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Abstract. Proteins are vital to most biological processes by perform-
ing a variety of functions. Structure and function are intimately related,
thus highlighting the importance of predicting a proteins 3-D conforma-
tion. We propose GMASTERS, a multiagent tool to address the protein
structure prediction (PSP) problem. GMASTERS is a general-purpose
ab initio graphical program based on cooperative agents that explore the
protein conformational space using Monte Carlo and Simulated Anneal-
ing methods. The user can choose the abstraction level, energy function
and force field to perform simulations. Because bioinformatics demands
knowledge from diverse scientific fields, its tools are intrinsically complex.
GMASTERS abstracts away some of this complexity while still allowing
the user to learn and explore research hypotheses with the advantage
of an embedded graphical interface. Although this abstraction comes at
a cost, its performance is similar to state-of-the-art methods. Here, we
describe GMASTERS and how to use it to explore the PSP problem.

Keywords: PSP Problem · Multiagent system · Monte Carlo · AB
model

1 Introduction

Proteins are polymers of 20 different building blocks, called amino acids. These
building blocks interact physicochemically resulting in a unique spatial confor-
mation for each protein [1]. Due to advances in the Genome Project, there is
a large number of protein sequences available in the GenBank [2]. Currently,
there are about 82 million non-redundant protein sequences. However, in the
Protein Data Bank or PDB [3], there are approximately 115,000 3-D structures
of proteins. Eliminating redundancy by filtering very similar structures (SCOP),
we get only 1,393 different folds or topologies. Under these circumstances, it is
evident the huge gap between our competence to produce protein sequences and
to determine 3-D structures of new proteins with yet unknown folds [4]. Com-
puter Science, more specifically Structural Bioinformatics, has been a great ally
on reducing this gap.
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The Protein Structure Prediction (PSP) problem emerged in the 60’s and
even today its solution remains a major challenge to molecular biology [5]. Lim-
itations of 3-D structure experimental determination techniques, such as X-ray
diffraction crystallography and nuclear magnetic resonance, highlight the impor-
tance of computational methods to predict the structure of proteins. Advances in
handling the PSP problem will allow us to predict the 3-D structure of proteins
with relevant applications in the biopharmaceutical industry. It will also improve
our understanding of proteins involved in vital processes, including diseases such
as cancer [6]. Considering the difficulties faced by traditional approaches (in
vitro and in vivo experiments) concerning biological systems, the use of comput-
ers becomes attractive, making possible to execute low-cost and faster in silico
experiments. An application that involves PSP must consider the system’s real
time adaptability, i.e., parameters modifications such as thermal bath temper-
ature. There is a clear need for in virtuo experiments: computer simulations
susceptible to perturbations during execution. While the easy modification of
parameters is a typical property of all computer simulations (in silico experi-
ments), the easy modification of the experiment itself is a property of multiagent
systems (MAS), resulting in in virtuo experiments [7,8].

Here, we present a general tool that allows addressing PSP according to
the user needs. The user is free to choose (via a Graphical User Interface) both
abstraction level and force field to guide the simulation. The agents are organized
in hierarchical levels. Optimization is done by Monte Carlo/Simulated Annealing
and the user can modify parameters and optimization method. GMASTERS can
be obtained at labio.org.

2 Background

2.1 Proteins and the PSP Problem

If we take a deep look into living organisms and observe their cellular level
functions we will notice these functions are carried out by a variety of proteins.
Zooming in our body toward the cells, we will realize that each cell has its
own copy of the genome. The genome is what gives the cell functionality. From
a computational point of view, we could state that the genome is a string or
sequence composed by four kinds of letters (A,C,T and G) referring to four
kinds of nucleotides. Scanning the genome from the left to the right certain
substrings are found (called genes). Each triplet of nucleotides is a code that
can be parsed to one of the 20 amino acids. The concatenation of parsed triplet
nucleotides (amino acids) generates a protein sequence. A protein linear sequence
of amino acid residues is called its primary structure [9]. Figure 1 shows a typical
representation of a protein, as well as the abstraction level used in this work.

The PSP problem is the problem of predicting the 3-D structure of a pro-
tein starting from its primary structure or amino acid sequence. The physical
process by which a polypeptide folds into a functional protein is an old question
(reviewed by Snow [10]) and continues to be one of the biggest challenges in
current structural bioinformatics [5].
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Fig. 1. (A) The representation of an extended hypothetical protein chain formed by
alternated residues of alanines (hydrophobic) and serines (hydrophilic). (B) The rep-
resentation of the abstraction level used in this work, where hydrophobic amino acids
are marked as “A” while the hydrophilic amino acids are marked as “B”.

The protein’s 3-D structure is directly linked to its function. Determining
its spatial conformation experimentally is expensive and time consuming. Bioin-
formatics has the important role of accelerating this knowledge discovery [11].
This paper’s approach is based on Anfinsen’s proposal which states that, at the
environmental conditions (temperature, solvent concentration and composition)
at which folding occurs, the native structure is a unique, stable and kinetically
accessible minimum of the protein’s free energy. However, finding this structure
is not trivial and even simplified methods have NP-Complete complexity [12].
Figure 2 shows a hypothetical uni-dimensional energy function to illustrate the
challenge of finding the lowest energy and achieving the native conformation.

Still regarding the inherent difficulty of the problem we can cite Levinthal’s
paradox [13], which states that for a 100-length chain there will be at least 2100

possible conformations (considering only two degrees of freedom), characterizing
it as an intractable problem [14]. In the last five decades different algorithmic
approaches have been tested and, although there has been progress, the problem
remains unsolved even for small proteins. While the ultimate goal is to predict
the 3-D or tertiary structure from the primary structure, the current knowledge
and computing power is insufficient to handle a problem of such complexity [15].

2.2 Multiagent Systems

Multiagent systems (MAS) are part of the Artificial Intelligence field and refer
to the modeling of autonomous agents in a common universe. MAS is a relatively
new sub-field of Computer Science - it has been studied since about 1980 - and
the field has gained widespread recognition around 1990 [16].

Agents are computational entities that interact with an environment and
are goal-oriented, having a body and a location in time and space. An agent
is capable of autonomous and flexible actions to reach its goals. According to
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Fig. 2. Simplified protein structure prediction funnel. The figure shows an unidimen-
sional component of a free energy hyper-surface where (A), (B), (C) and (E) represent
local minima and (D) represents the global minimum (native structure).

Russel and Norvig [17], a rational agent is able to select the action that maxi-
mizes its performance, given the evidences accumulated by its perceptions and
internal knowledge. According to Bradshaw [18], an agent is a software entity
that works continuously and autonomously in a given environment. It should
perceive and act in its environment in a flexible and intelligent way. It may
learn from experience, communicate, cooperate with other agents and have the
mobility required to satisfy its goals. The agents’ autonomy means they have
an existence independent of other agents, and have to achieve their own goals.
Although there is no universally accepted definition of agent, some properties as
autonomy, pro-activeness, reactivity and social ability are intrinsic of its behav-
ior. A set of agents acting in an environment characterizes a MAS.

An agent needs an environment that can be of numerous types and complex-
ities. The environment complexity is strongly linked to the agent’s complexity.

Netlogo [19] is a very popular agent-based modeling tool and it is partic-
ularly suited for modeling complex systems that take time into account and
where hundreds or thousands of agents can be programmed and interact inde-
pendently, making possible to explore the connection between micro and macro-
levels of behavioral patterns. One of the remarkable advantages of Netlogo is
its embedded tools, and BehaviorSpace is one of them, offering the possibility of
automatically perform a large set of experiments by changing parameters’ values.
Due to the BehaviorSpace capability, it is possible to explore more resourcefully
the configuration space in PSP and tune parameters to improve results.

3 MASTERS

MASTERS [20] was built using Netlogo v5.0 (see Sect. 2.2 for details). A strong
Netlogo’s peculiarity is that it was developed for educational purposes, providing
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a rich modeling environment which allows experimental coding. Ab initio meth-
ods require three elements [21]: (i) a method for searching the energy landscape,
(ii) an energy function (iii) a geometrical representation of the protein chain.
As a pure ab initio method, MASTERS must comprise these elements. How
MASTERS addresses these items is shown hereafter.

Searching Agents. The Searching Agents have the mission of exploring the con-
formational space. Usually, one or more searching agents are associated to each
amino acid in the protein, depending on the selected abstraction. The agents’
position is expressed as Cartesian coordinates, resulting in movements that are
local, i.e., they do not affect the position of other agents.

Director Agent. The Director Agent has total knowledge about the protein’s
current spatial conformation and coordinates searching agents, aiming at a more
efficient spatial exploration. The Director agent has no representation in the
Cartesian space. It is an agent that acts on the 3-D space from outside. Director
Agents perform global moves on the searching agents. It is mandatory to have
at least one Director Agent in the simulation.

Environment Agent. There is only one Environment Agent. Its role is to con-
trol the simulation flow, simulated annealing scheme, number of movements per
time/temperature step, real time plots, and outputs.

3.1 Hierarchical Cooperation

This is related to (i). A core MASTERS concept is the agents hierarchical orga-
nization (Fig. 3). Higher-level agents have the role of coordinating the actions of
lower-level agents [22]. In a bottom-up hierarchical order.

Searching and Director agents cooperate to find the conformation that better
suits their goals. They are autonomous, not depending on each other to perform
their moves. The agents are reactive to their environment: the Searching agents
can see their neighborhood, whereas the Director agent has full information on
the environment, being able to influence the simulation in a broader manner.

MASTERS’ environment is treated as a box with dimensions delimited by the
user. In a multiagent perspective it can be considered both accessible (for Direc-
tor and Environment agents) and inaccessible (for Searching agents, who have
limited access to information), non deterministic, due to its stochastic nature,
dynamic and discrete.

3.2 Sampling Technique

Also related to (i), MASTERS’ movements are controlled by Monte Carlo (MC).
MC [23] is one of the most used energy landscape exploration techniques. It has
a probabilistic nature and it is a method for generating different configurations
of a particles system, i.e., points in space compatible with external conditions.
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Environment Agent

Director Agent

Searching Agents

Fig. 3. MASTERS’ hierarchy. The Environment Agent is responsible for the simulation
flow. Searching agents explore the configuration space by performing move attempts.
The Director agent is able to affect the position of all other agents in the environment.

Looking back to Fig. 2 we can pay attention to points (A) and (B). From
there, MC defines two conformational states SA and SB, each one with its cor-
responding energy EA and EB . If EB < EA the move is accepted. If EB > EA

there is still the possibility of accepting the move. However, in such cases, the
probability of accepting a move from SA to SB follows the Eq. 1, where k is the
Boltzmann constant and T the temperature. Once the system reaches (B) it is
allowed to accept movements toward (C), hoping to someday find (D).

e−(EB−EA)kT = e−(ΔBA)kT (1)

Once an MC simulation is in progress it is necessary to constantly check its
acceptance ratio, as it influences the agents’ movements. Usually a ratio of 0.5
can be considered an optimal initial value for MC simulations involving PSP
[24]. Since our method is based on different types of autonomous agents, each
type of agent needs to have its acceptance ratio average assessed separately.

The MC method has drawbacks, though. In the PSP problem, the tempera-
ture of the system determines the size of energy barriers that could potentially
be overcome. When dealing with temperatures that are too low, MC will not
explore far from the minimum energy found, leading to local minima. Simulated
Annealing (SA) is a simple MC modification that turns it into a global optimizer.
At the beginning of the simulation the temperature is set high and fairly high-
energy barriers are overcome. Then the system is gradually cooled, eventually
being confined to a single energy. Due to the gradual cooling rate (logarithmic),
the system ends up spending more time in low energy regions. This may increase
the chances of finding the lowest energy state although there is no assurance [11].
Concerning SA performance, convergence is guaranteed only if the temperature
is reduced to zero logarithmically. In MASTERS the temperature is gradually
decreased according to Eq. 2, where α = 0.98:
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Tk+1 = Tk ∗ α (2)

Regarding the role of the agents on sampling, the simulation relies on account-
ing the number of movement attempts for each agent. To achieve minima at a
given temperature, the system should explore the conformational space a large
number of times. Counters are used to summarize the average number of move
attempts per agent type (both Searching and Director Agents). Every time step
is related to a specific temperature. The system will be stuck at each temper-
ature until an average number of movement attempts has been attained. The
simulation ends when the temperature reaches a value set by the user.

3.3 Choosing the Energy Function/Abstraction Level

Here the elements (ii) and (iii) are addressed. MASTERS currently incorporates
MC/SA as sampling technique, not allowing the use of Molecular Dynamics or
Genetic Algorithms. However, one of its particular characteristics is its orthog-
onality with respect to the simulation flow and the energy function/abstraction
level used. The user must choose which energy function/force field to use and
this is a primordial step within the framework’s generality. MASTERS was not
built exclusively to a particular energy function. The framework can be applied
to a wide range of optimization problems that involve Cartesian coordinates (2-
D or 3-D). Regardless of the problem, the energy function will directly affect the
number of searching agents and their movements.

3.4 GMASTERS

The educational purpose is one of the main focuses of GMASTERS, providing a
user-friendly interface where students that are not familiar with computer pro-
gramming can explore the PSP problem in interactive ways. The MASTERS’
version presented here includes a new graphical user interface named GMAS-
TERS. The latter is an alternative to the old MASTERS’ developed on the Net-
Logo environment. GMASTERS is written in the Python language and employs
the GTK+ toolkit, which provides more sophisticated widgets and friendlier
interface. We hope the interface to considerably assist users, something not com-
monly taken into consideration when simulating proteins. The results generated
are plotted using the Matplotlib toolkit. For the visualization and 3D analysis
of the obtained models GMASTERS connects with PyMOL [25] using a similar
approach to GTKDynamo [26]. A typical session snapshot is shown in Fig. 4.

Creating Projects. In GMASTERS the user always works inside a given project.
To create a new project the user provides information such as project directory,
user name and protein sequence. Every project contains, beyond the information
provided by the user, date and time of creation and the list of jobs.

Setup and Running Simulations. Once a project is created the user can setup
and run Monte Carlo simulations inside GMASTERS. The user can set parame-
ters such as box dimensions, temperature and maximum movement. Every new
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Fig. 4. GMASTER’s GUI. (A) Main window, displaying simulation projects and para-
meters setup, (B) Plot window, showing energy and acceptance ratio, (C) PyMOL
viewer, with the predicted conformation.

simulation result is a new item in the job list which provides time of creation,
status, lowest obtained energy and the current step’s energy. These data allow
a preliminary comparison between different simulations and, at the same time,
keep chronologically ordered steps performed by the user.

Data Analysis and Model Visualization. As a simulation proceeds its results are
stored in a log file. GMASTERS is able to read and interpret these log files
and display graphics of the relevant information, which can then be saved and
manipulated by the user. Trajectories are also generated. These come in PDB
format, and can hold a variety of information, including coordinates and energies.

4 Case Study

4.1 Geometry Representation and Energy Function

To examine GMASTERS’ behavior and effectiveness, we adopted the same sim-
plified model used in our last work [20], the AB Model (see Fig. 1).

The simplest and most conventional model among all applied abstractions
used in PSP is the HP Model [27]. The HP model divides all 20 amino acids
into two different groups, the hydrophobic (H) and the hydrophilic (P) ones.
The amino acids are placed at an on-lattice grid, and the energy computation at
each conformation takes into account only interactions between next-neighbored
nonadjacent hydrophobic amino acids [27]. The energy of a conformation is the
number of hydrophobic-hydrophobic contacts that are adjacent on the lattice,
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but not adjacent on the string (sequence). The main idea is to force the establish-
ment of a compact hydrophobic core as observed in real proteins [28]. Lattice
models have proven to be useful tools for reasoning about the PSP problems
complexity [27] and despite its high abstraction level, the PSP problem with HP
models is still an NP-Complete challenge [29]. The AB model is a lattice model
in which the amino acids are once again divided into two groups: hydrophobic
amino acids are marked as A while the hydrophilic ones are marked as B.

Many authors have been using this model as starting point for PSP under-
standing [30–32]. The AB model, in comparison to the HP model, has the addi-
tional capability of collecting information about local interactions that might be
significant for the local structure of protein chains. This allows finding compact,
well-defined native structures that would not be found if these local interac-
tions were neglected [33]. Unlike the HP model, the interactions considered in
the AB model include both sequence independent local interactions and the
sequence dependent Lennard-Jones term that supports the energy convergence
to a hydrophobic core [32,34].

The AB off-lattice energy model is described by Eq. 3, where θ is the bend
angle between the two bonds defined by three consecutive residues and rij is
the distance between residues i and j [32]. The first sum, the backbone bending
potential, calculates the bending angle energy of the protein chain. The dou-
ble sum is the Lennard-Jones potential. It calculates the long-range interaction
energy, which is attractive for pairs of the same amino acids (AA or BB) and
repulsive for AB pairs. The residue specific prefactor C is given by the Eq. 4.

E =
n−1∑

i=2

1
4
(1 − cosθ) +

n−2∑

i=1

n−1∑

j=i+2

[r−12
ij − C(ξi, ξj)r−6

ij ] (3)

C(ξi, ξj) =

⎧
⎨

⎩

+1, ξiξj = A
+1/2, ξiξj = B
−1/2, ξi �= ξj

⎫
⎬

⎭
(4)

4.2 Target Sequence

Although several works in the literature use Fibonacci sequences as targets
for their simulation [32,34], we chose to work on real sequence targets. The
aminoacids A, C, G, I, L, M, P and V were set to hydrophobic (class A) and D,
E, F, H, K, N, Q, R, S, T, W and Y were set to hydrophilic (class B). As means
of demonstration we chose the PDB ID 1AGT protein, a recurrent target [35].

4.3 Simulation Setup and Running

Once the target sequence (and abstraction level) is chosen, a simulation setup is
required. Here it is possible to parametrize the MC/SA scheme, selecting values
to initial temperature, temperature decrease ratio, movement amplitudes, etc.
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Fig. 5. The system starts with a high energy and the different kind of agents inter-
act microscopically (MC/SA controlled moves) yielding a macroscopic behavior: the
protein folding/energy convergence. The outputs are provided in a PyMOL canvas.

4.4 Data Analysis and Model Visualization

While the simulation runs it is possible to visualize the current energy profile and
structure. Figure 5 shows that in the beginning of the simulation the protein is
nearly unfolded and the first steps’ energy is high. As the simulation progresses
and the system cools down, lower levels of energy are reached and the protein
starts to fold into more favorable conformations. If the system’s energy doesn’t
start to decrease, it may be an indication to review the simulation setup para-
meters. In this case study, the simulation progresses normally and we can see the
energy converging to lower levels. Furthermore it was observed an improvement
in CPU time.

5 Conclusion and Future Works

This paper presented a tool for handling the protein structure prediction prob-
lem. More specifically GMASTERS, a GUI developed in GTK that runs over
MASTERS core. The focus of the application is the user, making possible for
students with different knowledge levels to learn about PSP and Monte Carlo
and for experts to test their own methods.

To explore the new features available in GMASTERS we performed a case
study with the protein whose PDB ID is 1AGT and, in addition to the new
facilities provided, it was noticed a considerable improvement in CPU time.

We plan to evolve GMASTERS’ architecture by parallelizing simulations,
improving its overall performance. In addition, we intend to use different coarse
grained abstraction levels and therefore different force fields.
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