
Software-Defined Networking Architecture for
NoC-based Many-Cores

Marcelo Ruaro, Henrique Martins Medina, Alexandre M. Amory, Fernando Gehm Moraes
School of Technology, PUCRS University - Av. Ipiranga, 6681, Porto Alegre, Brazil

{marcelo.ruaro, henrique.medina}@acad.pucrs.br, {alexandre.amory, fernando.moraes@pucrs.br}

Abstract—The Software-Defined Networking (SDN) is a communi-
cation paradigm adopted in computer networking. The SDN assumes
simple and programmable routers, removing the control logic from
the routers’ level, and assigning it to a high-level controller (software),
which is responsible for defining the path of the communication flows at
run-time. The controller can implement different communication rules
to define the paths, as Quality-of-Service (QoS), fault-tolerance, and
security. Many-cores may adopt the SDN paradigm due to its advantages:
reduced hardware complexity, high reusability, and flexible management
of communication policies. However, the challenge to apply the SDN may
be the overhead for defining the paths in software against hardware-
based approaches. The goal of this paper is to show that SDN can be a
viable alternative for NoC management in many-core systems. This work
proposes a generic SDN architecture for many-cores, detailing both the
hardware and software designs. We compare the quality of the proposal
with a state-of-the-art search path mechanism (hardware implemented),
in a QoS case-study providing Circuit-Switching (CS) for applications.
Results show that the SDN paradigm achieves similar performance
than the hardware-based technique regarding path length. Hardware
implemented mechanisms present a reduced latency to establish the paths.
As the path establishment occurs once for each application flow, results
show that the search path latency of SDN is not an actual drawback, as
it could be expected.

Index Terms—SDN (Software-Defined Networking); Many-Core;
NoCs; MPN (Multiple Physical Networks); Communication management.

I. INTRODUCTION

Software-Defined Networking (SDN) [1] is a computer network
paradigm that has as the central concept the routers’ simplification.
The diversity of routers available on the market made the process
to configure and manage a network difficult, motivating the SDN
development. Thus, SDN was conceived assuming simple archi-
tectures, moving the control logic from the router to a high-level
manager, called Network Controller, implemented in software. With
this paradigm, routers act as simple forwarding units, programmed
by the controller at run-time according to network policies defined
by the user or the network status.

The same scenario occurs today in the context of many-core
systems. NoC designs commonly adopt large buffers, several virtual
channels, and complex arbitration/routing schemes [2] to meet the
applications’ requirements. The complexity of current NoCs motivate
us to explore SDN applied to many-core systems, with potential ad-
vantages to reduce the NoC cost (area and power [3]) concomitantly
with a flexible management (e.g., QoS policies defined by software).
Also, SDN can provide better reusability because routers are generic
and simple hardware components, configured by software.

The path between any communicating pair in the system requires
the configuration of the routers belonging to the path. Thus, the
adoption of configurable routers incurs on the adoption of Circuit-
Switching (CS), because it would be unfeasible to configure all
routers in a given path for each packet injected into the NoC. As CS
reserves the routers in a path, the NoC must adopt virtual channels
[4], or Multiple Physical Networks (MPN) to enable simultaneous
connections. According to the literature, MPNs has smaller area and
power compared to virtual channels [2] [5].

The goal of this paper is to demonstrate that NoCs may adopt the
SDN paradigm, with simple and programmable routers. To achieve

this goal, this paper compares the connection establishment quality
w.r.t a state-of-the-art CS search path mechanism called Parallel-
Probe [6], which is hardware implemented. The SDN drawback is
the latency to establish connections since the search path mechanism
is software implemented. Such latency is evaluated, as well as the
area required to support MPN.

Our contribution is a generic and flexible architecture to implement
the SDN paradigm in many-core systems. The proposed SDN can
enable flexible policies related to the communication management, as
QoS (by allocating dedicated paths to the high priority flows), security
(by deviating the traffic from secure regions [7]), fault tolerance (by
reprogramming the already established paths at run-time). All these
features can be implemented simultaneously and independently as
a rule inside the NoC Controller, which manages the SDN-based
communication on the chip.

II. RELATED WORKS

Recent works address the SDN paradigm in many-core systems,
as shown in Table I.

TABLE I: Related works on SDN architectures for Many-Core SoCs.
Work Impl. Details RTL Validation SDN-Controller

[8]-2014 Few details No one per router
[9]

[10]-2015,2016 Arch. organization Yes one per system

[11]-2016 Only router details Yes NA

This Work Arch. organization and
implementation

Yes (VHDL,
SystemC) one per system

Cong et al. [8] propose a SDNoC architecture where the control
plane is deployed as a distributed unity at each router. The routers’
control plane exchange messages to implement the communication
management protocol and to define the path for the flows. That work
presents few details related to the architecture and no RTL validation.
Sandoval et al. [9] propose an SDN organization with three layers:
operating system, network operating system, and infrastructure. The
work assumes routers that can have the routing algorithm defined
by the SDN controller. Flows that are not managed by the SDN
controller use the XY routing algorithm. The work [10] evaluated the
configuration time for several routing algorithms, implementing them
in the SDN controller. Results showed that the performance of the
SDN to configure the routers varies according to the routing algorithm
and the injection rate. For congested scenarios, worst results were
obtained with adaptive routing algorithms. Scionti el al. [11] propose
the SDN architecture to explore dynamic changes in the network
topology. Each Processing Element (PE) has specific instructions to
control the network topology by software, including switch off the
links which are not used. The SDN paradigm is implemented by these
specific instructions and not by an SDN Controller.

This work covers two gaps observed in the literature. The 1st one
is a comprehensive SDN architecture, describing the hardware and
software layers. The 2nd one is the SDN evaluation against a state-
of-the-art hardware method for defining the paths.

III. SDN ARCHITECTURE OVERVIEW

Figure 1 presents the layered SDN organization. The application
layer contains the users’ applications. An application can be described

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

as a graph where nodes represent tasks, and the edges the communi-
cation flows. Tasks exchange data by using a communication protocol
as MPI or open-MP. The middleware layer contains the embedded
Operation System (OS) and the NoC-Controller (NC). The OS runs
at each PE of the system. It abstracts the physical resources to the
applications’ tasks, providing the communication primitives and task
scheduling. The NC implement the SDN services to the OS. The
OS can request to the NC to define a communication path between
a source and target PE. The NC handles path requests from the OS,
searches the path according to some predefined policy and notifies to
the OS the path establishment result (success or failure). The bottom
layer contains the physical network components.

Fig. 1: Layered view for the SDN paradigm in a many-core organization.

Definition 1. R - packet switching router.

Definition 2. SR - configurable SDN router.

Definition 3. MPN - multiple physical networks, corresponding
to multiple, independent and parallel networks, consisting of many
simple networks operating independently [2].

Figure 2(a) shows a standard many-core architecture, with PEs
connected to Rs (Def. 1). Figure 2(b) presents the SDN architecture,
with a NC managing the connection between SRs (Def. 2). Figure
2(c) shows the integration of the SDN architecture to the many-core
architecture. The communication architecture presented in Figure
2(c) corresponds to MPNs (Def. 3), with one packet switching (PS)
network and a set of SDN networks. The PS network is used for
management packets and to transmit data packets when there is no
path between two PEs. It also has the role of configuring the SRs.

Fig. 2: (a) Standard NoC-based many-core architecture, (b) proposed
SDN-based architecture (c) integration of the SDN in a NoC-based many-
core architecture.

IV. SDN ROUTER ARCHITECTURE AND CONFIGURATION

According to the SDN paradigm, the SR should act as forwarding
unit. To reduce area, input buffers are replaced by simple Elastic
Buffers (EBs) [12] - Figure 3(a). The EBs retains data for one clock
period, avoiding long wires, ensuring a reduced clock period. EBs
also enable to reduce the silicon cost compared to a two-slot FIFO
[12], once EBs need only one master-slave flip-flop instead of two.

In addition to the five EBs at the input ports, a SR contains two
crossbars, to connect the upstream and downstream signals between

input and output ports, configured by the Input Reservation Table
(IRT) and Output Reservation Table (ORT), respectively. Each table
is a 5-entry array (number of input ports) with 3 bits at each slot
(enabling to store six states: E, W, N, S, L, Free). In Figure 3(b),
the North input port is forwarding data to the East output port.
The configuration interface programs the IRT and ORT tables. This
interface is the key feature to make the router simple, avoiding logic
for routing and arbitration modules. After configuring the SR routers,
data is transmitted through CS.

Fig. 3: (a) EB architecture. (b) SR implementation.

Figure 4 presents the main blocks of the PE (Local Memory, Net-
work Interface (NI), CPU, and routers) and the process to configure
a SR. The SDN configuration is independent of the PE architecture
once the configuration process does not include the NI. The NC
sends through the PS network a configuration packet to program
the IRT/ORT tables. Each configuration packet has 3 flits: header,
with the target address and a flag specifying that the packet must be
consumed by a given SR and not by the NI; payload size, which is
always 1; configuration, with 3 fields: input port, output port, SDN
network number. It is not necessary to clear the IRT/ORT tables
because the configuration process is managed by software. A new
connection request releases the previous connection.

Fig. 4: PE architecture and configuration process of a SR.

V. SOFTWARE ARCHITECTURE

The software architecture concerns the implementation of the NC,
which handles path establishment requests generated by the OS. As
the NC is decoupled from the OS (Figure 1), it can also handle path
requests from other system’s components. Algorithm 1 presents the
pseudo-algorithm of the NC.

The algorithm continuously observes for new path requests (lines
1 and 2). If there is a request (line 3), the NC calls the SEARCH-
PATH algorithm at line 4. The role of the SEARCH-PATH algorithm
is to define a path between a source and a target PE, implementing
the control logic of the network (removed from the router to make it
simple) according to a given path definition policy. The SEARCH-
PATH algorithm returns the path[], which consists of an array
composed of the path routers’ addresses, and the selected sub-net.
If the path is valid (path[] 6= Ø), the NC configures each SR of the
path by sending the configuration packet (line 6). Next, at line 7, the
NC sends a ack message to the OS (requester). If the path cannot
be defined (path[] = Ø), the algorithm sends a nack to the requester
at line 9.

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

Algorithm 1 NOC-CONTROLLER
Input: source address, target address

1: while TRUE do
2: path request ← read path request()
3: if path request = VALID then
4: path[], subnet ← SEARCH-PATH(source, target)
5: if path[] 6= Ø then
6: configure SDN routers(path[], subnet)
7: send ack to requester(subnet)
8: else
9: send nack to requester()

10: end if
11: end if
12: end while

VI. EXPERIMENTAL SETUP

The case-study adopted to evaluate de SDN architecture is QoS
provision at the communication level (guaranteed throughput). The
goal is to provide at run-time support to establish CS for real-time
applications flows. The SDN is compared to the Parallel-Probing
(PP) method [6].

A. Many-Core Architecture Overview

A clock-cycle accurate RTL model describes the many-core [13]
(SystemC and VHDL implementations). Applications and OS are
described in C language, compiled from C code and executed over the
cycle-accurate models. The PE adopts the architecture presented in
Figure 4 and 5(b). The many-core is divided into clusters. A cluster is
a set of slave PEs (SPE) managed by a cluster manager PE (MPE). The
SPE executes the applications’ tasks. The MPE executes management
routines, as dynamic task mapping and task reclustering (run-time
reshaping of a cluster). Figure 5(a) presents a 6x6-3x3:3 many-core
instance (system dimension: 6x6, cluster size: 3x3, 3 CS sub-nets).

To support run-time CS, the MPE is also responsible for requesting
CS establishment. When an application enters into the system,
the MPE request connections to the CS-Controller for each CTP
(Communicating Task Pair). The application is allowed to execute
when all its CTPs were handled by the CS-Controller.

The CS-Controller is a NC specialized for communication QoS,
mapped at the most central SPE. It handles the CS requests from the
MPE managing the process of CS establishment between a CTP. Two
versions of the CS-Controller were implemented, one for the SDN
method and the other one for the PP method.

SS

M

S

S

S

S

S

M

S

S

S

S

S

S

M

S

S

S

S

S

S

CS

S

S

S

S

M

S

S

S

S

S

S

S

S

S

S

Multiple Physical NoC: 1 PS

and n CS subnets

M
Cluster Manager Processor

- MPE

S Slave Processor - SPE

Cluster: the cluster size is defined at design time. At runtime, the manager

can borrow resources from neighbor clusters increasing its size

L
o

c
a

l
M

e
m

o
ry

CPU

PS
SR

SR

NI

L
o

c
a

l
M

e
m

o
ry

CPU

PS
SR

SR

NI

(a) (b)
CS-Controller

Fig. 5: Many-core architecture (a) with a hierarchical organization and
MPN; (b) PE architecture.

B. SDN Implementation

The SDN implementation follows the proposal presented in Sec-
tions III to V. The version of the CS-Controller addressing the SDN

implementation uses the Hadlock’s algorithm [14] to implement the
SEARCH-PATH algorithm, which is a routing algorithm originally
used in VLSI synthesis tools. This algorithm can find the shortest
path in a 2D mesh network within a polynomial time of O(n2).

C. Parallel-Probe (PP) Implementation

The CS-Controller addressing the PP implementation adopts the
algorithm proposed by Liu et al. [6]. The PP method adopts a
dedicated NoC responsible for finding the paths. As shown in Figure
6(a), each PE receives a PP router, connected to neighbors PP routers
and locally to the SRs (note that in this case the SRs are configured
by the PP router instead the CS-Controller). Figure 6(b) presents
an example of the search method, with router 1 being the source
and router 9 the target. The PP method finds the shortest path by
propagating a wave of probes, which floods the PP network and
unveils the shortest path by selecting the first probe to reach the target.
When the first probe reaches the target, a backtracking process starts,
releasing the other pre-allocated paths, and setting up the current path
by configuring the SRs. The PP method enables to find the shortest
path within a constant setup time of 3*D+6 clock cycles, where D
is the Manhattan distance between the source and target PP routers.

Fig. 6: (a) PE architecture including the Parallel-Probing router. (b)
Example of PP algorithm [6].

The CS-Controller acts as a synchronizer in the PP implementation.
As in the SDN implementation, the CS-Controller receives CS
requests. These requests are stored in a FIFO because the PP network
handles one propagation at a time. If there is a request in the FIFO,
the CS-Controller handles it, by sending a message to the source SPE

to start the PP method. The message contains the target address and
the sub-net that the SPE should use (the sub-net is selected according
to the sub-net utilization, selecting the less used sub-net). The SPE

starts the PP propagation by configuring its PP router. When the
propagation reaches the target, the backtracking process starts. During
the backtracking, the pre-allocated SRs not belonging to the path are
released, and the SRs belonging to the path are configured using the
programming interface (Section IV). When the backtracking reaches
the source PP router, it interrupts the SPE. If the search fails, the SPE

tries the next sub-net, until finding a path. When this process finishes,
the SPE sends a message to the CS-Controller, reporting success or
failure. As in the SDN implementation, after the search path process,
the CS-Controller sends a ack/nack to the MPE (the CS requester).

VII. EXPERIMENTAL RESULTS

This section evaluates the connection establishment quality, the
latency to setup connections, and the MPN and PP silicon area.

A. Performance Evaluation

Table II presents the results, addressing many-core sizes from 36
to 256 PEs (1st col., system size-cluster size), with three CS sub-net
configurations: 4, 6, 8 (2nd col.). Each SPE executes simultaneously
two tasks. The evaluated scenarios execute several benchmarks in-
stances (DTW, JPEG decoder, MPEG-2 decoder, VOPD) in such a
way to have all SPEs executing 2 tasks (system occupation equal to
100%), with the goal to stress the CS infrastructure. The 3rd column

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

TABLE II: PP and SDN evaluation, path length and connection time, for 6x6 to 16x16 many-core
systems. Success rate: (min hops + non min hops)/N# paths.

System size:
Cluster size

N# of SDN
sub-nets

N# Paths Method
Avg
hops

Hops Success
Rate (%)

Connec. time (clock cycles)
min non min not found Avg Std dev Max

6x6-3x3

4

70

PP 2.25 65 2 3 95.71 450 237 1,248
SDN 2.24 64 2 4 94.29 2,840 1,663 8,637

6
PP 2.31 66 4 0 100.00 435 252 1,800

SDN 2.20 70 0 0 100.00 2,946 2,036 16,792

8
PP 2.20 69 1 0 100.00 377 214 1,800

SDN 2.20 70 0 0 100.00 2,913 2,103 16,284

8x8-4x4

4

127

PP 2.57 113 9 5 96.06 467 265 1,252
SDN 2.60 119 3 5 96.06 3,765 3,111 25,810

6
PP 2.48 122 5 0 100.00 420 215 1,801

SDN 2.40 127 0 0 100.00 5,084 5,324 27,793

8
PP 2.45 124 3 0 100.00 401 199 1,511

SDN 2.40 127 0 0 100.00 5,166 5,645 29,465

12x12-4x4

4

328

PP 3.03 269 28 31 90.55 501 311 1,247
SDN 3.02 273 21 34 89.63 5,094 5,570 61,557

6
PP 2.85 304 20 4 98.78 443 288 1,835

SDN 2.70 323 1 4 98.78 4,772 3,392 42,024

8
PP 2.76 318 9 1 99.70 406 243 2,431

SDN 2.67 327 0 1 99.70 4,468 2,514 26,077

16x16-4x4 8 623
PP 2.62 608 12 3 99.52 423 289 2,486

SDN 2.62 620 0 3 99.52 5,453 3,522 48,542

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100

S
e
a
rc

h
-p

a
th

 L
a
te

n
c
y
 (

c
lo

c
k
 c

y
c
le

s
)

System Occupation (%)

(a)

0

5000

10000

15000

20000

25000

30000

35000

0 20 40 60 80 100

S
e
a
rc

h
-p

a
th

 L
a
te

n
c
y
 (

c
lo

c
k
 c

y
c
le

s
)

System Occupation (%)

(b)

Fig. 7: Search path latency for PP (a) and
SDN (b) - 8x8-4x4:8 system size.

presents the number of paths to connect, which is a function of the
selected benchmarks, i.e., the total number of CTPs. The 4th column
corresponds to the method: PP or the proposed SDN

The 5th column presents the avg hops, which corresponds to the
average distance between CTPs. The SDN and PP methods present
similar results (difference smaller than 5%), showing the effectiveness
and scalability of the proposed software method compared to the
hardware method. The reduced average number of hops is due to the
mapping heuristic, which maps communicating tasks near to each
other [15]. Next, the table presents the number of minimal, non-
minimal, and not found paths. The SDN slightly overcomes the PP
when evaluating the path length, since from 6 CS sub-nets all found
paths were minimal for 6x6 and 8x8 systems, 98.5% for a 12x12:8
system, and 99.52% for a 16x16:8 system. The column not found is
related to non-established paths (remember that when there is no path
for a given CTP, the PS NoC is used). As expected, smaller number
of CS sub-nets induces a larger number of failures. The 9th column
corresponds to the success rate. For small to medium systems sizes, 6
sub-nets were enough to find all paths. For large system sizes (12x12
and 16x16), 8 CS sub-nets enabled to route more than 99% of the
paths. Summarizing, the SDN method has a similar success rate to
establish CS connections compared to the hardware implementation,
with a slight advantage related to the path length (higher number of
minimal paths).

The last 3 columns compare the latency to search the CS paths.
The PP latency presents a small variation (small standard deviation
values). On the other hand, the SDN latency tends to increases with
the system size. The highest average latency was 5,453 and 501
clock cycles (cc) for SDN and PP, respectively. This is expected
since the comparison occurs between software (SDN) and hardware
(PP) implementations. If we assume CS connections established at
the beginning of the application execution, with connections staying
active during the application lifetime, the SDN search-path latency
only impacts on the application startup. For example, consider a
system running at 500 MHz (T = 2ns), an average latency equal
to 5,000 cc, and an application with 10 CTPs. The total latency
would correspond to 100 µs, and would not be noted by the end
user. We argue that SDN can be a viable option for communication
management, with reduced area and management flexibility, features
that hardware-centric techniques are not able to provide.

Graphs in Figure 7 detail the search path latency (Y-axis) as a
function of the system occupation (X-axis), for scenario 8x8-4x4:8.
All other experiments present similar behavior. As mentioned, the PP
latency presents a small variation (Fig. 7(a)). The average search path

latency is 401 cc, and only 5 paths (3.9%) presents a latency higher
than 630 cc. The latency increases when the available paths become
scarce, inducing the search mechanism to explore alternative CS sub-
nets. SDN presents a more significant variation in the search path
latency (Fig. 7(b)), due to the features of the Hadlock’s algorithm,
which increases the search space according to the failures to set a
given path. The latency stays below 5,000 cc for 82.7% of the paths.
As in the PP method, the SDN achieves worst-case latency when the
system occupation increases, reaching 29,465 cc in the worst-case.

B. Area Evaluation

Consider a PS router configured as follows: 32-bit flit width, 8-flit
buffer depth, round-robin arbitration, XY routing, no virtual channels.
The area of this router (28 nm SOI technology @ 1GHz) is 10,021
µm2. As reported in the literature, the adoption of 2 virtual channels
(VCs) almost doubles the router silicon area of the PS router [16].
One 32-bit flit width SR, as detailed in Figure 3, requires 2,011 µm2.
As the current work adopts 16-bit flits to reduce the MPN area, the
SR requires 1,291 µm2. Thus, the 1PS-8CS MPN has a silicon area
equivalent to a 2-VC packet switching NoC. Such result demonstrates
the low cost to adopt MPNs compared to TDM-based NoCs [2].

The PP router area is 800, 962 and 1,130 µm2 for 4, 6, and 8
CS sub-nets respectively. Thus, the overhead of the PP router is
equivalent to one SR.

VIII. CONCLUSION

This work investigated the pros and cons of the SDN paradigm,
evaluating the proposal in a cycle-accurate many-core model, filling
a lack in the literature by proposing a generic SDN architecture, ad-
dressing hardware and software implementation details. The reference
hardware implementation (PP) enables fast connection establishment
(small latency), with a small area overhead. Comparing the proposed
SDN to the PP, we observe a similar path quality (i.e., average number
of hops), with a slight improvement in the number of minimal paths,
and higher latency. The higher latency is not an actual drawback
since the latency only impacts on the application startup (in the order
of µs). The advantages of adopting SDN include simple hardware
architectures, reusability and management flexibility, features not
available in hardware-centric approaches.

This work evaluated SDN for communication QoS. Future work
includes the proposition and evaluation of other communication
management policies using the SDN paradigm herein proposed, as
fault-tolerance and security.

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

ACKNOWLEDGEMENT

Author Fernando Gehm Moraes is supported by FAPERGS
(17/2551) and CNPq (302531/2016-5), Brazilian funding agencies.

REFERENCES

[1] Y. Jarraya, T. Madi, and M. Debbabi, “A Survey and a Layered
Taxonomy of Software-Defined Networking,” IEEE Communications
Surveys Tutorials, vol. 16, no. 4, pp. 1955–1980, Fourthquarter 2014.

[2] Y. J. Yoon, N. Concer, M. Petracca, and L. P. Carloni, “Virtual Channels
and Multiple Physical Networks: Two Alternatives to Improve NoC
Performance,” IEEE Trans. on CAD of ICs and Systems, vol. 32, no. 12,
pp. 1906–1919, Dec 2013.

[3] M. Shafique and S. Garg, “Computing in the Dark Silicon Era: Current
Trends and Research Challenges,” IEEE Design & Test, vol. 34, no. 2,
pp. 8–23, April 2017.

[4] S. Liu, Z. Lu, and A. Jantsch, “Costs and Benefits of Flexibility in
Spatial Division Circuit Switched Networks-on-chip,” in NOCs, 2015,
pp. 1–8.

[5] E. Carara, F. Moraes, and N. Calazans, “Router Architecture for High-
performance NoCs,” in SBCCI, 2007, pp. 111–116.

[6] S. Liu, A. Jantsch, and Z. Lu, “Parallel probing: Dynamic and constant
time setup procedure in circuit switching NoC,” in DATE, 2012, pp.
1289–1294.

[7] M. M. Real, P. Wehner, V. Migliore, V. Lapotre, D. Göhringert, and
G. Gogniat, “Dynamic spatially isolated secure zones for NoC-based
many-core accelerators,” in ReCoSoC, 2016, pp. 1–6.

[8] L. Cong, W. Wen, and W. Zhiying, “A configurable, programmable and
software-defined network on chip,” in WARTIA, 2014, pp. 813–816.

[9] R. Sandoval-Arechiga, J. L. Vazquez-Avila, R. Parra-Michel, J. Flores-
Troncoso, and S. Ibarra-Delgado, “Shifting the Network-on-Chip
Paradigm towards a Software Defined Network Architecture,” in CSCI,
2015, pp. 869–870.

[10] R. Sandoval-Arechiga, R. Parra-Michel, J. L. Vazquez-Avila, J. Flores-
Troncoso, and S. Ibarra-Delgado, “Software Defined Networks-on-Chip
for multi/many-core systems: A performance evaluation,” in ANCS,
2016, pp. 129–130.

[11] A. Scionti, S. Mazumdar, and A. Portero, “Software defined Network-
on-Chip for scalable CMPs,” in HPCS, 2016, pp. 112–115.

[12] G. Michelogiannakis and W. J. Dally, “Elastic Buffer Flow Control for
On-Chip Networks,” IEEE Trans. on Computers, vol. 62, no. 2, pp. 295–
309, Feb 2013.

[13] P. GAPH Group, “HeMPS web-site,” http://www.inf.pucrs.br/hemps/,
2017, [Online; accessed 30-October-2017].

[14] F. O. Hadlock, “A shortest path algorithm for grid graphs,” Networks,
vol. 7, no. 4, pp. 323–334, 1977.

[15] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
Multi/Many-core Systems: Survey of Current and Emerging Trends,”
in DAC, 2013, pp. 1–10.

[16] A. Mello, L. Tedesco, N. Calazans, and F. Moraes, “Virtual Channels in
Networks on Chip: Implementation and Evaluation on Hermes NoC,” in
SBCCI, 2005, pp. 178–183.

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

