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Abstract

Background: In the rational drug design process, an ensemble of conformations obtained from a molecular
dynamics simulation plays a crucial role in docking experiments. Some studies have found that Fully-Flexible
Receptor (FFR) models predict realistic binding energy accurately and improve scoring to enhance selectiveness. At
the same time, methods have been proposed to reduce the high computational costs involved in considering the
explicit flexibility of proteins in receptor-ligand docking. This study introduces a novel method to optimize ensemble
docking-based experiments by reducing the size of an InhA FFR model at docking runtime and scaling docking
workflow invocations on cloud virtual machines.

Results: First, in order to find the most affordable cost-benefit pool of virtual machines, we evaluated the
performance of the docking workflow invocations in different configurations of Azure instances. Second, we validated
the gains obtained by the proposed method based on the quality of the Reduced Fully-Flexible Receptor (RFFR)
models produced using AutoDock4.2. The analyses show that the proposed method reduced the model size by
approximately 50% while covering at least 86% of the best docking results from the 74 ligands tested. Third, we tested
our novel method using AutoDock Vina, a different docking software, and showed the positive accuracy achieved in
the resulting RFFR models. Finally, our results demonstrated that the method proposed optimized ensemble docking
experiments and is applicable to different docking software. In addition, it detected new binding modes, which would
be unreachable if employing only the rigid structure used to generate the InhA FFR model.

Conclusions: Our results showed that the selective method is a valuable strategy for optimizing ensemble
docking-based experiments using different docking software. The RFFR models produced by discarding
non-promising snapshots from the original model are accurately shaped for a larger number of ligands, and the
elapsed time spent in the ensemble docking experiments are considerably reduced.
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Background
According to Eder et al. [1] the average cost of bring-
ing a new drug to market is doubling approximately
every 9 years, while a negative impact has been noted
in the number of drug approvals by the US Food
and Drug Administration. The development of new
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drugs is a very lengthy and time-consuming process.
It also requires substantial investments in technology
resources, such as the computational power to store,
manage, execute, and analyze simulations on protein-
ligand interactions [2, 3]. Thus, new computational meth-
ods are needed to aid time reduction and to accurately
investigate chemical and biological behaviors of ligands
and receptors during the Rational Drug Design (RDD)
process [4, 5].
Molecular Docking, which constitutes the second step

of the RDD, is an attractive technique to identify and
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optimize drug candidates because of its ability to quickly
screen large libraries of potential leads for identifying
native-like poses and filtering out compounds that are
likely nonbinders [6, 7]. It has been widely used in phar-
maceutical design since structure-based virtual screen-
ing has shown to be more economic than experimental
screening [7]. To predict the best orientation of a small
molecule (ligand), a molecular docking simulation gen-
erates several possible poses that a ligand may fit within
the macromolecular target (receptor) binding site using
a docking software, such as AutoDock4.2 and AutoDock
Vina [8, 9]. Each docking software has a search algo-
rithm that generates a set of different binding modes of a
protein-ligand complex, and a scoring function that can
rank them, as well as predicting binding affinities by com-
puting, among other values, the Free Energy of Binding
(FEB) and the Root Mean Square Deviation (RMSD).
The protein flexibility is a vital issue in docking pro-

grams since they perform satisfactorily taking care only
the flexibility of ligands. [10, 11]. The methods used for
considering the flexibility of ligands in docking experi-
ments cannot be directly assigned to a typical protein
due to its vast number of conformational degrees of free-
dom. Buonfiglio et al. [12] state that ignoring the protein
flexibility in docking experiments is indeed a potentially
dangerous practice that most likely would result in false-
negative outcomes. In fact, proteins are very versatile and
their flexibility cannot be a priori neglected since it plays
an essential role in their structure and function [12, 13].
To account for the dynamic behavior of proteins, we

make use of an ensemble of conformations obtained from
a Molecular Dynamics (MD) simulation [14, 15]. MD
simulation is one of the most affordable and accurate
methods for identifying alternative binding modes of pro-
teins, making possible to understand from fast internal
motions to slow conformational changes [14]. The result
of an MD simulation is a series of instantaneous confor-
mations, or snapshots, of the protein along the simulation
timescale. Throughout this paper, the term Fully-Flexible
Receptor (FFR) model [16] is used to refer to the ensem-
ble of snapshots that constitutes an MD trajectory. The
major problem in using an ensemble of snapshots dur-
ing docking experiments is that it becomes a limiting
and costly task as the dimensionality of the FFR model
increases. Several studies have attempted to deal with this
virtual high-throughput screening; however, it remains an
unsolved problem [11–13, 17–21].
A number of different methods were proposed in the lit-

erature to reduce the elapsed time taken for performing
docking-based virtual screening [7]. Most of these meth-
ods scale up simulations based on the volume of drug-
like compounds by using High-Performance Computing
(HPC) environments, such as computing clusters [22, 23],
grid computers [24], and cloud computing [25–29].

Despite having different goals and requirements, all
these studies carried out in docking small molecules to
rigid biological receptors. In ensemble docking experi-
ments, various approaches have been used to reduce the
number of MD conformations into a manageable and
meaningful set. For instance, some studies have applied
clustering algorithms to partition MD trajectories and
select only a small set of representative conformations
[30–34]. Even though these studies use different functions
of similarity to find an optimal clustering, the set of repre-
sentative MD conformations may interact favorably with
somemolecules, and unfavorable with others since a small
number of structures is used to represent the entire MD
trajectory.
A different approach to deal with ensemble docking is

addressed by wFReDoW [18], our previous work. This
web application was deployed on Amazon Elastic Com-
pute Cloud with the intention of reducing both the overall
docking runtime and the dimensionality of a 3.1 ns MD
trajectory. wFReDoW reduces the total time of ensemble
docking experiments by using a clustering of MD trajec-
tory and identifies partitions with promising snapshots.
It claims good results for the experiments presented in
[18, 19]. However, the need for information about docking
results before submitting a new ligand and the limitation
of scalability due to the MPI cluster model are critical
aspects of performing molecular docking simulations of
FFR models using a large database of small molecules.
In this study, we show that Reduced Fully-Flexible

Receptor (RFFR) models can be generated by identify-
ing promising MD conformations to the ligands during
the docking experiments without previous assessments
about the best free energy of binding or any other eval-
uation associated with ligand binding quality. To reach
this goal, we developed a selective method for optimiz-
ing ensemble docking-based experiments for FFR models.
This method aims to discard groups of unpromising snap-
shots for specific ligands at runtime and scale ensemble
docking-based experiments on an INhA FFR model out
onto cloud virtual machines (VMs). It was deployed on
e-FReDock, the cloud-based scientific workflow to per-
form exhaustive molecular docking simulations of FFR
models and multiple ligands [35]. As a result, we expect to
significantly reduce the overall execution time of docking
experiments and find the best docking poses of the ligands
in the resulting RFFR models.
This paper describes the implementation of the pro-

posed method in the e-FReDock workflow [35] and evalu-
ates its results by assessing the quality of the RFFRmodels
produced. It starts with a brief review of the most rel-
evant e-FReDock workflow components and the cloud
environments assigned to perform docking experiments
on VMs. In the Implementation Section, we detail the novel
method developed to select promising MD conformations
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during docking runtime and introduce the improvements
made on e-FReDock to incorporate the selective method.
The ‘‘Results’’ section shows the performance of e-FReDock
when executed on public VMs and the gains achieved with
the proposed method. Such gains were evaluated by ana-
lyzing the docking results of the produced RFFR models
using AutoDock 4.2 and AutoDock Vina [8]. Furthermore,
we also assessed themethod gains based on the rigid, crys-
tal structure, of the InhA enzyme. The study ends with a
discussion about the findings and future work directions.

Methods
The clustered FFRmodel
The FFR model employed in this study was generated
from an MD simulation of the 2-trans-enoyl-ACP (CoA)
reductase (E.C.1.3.1.9) enzyme or InhA-NADH complex
fromMycobacterium tuberculosis [36]. InhA is part of the
fatty acid biosynthesis system type II (FASII) and plays
a role in the synthesis of mycolic acids, which are key
components of the Mycobacterium tuberculosis cell wall.
Inhibition of InhA by the drug isoniazid, for instance, kills
the bacteria [36]. The InhA enzyme is one of the best
established and validated target for the development of
anti-tuberculosis (anti-TB) agents [37, 38].
The MD simulation was performed by the SANDER

module from the Amber9 suite of programs [39] using
the ff99SB force field [40] by Gargano [41]. According to
Gargano [41], the structures belonging to the MD trajec-
tory of the InhA were superimposed onto the initial struc-
ture using a rectangular box of 77.7 Å x 73.3 Å x 77.3 Å.
Hydrogen atoms, ions, and water molecules were initially
submitted to 100 steps of energy minimization with the
steepest descent to closely remove contacts of van der
Waals forces. The pressure of the simulation was kept at
1 atm and, to avoid disturbance to the system, the temper-
ature was gradually increased from 10 K up to 298 K in six
steps (10 K to 50 K, 50 K to 100 K, and so forth). For each
step, the velocities were reassigned according to Maxwell-
Boltzmann distribution and balanced for 200 ps [41]. Data
were saved at every 1 ps over the 20 ns simulation, yielding
a total of 20,000 instantaneous receptor conformations.
From these 20,000 MD conformations, we discarded the
first 500 as being the heating phase of the simulation and
use remaining 19,500 as the set of snapshots that consti-
tutes the FFR model of InhA, and it is used to conduct
the ensemble docking experiments in this study. Further
details on the MD simulations preparation and execution
can be found in [41].
To reduce the size of the FFR Model and, consequently,

the number of ensemble docking experiments, without
affecting the accuracy of the produced RFFR models, we
decided to use a clustering of MD conformations as input
data for the method proposed. The clustering of MD con-
formations applied in this study was generated by De Paris

et al. [20]. They presented a set of studies to find an opti-
mal partition solution to the 20 ns MD trajectory of the
InhA-NADH complex, using structural properties from
the substrate-binding cavity of every MD conformation as
similarity function for the clustering algorithm. The ben-
efit of using this similarity function for clustering MD
trajectories is to have partitions with different patterns
of binding modes. For instance, if a receptor conforma-
tion belongs to a cluster that interacts favorably with a
specific ligand, we can assume that other conformations
within the same cluster have similar structural properties
in their substrate-binding cavity, and consequently, will
behave similarly. Otherwise, if the interaction between the
same receptor and ligand is unfavorable, we can consider
that this cluster has unpromising snapshots and can be
discarded to reduce the number of docking experiments
on the FFR model [42]. Due to this high level of binding
cavity similarity within a cluster, we used the optimal clus-
tering solution selected by De Paris et al. [20] as input to
the method proposed in this study.

e-FReDock: The flexible receptor docking-based virtual
screening workflow
The e-FReDock workflow was developed in e-Science
Central (e-SC) [43], a workflow enactment system for
the development of portable analytics applications that
can be deployed on dedicated hardware or in a cloud-
based environment. A typical workflow in e-SC is com-
posed of blocks of activities (or services) to orchestrate
the execution flows based on a direct acyclic graph
representation.
The previous specification of e-FReDock deployed on

e-SC is presented in De Paris et al. [35]. It was designed
on cloud-based environments and contains two sub-
workflows: Create Experiment, which creates new dock-
ing experiments of an FFR model and one ligand; and
Ensemble Docking Experiment, which includes a set of
blocks for performing molecular docking simulations on
AutoDock4.2 [8] by scaling each sub-workflow out onto
Azure VMs. The e-FReDock workflow also stores essen-
tial docking information on MongoDB [44].
The e-FReDock workflow uses the e-SC API Java client

to control the invocations of both sub-workflows. This
API has a set of e-SC components to execute workflow
instances on cloud resources and manage data files by
accessing the e-SC file system. We decided to use this
API to deal with the quality assessment of the groups of
snapshots at docking runtime since the e-SC enactment
system is a directed acyclic graph based workflow, i.e.,
it can not repeat workflow tasks. Thus, besides creating
new blocks of activities to meet the needs of the proposed
method, we also performed some changes in the e-SC
API to monitor the selective ensemble docking-based
experiments.
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Cloud computing platforms
The cloud platforms selected for performing the ensemble
docking-based experiments in this study were: Microsoft
Azure public cloud [45] and Cloud Innovation Centre
(CIC) private cloud [46]. Azure was chosen for this study
since it is one of themost well-known andwell-established
cloud platforms. Some studies have used Azure cloud
instances to optimize the RDD process, such as prediction
of chemical activity using e-SC [47] and virtual screening
practices [25, 28].
The second cloud platform used to execute our experi-

ments was CIC. This private cloud is located at Newcastle
University (UK) and built by the School of Computing
Science to support cloud research, staff and students’
mass-scale virtualization requirements and third-party
partners. CIC private cloud infrastructure is a virtualiza-
tion platform, consisting of 27 nodes with 20 cores each,
resulting in a total of 540 cores and 7424 GB total RAM.
The storage area network uses a 10 Gb Ethernet LAN
and 4 nodes with 12 cores, 64 GB RAM and 37 TB stor-
age per node. Furthermore, 3 nodes with 12 cores, 64
GB RAM and 1.4 TB storage each are used for manage-
ment purposes. Horizon Dashboard [46] is the web-based
user interface for OpenStack Nova services. Its access was
granted by the project coordinators for the sole purpose
of running the experiments of this research.

Implementation
The selective approach for optimizing ensemble
docking-based experiments
The selective approach aims to identify and discard snap-
shots with unfavorable receptor-ligandbound conformations
in groups of MD conformations with similar proper-

ties in their substrate-binding cavities. Favorable binding
modes are discovered and ranked during the docking
experiments, based on predicted FEB values extracted
from snapshots already docked. The approach developed
to perform selective ensemble docking experiments is
divided into preprocessing and processing stages. The
schematic process from these both stages is given in the
flowchart shown in Fig. 1.
An experiment is created when a clustering of MD

Conformations and a ligand are submitted as input for
docking executions. Before starting the experiment, the
user should define the percentage and the number of
minimum and maximum snapshots per batch. Based on
these parameters, the preprocessing phase splits clus-
ters of snapshots into batches. Even though the proposed
method allows to choose a type of analysis, we performed
evaluations for both, batch and cluster, and concluded
that performing analyses in small samples of snapshots
(batch analyses) identifies more precisely promising snap-
shots than in cluster analyses. For this reason, all results
presented in this study were performed by using analyses
per batch.
Each batch contains its status and priority, used for

determining the order in which the snapshots will be
processed. Priority indicates how promising a group of
snapshots is on a scale from 0 to 5 (5 being the most
promising), whereas status denotes one of the following
four possibilities: (A) Active, (C) Calibrate phase, (D) Dis-
carded and (F) Finished. In this approach, when a docking
experiment is submitted to be executed, all batches receive
status “A” and priority 5. Snapshots are processed until
the percentage threshold to start the analysis, which is a
parameter defined by the user, is reached by all batches of

Fig. 1 Strategic method for performing the selective method for optimizing ensemble docking-based experiments in one ligand. Calibration phase
is the process of quantitatively defining interactions between a sample of MD conformations and a ligand
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an experiment. The highest priority is set to accelerate the
end of the calibrate phase.When all batches reach the per-
centage threshold to start the analysis (i.e., all batch with
status assigned to “C”), their statuses are simultaneously
changed to “A”, and a set of metrics are computed to define
the experiment baseline. Figure 2 shows the metrics used
to compute the experiment baseline from the snapshots
processed in the Calibrate phase.
The set of metrics computed after the calibrate phase

are sampling FEB average (xi), estimated FEB average
(exi), sampling FEB lower quartile (lqi), sampling FEB 13th
percentile (pi), and sampling FEB minimum value (mini).
The estimated FEB average is defined by Hübler et al. [48] as

exi = 1
ni

⎛
⎝∑

xεBi

x + (0.4985 × ri × (2xi − si))

⎞
⎠ (1)

and

si =

√√√√√ 1
ni − 1

⎛
⎝∑

xεBi

(x − xi

⎞
⎠

2

(2)

where ni is the number of snapshots in batch i, ri is the
number of remaining snapshots to be processed from
batch Bi, x is the best predicted FEB value for each snap-
shot from batch Bi, and xi is the sampling average. Figure 2
shows how the method computes the set of metrics where
rows represent the values from each batch and columns
represents the values used to define the experiment base-
line metrics.
After the calibrate phase, our method selects batches of

snapshots with status equal to “A” and uses the priority
to dictate the order in which the snapshots are processed.
The higher the priority of a batch, the greater the amount
of its snapshots are selected and processed. An experi-
ment ends when all batches hold status equal to “D” or
“F”. Promising snapshots are those belong to batches that
process all snapshots (Status “F”). A batch with the status

Fig. 2 Schematic representation of the metrics used for computing
the experiment baseline. The metrics of the experiment baseline are
based on the FEB values computed for each batch, where median
and lower quartile are taken from xi , and lower quartiles from the lqi ,
pi andmini

equal to “D” is stopped as it contains snapshots with poor
quality of docking results for a specific ligand. A batchmay
be discarded for two reasons: (i) if it is unable to reach the
experiment baseline metrics (see Fig. 2) or; (ii) if it has low
priority and reaches the percentage threshold to discard a
batch, which is also defined by the user.
In the analyses of docking results, the desirable batches

(i.e. batches with priority 5 are those where: (a) xi and
exi are less or equal to LQx̄; (b) lqi is less or equal to
LQlq; (c) pi is less or equal to LQp; and (d) mini is less
or equal to LQmin. If a batch does not meet such con-
ditions, its priority is decreased, tending to zero when
xi and exi are higher than Mx̄. We have computed the
lower quartiles, the 13th percentile, and sampling mini-
mum values since we expect to outperform the quality of
the RFFR models produced not only by considering the
FEB values average but also by identifying the snapshots
that account for at least 25% more negative FEB values
of a batch.

The advances on e-FReDock workflow for handling the
selective ensemble docking-based method
The primary objective of introducing the proposed
method into the e-FReDock scientific workflow was
to assist in performing practical virtual screening on
FFR models by speeding up ensemble docking experi-
ments. Towards this end, we made improvements and
refinements in the original e-FReDock workflow ver-
sion by the approach described in the previous section.
Figure 3 shows the selective ensemble docking sub-
workflow along with the native operations of e-FReDock
on e-SC. To include the selective approach proposed in
this study, we created a new block in the selective ensem-
ble docking sub-workflow and a set of functions in the
e-SC API.
The Analyze Docking Result block, which was added in

the selective ensemble docking sub-workflow, computes
the priority and determines the status of each group of
snapshots by using the set of metrics described in the
previous section. Priorities, status and other data nec-
essary for handling the proposed method are stored in
the MongoDB database, which in turn, is also accessed
by the e-SC API for discarding groups of unpromising
snapshots. The e-SC API is one of the essential compo-
nents of the e-FReDock conceptual architecture and it is
based on the workflow scheme from Fig. 1. It contains
every procedure required to scale the selective ensem-
ble docking sub-workflow out onto VMs, monitors the
Selective Ensemble Docking sub-workflow invocations,
and selects snapshots that are likely to represent the most
promising conformations between the FFR model and a
specific ligand. Data and control flows are monitored by
e-SC, which is also responsible for scaling VMs onto cloud
platforms.
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Fig. 3 The Selective Ensemble Docking Sub-Workflow from e-FReDock based on e-SC. The e-SC Server contains the workflow model, which is sent
to be executed on one of the enactment nodes. The bottom box represents the pool of virtual machines attached to the e-SC server from which
workflow instances are executed

Results
e-FReDock performance analyses on Azure virtual
machines
To better understand which choices to make regarding
costs and performance of a commercial cloud system,
we performed and evaluated a set of experiments on
e-FReDock, using Azure Dv2-series instances located in
the North Europe data center. docking The Dv2-series
Ubuntu 14.04 instances are based on the 2.4 GHz Intel
Xeon E5-2673 v3 processor with Intel Turbo Boost Tech-
nology 2.0 that can go up to 3.2 GHz. Table 1 lists the
different VMs instances we tested along which their cor-
responding features and costs.
In these experiments, the Lamarckian Genetic Algo-

rithm (LGA) from AutoDock4.2 and its parameters
were used to execute the molecular docking simulations
between snapshots from the InhA FFR model [41] and the
TCL ligand fromPDB ID 2B35 [49] with 2 rotatable bonds.
Twenty-five LGA independent runs were executed with a
maximum of 500,000 energy evaluations. The e-SC server
andMongoDB were hosted in a Standard D2 VM instance
(Intel Xeon 2.4 GHz, 7 GB RAM). A total of 100 Selective
Ensemble Docking sub-workflow invocations were exe-
cuted in Dv2-series machines with different workloads

to identify a setting that makes more efficient the use of
available resources. For this purpose, we evaluated the
efficiency regarding speedup per processor with the inten-
tion of measuring how many tasks can be executed in
parallel to avoid wasting resources.
As can be seen in Fig. 4, virtual machines with smaller

number of cores presented better efficiency than bigger
ones. Another interesting finding is the high efficiency

Table 1 Types of Azure Dv2-series instances used to assess
e-FReDock performance

Instance name Cores RAM (GB) Disk size (GB) Price (US$)a

D2 v2 2 7 100 0.14

D3 v2 4 14 200 0.28

D4 v2 8 28 400 0.55

D5 v2 16 56 800 1.11

D11 v2 2 14 100 0.18

D12 v2 4 28 200 0.37

D13 v2 8 56 400 0.74

D14 v2 16 112 800 1.48

aPricing information from the Azure website as of January 15, 2016 [45]
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Fig. 4 Comparing the efficiency of Dv2-2 Azure instances with different number of threads

observed in instances with small RAM and an equal num-
ber of cores. It suggests that the amount of RAM does
not affect the docking experiments efficiency, regardless
of the number of threads. As the RAM is a key aspect
of the instance price and considering our performance
e-FReDock tests, we decided to run the cost-effectiveness
analyzes on instances with small RAM sizes.
The Fig. 5 shows the estimated elapsed time and

costs to execute simultaneously 32 docking experiments
in the D2-series Azure instances. The estimation was
determined on 19,500 Selective Ensemble Docking sub-
workflow invocations, which is the number of snapshots
from the clustered FFR model. Interestingly, the time
spent to execute docking experiments increases as the
number of cores per instance rises. This observation sug-
gests that AutoDock4.2 is unable to manage multiple LGA
(i.e., more than 4) in the same machine since its effi-
ciency is affected by the workload. Thus, we decided to

execute the e-FReDock workflow in a pool of D2 v2 Azure
instances.
It is worth emphasizing that LGA is a non-deterministic

algorithm and its overall time execution may vary accord-
ing to the global search space of genetic algorithms. This
search randomly generates a population of ligand poses
until either the maximum number of evaluations or the
maximum number of generations limits is reached [8]. As
the population is generated randomly, the genetic algo-
rithm may not present the same behavior, even for the
same input. For this reason, Fig. 4 shows the efficiency
of D2v2 instance larger than 1. However, we monitored
the resource use on Azure portal when a set of 10 VMs
was running the experiments, and the average percent-
age of CPU use was 98%. It indicates the good efficiency
of the VMs even when more than one virtual machines
are simultaneously used to run many tasks of LGA
algorithm.

Fig. 5 Performance analysis on Azure VM. The Azure instances used are D2 v2, D3 v2, D4 v2 and D5 v2 with 2, 4, 8 and 16 cores, respectively. Pricing
and instance information from the Azure website as of January 15, 2016
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Analysis of the e-FReDock results
e-FReDock configuration protocol
To execute the selective ensemble docking-based experi-
ments on e-FreDock, we select a set of 74 ligands from two
databases: 12 from PDB [50] and 62 from ZINC [51]. The
selection approach used to select ligands from PDB was
to discard structures that are mutant or without NADH
or complexed with coenzyme NADH as an adduct. The
latter structures were unselected as the 1ENY structure -
the crystallography structure of the FFRmodel - is already
complexed with the NADH coenzyme. We also discarded
those structures that contain the substrate analog (THT)
or more than one ligand within the substrate-binding cav-
ity. As ZINC database [51] is the second biggest repository
of small compounds ready to execute in docking soft-
ware, we employed the ZINCPharmer online interface
[52] to construct and refine the pharmacophore models
based on the most effective anti-TB drugs: rifampicin and
isoniazid [53]. A set of pharmacophore properties were
extracted from these two ligands and were used as restric-
tions to ZINCPharmer search for new ligands in ZINC
database. The result of this investigation was a list of
957 ligands, which in turn were sorted by the minimum
predicted FEB values obtained by performing docking
experiments with a small set of 25 representative struc-
tures of the FFR model [54]. The first 62 compounds from
this list of ranked compounds were selected to conduct
our experiments.
Docking parameters were set up to perform 20 LGA

independent runs with a maximum of 500,000 energy
evaluation. The grid box was centered in the middle coor-
dinates of the binding cavity with a dimension of 48Å X
48Å X 44Å for ZINC’s compounds, and customized sizes
were configured to the PDB’s ligands. All ligands were
treated as flexible during the docking experiments. To
provide the reference pose of each PDB ligand, we first fit
all snapshots of the FFR model to the first MD conforma-
tion. After that, we placed the reference pose of each PDB
ligand based on the first MD conformation and repro-
duced it for all MD conformations. A PDBQT file for each
snapshot from the FFR model was created before starting
the experiments and placed into the e-SC Share Library.
We set the atom types used by AutoDock4.2, added the
Kollman charges and merged all receptor snapshots from
the FFR model with the nonpolar hydrogens. For each
experiment, groups were divided into batches of 20%, lim-
iting the number of snapshots between 50 and 150. The
percentages of processed snapshots defined to start the
analyses and to discard a batch were 10 and 40%, respec-
tively. These values were obtained based on preliminary
test analises.
The e-FReDock experiments were performed on the

two cloud environments: CIC [46] and Microsoft Azure.
Each cloud environment was configured to have its

e-SC server. The e-FReDock setup consists of installing
and configuring e-SC system and MongoDB into the
e-SC server. The same e-SC server used to per-
form the performance analysis on Azure instances
was employed to perform these experiments. Blob
storage with 30 GB was allocated to deploy the e-
SC server on Azure, and a hard disk with 40 GB
was attached to the e-SC server on the CIC private
cloud. Based on the performance analyses described
in the last Section, we decided to attach 10 D2
v2 Azure VMs into the e-SC server, where each
VM was set to run 4 parallel workflow invocations
(4 threads). CIC private cloud has a small set of flavors
with a limited hard disk. Disk size was the determin-
ing factor to select the VM flavors since the Ubuntu
14.04.3 LTS installation takes 7.5 GB of the total disk
size. For this reason, the 10 biggest CIC instances,
each one with 4 cores, 8 Gb RAM, and 16GB disk
size, were selected to deploy e-FReDock in a pool of
private VMs.

Evaluating the accuracy of the RFFRmodels
The method proposed in this study aims to eliminate
groups of unpromising snapshots at docking runtime
using the approach to perform selective ensemble dock-
ing experiments presented in the Implementation Section.
This method generates an RFFR model for each ligand
based on a set of metrics computed to assign the prior-
ity and status for each batch. To validate the e-FReDock
results, we statistically compared the set of snapshots
that constitutes the RFFR model with a set of snapshots
selected by chance from the ensemble docking experi-
ment. Thus, the following hypotheses are addressed: (i)
Null Hypothesis (H0): the method does not result in gains;
(ii) Alternative Hypothesis (H1): the method results in
gains. To reject the null hypothesis, the accuracy of all
RFFR models produced should be higher than the selec-
tive ensemble docking at random, considering the same
percentage of processed snapshots.
The quality of the RFFRmodels produced by e-FReDock

was analyzed by scoring the number of snapshots that
are in the top 10, 20, 30, 100 and 200 best ensemble
docking results of the whole FFR model for each ligand.
Tables 2 and 3 report the performance of the RFFRmodels
produced after executing e-FReDock. The most striking
result to emerge from generated RFFR models is the high
accuracy reached by ZINC ligands, with top best FEB
cases ranging, on average, from 89 - 94% and the model
size reduced by approximately 57% (see Table 3). Further-
more, e-FReDock was able to cover all the best 10, 20 and
30 interactions in 47% (29), 29% (18) and 18% (11) of the
62 ZINC ligands, respectively.
Even though the RFFR models generated by PDB lig-

ands showed lower quality than those produced by ZINC
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Table 2 Accuracy assessments in the e-FReDock scientific workflow for InhA’s known inhibitors

PDB ID Ligand Proc. Snap. (%) TOP10 (%) TOP20 (%) TOP30 (%) TOP100 (%) TOP200 (%)

1P44 GEQ 48.92 100.00 95.00 93.00 86.00 86.00

2B35 TCL 50.67 80.00 55.00 60.00 75.00 80.00

2B36 5PP 50.97 60.00 70.00 66.00 67.00 73.00

2B37 8PS 49.72 60.00 60.00 60.00 78.00 79.50

2H7I 566 52.33 80.00 90.00 83.00 79.00 78.00

2H7L 665 50.62 100.00 100.00 100.00 98.00 98.00

2H7M 641 47.75 100.00 100.00 100.00 100.00 100.00

2H7N 744 50.65 100.00 100.00 100.00 97.00 97.00

2H7P 468 49.84 90.00 95.00 83.00 82.00 82.00

3FNE 8PC 52.46 90.00 90.00 93.00 90.00 88.00

3FNH JPJ 47.89 100.00 100.00 100.00 96.00 93.00

2NSD 4PI 53.61 100.00 95.00 96.00 97.00 96.00

Average - 50.45 88.83 87.50 86.17 87.08 87.54

chemical compounds (on average between 86 and 89%),
the worst results were obtained only on 3 structures
(2B35_TCL, 2B36_5PP, and 2B37_8PS). These findings
suggest that MD conformations from the FFR model used
in this study are unable to reproduce structures with tight-
binding InhA inhibitors and with sub-nanomolar affini-
ties, i.e. structures that have very similar mode of action
to triclosan [49].
The analyses on e-FReDock results provide support to

reject the null-hypothesis defined as “the method does not
result in gains". A random selection of 9837 snapshots -
equivalent to 50.45% of processed snapshots for PDB lig-
ands - and 8453 - equivalent to 43.35% of processed
snapshots for ZINC compounds - would statistically take
around 43.00 to 50.00% of the best 10, 20, 30, 100 and
200 receptor-ligand interactions. Tables 2 and 3 demon-
strate that the lowest percentage of the top snapshots
selections was 55% for the 20 best interactions between
the FFR model and 2B35_TCL ligand. Nevertheless, this
percentage is still higher than the processed snapshots,
i.e., 50.67%. Furthermore, the percentage reached by the
2B35_TCL ligand in the others top best FEB cases are
higher or equal to 60%.
To further validate the gains of the proposed method,

the alternative hypothesis, we also assessed the RMSD val-
ues of the RFFR models produced for ligands extracted
from PDB. The goal of this analysis is to investigate if, in
addition to cover the best interactions, e-FReDock is also
able to select the best RMSD values. For that, a compara-
tive analysis of the variation of RMSD values between the
FFR model and the RFFR models is presented in Fig. 6. It
is noticeable that boxplots from the RFFR models report
central tendencies lower than those presented by boxplots
from the FFR models. RFFR models also present the mini-
mum observation values (lower whiskers) lower in almost

all cases. Therefore, it can be stated that e-FReDock was
also able to cover snapshots with the lowest docking final
poses for almost all ligands, even though the method
proposed in this study is based only on FEB values.
Regarding docking accuracy, Fig. 6 shows that TCL

(PDB ID: 2B35) ligand is close to its reference poses, while
the remaining ligands have RMSD values not lower than
2,00 Å. This RMSD threshold value is used along with the
predict FEB value for selecting satisfactory docking results
[8]. We have performed a more detailed study on the 20
ns MD trajectory of the InhA-NADH complex to identify
new InhA inhibitors based on its substrate-binding cav-
ity, which ranges from 45.4 Å3 to 2,852.9Å3 for the entire
20 ns MD trajectory [20]. Hence, ligands with smaller
atom counts and molecular weights are more likely to
interact with one of the MD conformations. For instance,
Fig. 6 shows that TCL (PDB ID: 2B35) ligand have the best
RMSD values and its molecular weight is 289.54 g/mol
and atom count is 24. Other ligands present higher values
of both, molecular weights and atom count.

Comparing docking results between RFFRmodels and the
1ENY crystallographic structure
In this set of experiments, we intend to evaluate the qual-
ity of the RFFR models produced based on the assump-
tion that our selective method was able to outperform
docking results when compared with the rigid structure
that originated the FFR model (1ENY Crystallographic
Structure [36]). Towards this end, FEB values obtained
from docking experiments were the measure selected
for evaluating interactions between MD conformations
and different ligands. To evaluate the gains and losses
obtained by exploring the explicit flexibility of receptors
in the selective method proposed, we compute the accu-
racy of docking results obtained between RFFR models,
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Table 3 Accuracy assessments in the e-FReDock scientific workflow for ZINC chemical compounds

Ligand Proc. Snap. (%) TOP10 (%) TOP20 (%) TOP30 (%) TOP100 (%) TOP200 (%)

91870997 47.23 90.00 90.00 93.00 90.00 86.00

35361468 43.79 100.00 100.00 100.00 99.00 93.50

63349859 44.25 100.00 95.00 93.33 93.00 90.00

12047789 42.64 100.00 100.00 100.00 92.00 88.00

56919632 46.33 100.00 100.00 93.00 85.00 84.00

63479951 35.79 90.00 80.00 80.00 80.00 81.50

53364786 41.11 80.00 75.00 76.67 90.00 89.50

6144048 46.06 100.00 95.00 96.67 96.00 96.00

39532319 47.03 90.00 90.00 90.00 88.00 85.00

34378053 45.02 90.00 95.00 96.67 94.00 92.50

41584161 41.86 90.00 95.00 93.33 89.00 84.00

41584148 42.37 90.00 85.00 86.67 88.00 87.00

1456628 45.20 100.00 95.00 96.67 90.00 89.50

36676865 45.33 100.00 95.00 93.33 95.00 95.00

90914428 43.37 90.00 85.00 86.67 80.00 84.50

63503064 42.09 100.00 100.00 100.00 96.00 93.50

17243209 39.96 90.00 90.00 93.33 95.00 94.50

41584175 57.70 90.00 90.00 90.00 86.00 89.50

23360796 41.48 90.00 85.00 83.33 90.00 87.00

65298323 35.53 100.00 85.00 83.33 80.00 75.00

34378052 42.18 90.00 95.00 96.67 95.00 93.00

9251152 38.69 90.00 95.00 96.67 96.00 95.00

11871395 43.82 100.00 100.00 100.00 98.00 90.50

9197776 43.89 80.00 80.00 73.33 75.00 78.00

90185596 45.59 100.00 85.00 86.67 91.00 90.50

9197790 42.19 90.00 90.00 90.00 74.00 74.00

24000894 42.76 100.00 100.00 100.00 99.00 98.50

39923320 42.05 90.00 95.00 96.67 98.00 98.00

64625806 44.73 80.00 85.00 86.67 90.00 92.50

64040549 44.18 100.00 100.00 100.00 99.00 99.00

64057877 45.66 90.00 95.00 96.67 98.00 97.00

9130690 45.92 100.00 100.00 100.00 98.00 96.00

63479935 35.05 100.00 100.00 96.67 91.00 90.50

63362881 38.35 100.00 90.00 93.33 89.00 87.00

38570167 47.10 90.00 90.00 86.67 87.00 86.00

64074412 46.46 90.00 95.00 93.33 97.00 94.00

64002358 41.70 90.00 95.00 93.33 96.00 94.50

4335232 44.70 80.00 90.00 90.00 88.00 87.50

72047160 46.02 100.00 100.00 93.33 93.00 96.00

9409766 40.57 100.00 100.00 96.67 92.00 92.50

64103060 46.31 100.00 95.00 96.67 92.00 91.00

89608939 43.58 100.00 90.00 86.67 87.00 83.50

2911927 39.10 90.00 90.00 80.00 80.00 79.00
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Table 3 Accuracy assessments in the e-FReDock scientific workflow for ZINC chemical compounds (Continued)

Ligand Proc. Snap. (%) TOP10 (%) TOP20 (%) TOP30 (%) TOP100 (%) TOP200 (%)

41584155 44.88 90.00 90.00 90.00 94.00 90.50

8323837 43.53 90.00 95.00 96.67 97.00 96.50

64074451 46.88 90.00 85.00 76.67 91.00 88.00

64889693 43.07 90.00 75.00 76.67 76.00 77.00

20285686 40.80 100.00 100.00 100.00 89.00 88.00

15038988 45.65 100.00 100.00 100.00 98.00 97.50

9522091 45.55 90.00 95.00 96.67 94.00 95.50

20836860 45.79 90.00 95.00 96.67 89.00 90.00

6648224 44.68 100.00 100.00 96.67 96.00 94.00

35727540 42.32 100.00 100.00 96.67 96.00 95.50

65298175 39.48 80.00 75.00 83.33 74.00 73.50

11074320 40.34 100.00 100.00 96.67 96.00 96.00

9197821 42.35 90.00 85.00 80.00 73.00 77.00

2924572 39.86 70.00 85.00 86.67 86.00 83.00

8971422 45.14 100.00 100.00 100.00 96.00 95.50

25286217 47.10 100.00 90.00 90.00 89.00 86.50

5200961 39.55 90.00 95.00 90.00 88.00 86.50

14989185 46.13 100.00 100.00 100.00 95.00 95.00

2347739 39.88 100.00 95.00 96.67 91.00 90.50

Average 43.35 93.55 92.58 92.03 90.44 89.44

which were produced in the e-FReDock workflow, and the
1ENY structure for the same set of ligands. To identify
which structure (flexible or rigid) reached the best dock-
ing results, we classified each tested ligand into one of the
following categories:

1 RFFR model winner: If the best predicted FEB value
reached by the RFFR model outperforms the best
predicted FEB value from the 1ENY structure in
more than 1 kcal/mol.

2 Tie for RFFR model: If the best predicted FEB value

Fig. 6 Comparison between the RMSD values obtained by the FFR model and the resulting RFFR models for the InhA’s known ligands. Boxplots
represent the trends in RMSD values changes per ligand. Values range from the first quartile to the third with the median RMSD values denoted by
the black line across the central box region
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reached by the RFFR model outperforms the best
predicted FEB value from the 1ENY structure with a
difference equal to or less than 1 kcal/mol.

3 Tie for 1ENY structure: If the best predicted FEB
value reached by the 1ENY structure outperforms
the best predicted FEB value from the RFFR model
with a difference equal to or less than 1 kcal/mol.

4 1ENY structure winner: If the best predicted FEB
value reached by the 1ENY structure outperforms
the best predicted FEB value from the RFFR model in
more than 1 kcal/mol.

The rate threshold of 1 kcal/mol used to identify the
winners is based on the approach used by Huey et al.
[55]. They validated the accuracy of docking experiments
and concluded that AutoDock4.2 was able to satisfac-
torily predict the binding affinities for about 80% of
docking results when the final poses and the FEB val-
ues vary up to 2.5 Å and 1 kcal/mol from the crystal
structure.
The best FEB values obtained by ligands for the 1ENY

crystallographic structure and the RFFR model were
assessed and ranked (see Additional file 1: Table S1).
Table 4 summarizes the winners for ZINC and PDB
ligands according to the four categories employed
described above. It is clear to see that the result-
ing RFFR models were able to outperform the 1ENY
crystallographic structure for all ligands. This find-
ing was unexpected and corroborates with the evi-
dence that receptor flexibility provides significant docking
improvements compared with a rigid treatment of the
protein [12, 21].
Another interesting finding was that 83.33% of selected

PDB ligands (25% tie for 1ENY and 58.33% tie for RFFR)
presented FEB values very close to the 1ENY structure,
while the RFFRmodel outperforms its rigidmodel for only
2 ligands (16.67%). These results may be related to the fact
that InhA structures from PDB are unable to be repro-
duced by any MD conformation of the FFR model [20].
Conversely, the considerable number of RFFR winners
for ZINC ligands (85.48%) reveals that MD conforma-
tions from the FFR model have new binding modes to
be explored, resulting in a set of ligands with satisfactory
FEB values and significant difference regarding the 1ENY
crystallographic structure.

Assessments in the selective method simulation using
AutoDock Vina
This set of experiments was performed to investigate the
performance of the proposed selective method when it
is applied to a different docking method. We decided to
use AutoDock Vina [8] since it is also freely available and
widely used by the academic community, but its scor-
ing function addresses a different requirement from that
used in AutoDock4.2 [9]. To evaluate our method, first we
performed docking experiments between the FFR model
and 12 different ligands (4 from PDB and 8 from ZINC
database) using AutoDock Vina. After that, we extracted
the docking results to simulate the selective docking-
based virtual screening method. The maximum number
of binding modes was set to 20 and the exhaustiveness
of search was set to 4. Remaining parameters were main-
tained unchanged. The preparation protocol of the snap-
shot receptors and ligands, and the reference parameters
of the selective method were the same to those used in
e-FReDock. Results are showed in Table 5.
As we expected, our method is able to reduce the

number of processed snapshots on average by 56.33% in
AutoDock Vina, while keeping the quality of the resulting
RFFR models. The positive accuracy is evidenced by the
percentage of the best docking results selected for each
ligand, which ranges from 54.00 to 100.00% with an aver-
age superior to 83.00% for all top best results analyzed.
These results provide further support for the alternative
hypothesis (H1) defined to validate the e-FReDock results,
which is accepted when our selective method results in
gains by comparing statistically to a random selection.
Even though some ligands present the percentage of pro-
cessed snapshots higher than 50%, the minimum percent-
age of top best docking results was 54.00%. According to
this finding, we can infer that the selective docking-based
virtual screening method proposed in this study may be
applicable to different docking methods.
Overall, AutoDock Vina processed more snapshots than

AutoDock4.2. The average percentage of processed snap-
shots using AutoDock Vina was 54.00% for PDB ligands
and 57.50% for ZINC ligands, whereas using AutoDock4.2
for the same ligands was 49.78 and 43.07% from PDB and
ZINC databases, respectively. As can be seen in Figs. 7
and 8, the accuracy does not always improve in the same
proportion that the percentage of processed snapshots

Table 4 Comparative analysis of the docking results obtained from the RFFR models produced by e-FReDock and the rigid-protein

Database Ligands 1ENY Winners RFFR Winners Ties for 1ENY Ties for RFFR

PDB 12 0.00% 16.67% 25.00% 58.33%

ZINC 62 0.00% 85.48% 0.00% 14.52%

Total 74 0.00% 74.32% 4.00% 21.62%
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Table 5 Performance of the selective docking-based virtual screening method using AutoDock Vina evaluated against 12 different
ligands, obtained from PDB and ZINC databases

PDB ID Ligand Proc. Snap. (%) TOP10 (%) TOP20 (%) TOP30 (%) TOP100 (%) TOP200 (%)

2B36 5PP 45.00 100.00 100.00 96.00 91.00 94.00

2B37 8PS 53.00 100.00 95.00 96.00 96.00 95.00

2H7M 641 54.00 90.00 90.00 93.00 88.00 88.00

2B35 TCL 64.00 80.00 90.00 83.00 88.00 88.00

- 53364786 68.00 100.00 95.00 96.00 97.00 95.00

- 34378053 52.00 100.00 95.00 96.00 94.00 93.00

- 39923320 64.00 70.00 70.00 76.00 81.00 82.00

- 63479935 53.00 80.00 85.00 76.00 59.00 54.00

- 64074412 61.00 90.00 80.00 80.00 79.00 79.00

- 89608939 49.00 70.00 60.00 56.00 60.00 59.00

- 9522091 49.00 100.00 95.00 96.00 89.00 84.00

- 20836860 64.00 100.00 90.00 93.00 94.00 94.00

Average - 56.33 90.00 87.08 86.42 84.67 83.58

increases. For instance, ligands from ZINC database pro-
cessed more snapshots using AutoDock Vina and their
performance were equal or less than those reached by
AutoDock4.2. This finding suggests that the proposed
selective method may be used for different docking meth-
ods, but the accuracy depends on the structure under
study and the scoring function used to identify the most
promising snapshots of FFR models.

Discussion
The selective method proposed in this study aims at iden-
tifying promising MD conformations for specific ligands
and discard those that show little or no binding affin-
ity during docking experiments. We developed a set of
particular workflow blocks based on AutoDock4.2 sys-
tem functions and used the 20 ns InhA MD trajectory,
described in Material and Methods Section, to perform
our experiments. However, our method may be applied

to other docking software and different MD trajecto-
ries. For this, some blocks of the e-FReDock workflow
should be changed to meet the operational needs from
the specific virtual screening method. For instance, to
execute e-FReDock using AutoDock Vina [8], the Auto-
Grid process should be eliminated from the workflow, and
the AutoDock blocks should be replaced to incorporate
the input parameters and the executable program of the
AutoDock Vina. Blocks that prepare receptors and lig-
ands, and those which analyze docking results to identify
promising conformations remain unchanged.
If a new FFR model is introduced to execute the method

proposed, a novel clustering of snapshots should be inves-
tigated and generated. The satisfactory results presented
in this study was also supported by the high quality of the
clustering employed. It means that the set of substrate-
binding cavity features is a promising measure of similar-
ity for MD trajectories and it can be extended to other

Fig. 7 Comparative analysis on the accuracy of PDB ligands for the selective method using AutoDock4.2 and AutoDock Vina. Data from
AutoDock4.2 and AutoDock Vina were extracted from Tables 2 and 5, respectively
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Fig. 8 Comparative analysis on the accuracy of ZINC ligands for the selective method using AutoDock4.2 and AutoDock Vina. Data from
AutoDock4.2 and AutoDock Vina were extracted from Tables 3 and 5, respectively

protein/receptors. To generate new clustering of snap-
shots using substrate-binding cavity features as similarity
function, the binding pocket from the new FFR model
should be known in advance.
Compared with previous work, the results of this study

indicated that the proposed selective method outperforms
the original P-SaMI data pattern [48] in the following
aspects:

• Accuracy: the P-SaMI validation was obtained from
interactions between an FFR model of InhA with only
3,100 snapshots and two ligands, where one of them
is NADH, the coenzyme complexed with the InhA
enzyme [18, 48]. Conversely, our good accuracy was
obtained from interactions between an FFR model
with 19,500 snapshots and a set of 74 small molecules
based on a cloud-based scientific workflow.

• Self-contained: whereas P-SaMI requires that expert
domains provide parameters to identify promising
snapshots, our method can select promising docking
results and reducing the number of docking
experiments, without having any previous
information on the protein-ligand interactions. Input
parameters required by the user are related to handle
the clustering of snapshots and to run AutoDock4.2.

The e-FReDock scientific workflow generated a total
of 932,006 Selective Ensemble Docking sub-workflow
invocations, among which 238,426 were executed on
the Azure cloud platform (around 25 ligands), with the
remaining on CIC private cloud. In total 244.66 h were
taken from D2 instance, which was the e-SC Server
used to run e-FReDock performance tests and e-FReDock
experiments, and 1,900.80 h for all 10 D2 v2 instances (e-
SC engines). Tables 5 and 6 details the Azure costs regard-
ing the computation and data storage. According to the
e-FReDock execution costs ($ 296.11), we can infer that
the proposed method also reduced the ensemble docking
costs significantly. For instance, if the same experiments

were performed for all snapshots of the FFR model, the
e-FReDock execution would cost, on average, $ 586.94
for PDB ligands and $ 683.07 for ZINC compounds, tak-
ing into account the average reduced percentage from
Tables 2 and 3. Likewise, the number of ligands would be
decreased by half if the same cost of e-FReDock execu-
tion presented in Table 6 had been spent to carry out the
ensemble docking experiments on e-FReDock without the
method proposed in this study.

Conclusions
This study introduced a method developed to identify
groups of snapshots with proper conformational states to
accommodate a particular ligand at docking run-time and
incorporated it into the e-FReDock cloud-based work-
flow. A strategic solution was created in the e-SC API to
allocate more virtual processors to batches with high pri-
ority, and fewer processors to batches with low priority.
Experimental results revealed the high accuracy reached
by the proposed method for a set of 74 ligands using
AutoDock4.2, thereby reducing the model size on average
by 53% while keeping the quality of the model by at least
86%. Further experiments were performed for a set of 12
ligands using AutoDock Vina, which also exhibited good

Table 6 Cost specification spent to run e-FReDock on Azure
cloud platform

Cost description Price (US$)

e-FReDock deployment 10.06

e-FReDock performance tests 22.16

e-FReDock execution 296.11

Blob storage 80.51

File transfer 6.48

Total 415.32

aPricing information from the Azure website as of January 15, 2016 [45]
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accuracy by reducing the percentage of processed snap-
shots, on average, by 44% and preserving the quality of
the RFFR models by at least 83%. The results concluded
that, in addition to identifying the best binding affinity of a
specific ligand in the FFR model under study, our method
was also able to: (1) perform well with different docking
methods; (2) select the best docking poses even using a
FEB-based selective method; and (3) outperform docking
results obtained from the rigid structure of the FFRmodel.
A natural progression of this study is to work on the

overhead imposed when fast docking experiments are
executed using more than 8 Azure VMs. Another direc-
tion for future research would be to execute our method
in larger InhA FFR models and perform docking experi-
ments with more compounds, particularly those already
ranked as drug candidates to the FFR model [54] based
on ZINCPharmer [52]. It may assist in discovering new
potential lead compounds for the InhA enzyme, as well
as provide further support to the method proposed in
this study.

Additional file

Additional file 1: Table S1 - Best FEB values obtained from e-FReDock
and cross-docking experiments. (XLSX 11 kb)
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