazel results3 . For 0.001 ≤ θ ≤ 0.01, growth rates

are undistinguished to the case for θ = 0. When θ = 0.05 and θ = 0.10, the rates decrease as Ri increases but

they remain above in comparison with the previous case and nearly constant for the highest Richardson numbers

(0.25 ≤ Ri ≤ 0.30).

For two-dimensional temporal simulations, a Lx = Ly = λa = 7δi domain configuration is defined, which corre-

sponds to the most amplified wavelength λa predicted by linear theory3. The dimensionless parameters are Re = 300,

Pr = 1, 0 ≤ Ri ≤ 0.20, 0 ≤ θ ≤ 0.10 and Af = 10−6. The largest mesh used is (nx, ny) = (256, 257). The linear region

for the vertical perturbation time evolution v′, represents the maximum amplification (ωi). When θ = 0 (Fig. 1c),

the numerical results obtained present a maximum difference of 0.21% when compared with the Chebyshev operator

approach for the non-stratified case. When 0 < Ri ≤ 0.10, the error was less than 0.40% and reached up to 7.2% for

the high stratification (Ri = 0.2).

Including stratification and slope effects, the maximum difference obtained between DNS and Chebyshev operator

results is 1.25% for Ri = 0.01 and θ = 0.01, increasing up to 2.12% when Ri = 0.01 and θ = 0.05.

5.2. Spatial Simulations

For spatially-developing simulations, the following flow parameters are defined: Re = 1000, Pr = 1, and maximum

perturbation amplitude Af = 0.10. For two-dimensional simulations, the Richardson number ranges 0 ≤ Ri ≤ 0.10,

while for Ri = 0.05 the slope varies 0 ≤ θ ≤ 0.10. For three-dimensional simulations, only Ri number variation (with

the same range) is considered. Table 1 summarizes flow and domain parameters for spatial simulations. The mesh

grid is stretched in y, where the minimal mesh size is Δymin � 0.064δi in y � 0. The simulation time is 320δi/U which

is equivalent to ≈ 45 Kelvin-Helmholtz (KH) vortices’ emissions.

The evolution of the KH instability in a stably stratified mixing layer is firstly analysed through 2D simulations.

The stratification level interferes in the flow dynamics, specifically, the baroclinic layer generation is intensified when

the Ri number increases. In Figure 2, vorticity fields for Ri = 0 (Fig. 2a), Ri = 0.025 (Fig. 2b), Ri = 0.05 (Fig. 2c) and
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Table 1. Parameters for spatial simulations.

2D Simulation Ri θ A f (Lx, Ly) (nx, ny) Δt(×10−3)

I 0 0 0.06 (147, 35) (2497, 545) 2.5
II 0.025 0 0.06 (168, 28) (2801, 521) 3

III 0.05 0 0.06 (168, 28) (2881, 541) 2.5
IV 0.05 0.02 0.06 (168, 28) (2881, 541) 2.5
V 0.05 0.05 0.06 (168, 28) (3201, 577) 2

VI 0.05 0.10 0.06 (168, 28) (3201, 673) 1.5
VII 0.10 0 0.10 (168, 28) (3201, 673) 1.5

3D Simulation Ri θ A f (Lx, Ly, Lz) (nx, ny, nz) Δt(×10−3)

VIII − XII 0; 0.025; 0.05; 0.07; 0.1 0 0.12 (140, 49, 14) (1417, 505, 72) 4

Fig. 2. Spanwise vorticity fields (ωz) for: (a) Ri = 0; (b) Ri = 0.025; (c) Ri = 0.05; (d) Ri = 0.10. Spanwise vorticity fields: (e) in x = 110 for

Ri = 0.025; (f) in x = 155 for Ri = 0.05; (g) in x = 86 for Ri = 0.10. Scale values ranging from −1.2 (blue) to 1.2 (red).

Ri = 0.10 (Fig. 2d) are shown. In the homogeneous mixing layer, after pairing, the KH vortex saturates since there is

no source of energy for generating other instabilities. In a stratified flow, the vorticity layers are strained in between

the KH vortices and form the baroclinic layer (x � 125 in Fig. 2b and c)13. The longitudinal density gradient (∂ρ/∂x)

intensifies the baroclinic layer while reinforcing the vorticity layer and decreasing it in the vortex core. Therefore, the

source term ∂ρ/∂x contributes with an additional mechanism for vorticity generation in the two-dimensional stratified

layer8.

For Ri = 0.025 (Fig. 2b), the baroclinic layer weakens due to emergence of a sub-harmonic instability and strength-

ens after the first pairing. The instability next to the core propagates towards the baroclinic layer, providing the ap-

pearance of counter-rotating vortices pairs (in red color and highlighted with a circle in Fig. 2e). This mechanism

generates KH vortices in the baroclinic layer through a secondary instability that destabilizes the baroclinic layer.

Secondary KH vortices are shown in Fig. 2b, centered at x = 160. The core instability is intensified for high strat-

ification, for instance, when the Richardson number is Ri = 0.05 (Fig. 2c) and Ri = 0.10 (Fig. 2d). In these cases,

the secondary KH instability mechanism can be noticed when x ≥ 130 in Fig. 2c and x ≥ 140 in Fig. 2d. Figure

2f shows a spanwise vorticity field of a zoomed in area of Fig. 2c centered at x = 155, confirming secondary KH
instability and counter-rotating vortices. For the high stratified mixing layer case corresponding to Ri = 0.10 (Fig.

2d), the secondary KH vortices evolvement is inhibited due to the strong stratification that prevents the growth of

the sub-harmonic mode. The core instability (Fig. 2g, x = 86) occurs before the pairing, as verified by temporal

simulation of Martinez7 (2006) and Staquet13(1995) for Re = 1000 and Ri = 0.083.

The spatial evolution of the vorticity thickness δω is now considered for quantifying the stratification influence

on the mixing layer lateral spreading growth. In Fig. 3a, it can be observed how the vorticity thickness is strongly

influenced by the Richardson number, decreasing its growing for increasing Ri. Figure 3b shows the spreading rate

(1/R)dδω/dx as a function of the Richardson number for region 40 ≤ x ≤ Lx, where the modified velocity ratio is
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Fig. 3. (a) Spatial evolution of the vorticity thickness for 2D simulations; (b) Spreading rate (•) of the vorticity thickness as a function of the

Richardson number and the adjusted function (−); (c) Spatial evolution of the maximum kinetic energy for 0 ≤ Ri ≤ 0.10.

Fig. 4. Spanwise vorticity fields (ωz) for Ri = 0.05 and: (a) θ = 0.02; (b) θ = 0.05; (c) θ = 0.10; (d) Maximum kinetic energy streamwise evolution

for Ri = 0.05 and θ = 0; 0.02; 0.05; 0.10. Scale values ranging from −1.2 (blue) to 1.2 (red).

R = (U1 − U2)/(U1 + U2) = 1/2. This rate, defined by Brown & Roshko2(1974) for homogeneous mixing layers, is

extended here for the stratified case. Browand & Latigo1(1979) computed a spreading rate of 0.15 for Ri = 0. An

exponential function is adjusted based on the results, yielding the expression f (Ri) = 0.034 + 0.116 × 10−8.6Ri (Fig.

3b).

The turbulent kinetic energy is also strongly influenced by stratification (Fig. 3c). For each streamwise position

x, the maximum kinetic energy (Kmax) was computed, where K is given by K(x, y) = 0.5(< u′2 > + < v′2 >). The

damping effect over the kinetic energy when Ri > 0 occurs because the stratification weakens the vertical motions.

Results from simulations IV,V , and VI (see Table 1) are now considered to analyse changes in the streamwise

development of a stratified mixing layer (Ri = 0.05) when slope effects (θ = 0.02; 0.05; 0.1) are taken into account.

Comparing the results of simulation III (θ = 0, Fig. 2c) and simulation IV (θ = 0.02, Fig. 4a), it can be observed that

there is an intensification of the secondary instability leading to a greater number of secondary KH vortices (x ≥ 120)

due to the increase slope. This effect is related with the horizontal forcing component Riρsin(θ) in Eq.(1).

After the first pairing, the evolution of the KH vortices changes when a higher slope is considered (see, for instance,

Fig. 4b for θ = 0.05 and Fig. 4c for θ = 0.10). The baroclinic layer formed between two adjacent pairings is

more stretched with increasing slope, mainly when θ = 0.10 (Fig. 4c). This can be interpreted by the source term

Ri[−(∂ρ/∂x) cos θ − (∂ρ/∂y) sin θ] that contributes as an additional mechanism for the vorticity generation in a two-

dimensional stratified inclined mixing layer. The slope growth also influences the evolution of the maximum kinetic

energy, Kmax (Fig. 4d). The destabilizing effect produced by the component Ri ρ sin(θ) in Eq.(1) increases the kinetic

energy. Therefore, higher levels of saturation are reached with increasing θ.
The three-dimensional behaviour of a spatially developing horizontal stratified mixing layer is considered now

for Ri = 0; 0.025; 0.05; 0.07; 0.1 (Table 1). Fig. 5 shows instantaneous views of turbulent structures for different

stratification levels (Table 1) through visualizations of Q-criterion. Pierrehumbert & Widnall11(1982) investigated the

formation of longitudinal vortices in a homogeneous mixing layer. The authors suggest that a translative instability
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Fig. 5. Turbulent structures of a stratified mixing layer by iso-surfaces of Q-criterion with a iso-value Q = 0.3 for : (a) Ri = 0 ; (b) Ri = 0.025 ; (c)

Ri = 0.05 ; (d) Ri = 0.07 ; and Q = 0.2 for (e) Ri = 0.10.

Fig. 6. Streamwise growing of the vorticity thickness for different Richardson numbers.

is responsible for the appearance of longitudinal vortices. Such instability is characterized by an in-phase spanwise

oscillation of the KH vortex. The translative instability denoted indicated by arrows in Fig. 5 seems to be present

in all stratified cases. As a result of this instability, strong longitudinal vortices are stretched between the KH big

rollers in the homogeneous case (Fig. 5a). For increasing Ri numbers the streamwise structures seem to weaken

due to stratification effect. Anyway they can be still observed even for Ri = 0.1, the highest stratification level here

considered.

For the homogeneous case, the vorticity thickness spreading rate varies from 0.15 (Browand & Latigo1) to 0.27

(Huang & Ho4). For the stratified cases, this quantity was computed and its result is shown in Fig 6. A fair linear

growth of the vorticity thickness appears to be expected with the higher influence for an increasing Ri number. The

spatially growing vorticity thickness normalized with the velocity differences (1/R)δω/dx ranges from 0.201 (Ri = 0)

to 0.062 (Ri = 0.10).
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Conclusion

The purpose of this numerical study is to investigate stratification and slope influence in a stably stratified mixing

layer. For the linear analysis, numerical solutions using Chebyshev operators and 2D simulations were performed.

For stratified horizontal cases (θ = 0), maximum growth rate differences of 10−4 were obtained when compared

with the results using Chebyshev operators with reference3. For θ = 0.05 and θ = 0.10, the maximum growth

rates decreased when Ri increases. Temporal simulations for Re = 300 show satisfactory results compared with

Chebyshev operators for a wide range of Ri numbers and θ = 0.05. Two-dimensional spatial developing simulations

at Re = 1000 show vorticity layers strained in between the KH vortices forming a baroclinic layer. Depending on the

Ri value, the baroclinic layer may develop secondary KH vortices. The streamwise evolution of the vorticity thickness

is strongly influenced by the Richardson number, decreasing its lateral growth for increasing Ri. A potential law is

proposed for the lateral spreading of the stratified mixing layer. The kinetic energy of the flow shows damping effects

with increasing stratification. Results from three-dimensional spatially-developing stratified mixing layer simulations

suggest that the translative instability is responsible for the appearance of longitudinal vortices. These streamwise

vortices are stretched between the KH vortices for the homogeneous case. For increasing Ri, these structures are

weakened due to stratification effect even though they can be still observed for the highest stratification considered

here.
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