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Abstract—Energy efficiency has become one of the most
common and important demands for contemporary applications,
increasing the desire for chips that operate near the threshold
voltage levels, which unfortunately worsens the effects of pro-
cess, voltage, and temperature (PVT) variability. An alternative
solution to cope with PVT variations are the timing resilient
architectures, such as the synchronous Razor family and the
asynchronous Blade template, that rely on error detection logic
(EDL) to detect and recover from timing violations. On one hand,
the use of timing resilient architectures makes the path delay
testing more challenging because it is not a matter of simple pass
or fails the test. On the other hand, we show that timing resilient
architectures, such as Blade, present opportunities to design low-
cost online delay testing of the critical paths. Results show the
area overhead and fault coverage using functional testing on a
32-bit MIPS CPU and a crypto core.

I. INTRODUCTION

As the VLSI design technologies approach more and more

in the domain of low power, timing margins become a major

factor when designing traditional synchronous circuits with

optimal clock period considering variability in the manufac-

turing process, operation temperature, and supply voltage.

Timing resilient architectures emerged as a promising solution

to alleviate these worst-case timing margins by allowing

timing errors, thus improving system performance by reducing

frequency margins or energy consumption due to reduced

voltage margins. On the other hand, these architectures need

additional circuitry to detect and recover from these timing

errors online.

Among timing resilient template architectures, Razor [1]

detects errors through sequential circuits and restore valid data

with one cycle penalty, while Razor II [2] is a simplification

of Razor that uses architectural replay, requiring a complete

pipeline flush, instead of using a specific recovery circuit.

TIMBER [3] and [4] avoid architectural replay by borrowing

time from neighbor pipeline stages. Bubble Razor [5] recovers

from errors by stalling the pipeline. Timing resiliency was also

applied to an asynchronous template. The asynchronous Blade

[6] template recovers from timing errors by adding extra delay

to the handshake communication with the following pipeline

stages.

Despite the increasing evolution of resilient architectures,

few papers address the testability of these templates. Testing

timing resilient circuits are fundamentally different from test-

ing conventional circuits because the former tolerates some

timing violations, and not all timing violations become a

fault. In addition, timing resilient circuits already add area

overhead to detect violations, thus, the area for test circuitry

is constrained. For example, when comparing Blade [6] and

Bubble Razor [5] to a classical synchronous design, the overall

area overhead for the Blade implementation is 8.4%, and 21%

increase in combinational logic and 280% in the sequential

area for the Bubble Razor implementation. To the second one,

the area overhead of a design for testability can be prohibitive.

Testing of timing resilient circuits is essentially different

from classic designs that target zero timing errors. On the

other hand, the constant timing monitoring of resilient circuits

provides feedback about the current state of the circuit during

normal operation. Therefore, the resilient circuitry can be

reused for testing. In this paper, we present an online delay

test method for the Blade architecture. When a certain pipeline

stage is in test mode, its critical paths are concurrently being

tested for delay faults while the stage is still able to execute

its normal operation. The only difference is that this stage

is slower while it is in test mode. We demonstrate that the

critical path selection is intrinsic to Blade’s flow, and the

number of paths covered by the test method is a trade-off

with the area overhead. Besides, the fault detection mechanism

relies on functional testing to exercise the critical paths during

the test. The proposed modifications for online testing do not

affect Blade’s performance in normal mode and the silicon

area overhead is below 1%. Fault coverage is presented for

two case studies, a 3-stage MIPS CPU called Plasma [7] and

an XTEA crypto core based on the Speed XTEA [8], both

targeting an FDSOI 28nm technology. Lastly, we discuss how

this proposal could also be applied to increase circuit lifetime

and yield.

The remainder of this paper is organized as follows. Section

II presents a background on testing timing resilient circuits

and motivates this research. Section III reviews the Blade

template and its most relevant aspects associated with this

paper. Section IV presents the proposed test method and the

necessary modifications to the Blade architecture, an analysis

of performance and area impacts, and a discussion on possible

uses of the proposed method for yield and lifetime improve-

ments. Section V shows the results of silicon area and fault

coverage for the two case studies. Finally, Section VI provides

some conclusions.
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II. BACKGROUND AND RELATED WORKS

From the technology perspective, there is no distinction

between manufacturing asynchronous or synchronous CMOS

circuits, which means that defects are similar in both designs

[9], the same can be extended to synchronous or asynchronous

timing resilient circuits. However, from the test perspective,

timing resilient circuits are fundamentally different when com-

pared to conventional circuits, since the former tolerates some

timing violations, and not all timing violations become a fault.

In this case, the test method must be capable of distinguishing

a recoverable timing violation from an actual delay fault.

Despite this difference, a natural path when considering the

testability of timing resilient circuits is to look at classical

approaches used in the industry, such as the scan technique,

which can be applied to various types of structural faults

including stuck-at and delay. In [10], the authors propose

the reuse of existing error tolerant circuitry of the Razor

architecture to propose a new scan cell, called scan Razor flip-

flop (SR-FF). With this new scan cell architecture the shift

phase does not affect the inputs of the combinational logic,

thus power dissipation during testing is reduced.

The work in [11] starts with a classical mux-D scan cell,

that is further modified to act as a timing violation detector

and recovery mechanism. The Time Dilation scan architecture

is suitable for online (concurrent) timing error detection and

recovery and supports classical off-line scan testing. The idea

of reusing error detection circuitry for online test purpose

is developed in [12], where a scan-based aging monitoring

scheme is proposed. The circuit is monitored during normal

operation, so no faster-than speed testing is applied, and it

gives an alarm if aging is detected so that actions can be

taken before a major failure. The experimental results show

that the proposed solution consumes less power and presents

less overhead in large designs when compared to previous

methods. Unfortunately, the authors do not provide additional

information about these results.

The test methodology presented in [13] [14] is, as far as

we know, the first method to address the main differences

between testing conventional synchronous circuits and testing

timing resilient architectures. The authors proposed a scan

architecture based on the Double Sampling With Time Bor-

rowing (DSTB) design presented in [15]. They included a

clock divider and a duty-cycle control circuit to select the

test conditions used to differentiate timing violations from

delay faults in the combinational logic. The error detection

circuitry from the resilient architecture is reused to detect

manufacturing faults. The classic two-vector test stimuli used

in delay fault testing is applied using the proposed scan DSTB

cell. As presented in this current paper, we believe that an

asynchronous timing resilient approach can present a better

solution to cope with PVT and reduced power consumption

[6], and the approach proposed in [13] may not be entirely

applicable for testing Blade, as it is further described in

Section IV to introduce our proposal.

Finally, asynchronous circuits have some advantages over
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Fig. 1: Blade template [6].

synchronous regarding its testability. For instance, a stuck-at

fault in the asynchronous controller can halt the entire circuit,

making it easy to detect such fault. In [16], a fault analysis

of the Blade’s EDL [6] is presented. It is discussed how the

resilient circuitry can be reused for detecting stuck-at and

delay faults inside the EDL. It also shows a fault classification

method based on the behaviors observed in the faulty EDLs,

such as the circuit halt.

III. BLADE TEMPLATE OVERVIEW AND TIMING ANALISYS

Blade [6] is an asynchronous design style that was proposed

to overcome metastability issues in many of the proposed

timing resilient architectures, reported in [17], and also to

reduce the high timing error penalties originated by the recov-

ering mechanism of resilient architectures. Fig. 1 illustrates the

basic Blade architecture. It consists of an asynchronous Blade

controller, two delay lines, and an EDL. The Blade controller

communicates with other stages using a typical bundle-data

channel L/R. The δ delay controls the moment that data at

the output of the combinational logic can be sampled and

propagated through the latch. The Δ delay defines the amount

of time that the latch is transparent, and is defined as the timing

resiliency window (TRW). A timing violation is flagged if data

changes during the TRW. The delay values of δ and Δ must

be designed to be sufficiently large to cover the longest critical

path in its corresponding pipeline stage.

The error detection logic flags a timing violation by assert-

ing its Err signal. The Blade controller then communicates

with its right neighbor using an additional error channel

RE/LE. To recover from the timing violation the next stage

delays by Δ the latch opening, until the correct data is

propagated through the combinational logic.

Fig. 2(a) shows the EDL used in Blade. As detailed in [6],

the design consists of error detecting latches, Q-Flops [18] and

an asymmetric C-elements. The C-element acts as a memory

cell that stores any violation detected during the high phase of

the CLK. The C-element switches to 0 if CLK is at 0 and to

1 only if both CLK and the X output of the transition detector

(TD) is at 1.

The output of the C-element is sampled at the end of

the TRW by the Q-Flop. The Q-Flop ensures safe operation

against metastability by an internal filter, and its outputs only

change if data is not metastable. The dual-rail signal Err,
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Fig. 2: (a) EDL architecture [6]. (b) Timing diagram of the EDL error
detection.

composed by wires Err0 and Err1, stalls the controller until

the outputs are stable and it can safely evaluate if an error

occurred. The delay element tTD defines the transition detector

pulse width, while tcomp is the compensation delay added to

ensure that a transition before the rising edge of CLK is not

flagged as a violation.

Fig. 2(b) shows the timing diagram of an error being

detected. The propagation delay of some internal cells are

omitted, and to simplify further analysis the TRW is equal to Δ
delay. During the TRW the Din signal falls. The TD then flags

the transition with X, which is stored by the C-element until

the end of the TRW. Right before the end of the TRW, Sample
activates the Q-Flop that informs to the controller through Err1
that a timing violation was detected.

The Blade controller implements a new form of asyn-

chronous handshaking protocol, called speculative handshak-
ing [6]. The implementation is divided into three interacting

Burst-Mode state machines [19], and the complete description

is available in the original paper. In this paper, we focus only

on the description of the CLK output circuit of Fig. 3(a), that is

modified for the test purpose. In the original implementation,

the controller generates an internal clock signal (int clk) that

activates the CLK output and an internal delay line. After

the signal is propagated through the delay line the delay
signal indicates to the controller that the CLK signal must

be deactivated. This behavior can be seen in Fig. 3(b).

Blade’s automated flow uses industry standard tools, in-

cluding DesignCompiler and PrimeTime from Synopsys and

NC-Sim from Cadence. The flow converts a single clocked

synchronous RTL design into an asynchronous Blade design.

There are 5 main steps for the circuit conversion: Synchronous
Synthesis, Flip-flop to Latch, Retiming, Resynthesis and Blade
Conversion. The synchronous flop-based design is converted

to a latch based design. During the retiming and resynthesis

phase, the circuit is optimized so that pipeline stages are

balanced, and then a list of critical paths is created. With

this, only latches in critical paths are replaced by EDLs,

thus reducing the area overheads originated by the Blade

conversion. The number of critical paths is determined by the

amount of timing margin removed. As more timing margin is

removed, more critical paths are replaced by Blade’s EDL. At

the end, a co-simulation environment is used to functionally

validate the implementation. The co-simulation environment

consists of a testbench where a stream of inputs is forked to

both the synchronous and Blade netlists, and their stream of

outputs are compared.

IV. PROPOSED TEST METHOD

Timing resilient circuits suffer from area overheads that

come from the error detection and recovery mechanism, and

this overhead can limit the extra silicon area for the testing

circuitry. The reuse of error detection circuit as a fault detec-

tion mechanism is a promising approach to reduce the DfT

area overhead. In [13], the resiliency circuitry is modified to

create a scan chain for testing the datapath. Specifically for

path delay testing, the error detection circuit is responsible for

detecting a delay fault in the critical paths. Instead of scanning

out patterns after each test through the datapath scan chain,

an additional scan chain is used for capturing only the error

signals generated by the error detection circuits.

The different test operations are created by changing the

clock duty-cycle, making the circuit to operate slower or

faster than its normal operation. It would be ideal to apply

this technique for testing Blade, but as an asynchronous

architecture, the absence of a global clock would require

additional circuitry in order to create a synchronous mode

of operation during the test mode. Additional clock control

circuitry and scan chain, used only for testing, is a cost that

we want to avoid.

Therefore, the proposed test method explores the concurrent

test capabilities of circuits implemented with the asynchronous

Blade by the reuse of the EDL as a fault detection mechanism.

It also relies on functional testing to produce test patterns for

the critical paths, reducing the area overhead required by a

dedicated scan chain.

As presented in [20], functional testing may translate into

delay fault under-testing, where non-functional delay paths are

not covered. On the other hand, structural testing can over-

test paths that are not functionally activated, resulting in yield

loss. We argue that if the defect does not affect performance

in the normal functional mode of operation, a missed defect

should not cause a system failure. In this case, the chip should

not be rejected based on a failure in a non-functional path.

Specifically for testing delay faults in critical paths in Blade,
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we believe that functional testing can achieve a satisfactory

fault coverage with a low test circuitry overhead. This is

explored in the proposed test method, including its use for

yield increase and aging monitoring.

The proposed test approach focus on online testing of path

delay faults of critical paths as a natural consequence of

Blade’s implementation, where critical paths have an EDL

constantly monitoring possible timing violations. In order to

detect faults through the EDL, the Blade controller is modified

to shift the TRW, which essentially means, to make the

affected pipeline stages to operate in a slower mode. Note

that this slower mode is only applied for testing, and the

modifications do not affect the normal mode of operation. Now

the EDL will detect timing violations later than the normal

operation. These later timing violations are in fact the delay

faults being detected, that otherwise would not be captured.

Fig. 3(c) shows the modified circuit that creates the shifted

TRW. The AND gate before the multiplexer ensures the

CLK deactivation immediately after the controller deactivates

the int clk, otherwise, the TRW would also be extended by

the additional Δ delay. The dtm (delay test mode) signal

selects whether the TRW must be shifted or not. The timing

diagram of Fig. 3(d) illustrates this behavior. The rest of the

controller circuit remains unchanged, and the modifications

are transparent to the rest of the circuit since the controller

still waits for the delay signal transition to continue with the

handshake protocol. Timing constraints and the performance

in normal mode are not affected either, and the delays of the

additional gates can be compensated in the delay line. Note

that, the method is limited to detect faults that do not exceed

the additional Δ time, and faults that trespass the shifted TRW

are not captured. Another thing to mention is that the proposed

test method does not consider faults produced by small delay

defects, only large delays. This will be addressed in future

works.

An error o pin is added to observe externally the faults

detected by an EDL. As shown in Fig. 4, the output of an

OR gate is connected to this new pin. The OR gate groups

the Err1 signals from all the EDLs on the circuit. Once the

dtm is enabled, the error o is constantly monitored while the

circuit executes a functional test. If at any moment a transition

at error o occurs, a delay fault is considered detected.

A. Discussion on the test method enhancement

The proposal evaluated in this paper assumes that the TRW

shift is implemented with an additional delay line. This delay

line is the one inside the dashed region of Fig. 3(c). However,

it is also possible to have an alternative design where, for

instance, there are multiples activations of a single delay line.

Another assumption is that, a single primary input is connected

to all internal dtm signals, and it affects all controllers. In

this case, all controllers will shift the TRW at the same

time. Alternatively, the dtm signal of each controller can be

controlled individually by using a scan chain as presented in

Fig. 4. The dashed global dtm i is replaced by an auxiliary

scan chain connected to dtm i.
This alternative design opens some new possibilities in

terms of fault diagnose, yield improvement and aging monitor-

ing. For instance, assume that there is a delay fault in a critical

path between controllers C1 and C2. If the global dtm i
approach is applied, there is no way to determine, just by

observing error o, which stage contains the fault. If the dtm of

each controller can be set individually, a diagnosis procedure

can be executed to discover which stage captured the fault.

For this example, only the DTM2 scan register will hold an

enable for the C2 controller to shift its TRW.

This implementation allows an increase in yield if the

fault is detected during manufacturing test and the shifted

TRW is able to identify the delay fault as a timing violation.

Thus, by individually controlling each controller will shift the

TRW, it is possible to enable permanently the dtm of stages

where faults were detected, even during normal operation.

The consequence is a stage that is Δ time slower than its

original design. Moreover, with the advantage of being an

asynchronous design, only the faulty stages can be slowed

down, and the overall performance impact will not be like in

a synchronous design, where all stages would be affected by

a clock frequency reduction that accounts only for the faulty

stages. In this case, a circuit that would be discarded can still

be commercialized as a lower performance version.
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Still, on the new possibilities of this implementation, an

aging monitoring mechanism can be applied to detect a per-

formance degradation during the circuit lifetime by monitoring

the error o signal. The constant monitoring of this signal can

be translated into a performance metric, the error-rate. An

increase in the error-rate can be related to circuit aging, and

actions can be taken to avoid the circuit failure, increasing the

circuit lifetime.

Once the aging is detected, a diagnose test, similar to the one

described earlier, can be performed in order to detect which

stages are being affected. Also, like the solution to increase

yield, the affected stages could be purposely set to operate in

a slow mode by enabling their delay test mode during normal

operation. Improvement in yield and aging monitoring will be

further explored in future papers.

V. EXPERIMENTS AND RESULTS

The proposed test method was included into Blade’s auto-

mated flow, automatically adding dtm port, instantiating the

OR gate to group the Err1 signals and making their proper

interconnections. The flow targets a 28nm FDSOI technology.

The proposed test method is evaluated with a 32-bit XTEA

crypto core, based on the Speed XTEA described in [8], and

to compare area results with the original Blade proposal, the

same case study presented in [6] was implemented, a 3-stage

32-bit MIPS OpenCore CPU called Plasma [7].

The fault coverage results are extracted by a delay fault

simulation incorporated into Blade’s co-simulation environ-

ment. The fault simulation environment has the following input

parameters: a list of critical paths extracted from the Blade

flow, where the EDL is inserted and the delay fault is injected;

the Δ delay; and the original SDF (Standard Delay Format)

file. For each critical path, a mutant SDF is generated with

a timing violation for that specific path. The additional time

is equivalent to the Δ delay plus the slack of the path. This

adds a propagation delay that shifts the path transitions to the

shifted TRW, thus if any transition occurs in this path, the

transition will be flagged by the EDL as delay fault. After all

critical paths are simulated, the fault simulation environment

TABLE I: Fault coverage for critical paths of Bladed Plasma and
XTEA core.

Plasma XTEA
Total Paths 625 6271

Critical Paths 238 937

Detected Faults 172 937

Fault Coverage 72.27% 100%

presents a report with the total simulated paths and the fault

coverage.

Table I presents the fault coverage for both case studies. For

the XTEA fault simulation, a testbench randomly generates

data to the netlist inputs. The simulation environment shows

that 100% of the delay faults in the critical paths were

detected.

The experiments with Plasma used the testbench provided

with the OpenCore package to produce the input data. Reports

for Plasma fault simulation show a 72.27% fault coverage.

This lower fault coverage observed with Plasma is explained

by the use of functional code that was not developed aiming

functional testing. Most of the uncovered paths are related to

high-order bits from registers that had no transition during the

simulation, such as the program counter and memory address
registers. As already pointed, a transition must occur in the

path so the EDL captures the delay fault. Although this is out

of the scope of this paper, software-based testing can be used

in order to improve fault coverage of processors [21] [22]. For

example, the work in [23] used Plasma as a case study and

reported 95% of fault coverage.

Table II shows that for both case studies have area overhead

lower than 1%. The additional area comes from the increment

in the Combinational logic and the Buf/Inv, which is the

additional delay line. This can be further reduced by reusing

the existing delay line instead of creating a new one. Moreover,

the area overhead of the proposed test circuitry does not scales

up with the number of critical paths covered. If more paths

are selected in the Blade flow to receive an EDL, the area

overhead comes only from the additional EDL circuitry. This

way, the designer can tradeoff between additional EDL area
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TABLE II: Comparison of Bladed Plasma vs Bladed Plasma-DTM
(PDTM) and Bladed XTEA vs Bladed XTEA-DTM (XDTM) in
terms of area (μm2).

Plasma PDTM XTEA XDTM
Combinational 7095.28 7124.33 35561.44 35599.80

Buf/Inv 608.90 630.93 2959.80 2991.13

Noncombinational 7860.69 7860.69 21828.00 21828.00

Macro/Black Box 228.58 228.58 1280.01 1280.01

Net Interconnect undefined undefined undefined undefined

Total Area 15793.45 15844.53 61629.25 61698.94

Area Overhead - 0.32% - 0.11%

and the number of paths covered by timing resilience and the

proposed test method.

VI. CONCLUSION

This paper presents a concurrent test approach for detecting

delay faults in critical paths with the Blade timing resilient

architecture. This test method takes advantage of the Blade’s

error detection circuit and, by making a small modification into

the Blade controller, it becomes an online delay fault detection

mechanism. The additional test circuitry does not affect the

original circuit performance and functionality under normal

operation and has an area overhead lower than 1%. Under the

delay test mode, the circuit flags timing violations that exceed

the timing resiliency, and would not be captured under normal

operation. Results for fault coverage show that the functional

stimuli executed during test plays an important role in the

method. For future works, the test method analysis can be

extended to small delay defects and also the test circuitry can

be integrated into a yield improvement technique and an aging

monitoring approach.
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