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Keywords: structured Markovian models, Stochastic Au-regarded in the study of several structured Markovian for-
tomata Networks, MDD, software tool, numerical solution. malisms, such aPerformance Evaluation Process Algebra
(PEPA) [2], Stochastic Petri NetéSPN) [3], andStochastic
Abstract Automata NetworkéSAN) [4].
Structured Markovian models are widely used to map and an- Many times structured Markovian models have the com-
alyze the behavior of complex systems. However, the modeldsination of all individual states,e., the product state space
must frequently need a deeply knowledge about specialize(PSS), much larger than the (valid sgachable state space
tools or limitations imposed on the solution of their mod- (RSS). This kind of phenomenon is much common in struc-
els. This paper presents an easy and practical software todlred formalisms due to few occurrences of independent tran-
called SAN LTE-SOLVER, that applies the Power method to sitions in the subsystems combined of frequent synchroniza-
solve a Stochastic Automata Network (SAN) model, using dions between them. Hence, for models where R&®SS,
standard Multi-valued Decision Diagram (MDD) structure to even using specialized numerical methods to deal with struc-
compute and to store the model’s reachable state space (RS8Jed representations, the solution of a structured model can
and a Harwell-Boeing format (HBF) matrix which representsbecome impracticable in terms of CPU time, due to the treat-
the underlying Markov chain (MC). The performance analy-ment of a large set of invalidiGreachablgstates.
sis of this new tool (in terms of memory used and CPU time A constant challenge of structured modeling is to take ad-
to solve models) is presented and compared to the current apantage of the power of high-level description of problems,
proach used to solve SAN models. providing efficient solution methods. Following this idea, an
interesting alternative is to use, for instance, solution meth-
ods that deal only with theeachable state spaa# a struc-
1. INTRODUCTION tured model instead of a structured solution approach, such as
Markov Chains(MC) [1] is one of the most popular for- Markovian Descriptorin SAN or Matrix Diagramsin SPN.
malisms used to analyze and to study the system behaviétowever, the discovery of these reachable states is not a sim-
of different kind of applications in several domains, such agle task to be performedJulti-valued Decision Diagrams
chemistry, social science, biology, physics, computer scienc§MDD) [5] are compact structures that allow to store and to
to cite a few. Nevertheless, beyond its simplicity to modelmanipulate large sets of data, such as large amounts of states.
a system using a straightforward approach based in simplgIDDs have been efficiently employed for generating and ma-
primitives (Statesand transition between states), depending nipulating the reachable state space of models described by
the size of the modeled system, a Markovian model easilghe SAN [6] and SPN[7] formalisms.
faces the well-knowstate space explosion probleiore- This paper presents a user-friendly software tool, called
over, this mapping task can be feasible for models with a fewsS AN LITE-SOLVER, that computes the steady-state proba-
hundred states, but it becomes impracticable for large modelsility of a model described by the SAN formalism, using a
(i.e., with hundreds of thousand states). MDD structure to store and to manipulate the model’s reach-
In order to mitigate this mapping task, structured Marko-able state space. The main aim of this tool is to make as
vian formalisms have emerged as another possibility to dealimple as possible the interaction between user and tool, as
with this limitation, providing a compact description of a well as to provide an efficient solution for large modéls.{
large system by the description of its subsystems and theinodels with a large number of reachable states). It is im-
correlation. Structured Markovian formalisms allow a high-portant to keep in mind that the ideas applied in the design
level description of a system in a such way that the systenof SAN LITE-SOLVER can also be employed to other for-
abstraction may be done in a more intuitive manner. malisms, such as STDEVS][8], for obtaining the probability
However, this high-level description usually comprehendsspaces in an efficient way.
a set ofinvalid (or unreachablg states that are invalid com-  The remainder of this paper is organized as follows. In Sec-
binations ofvalid individual statesThis problem has been tion 2 it is briefly presented the SAN formalism and its main
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modeling features, as well as the current approach used tmain in any possiblstateor internal configuration. The cur-

solve a SAN model. Section 3 presents SANE-SOLVER rent state of a system contains all information in relation to

showing an overall solution scheme used by this tool and théhe previous inputs and also contains all relevant information

tool usage with some examples as well. In Section 4, it igo determine the future (next) state of the systeey describ-

presented some tool performance analysis, comparing its peirg the system behaviof) [118].

formance (.e., memory cost and CPU time) with the current  Based on this property, it is possible to describe a stochastic

approach used to solve a SAN model. Finally, Section 5 sumautomaton as aet of statesnd aset of transitionsetween

marizes the contribution of this paper and suggest future worktates[[19]. The use of the terstochastiaelated to the au-

to improve the proposed software tool. tomaton means that the treatment of the time is relateaito
dom variableswhich can consider aaxponential distribu-

2 STOCHASTIC AUTOMATA NETWORKS tion in continuous-time ogeometric distributionn discrete-

. . time.
Stochastic Automata NetworkSAN) is a structured for- . . . .
. - . ) In a graphical point of view, &tochastic automata net-
malism originally proposed by Plategu [4] and it provides a .
. . . . works can be represented bysat of directed graphwhere
high-level abstraction to represent continuous and discrete-

time Markovian model$]9, 10]. The main idea of this formal- each graph is associated o an automaton. Mowesof a
ism is to model a complex and large system by a sesiofir graph represent thstatesof an automaton and tregrows (or

. directed edggshetween states represent ti@nsition from
subsystemsi.e., to model a system composed of modules g8s b

with independent behaviorand occasional interdependen- one state to another (see Figllre 1). .
. S ; Local statesof a system modeled by the SAN formalism
cies Beyond an easy and intuitive model mapping, one of

the advantages of using the SAN formalism is to provide aare the individual states of each automaton of the model. And

compact storage and efficient solutionlaige systemanmiti- global statesare composed of the set of local states of each
gating the state space explosion probl&m [11]. This COmpaw?utomaton of a SAN model. The change in a global state is
[

: . : etermined by the change of one or more local states. Transi-
representation of a SAN model is described by an tensor al= .
. . ons allow the changes between states and they are triggered
gebra formula known adescriptor[9, [4], which represents

. . by the occurrence advents Each transition has one or more

the underlying Markov chain. .

Each subsystem of a SAN model is represented b gssomated events.

. Y " b y Figure[1 presents a SAN moBekith two automata A1
stochastic automatoiT hetransitionsbetweerstatesof each
- . andA2), whereAl has three local stateg (G, H) andA2 has
automaton represent the transitions of a stochastic process in : .
continuous-time or discrete-time considering, respectively ar‘%‘ls‘0 three stateX( Y, Z). This model has then nine global
. L ' ' “statesFX, GX, HX, FY, GY,HY,FZ, GZ, HZ.

exponential or geometric distribution.

As the SAN formalism is based on the Markov Chains
(MC) formalism [1], a continuous-time SAN model has an2.2. Events
underlying continuous-time Markov chain (CTMC), whereas Events are responsible for triggering transitions that
a discrete-time SAN model has an underlying discrete-timghange the global state of the model. One or more events can
Markov chain (DTMC). In the context of this paper, only be associated to a single transition. Each event must have an
continuous-time SAN modésre considered. occurrence rateand a routing probabilil; The occurrence

There is a wide scope of SAN modeling applicationsrate and the routing probability may havee@nstantor func-
mainly focused on: (i) the evaluation of parallel and dis-tional value {.e., the rate value may vary in function to the
tributed computer systems [12], as well as applied to QoState of other automata). This non-determinism related to the
assessment in multi-tier web services|[13]; (i) the analyticaloccurrence of different events associated to a same transition
modeling ofad hocwireless networks [14]; (iii) the behavior can be treated by a Markovian process, all enabled events
of concurrent processors, extracting performance and reliazan occur and their occurrence rate define the frequency of
bility indices of some parts of the Linux scheduling algorithm occurrence of these events.
for NUMA machines[[15]; (iv) modeling of fault-tolerantsys- ~ There are two types of eveniscal or synchronizingLo-
tems [16]; and (v) the performance analysis of software deeal eventshange the local state ofily one automatarihis

velopment teams in globally distributed proje¢ts|[17]. kind of event is used to characterize thdependentehavior
of an automatonSynchronizing eventhange the local state
2.1. Automata of two or more automataimultaneouslyi.e., the occurrence

A stochastic automaton is a mathematical model of a sys- 2Examples of description of SAN models can be found in the PEPS web-

tem that has discrete input and outputs. The system can r@age ahttp://www-id.imag.fr/Logiciels/peps/index.html
3The absence of probability is accepted if only one transition can be fired
1See [10] for a formal description about discrete-time SAN models. by an event.
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of a synchronizing event on one automatbfigesthe occur-  nine (.e., 3 x 3 = 9) states. On the other hand, the reachable
rence of this same event on all corresponding automata. Thipace state (RSS) can be computed by the successive firing of
kind of interaction between automata describes the relation advents from an initial state. In this example (Figuke 1), given
interdependency between them. as initial state= X, performing successive firing of events, the
Both local and synchronizing events may have differentmodel’s RSS is equal t& X, GX, HX, FY, GY, HY, HZ.
routing probabilities associated to a same event. The roufNote that state§Z and GZ are never reachable starting to
ing probabilities are used to determine in whigtoportion  stateF X due to the nature of the events.
the possible transitions can be fired. For instance, in F[gure 1,

the occurrence of eveht with ratef3 changes automatoii. :
from stateG to F with probability equal taw; or stateG to 2.5. Current approach to solve SAN models

H with probability equal tan (wherery + o = 1). Solving a SAN model is not a simple task, an_d itis needed
to use specialized software tools clearly designed to deal
> . . with the (Kronecker) structure of a SAN modBerformance

3. _FunCtl_On Description Evaluation of Parallel System@EPS) [20] is the current

The interaction between automata can also be expressedware tool used to numerically solve and analyze a SAN
by functions Functions can be associated to rates or routingnqe|, PEPS delivers stationary and transient exact solutions
probabilities. In this case, the rate or the routing probabili-gnq it also provides solution using advanced iterafive[[21, 9]
ties of an event can assumed different values in function tQ g simulation[[22, 23] methods. The solution approach ap-
the state of other automata. The usagéuottional ratesor  pjieq by PEPS consists on multiplying a probability vector
functional probabilitiescan also be employed by both syn- ,y 4 non-trivial structure (known a&onecker descriptgrin
chronizing or local events. a process called agector-Descriptor ProductVDP) [9].

In Figure1, note that the rate of evdntis nota constant  peps js a software composed of three modules corre-
rate, but dunctional rateexpressed by functiofi. The inter- - g,4nding to each phase of the performance evaluation pro-
pretation of a _functlon in the SAN formal_lsm can be viewed cess:description compiling andsolution This approach of
as the evaluation of a non-typed expression, where each COMplving a SAN model by modules used by PEPS improves
parison is evaluated toue (value 1) orfalse(value 0). Inthis e maintenance and development of the software tool. How-
example, the occurrence of evepichanges automatol2 o\ it hecomes more difficult the software usage by the mod-
from stateY to Z with rate equal td if automatonALlis in - gjer since it is necessary a wide knowledge about the model-

stateH. Otherwise]4 does not occur i\l is not in stated g and solving process of a SAN model, even to obtain fast
(i.e., the expression of functioh is evaluated tdalsg deter- . its for simple SAN models.

mining azero rateand hence the event does not happen). PEPS provides either a full probability vectae( a vec-

tor that contains the probabilities of all states of the model,

Type | Event | Rate A2 including theunreachablestates) or a list of evaluated re-
loc | I a ward functions defined by the modeler. These functions are
loc | 1 B 51 I calledintegration functionsand they are expressed as arith-
loc |4 7 ' metic functions over the global states and their corresponding
51?; ifl £ probabilities. For the SAN model presented in Figudre 1, the
: la integration functionF, for example, sum all probabilities

. =06 of the system modeled by the SAN model of being in sthte
f=(state AL==H)x35 (i.e., the sum of the probabilities of being in statéX, HY,

Figure 1. An example of a SAN model. andHZ). This integration function is expressed by:

i ; IFy = (state A ==
The usage of functions is a powerful feature of the SAN H=( )
formalism, since it allows to represent very complex behav-

) : Even though PEPS takes advantage of a compact descrip-
iors of a system in a very compact way.

tion of the model using a tensor formag(, a Kronecker de-
scriptor), the solution of some SAN models can be prohibitive
2.4. Reachability in terms of memory consumption. For example, the solution

Given an initial state of a structured model, the computa-of a SAN model using PEPS needs to compute a probabil-
tion of all reachable states of the model can not be a simpléy vector for all global statesi.e., the size of the vector is
task. The product state space (PSS) of a SAN model is easilyounded by theroduct state spacef the model. This is a
computed by the cartesian product of all local states of all austrong limitation imposed by PEPS in terms of memory us-
tomata. The model presented in Figlire 1 has a PSS equalsage, specially for models where R&SPSS.



3. SAN LITE-SOLVER SAN LITE-SOLVER applies an efficient algorithm to gen-

Beyond using the compact format of a SAN model to solveerate the model's RS§][6.110] and it also uses a sophisticated
it by the VDP procesg 9], it is also possible to compute all2PProach based on the usage of the model's RSS to compute
transitions of the model and represent them in a single matrife underlying MC. In fact, the idea of this tool is to facilitate
(i.e., a transition matrix) that corresponding to the underly-the usage by the modeler for obtaining as fast as possible the
ing Markov chain. However, depending of the nature of the’®Sults of a SAN model. Comparing to the current approach

model’s events, the generation of this transition matrix carf!-€-+ the PEPS software tool), SANITE-SOLVER spends

be prohibitive in terms of memory consumption and/or CPUTMOre memory to store the underlying MC (since it is rep-
time. resented by a sparse matrix instead of a Kronecker descrip-

. . tor), however it allows to employ kte approach to numeri-
SAN LITE-SOLVER is a free software tool coded in C++ ) ploy PP

and compled using 92 verson 4.2.1 (GCC - The GNUES SOWE AN modeLe e rumerel soloon o
Compiler Collection) with optimization options (-O3) and b y P

dynamic linkage. SAN LTE-SOLVER computes the steady- (V:\AT:).' a2 itis sh Il soluti h ¢ |
state probability vector of a SAN model, usingMulti- . nS AI\?\lur (;II Ilss OSWAnNarII_TO;eSrgL\?EF:J ?ﬁ.scssme O;S? V-
valued Desicion DiagranfMDD) [5] to compute and store 'ng models by § - 1S mode

the model’s reachable state space (RSS) and it also represeﬁ%u“qn process can be expressed by the foIIo_v_vmg steps: (i)
the underlying Markov chain (MC),e., the transition matrix compile the SAN model and represent all transitions between

of the model, by a sparse matrix in a Harwell-Boeing formatSt"’?t.es by Kronecker.—p_asc_ed enco-d|.n_g scheme, datach-
(HBF) [I. ability Descriptor(RD); (ii) given an initial state and the com-
puted RD of the model, generate and store the model's RSS

using a MDD structure; (iii) compute the underlying MC of

Modelerl the model by the usage of RD and MDD, storing in a HBF
matrix; and finally (iv) from this HBF matrix, apply the iter-

SAN ative Power method to obtain the solution of the SAN model,
model resulting the probability vector of aléachablestates and the

A\ evaluated integration functions.
SAN Lite-Solver

| : 3.1. Tool usage
Compiler SAN LITE-SOLVER is a very easy and simple software
tool for solving SAN models. In fact, SAN ILE-SOLVER
/ is a command-line software tool that receives a SAN model
o described in a text file and shows the result of the integration
RD initial | RSS functions defined in the model. SANItE-SOLVER is used
state (MDD) as simol :
ple as:

\ / san-lite-solvek SAN modeb> [ options ]I

underlying MC
(HBF matrix)

Moreover, SAN LTE-SOLVER provides a list of options
that can help on the analysis and study of the modeled sys-
tem. In Table[l, it is presented all available options for
] using SAN LTE-SOLVER. Some examples of usage for
~ Solution these options can be found in the software tool webpage at
(erafive Power method) http://www.inf.pucrs.br/afonso.sales/san-lite-solver
Note that options “-hbf” and “-sim” can provide a file that
integration probability contains the underlying MC of the model, which can be used
functions vector by other software tools in order to apply different solution
methods €.g, direct methods, such d4J factorization or

even other iterative methods, such@EIRES]24]). Another
l Results possible application to those options is to provide a huge (and
sparse) transition matrix that can be used by simulation meth-
Figure 2. Overall solution scheme. ods in order to find an approximated solution of the model.

\ 4
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Table 1. Options for using SAN LTE-SOLVER. e Wireless ad hoc Networks (WN) [14] — a model that

Option Description represents a chain ®f mobile nodes in a wireless net-
work running over the IEEE 802.11 standard &k hoc
Saves the result of all integration functions into networks;
Tes | afile “.res.
: _ _ e Kanban system (KS) [6] — a model of manufactur-
int Computes the result of all integration functions ing system with four similar stations, where “kanbans”
using the probability vector from a filevct’ (it (tag9 control the flow of pieces. Each station has four
also needs the file.dd). queues, wherdl is the number of kanbans available in
ra Computes the number of transitions in the un- each station;

derlying MC and shows an estimated memary Resource Sharing(RS) [€] — the classical example of
consumption to store it into a HBF matrix. resource sharing with different network combinations of
P processes that shaRresources;

-loa | Loads the probability vector from a filevct'.

-vct | Saves the probability vector into a filevtt'. e Dining Philosophers (DP) [6] — a model for the clas-
. : . sical problem ofN silent philosophers sitting around a
Maximum number of iterations to be performed circular table where they alternately think and eat;

fite | (default value: 1,000,000).

— e First Available Server (FAS) [25] — a model used to

ol Tolerance va!ue for convergence verificatipn analyze the server availability consideriNgservers. In
(default value: 1e-10). this example, packages arrive at a server switch block,

depart through the first output port (or server) that is not

Saves a standard MDD structure that represents

-mdd | the model’s RSS into a file fdd.. busy, as long as at least one server is not blocked.
Saves all reachable states into a filt' (using Table[2 shows the performance results of both software
St | the state’s indices). tools (SAN LITE-SOLVER and PEPS) in terms of memory
) : . consumption. In this table, colummSSand RSSindicate,
Jab Saves all reachable states into a filgtt’ (using respectively, the product and reachable state spaces of the
the state’s labels). models. Regarding the SANItE-SOLVER memory costs,

columnskRD, MDD, andHBF correspond to the costs, respec-
tively, to store the reachability descriptor, the MDD structure
that contains the model’'s RSS, and the sparse matrix that cor-
Saves the underlying MC of the modelinto aflle responds to the underlying Markov chain. And regarding the
-dmc “ dot". PEPS memory costs, colunibescriptorindicates the total

_ - memory used to store the descriptor and its auxiliary vari-
Saves the underlying MC of the modelinto affle gpjes.

Saves a standard MDD structure that represéents
-ddd | the model's RSS into a file.dot.

-hbf | « e .
‘hbf” (column-orientedype). Regarding the memory consumption presented in Table 2
_ Saves the underlying MC of the model into a flle for models WN and KS, it is easy to potlce that the SAN
-sim LITE-SOLVER memory usage for storin@D, MDD, and

“.hbf” (row-orientedtype).

HBF is considerable lower than the memory used by PEPS
to store the descriptor and its auxiliary variables. And spe-

4. TOOL PERFORMANCE ANALYSIS cially for model KS (N=4), where the model's RS& PSS,
' . . the SAN LTE-SOLVER memory consumption remains in a
In this section, the performance of both tools (SAN#-

S 4 PEPS din t ¢ low-level, while it becomes almost prohibitive for PEPS in an
OLVER an ) are compared in terms o memory COnbrdinary machine. It is important to remember that the mod-
sumption to store all necessary structures and CPU time s used by PEPS are bounded by the product state space.
solve SAN models. The experiments were performed on Dn the other hand. for the remaining models, SAN&-
m_?ﬁrznggvn? Intgl Core i7 qluad—goret, rl_J”r1n|trlgtattﬁ_.2 CHZ g5 veR have been used more memory to store all necessary
}N' 0 Ima_m memory. dn I(')r er Orrlﬂ)l:;ﬂrr?gff IS pter- structures, but even for those large modeks,(models with
%rman;:e_atna ysIS, shome mo e;mg.exa eren million states) it is still possible to store the sparse matrix
characteristics are chosen, such as: (i.e, HBF matrix) in the ordinary computer’s main memory.

“A brief explanation of each model is here presented. Please refer to the 1aPle[3 shows the performance results in terms of CPU

literature in order to obtain more details about those SAN models. time to generate all necessary structures, as well as the CPU




Table 2. Performance analysis in terms of memory consumption.

SAN LITE-SOLVER PEPS

| Model | PSS | RSS RD | MDD HBF Total Descriptor
WN (N=16) 19,131,876 1,766 0.02MB 0.03MB 0.12MB 0.17 MB 4.58 MB
WN (N=18) 172,186,884 4,622| 0.03MB 0.03 MB 0.33 MB 0.39MB ||  41.07MB
WN (N=20) 1,549,681,954 12,102 0.03MB 0.03 MB 0.91 MB 0.97MB || 369.50 MB
KS (N=2) 531,441 4,600/ 0.01MB 0.03 MB 0.53 MB 0.57 MB 4.23MB
KS (N=3) 16,777,216 58,400 0.01MB 0.11MB 8.15 MB 8.27MB || 132.05MB
KS (N=4) 244,140,625  454,475| 0.01MB 0.35 MB 71.13MB| 71.49MB 1.88 GB
RS (P=14,R=11) 196,608 16,278 0.03MB 0.55 MB 3.83MB 4.41MB 0.07 MB
RS (P=17,R=7) 1,048,576 41,226| 0.04MB 0.65 MB 8.67 MB 9.36 MB 0.27 MB
RS (P=20,R=5) 6,291,456 21,700 0.06 MB 0.69 MB 3.57 MB 4.32 MB 1.53 MB
DP (N=15) 14,384,907  470,832| 0.03MB 0.02 MB 79.70MB|  79.75MB 3.44MB
DP (N=16) 43,046,721 1,136,689 0.04 MB 0.02 MB 203.62MB| 203.68MB||  10.28 MB
DP (N=17) 129,140,163 2,744,210/ 0.04 MB 0.03 MB 518.64MB| 518.71MB|| 30.81MB
FAS (N=20) 1,048,576| 1,048,576] 0.03MB 0.01MB 200.00MB| 200.04 MB 0.27 MB
FAS (N=21) 2,097,152 2,097,152 0.03MB 0.01MB 416.00MB| 416.04 MB 0.52 MB
FAS (N=22) 4,194,304 4,194,304) 0.04MB 0.01 MB 864.00 MB| 864.05MB 1.02 MB

time to solve models using both software tools (SAN&- hence making impaossible its solution.

SoLver and PEPS). In this table, columR®+MDD, HBF, In this paper, it was presented a new software tool (called
andSolutionrelated to SAN LTE-SOLVER indicate, respec- SAN LITE-SOLVER) that allows the solution of SAN models
tively, the execution times to generate the reachability dem a fast, easy and intuitive way, specially when it is com-
scriptor and the MDD structure, the transition matrix storedpared to PEPS (the current software tool used to solve SAN
in a HBF matrix, and the time spent in the iterative Powermodels)[20)].

method (with a 1e-10 precision tolerance) for solving SAN  pEpg s 4 still valuable software tool to solve large mod-

models. In regard to the PEPS performance, colou- els where PSS and RSS are really close and really lasge (

tionalso S_hOWS the CP_U time spent to solv_e a SAN model b3f“nodels with tens of millions of states). But, for the most part
PEPS using the iterative Power method with the same PreCht the models that use a dozen of automata for describing

sion tolerance. . a systemi(e., models limited to a few million states), SAN
Remark that the results presented in Tdlile 3 show that | 1£_soLveR provides an efficient way to solve SAN mod-

SAN LITE-SOLVER can be orders of magnitude faster thang|g yhen compared to PEPS. In addition, it is also possible
PEPS, even computing all reachable states and generatlrlljging SAN LTE-SOLVER to export the underlying Markov

the underlying Markov chain before solving a model. And chain of the structured model to a file in order to apply differ-
In src]).rgle_ cases SAN']EEE'SO'-VER can solve mt())dels thgt aré ent solution methods, such dsect or simulationmethods.
prof itive in terms of memory co_n_sumptlon y I.DEP » SINCE 75 future work it is natural to assume the addition to other
it is needed to allocate a probability vector of size equals t(?terative solution methods, such GMRES[2E], as well as
]E::?nepéogﬁf;(f;iﬁe\/\;sz%Eelgfa?&ngﬁh '-Il:gllasl df:%CtNChinrebtigo he uniformizationmethod for transient solutions. It is also
) e R ' i feasible to propose a SANItE-SOLVER parallel version for
PSS is of hundreds of million states and the model’'s RSS is : . .
current heterogenous architecturés.( machines that pro-
about few thousand states. The same phenomenon happevl?ge a parallel behavior from CPU and GPU)
on models KSK=4) and DP N=17). P '

It is important to keep in mind that the main ideas pre-
sented in this paper responsible for the SANH#-SOLVER

5. CONCLUSION design are not restricted to the SAN formalism. An analogous

One of the advantages of using a structured mode"ng forSOftware tool could be ea.Sily developed for other formalisms,
malism is to use a high-level abstraction to describe a systenguch aserformance Evaluation Process AlgelfREPA) [2]
Stochastic Automata Networks (SAN) is a powerful struc-0r STDEVS [8], using the same techniques applied to the
tured formalism that allows to describe a whole system in &5AN LITE-SOLVER software tool.
modular way {.e., the modeling of a system by “small” sub-  Readers interested in the usage of SANH-SOLVER
systems). However, in some cases, this modularity may leachay freely download it accessing the software tool webpage
to a large number of invalid combinations of the model, andat http://www.inf.pucrs.br/afonso.sales/san-lite-solver
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Table 3. Performance analysis in terms of CPU time.

SAN LITE-SOLVER PEPS
| Model | PSS | RSS RD+MDD HBF Solution Total Solution

WN (N=16) 19,131,876 1,766] ~0.00s 0.03s 1655 1.68s 1.76 day

WN (N=18) 172,186,884 4,622| ~0.00s 0.08's 6.54s 6.62s ——-

WN (N=20) 1,549,681,956 12,102| ~0.00s 0.24s 19.855s 20.09s -—-

KS (N=2) 531,441 4,600| ~0.00s 0.06's 0.09s 0.15s 298.89's

KS (N=3) 16,777,216 58,400/ ~0.00s 0.88's 212s 3.00s 16,201.98's

KS (N=4) 244,140,625 454,475 0.01s 752 24.72s 32.25s ——=

RS (P=14,R=11) 196,608 16,278 0.01s 0.86s 0.09s 0.96s 8.06s

RS (P=17,R=7) 1,048,576 41,226 0.01s 2.93s 0.15s 3.09s 55.65's

RS (P=20,R=5) 6,291,456 21,700 0.01s 1.84s 0.03s 1.88s 223.06's

DP (N=15) 14,384,907  470,832| ~0.00s 11.63s 20.03s 31.66s 5,026.45

DP (N=16) 43,046,721 1,136,689| ~0.00s 30.47s 55.54's 86.01s 16,860.77's

DP (N=17) 129,140,163 2,744,210] ~0.00s 79.47s 150.74's 230.21s ——=

FAS (N=20) 1,048576] 1,048,576] ~0.00s 18.89s 24.49s 43.38s 63.26s

FAS (N=21) 2,097,152 2,097,152| ~0.00s 40.45's 55.31s 95.76 s 138.44s

FAS (N=22) 4,194,304| 4,194,304/ ~0.00s 82.19s 120.55s 202.74s 301.57s
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