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Abstract
Structured Markovian models are widely used to map and an-
alyze the behavior of complex systems. However, the modeler
must frequently need a deeply knowledge about specialized
tools or limitations imposed on the solution of their mod-
els. This paper presents an easy and practical software tool,
called SAN LITE-SOLVER, that applies the Power method to
solve a Stochastic Automata Network (SAN) model, using a
standard Multi-valued Decision Diagram (MDD) structure to
compute and to store the model’s reachable state space (RSS)
and a Harwell-Boeing format (HBF) matrix which represents
the underlying Markov chain (MC). The performance analy-
sis of this new tool (in terms of memory used and CPU time
to solve models) is presented and compared to the current ap-
proach used to solve SAN models.

1. INTRODUCTION
Markov Chains(MC) [1] is one of the most popular for-

malisms used to analyze and to study the system behavior
of different kind of applications in several domains, such as
chemistry, social science, biology, physics, computer science,
to cite a few. Nevertheless, beyond its simplicity to model
a system using a straightforward approach based in simple
primitives (statesand transition between states), depending
the size of the modeled system, a Markovian model easily
faces the well-knownstate space explosion problem. More-
over, this mapping task can be feasible for models with a few
hundred states, but it becomes impracticable for large models
(i.e., with hundreds of thousand states).

In order to mitigate this mapping task, structured Marko-
vian formalisms have emerged as another possibility to deal
with this limitation, providing a compact description of a
large system by the description of its subsystems and their
correlation. Structured Markovian formalisms allow a high-
level description of a system in a such way that the system
abstraction may be done in a more intuitive manner.

However, this high-level description usually comprehends
a set ofinvalid (or unreachable) states that are invalid com-
binations ofvalid individual states. This problem has been

regarded in the study of several structured Markovian for-
malisms, such asPerformance Evaluation Process Algebra
(PEPA) [2],Stochastic Petri Nets(SPN) [3], andStochastic
Automata Networks(SAN) [4].

Many times structured Markovian models have the com-
bination of all individual states,i.e., theproduct state space
(PSS), much larger than the (valid or)reachable state space
(RSS). This kind of phenomenon is much common in struc-
tured formalisms due to few occurrences of independent tran-
sitions in the subsystems combined of frequent synchroniza-
tions between them. Hence, for models where RSS≪ PSS,
even using specialized numerical methods to deal with struc-
tured representations, the solution of a structured model can
become impracticable in terms of CPU time, due to the treat-
ment of a large set of invalid (unreachable) states.

A constant challenge of structured modeling is to take ad-
vantage of the power of high-level description of problems,
providing efficient solution methods. Following this idea, an
interesting alternative is to use, for instance, solution meth-
ods that deal only with thereachable state spaceof a struc-
tured model instead of a structured solution approach, such as
Markovian Descriptorin SAN or Matrix Diagramsin SPN.
However, the discovery of these reachable states is not a sim-
ple task to be performed.Multi-valued Decision Diagrams
(MDD) [5] are compact structures that allow to store and to
manipulate large sets of data, such as large amounts of states.
MDDs have been efficiently employed for generating and ma-
nipulating the reachable state space of models described by
the SAN [6] and SPN [7] formalisms.

This paper presents a user-friendly software tool, called
SAN LITE-SOLVER, that computes the steady-state proba-
bility of a model described by the SAN formalism, using a
MDD structure to store and to manipulate the model’s reach-
able state space. The main aim of this tool is to make as
simple as possible the interaction between user and tool, as
well as to provide an efficient solution for large models (i.e.,
models with a large number of reachable states). It is im-
portant to keep in mind that the ideas applied in the design
of SAN LITE-SOLVER can also be employed to other for-
malisms, such as STDEVS [8], for obtaining the probability
spaces in an efficient way.

The remainder of this paper is organized as follows. In Sec-
tion 2 it is briefly presented the SAN formalism and its main
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modeling features, as well as the current approach used to
solve a SAN model. Section 3 presents SAN LITE-SOLVER

showing an overall solution scheme used by this tool and the
tool usage with some examples as well. In Section 4, it is
presented some tool performance analysis, comparing its per-
formance (i.e., memory cost and CPU time) with the current
approach used to solve a SAN model. Finally, Section 5 sum-
marizes the contribution of this paper and suggest future work
to improve the proposed software tool.

2. STOCHASTIC AUTOMATA NETWORKS
Stochastic Automata Networks(SAN) is a structured for-

malism originally proposed by Plateau [4] and it provides a
high-level abstraction to represent continuous and discrete-
time Markovian models [9, 10]. The main idea of this formal-
ism is to model a complex and large system by a set of “small”
subsystems,i.e., to model a system composed of modules
with independent behaviorsand occasional interdependen-
cies. Beyond an easy and intuitive model mapping, one of
the advantages of using the SAN formalism is to provide a
compact storage and efficient solution oflarge systems, miti-
gating the state space explosion problem [11]. This compact
representation of a SAN model is described by an tensor al-
gebra formula known asdescriptor[9, 4], which represents
the underlying Markov chain.

Each subsystem of a SAN model is represented by a
stochastic automaton. Thetransitionsbetweenstatesof each
automaton represent the transitions of a stochastic process in
continuous-time or discrete-time considering, respectively, an
exponential or geometric distribution.

As the SAN formalism is based on the Markov Chains
(MC) formalism [1], a continuous-time SAN model has an
underlying continuous-time Markov chain (CTMC), whereas
a discrete-time SAN model has an underlying discrete-time
Markov chain (DTMC). In the context of this paper, only
continuous-time SAN models1 are considered.

There is a wide scope of SAN modeling applications
mainly focused on: (i) the evaluation of parallel and dis-
tributed computer systems [12], as well as applied to QoS
assessment in multi-tier web services [13]; (ii) the analytical
modeling ofad hocwireless networks [14]; (iii) the behavior
of concurrent processors, extracting performance and relia-
bility indices of some parts of the Linux scheduling algorithm
for NUMA machines [15]; (iv) modeling of fault-tolerant sys-
tems [16]; and (v) the performance analysis of software de-
velopment teams in globally distributed projects [17].

2.1. Automata
A stochastic automaton is a mathematical model of a sys-

tem that has discrete input and outputs. The system can re-

1See [10] for a formal description about discrete-time SAN models.

main in any possiblestateor internal configuration. The cur-
rent state of a system contains all information in relation to
the previous inputs and also contains all relevant information
to determine the future (next) state of the system (i.e., describ-
ing the system behavior) [18].

Based on this property, it is possible to describe a stochastic
automaton as aset of statesand aset of transitionsbetween
states [19]. The use of the termstochasticrelated to the au-
tomaton means that the treatment of the time is related toran-
dom variables, which can consider anexponential distribu-
tion in continuous-time orgeometric distributionin discrete-
time.

In a graphical point of view, astochastic automata net-
workscan be represented by aset of directed graph, where
each graph is associated to an automaton. Thenodesof a
graph represent thestatesof an automaton and thearrows(or
directed edges) between states represent thetransition from
one state to another (see Figure 1).

Local statesof a system modeled by the SAN formalism
are the individual states of each automaton of the model. And
global statesare composed of the set of local states of each
automaton of a SAN model. The change in a global state is
determined by the change of one or more local states. Transi-
tions allow the changes between states and they are triggered
by the occurrence ofevents. Each transition has one or more
associated events.

Figure 1 presents a SAN model2 with two automata (A1
andA2), whereA1 has three local states (F , G, H) andA2 has
also three states (X, Y, Z). This model has then nine global
states:FX, GX, HX, FY, GY, HY, FZ, GZ, HZ.

2.2. Events
Events are responsible for triggering transitions that

change the global state of the model. One or more events can
be associated to a single transition. Each event must have an
occurrence rateand a routing probability3. The occurrence
rate and the routing probability may have aconstantor func-
tional value (i.e., the rate value may vary in function to the
state of other automata). This non-determinism related to the
occurrence of different events associated to a same transition
can be treated by a Markovian process,i.e., all enabled events
can occur and their occurrence rate define the frequency of
occurrence of these events.

There are two types of events:local or synchronizing. Lo-
cal eventschange the local state ofonly one automaton. This
kind of event is used to characterize theindependentbehavior
of an automaton.Synchronizing eventschange the local state
of two or more automatasimultaneously,i.e., the occurrence

2Examples of description of SAN models can be found in the PEPS web-
page athttp://www-id.imag.fr/Logiciels/peps/index.html.

3The absence of probability is accepted if only one transition can be fired
by an event.
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of a synchronizing event on one automatonobligesthe occur-
rence of this same event on all corresponding automata. This
kind of interaction between automata describes the relation of
interdependency between them.

Both local and synchronizing events may have different
routing probabilities associated to a same event. The rout-
ing probabilities are used to determine in whichproportion
the possible transitions can be fired. For instance, in Figure 1,
the occurrence of eventl2 with rateβ changes automatonA1:
from stateG to F with probability equal toπ1; or stateG to
H with probability equal toπ2 (whereπ1+π2 = 1).

2.3. Function Description
The interaction between automata can also be expressed

by functions. Functions can be associated to rates or routing
probabilities. In this case, the rate or the routing probabili-
ties of an event can assumed different values in function to
the state of other automata. The usage offunctional ratesor
functional probabilitiescan also be employed by both syn-
chronizing or local events.

In Figure 1, note that the rate of eventl4 is not a constant
rate, but afunctional rateexpressed by functionf . The inter-
pretation of a function in the SAN formalism can be viewed
as the evaluation of a non-typed expression, where each com-
parison is evaluated totrue (value 1) orfalse(value 0). In this
example, the occurrence of eventl4 changes automatonA2
from stateY to Z with rate equal toδ if automatonA1 is in
stateH. Otherwise,l4 does not occur ifA1 is not in stateH
(i.e., the expression of functionf is evaluated tofalse, deter-
mining azero rateand hence the event does not happen).

π2 = 0.4

A1 A2

F

H G Z

X

Y

l2(π1)

l2(π2) l4

l3s1 s1l1

Type Event Rate
loc l1 α

loc l2 β

loc l3 γ

loc l4 f

syn s1 ω

f = (state A1 == H)× δ
π1 = 0.6

Figure 1. An example of a SAN model.

The usage of functions is a powerful feature of the SAN
formalism, since it allows to represent very complex behav-
iors of a system in a very compact way.

2.4. Reachability
Given an initial state of a structured model, the computa-

tion of all reachable states of the model can not be a simple
task. The product state space (PSS) of a SAN model is easily
computed by the cartesian product of all local states of all au-
tomata. The model presented in Figure 1 has a PSS equals to

nine (i.e., 3×3= 9) states. On the other hand, the reachable
space state (RSS) can be computed by the successive firing of
events from an initial state. In this example (Figure 1), given
as initial stateFX, performing successive firing of events, the
model’s RSS is equal to:FX, GX, HX, FY, GY, HY, HZ.
Note that statesFZ andGZ are never reachable starting to
stateFX due to the nature of the events.

2.5. Current approach to solve SAN models
Solving a SAN model is not a simple task, and it is needed

to use specialized software tools clearly designed to deal
with the (Kronecker) structure of a SAN model.Performance
Evaluation of Parallel Systems(PEPS) [20] is the current
software tool used to numerically solve and analyze a SAN
model. PEPS delivers stationary and transient exact solutions
and it also provides solution using advanced iterative [21, 9]
and simulation [22, 23] methods. The solution approach ap-
plied by PEPS consists on multiplying a probability vector
by a non-trivial structure (known asKronecker descriptor) in
a process called asVector-Descriptor Product(VDP) [9].

PEPS is a software composed of three modules corre-
sponding to each phase of the performance evaluation pro-
cess:description, compiling, andsolution. This approach of
solving a SAN model by modules used by PEPS improves
the maintenance and development of the software tool. How-
ever, it becomes more difficult the software usage by the mod-
eler, since it is necessary a wide knowledge about the model-
ing and solving process of a SAN model, even to obtain fast
results for simple SAN models.

PEPS provides either a full probability vector (i.e., a vec-
tor that contains the probabilities of all states of the model,
including theunreachablestates) or a list of evaluated re-
ward functions defined by the modeler. These functions are
called integration functionsand they are expressed as arith-
metic functions over the global states and their corresponding
probabilities. For the SAN model presented in Figure 1, the
integration functionIFH , for example, sum all probabilities
of the system modeled by the SAN model of being in stateH
(i.e., the sum of the probabilities of being in statesHX, HY,
andHZ). This integration function is expressed by:

IFH = (state A1== H)

Even though PEPS takes advantage of a compact descrip-
tion of the model using a tensor format (i.e., a Kronecker de-
scriptor), the solution of some SAN models can be prohibitive
in terms of memory consumption. For example, the solution
of a SAN model using PEPS needs to compute a probabil-
ity vector for all global states, i.e., the size of the vector is
bounded by theproduct state spaceof the model. This is a
strong limitation imposed by PEPS in terms of memory us-
age, specially for models where RSS≪ PSS.



3. SAN LITE-SOLVER
Beyond using the compact format of a SAN model to solve

it by the VDP process [9], it is also possible to compute all
transitions of the model and represent them in a single matrix
(i.e., a transition matrix) that corresponding to the underly-
ing Markov chain. However, depending of the nature of the
model’s events, the generation of this transition matrix can
be prohibitive in terms of memory consumption and/or CPU
time.

SAN LITE-SOLVER is a free software tool coded in C++
and compiled using g++ version 4.2.1 (GCC – The GNU
Compiler Collection) with optimization options (-O3) and
dynamic linkage. SAN LITE-SOLVER computes the steady-
state probability vector of a SAN model, using aMulti-
valued Desicion Diagram(MDD) [5] to compute and store
the model’s reachable state space (RSS) and it also represents
the underlying Markov chain (MC),i.e., the transition matrix
of the model, by a sparse matrix in a Harwell-Boeing format
(HBF) [1].

RSS
(MDD)RD

initial
state

Compiler

underlying MC
(HBF matrix)

Solution
(iterative Power method)

integration
functions vector

probability

Modeler

SAN
model

SAN Lite−Solver

Results

Figure 2. Overall solution scheme.

SAN LITE-SOLVER applies an efficient algorithm to gen-
erate the model’s RSS [6, 10] and it also uses a sophisticated
approach based on the usage of the model’s RSS to compute
the underlying MC. In fact, the idea of this tool is to facilitate
the usage by the modeler for obtaining as fast as possible the
results of a SAN model. Comparing to the current approach
(i.e., the PEPS software tool), SAN LITE-SOLVER spends
more memory to store the underlying MC (since it is rep-
resented by a sparse matrix instead of a Kronecker descrip-
tor), however it allows to employ alite approach to numeri-
cally solve a SAN model,i.e., the numerical solution is com-
puted by an iterative process known asVector-Matrix Product
(VMP).

In Figure 2, it is shown an overall solution scheme for solv-
ing SAN models by SAN LITE-SOLVER. This SAN model
solution process can be expressed by the following steps: (i)
compile the SAN model and represent all transitions between
states by a Kronecker-based encoding scheme, calledReach-
ability Descriptor(RD); (ii) given an initial state and the com-
puted RD of the model, generate and store the model’s RSS
using a MDD structure; (iii) compute the underlying MC of
the model by the usage of RD and MDD, storing in a HBF
matrix; and finally (iv) from this HBF matrix, apply the iter-
ative Power method to obtain the solution of the SAN model,
resulting the probability vector of allreachablestates and the
evaluated integration functions.

3.1. Tool usage
SAN LITE-SOLVER is a very easy and simple software

tool for solving SAN models. In fact, SAN LITE-SOLVER

is a command-line software tool that receives a SAN model
described in a text file and shows the result of the integration
functions defined in the model. SAN LITE-SOLVER is used
as simple as:

san-lite-solver<SAN model> [ options ]

Moreover, SAN LITE-SOLVER provides a list of options
that can help on the analysis and study of the modeled sys-
tem. In Table 1, it is presented all available options for
using SAN LITE-SOLVER. Some examples of usage for
these options can be found in the software tool webpage at
http://www.inf.pucrs.br/afonso.sales/san-lite-solver.

Note that options “-hbf” and “-sim” can provide a file that
contains the underlying MC of the model, which can be used
by other software tools in order to apply different solution
methods (e.g., direct methods, such asLU factorization; or
even other iterative methods, such asGMRES[24]). Another
possible application to those options is to provide a huge (and
sparse) transition matrix that can be used by simulation meth-
ods in order to find an approximated solution of the model.

http://www.inf.pucrs.br/afonso.sales/san-lite-solver


Table 1. Options for using SAN LITE-SOLVER.

Option Description

-res
Saves the result of all integration functions into
a file “ .res”.

-int
Computes the result of all integration functions
using the probability vector from a file “.vct” (it
also needs the file “.mdd”).

-tra
Computes the number of transitions in the un-
derlying MC and shows an estimated memory
consumption to store it into a HBF matrix.

-loa Loads the probability vector from a file “.vct”.

-vct Saves the probability vector into a file “.vct”.

-ite
Maximum number of iterations to be performed
(default value: 1,000,000).

-tol
Tolerance value for convergence verification
(default value: 1e-10).

-mdd
Saves a standard MDD structure that represents
the model’s RSS into a file “.mdd”.

-stt
Saves all reachable states into a file “.stt” (using
the state’s indices).

-lab
Saves all reachable states into a file “.stt” (using
the state’s labels).

-ddd
Saves a standard MDD structure that represents
the model’s RSS into a file “.dot”.

-dmc
Saves the underlying MC of the model into a file
“ .dot”.

-hbf
Saves the underlying MC of the model into a file
“ .hbf” (column-orientedtype).

-sim
Saves the underlying MC of the model into a file
“ .hbf” ( row-orientedtype).

4. TOOL PERFORMANCE ANALYSIS
In this section, the performance of both tools (SAN LITE-

SOLVER and PEPS) are compared in terms of memory con-
sumption to store all necessary structures and CPU time to
solve SAN models. The experiments were performed on a
machine with Intel Core i7 quad-core, running at 2.2 GHz
with 4 GB of main memory. In order to illustrate this per-
formance analysis, some modeling examples4 with different
characteristics are chosen, such as:

4A brief explanation of each model is here presented. Please refer to the
literature in order to obtain more details about those SAN models.

• Wireless ad hoc Networks (WN) [14] – a model that
represents a chain ofN mobile nodes in a wireless net-
work running over the IEEE 802.11 standard forad hoc
networks;

• Kanban system (KS) [6] – a model of manufactur-
ing system with four similar stations, where “kanbans”
(tags) control the flow of pieces. Each station has four
queues, whereN is the number of kanbans available in
each station;

• Resource Sharing(RS) [6] – the classical example of
resource sharing with different network combinations of
P processes that shareR resources;

• Dining Philosophers (DP) [6] – a model for the clas-
sical problem ofN silent philosophers sitting around a
circular table where they alternately think and eat;

• First Available Server (FAS) [25] – a model used to
analyze the server availability consideringN servers. In
this example, packages arrive at a server switch block,
depart through the first output port (or server) that is not
busy, as long as at least one server is not blocked.

Table 2 shows the performance results of both software
tools (SAN LITE-SOLVER and PEPS) in terms of memory
consumption. In this table, columnsPSSand RSSindicate,
respectively, the product and reachable state spaces of the
models. Regarding the SAN LITE-SOLVER memory costs,
columnsRD, MDD, andHBF correspond to the costs, respec-
tively, to store the reachability descriptor, the MDD structure
that contains the model’s RSS, and the sparse matrix that cor-
responds to the underlying Markov chain. And regarding the
PEPS memory costs, columnDescriptor indicates the total
memory used to store the descriptor and its auxiliary vari-
ables.

Regarding the memory consumption presented in Table 2
for models WN and KS, it is easy to notice that the SAN
L ITE-SOLVER memory usage for storingRD, MDD, and
HBF is considerable lower than the memory used by PEPS
to store the descriptor and its auxiliary variables. And spe-
cially for model KS (N=4), where the model’s RSS≪ PSS,
the SAN LITE-SOLVER memory consumption remains in a
low-level, while it becomes almost prohibitive for PEPS in an
ordinary machine. It is important to remember that the mod-
els used by PEPS are bounded by the product state space.
On the other hand, for the remaining models, SAN LITE-
SOLVER have been used more memory to store all necessary
structures, but even for those large models (i.e., models with
million states) it is still possible to store the sparse matrix
(i.e., HBF matrix) in the ordinary computer’s main memory.

Table 3 shows the performance results in terms of CPU
time to generate all necessary structures, as well as the CPU



Table 2. Performance analysis in terms of memory consumption.
SAN LITE-SOLVER PEPS

Model PSS RSS RD MDD HBF Total Descriptor

WN (N=16) 19,131,876 1,766 0.02 MB 0.03 MB 0.12 MB 0.17 MB 4.58 MB
WN (N=18) 172,186,884 4,622 0.03 MB 0.03 MB 0.33 MB 0.39 MB 41.07 MB
WN (N=20) 1,549,681,956 12,102 0.03 MB 0.03 MB 0.91 MB 0.97 MB 369.50 MB

KS (N=2) 531,441 4,600 0.01 MB 0.03 MB 0.53 MB 0.57 MB 4.23 MB
KS (N=3) 16,777,216 58,400 0.01 MB 0.11 MB 8.15 MB 8.27 MB 132.05 MB
KS (N=4) 244,140,625 454,475 0.01 MB 0.35 MB 71.13 MB 71.49 MB 1.88 GB

RS (P=14,R=11) 196,608 16,278 0.03 MB 0.55 MB 3.83 MB 4.41 MB 0.07 MB
RS (P=17,R=7) 1,048,576 41,226 0.04 MB 0.65 MB 8.67 MB 9.36 MB 0.27 MB
RS (P=20,R=5) 6,291,456 21,700 0.06 MB 0.69 MB 3.57 MB 4.32 MB 1.53 MB
DP (N=15) 14,384,907 470,832 0.03 MB 0.02 MB 79.70 MB 79.75 MB 3.44 MB
DP (N=16) 43,046,721 1,136,689 0.04 MB 0.02 MB 203.62 MB 203.68 MB 10.28 MB
DP (N=17) 129,140,163 2,744,210 0.04 MB 0.03 MB 518.64 MB 518.71 MB 30.81 MB
FAS (N=20) 1,048,576 1,048,576 0.03 MB 0.01 MB 200.00 MB 200.04 MB 0.27 MB
FAS (N=21) 2,097,152 2,097,152 0.03 MB 0.01 MB 416.00 MB 416.04 MB 0.52 MB
FAS (N=22) 4,194,304 4,194,304 0.04 MB 0.01 MB 864.00 MB 864.05 MB 1.02 MB

time to solve models using both software tools (SAN LITE-
SOLVER and PEPS). In this table, columnsRD+MDD, HBF,
andSolutionrelated to SAN LITE-SOLVER indicate, respec-
tively, the execution times to generate the reachability de-
scriptor and the MDD structure, the transition matrix stored
in a HBF matrix, and the time spent in the iterative Power
method (with a 1e-10 precision tolerance) for solving SAN
models. In regard to the PEPS performance, columnSolu-
tion also shows the CPU time spent to solve a SAN model by
PEPS using the iterative Power method with the same preci-
sion tolerance.

Remark that the results presented in Table 3 show that
SAN LITE-SOLVER can be orders of magnitude faster than
PEPS, even computing all reachable states and generating
the underlying Markov chain before solving a model. And
in some cases SAN LITE-SOLVER can solve models that are
prohibitive in terms of memory consumption by PEPS, since
it is needed to allocate a probability vector of size equals to
the product state space of the model. This fact can be con-
firmed on model WN (N=18 andN=20) in Table 3, where the
PSS is of hundreds of million states and the model’s RSS is
about few thousand states. The same phenomenon happens
on models KS (N=4) and DP (N=17).

5. CONCLUSION
One of the advantages of using a structured modeling for-

malism is to use a high-level abstraction to describe a system.
Stochastic Automata Networks (SAN) is a powerful struc-
tured formalism that allows to describe a whole system in a
modular way (i.e., the modeling of a system by “small” sub-
systems). However, in some cases, this modularity may lead
to a large number of invalid combinations of the model, and

hence making impossible its solution.

In this paper, it was presented a new software tool (called
SAN LITE-SOLVER) that allows the solution of SAN models
in a fast, easy and intuitive way, specially when it is com-
pared to PEPS (the current software tool used to solve SAN
models) [20].

PEPS is a still valuable software tool to solve large mod-
els where PSS and RSS are really close and really large (i.e.,
models with tens of millions of states). But, for the most part
of the models that use a dozen of automata for describing
a system (i.e., models limited to a few million states), SAN
L ITE-SOLVER provides an efficient way to solve SAN mod-
els when compared to PEPS. In addition, it is also possible
using SAN LITE-SOLVER to export the underlying Markov
chain of the structured model to a file in order to apply differ-
ent solution methods, such asdirect or simulationmethods.

As future work it is natural to assume the addition to other
iterative solution methods, such asGMRES[24], as well as
the uniformizationmethod for transient solutions. It is also
feasible to propose a SAN LITE-SOLVER parallel version for
current heterogenous architectures (i.e., machines that pro-
vide a parallel behavior from CPU and GPU).

It is important to keep in mind that the main ideas pre-
sented in this paper responsible for the SAN LITE-SOLVER

design are not restricted to the SAN formalism. An analogous
software tool could be easily developed for other formalisms,
such asPerformance Evaluation Process Algebra(PEPA) [2]
or STDEVS [8], using the same techniques applied to the
SAN LITE-SOLVER software tool.

Readers interested in the usage of SAN LITE-SOLVER

may freely download it accessing the software tool webpage
at http://www.inf.pucrs.br/afonso.sales/san-lite-solver.

http://www.inf.pucrs.br/afonso.sales/san-lite-solver


Table 3. Performance analysis in terms of CPU time.
SAN LITE-SOLVER PEPS

Model PSS RSS RD+MDD HBF Solution Total Solution

WN (N=16) 19,131,876 1,766 ≈0.00 s 0.03 s 1.65 s 1.68 s 1.76 day
WN (N=18) 172,186,884 4,622 ≈0.00 s 0.08 s 6.54 s 6.62 s – – –
WN (N=20) 1,549,681,956 12,102 ≈0.00 s 0.24 s 19.85 s 20.09 s – – –

KS (N=2) 531,441 4,600 ≈0.00 s 0.06 s 0.09 s 0.15 s 298.89 s
KS (N=3) 16,777,216 58,400 ≈0.00 s 0.88 s 2.12 s 3.00 s 16,201.98 s
KS (N=4) 244,140,625 454,475 0.01 s 7.52 s 24.72 s 32.25 s – – –

RS (P=14,R=11) 196,608 16,278 0.01 s 0.86 s 0.09 s 0.96 s 8.06 s
RS (P=17,R=7) 1,048,576 41,226 0.01 s 2.93 s 0.15 s 3.09 s 55.65 s
RS (P=20,R=5) 6,291,456 21,700 0.01 s 1.84 s 0.03 s 1.88 s 223.06 s

DP (N=15) 14,384,907 470,832 ≈0.00 s 11.63 s 20.03 s 31.66 s 5,026.45 s
DP (N=16) 43,046,721 1,136,689 ≈0.00 s 30.47 s 55.54 s 86.01 s 16,860.77 s
DP (N=17) 129,140,163 2,744,210 ≈0.00 s 79.47 s 150.74 s 230.21 s – – –

FAS (N=20) 1,048,576 1,048,576 ≈0.00 s 18.89 s 24.49 s 43.38 s 63.26 s
FAS (N=21) 2,097,152 2,097,152 ≈0.00 s 40.45 s 55.31 s 95.76 s 138.44 s
FAS (N=22) 4,194,304 4,194,304 ≈0.00 s 82.19 s 120.55 s 202.74 s 301.57 s
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