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Pontifı́cia Universidade Católica do Rio Grande do Sul
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Abstract—Automatic handwriting recognition is an important
task since it can be used to replace human beings in various
activities such as identifying postal addresses on envelopes,
information in bank checks, and several other tedious tasks that
humans need to perform. Convolutional Neural Networks are
a power machine learning method for computer vision tasks,
having achieved state-of-the-art results in the recognition of
handwritten Arabic digits and also in multiple distinct alpha-
bets. In this work, we extensively explore the performance of
those networks for handwritten Chinese characters recognition
(HCCR). For such, we have trained several models based on
popular convolutional neural networks architectures that are
commonly used for large-scale image recognition, and we also
employ several distinct architectural fusion methods, resulting in
more than 18 classification approaches. We report the results of
all 18 configurations in the well-known HWDB and ICDAR2013
datasets.

I. INTRODUCTION

Automatic handwriting recognition (HWR) is the task of

transforming a language represented in its spatial form of

graphical marks into its symbolic representation [1]. This task

covers many types of applications, including reliable person

authentication [2], writer identification [3], and handwritten

digit/character/word recognition [4], [5], [6]. HWR is the pro-

cess whose objective is to interpret and identify any character

in the handwritten form.

Techniques of HWR can be broadly categorized as either on-

line (stroke trajectory-based) or offline (image-based), based

on the availability of dynamic information. The former usually

involves the automatic conversion of the text as it is written

on a digitizer, using temporal spatial information generated

from the movement of a stylus on an electromagnetic surface

(e.g., velocity, movement direction, number of strokes, etc.).
The latter involves the automatic conversion of the text from

static images captured by optical devices (such as a cameras or

scanners) into letter codes by the computer. Due to the limited

information in offline recognition systems, their accuracy tends

to be lower when compared to online recognition systems [1].

Although handwritten character recognition has received

intensive attention in the last decades, it still remains a

challenging problem due to the the presence of cursive writing,

touching strokes, and confusion in shapes [7]. Compared

to the task of recognizing handwritten digits and letters in

Latin alphabets, Handwritten Chinese Character Recognition

Fig. 1. Chinese characters with similar forms and different meanings.

(HCCR) is a more challenging task mainly due to two reasons.

First, Chinese characters are ideographic in nature, with more

than 50,000 characters of which 6,000 are commonly used and

have a wide range of complexity [8], whereas English has only

26 characters. Second, most Chinese characters have much

more complicated structures and consist of much more strokes

compared to arabic digits or English characters. Moreover,

some Chinese characters have similar characteristics and very

different meanings, as illustrated in Figure 1.

Recent approaches try to solve the problems of HWR using

deep neural networks such as Convolutional Neural Networks

(CNNs) [3], [9], [7]. In this paper, we also propose the use

of CNN for offline HCCR in images. Our study differs from

previous work by being the first to exhaustively test several

well-known CNN architectures and also strategies for fusing

their performance. For such an analysis, we train and test

the networks using the HWDB1.1 version of the Institute

of Automation of Chinese Academy of Sciences (CASIA)

dataset, and results show that CNNs surpass human accuracy

in this task.

The rest of this paper is structured as follows. Section II

reports work that also employ machine learning for iden-

tifying handwritten characters. In Section III, we describe

the architectures we use to recognize handwritten Chinese

characters. Section IV describes our experimental settings and

the corresponding results. Finally, the paper ends with our

conclusions and future work directions in Section VI.

II. RELATED WORK

HCCR has been a topic of discussion in pattern recogni-

tion before convolutional networks became widely popular,

although there were cases of CNN usage in HCCR dating
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back to 1993. In [6], the authors used a LeNet to classify a

limited Chinese vocabulary, achieving test accuracy of 94.2%.

Arguably, the limited size of the vocabulary was due to limited

computational resources, as even today training and testing a

convolutional network is not a trivial task.

Simultaneously with the rise of CNNs, traditional methods

of HCCR were being used, which rely on the identification

and extraction of specific features such as shape or stroke

density. For example, Tang et al. [10] perform offline HCCR

by combining several feature-based classifiers, which use pe-

ripheral shape, stroke density, and stroke direction information,

achieving an accuracy of 90% on a large dataset for the time,

with 540,100 samples.

The first use of CNN for HCCR in a large dataset was by

Ciresan et al. [11], with a multi-column deep neural network to

classify the characters from the CASIA dataset, among other

tasks in image recognition (e.g. traffic signs recognition). On

Offline HCCR, the authors obtained an error rate of 6.5%.

The NLPR also held several competitions for Chinese

Handwriting Recognition, the most prominent being from

ICDAR-2013. In offline recognition, the team from Fujitsu

Center took the prize with a 4-CNN voting system. The CNN

themselves were composed of ten convolutional layers and

two fully connected layers, trained in the HWDB1.1 dataset

[12]. The ICDAR 2013 dataset is used nowadays to train and

evaluate HCCR solutions.

Cheng et al. [13] presented a deep triplet network (DTN)

method, which learns a CNN model using both classification

and similarity ranking signals as supervision. It maximizes the

inter-class variations, minimizes the intra-class variations, and

simultaneously minimizes the cross-entropy loss. The work

by Zhong et al. [14] uses directional feature maps along with

an ensemble of AlexNet and GoogLeNet [15] architectures.

The paper reports classification with 96.74% accuracy in the

ICDAR 2013 offline test set. We did not include them in our

results since we are using a reduced version of ICDAR data

due to limitations of computational power.

Finally, Zhang et al. [16] boost the performance of their

CNN by applying shape normalization and direction decompo-

sition on the images to extract feature maps (or ”directMaps”),

with a technique known as Normalization-cooperated Gradi-
ent Feature Extraction [17]. Apart from being domain-specific

knowledge of HCCR, the directMaps eliminates the need of

data augmentation and model ensemble. The authors also

implemented an adaptive layer to the CNN for compensating

handwriting variation. The layer reduces mismatch between

training and test data from a writer, caused by different

handwriting styles across the writer’s images. The directMap +
CNN + Adaptive Layer architecture achieves 97.37% accuracy

on the full ICDAR 2013 test set, which is to the best of our

knowledge the current state-of-the-art of HCCR.

III. CONVOLUTIONAL NEURAL NETWORKS

Handwriting recognition has been the focus of much re-

search in the last decades. In particular, the application

of convolutional neural networks in handwriting recognition

started in the early 90s [18], [6], with the pioneering work

of Yann LeCun. Due to dramatic advances in hardware and

greater availability of annotated data through crowdsourcing

initiatives, CNNs have become very popular for classifying

images, outperforming the previous approaches based on

handcrafted features by large margins (see, e.g., the work of

Krizhevsky et al. [19] for large-scale image classification).
The intuition behind CNNs is to perform automatic rep-

resentation learning, transforming the raw data into a set of

features (i.e., latent space) that is well-suited to discriminate

the concepts needed for detection or classification. This latent

space is represented as a nested hierarchy of concepts, with

each concept defined in relation to simpler concepts, and more

abstract representations computed in terms of less abstract

ones [18].
In this paper we replicate several well-known award-

winning CNN architectures, namely LeNet [18], AlexNet [19],

ZFNet [20], VGG-5 [21], VGG-7 [21], VGG-9 [21], and

VGG-16 [21]. Our hypothesis is that networks with different

architectures may identify different features in images, and that

by combining (or fusing) such networks we may be capable

of improving results, which may be viewed as a particular

kind of ensemble effect. Table I presents the architecture of

each network that is employed in our experimental scenario.

All architectures use batch normalization [22] after each

convolutional layer, omitted in Table I for brevity. Explanation

on each architecture is as follows.

• LeNet is an architecture proposed by LeCun et al. [18]

and contains two (5×5) convolutional layers followed

by (2×2) pooling layers. Two Fully-Connected (FC)

layers connect all activations in the previous layer and

a softmax function is applied in the last layer to generate

class probabilities. This network was the first successful

application of CNNs in real-world problems, and it was

initially developed to identify digits and zip codes from

images.

• AlexNet is an architecture proposed by Krizhevsky et
al. [19] and consists of a (11×11) convolutional layer

followed by other three (3×3) convolutional layers. The

network contains two FC layers followed by the softmax
function in the output layer. This architecture became

well-known after wining the ImageNet Large Scale Visual

Recognition Competition (ILSVRC) in 2012, dramati-

cally reducing the top-5 test error rate when compared

with previous results.

• ZFNet is an architecture proposed by Zeiler and Fer-

gus [20] and contains five convolutional layers: two

layers containing (7×7) and (5×5) filters respectively,

and three layers containing (3×3) filters. Max pooling is

performed between some of the convolutional layers and

two FC layers followed by the softmax function complete

the network. This architecture is an improvement over

AlexNet that modifies a few of the network’s hyperpa-

rameters, in particular by expanding the size of the middle

convolutional layers and making the stride and filter size

on the first layer smaller.
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TABLE I
CNN ARCHITECTURES INVESTIGATED IN THIS WORK.

LeNet ZFNet VGG-5 VGG-7 VGG-9 VGG-16 AlexNet
input data (64× 64 images)

conv-64 conv-96 conv-64 conv-64 conv-64
conv-64
conv-64

conv-96

maxpooling

conv-128 conv-96 conv-128 conv-128 conv-128
conv-128
conv-128

conv-128
conv-128

maxpooling

FC-4096
FC-200

conv-256
conv-384
conv-384

conv-256 conv-256
conv-256
conv-256

conv-256
conv-256
conv-256

conv-384

maxpooling
FC-4096
FC-4096
FC-200

FC-4096
FC-200

conv-512
conv-512
conv-512

conv-512
conv-512
conv-512

conv-192
conv-192

maxpooling
FC-4096
FC-4096
FC-200

FC-4096
FC-4096
FC-200

conv-512
conv-512
conv-512

conv-128
conv-128

maxpooling
FC-4096
FC-4096
FC-200

FC-4096
FC-4096
FC-200

• VGG-5, VGG-7, VGG-9, and VGG-16 are modified

versions of the networks developed by Simonyan and

Zisserman [21] from Oxford’s renowned Visual Geometry

Group (VGG). The VGG architecture contains a stack

of (3×3) convolutional layers and 2 × 2 pooling layers

(not all the convolutional layers are followed by max-

pooling). The stack is followed by FC layers and the

softmax function in the output layer. The VGGs used here

differ in the number of convolutional and FC layers, with

the number indicating the number of total weight layers

of the architecture.

A. Pre-processing and Network Fusion

Figure 2 presents the fusion pipeline, in which we apply pre-
processing before sending the images to the CNNs described

in Table I. The pre-processing step consists of extracting and

converting the data to an image format, since the original

format is proprietary. Each image is resized to 56× 56 pixels

and a white border or 4 pixels is added to each margin in

order to centralize the character and avoid strokes close to the

border. Finally, the image is enhanced via contrast stretching

[23], which attempts to improve the contrast in an image by

“stretching” the range of intensity values it contains to span a

desired range of values.

Each network Nj ∈ N (where N is the set of all CNNs

in Table I) processes data and generates probability scores

based on the softmax function, i.e., the probability p(Ci|x;Nj)
that Nj has of classifying image x as belonging to class

Ci. Using the softmax scores, we train a Support Vector

Machine (SVM) [24] in order to perform a late fusion of the

networks. The SVM fusion method was chosen because it is

commonly used and consistently presents good results in the

literature. Similarly to the softmax function, the late fusion

generates a vector containing the probabilities p(Ci|x;F(N))

Fig. 2. Pipeline of the fusion architecture.

of classifying image x as belonging to each class based on

the fusion of networks F(N).

IV. EXPERIMENTAL ANALYSIS

In this section, we describe the dataset used in our experi-

ments, the implementation details regarding the convolutional

neural networks, and the results achieved by our approach in

comparison with the current state-of-the-art.

A. Dataset

The CASIA1 Online and Offline Chinese Handwriting

Databases [25] were developed by the National Laboratory

of Pattern Recognition (NLPR), Institute of Automation of

Chinese Academy of Sciences (CASIA), and contains versions

for online (stroke trajectories) and offline (isolated images)

handwritten characters, named OLHWDB and HWDB re-

spectively. The isolated character samples are divided into

three datasets, and involve 7,356 character classes, including

7,185 Chinese characters and 171 alphanumeric and symbols.

1http://www.nlpr.ia.ac.cn/databases/handwriting/Home.html
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The offline HWDB1.1 version was produced by 300 writers

and contains 3,755 classes, divided into 897,758 samples for

training (240 writers) and 223,991 samples for testing (60

writers). In our experiments, we split the original training

dataset into training and validation sets. The training set

contains 200 writers and the validation set the remaining 40

writers.

Since HWDB1.1 is a rather large dataset, we perform

experiments using a subset containing 200 classes (different

Chinese characters) divided into 33,258 samples for training,

9,593 for validation, and 4,790 for test. This new subset

enables a faster training of the CNNs, allowing us to properly

compare them and find which architecture is the most adequate

to this task. The rationale is that if the network can achieve a

good performance using a random subset of the data, it should

also achieve good results using the entire dataset. This subset

containing 200 classes is referred hereafter as the 200-Class
set.

Besides HWDB1.1, we perform experiments using the IC-
DAR2013 [12] dataset, though only as a test set. ICDAR2013
is a dataset available for the Chinese Handwriting Recognition

Competition, for online and offline character recognition,

held with the 2013 edition of the International Conference

on Document Analysis and Recognition (ICDAR). Similarly

to HWDB1.1, ICDAR2013 contains the same 3,755 classes

distributed in 60 writers with 225,300 images. Similarly to

what was done to HWDB1.1, we also randomly defined a

subset with the same 200-classes from ICDAR2013. This

subset, hereafter simply called ICDAR2013, is the one used

in the experimental analysis.

B. Settings and Hyper-Parameter Definition

For model fitting, all architectures (LeNet, AlexNet, ZFNet,
VGG-5, VGG-7, VGG-9 and VGG-16) are trained from scratch

using the 200-Class (HWDB1.1) training set. Each network is

trained for 20 epochs with batches containing 100 frames. We

use the validation set to verify the model that performs best,

i.e., the model with the highest accuracy for each network

during training.

Weights are optimized using AdaDelta [26] with learning

rate lr = 1, ρ = 0.95, ε = 1×10−8 and learning rate decaying

50% every 3 epochs. Fully-connected layers in all architectures

are L2-norm regularized, with λ = 0.0005. We additionally

regularize the networks by applying dropout on the fully-

connected layers with a probability of 50%. All networks use

rectified linear activation units (ReLU) (relu(x) = max(x, 0)).

Using the probabilities extracted from the CNNs from

images of the validation data, we train a Support Vector

Machine in order to perform the late fusion of the networks.

The late fusion is trained with the probabilities of the best

model selected via validation set. Thus, when performing

the late fusion of VGG-9 and ZFNet (VGG9+ZFNet+SVM),

we concatenate the validation probabilities from both CNNs

to train the SVM. In our experiments, we use the off-the-

shelf implementation of a multi-class Support Vector Machine

(SVM) by Crammer and Singer [24] from scikit-learn2 toolbox.

No kernel is used (ie.e, linear kernel) and default scikit-learn
regularization parameter C = 1 is used, with the square of the

hinge loss as loss function. No attempts were made to tune

those hyper-parameters.

During the test phase, we forward each test instance

throughout each network (instances from both test subsets 200-
Class and ICDAR2013). With the probabilities extracted from

each network, we pass them to the SVM in order to generate

the final classification. For instance, a forward pass on the

VGG-9 network followed by the SVM classification is named

VGG9+SVM. For networks that undergo late fusion, a forward

pass of each image is performed in each network, and the

probabilities are then concatenated and passed to the SVM

for the final classification. Hence, when classifying an image

using the fusion of VGG-9 and ZFNet (VGG-9+ZFNet+SVM),

a forward pass of the image is performed in both VGG-9
and ZFNet, and both vectors containing the probabilities are

concatenated and passed to the SVM so it can perform the

final classification.

V. RESULTS

To evaluate the performance of the networks (individually

and fused), we compare the accuracy of each CNN over the

200-Class test set, and also over the ICDAR2013 test set

(reduced to 200-class). To analyze the performance of the

fused networks, we use the classification of each individual

CNN as a baseline, and thus we can see whether the SVM

improves the predictive performance. Since we are evaluating

seven baseline models, there are 13,699 possible CNN fusions.

Given this very large number, the fused CNN presented here

were arbitrarily selected, reflecting what the authors believe

to be the most promising among the possible candidates. The

fused architectures are as follows:

• VGG7+SVM
• VGG9+SVM
• VGG16+SVM
• ZFNet+SVM
• VGG7+VGG16+SVM
• VGG7+ZFNet+SVM
• VGG9+VGG16+SVM
• VGG9+ZFNet+SVM
• VGG16+ZFNet+SVM
• VGG9+VGG16+ZFNet+SVM
• VGG7+VGG9+VGG16+ZFNet+SVM
Table II reports the results for the 7 individual networks as

well as for the 10 fused architectures.

By training and testing our CNN implementations in the

200-class subset, we were able to identify which architecture

was the most suited for the task of handwritten Chinese char-

acter recognition. Among the architectures, ZFNet achieves the

highest accuracy in both 200-Class and ICDAR2013 datasets.

The ZFNet architecture achieves the best global accuracy of

97.8% for 200-Class and 98.2% for ICDAR2013. Recall that

2http://scikit-learn.org
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TABLE II
ACCURACY FOR ALL BASELINES AND FUSION METHODS, TRAINED WITH

THE SUBSET, FOR THE USED TEST SETS.

Approach 200-Class ICDAR2013

LeNet 0.924 0.935
VGG5 0.943 0.956
VGG7 0.961 0.965
VGG9 0.967 0.972
VGG16 0.964 0.972
AlexNet 0.959 0.968
ZFNet 0.978 0.982
VGG7+SVM 0.961 0.966
VGG9+SVM 0.967 0.972
VGG16+SVM 0.964 0.972
ZFNet+SVM 0.978 0.982
VGG7+VGG16+SVM 0.969 0.974
VGG7+ZFNet+SVM 0.974 0.979
VGG9+VGG16+SVM 0.970 0.974
VGG9+ZFNet+SVM 0.970 0.979
VGG16+ZFNet+SVM 0.973 0.980
VGG9+VGG16+ZFNet+SVM 0.974 0.978
VGG7+VGG9+VGG16+ZFNet+SVM 0.975 0.978

ZFNet is an adaptation of AlexNet, increasing the size of the

middle convolutional layers while tweaking a few of other

hyperparameters. When comparing results from ZFNet and

AlexNet, we can see that modifications in the architecture

resulted in a great improvement for the task at hand. This

result surpasses the 96.13% of human accuracy achieved in

ICDAR2013 [16], meaning that the machine can identify

Chinese characters better than humans do.

The worst results are achieved by LeNet network, which is

expected since it is the oldest CNN architecture, with design

choices that were not fully understood by the time of its

publication. The depth of the LeNet’s network is probably not

sufficient to extract features that properly differentiate among

Chinese characters. This characteristic is also observed in the

VGG networks, since by increasing the number of layers the

accuracy of the system also increases, except from VGG9 to

VGG16, which may indicate a small level of overfitting of the

larger architecture. Since VGG-9 and VGG-16 achieve almost

the same values of accuracy, it probably indicates that keeping

increasing the number of layers may not necessarily increase

the number of important features to classify a character,

though we did not evaluate the possibility of using residual

connections [27] for allowing more depthness.

When comparing AlexNet to VGG networks, we see that it

achieves an accuracy between the level of VGG-5 and VGG-

9. Those results tend to confirm our assumption that shallow

networks are not capable of properly solving the problem,

while the larger networks may suffer from overfitting and

should be more regularized. Possibly, some gradients on the

deeper CNNs may still vanish, which have a negative effect on

accuracy. Once again residual connections could be a possible

solution for larger networks.

Adding SVMs as a post-processing classification step of the

images does not improve the performance of most networks.

However, SVM seems to be very important to use as fusing

method that aggregates the performance two or more networks.

Fig. 3. (Top) Class 80 (“to complete”) and class 81 (“to compete”) represented
by their respectively unicode character. (Bottom) 10 test images of class 80,
which were classified as class 81.

For the fused networks, the best accuracy is achieved when

merging ZFNet with other networks. On the other hand,

there is no significant improvement relative to the stand-

alone model, indicating that it is more interesting to keep

a short architecture instead of mixing two or more different

architectures. The non improvement in CNN fusions may be

also an indicative that the CNNs are already at their maximum

learning capability.

By analyzing the predictions per class for our best model,

we were able to identify which class was most incorrectly

predicted. Our CNNs tends to classify characters from class

80 as being from class 81. When checking the characters, we

can understand that this misclassification may be due to the

similarity between the two classes (the only difference is a

horizontal stroke) and the wildly different handwriting styles

and variations. To illustrate how similar classes 80 and 81 are,

and the effect of different handwriting styles, Figure 3 depicts

the two characters, representing classes 80 and 81, along with

10 samples of class 80 from the ICDAR2013 test set.

With regards to the results that are found in the literature,

Handwritten Chinese character recognition was originally ad-

dressed by analyzing features specific to the handwriting of

Chinese characters, commonly named today as handcrafted
features. These methods achieve satisfactory results (e.g., Tang

et al. [10], with 90% accuracy), however they are not capable

of reaching the level of deep learning approaches such as

CNNs, since they tend to suffer more with data variation than

learning representation approaches. Another problem is that

they require specific knowledge on the problem to identify

which features are significant for classification, and extensive

experimentation to find out which of these features are the best

for each instance. CNNs, on the other hand, are end-to-end

approaches that require no human-intervention in the process

of feature definition. They automatically learn to identify

the most significant features for a given problem, and thus

do not need any prior knowledge. In comparison, our best

architecture surpasses the handcrafted state-of-the-art using a

self-contained model, the ZFNet architecture.
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VI. CONCLUSIONS AND FUTURE WORK

In this work, we experimentally evaluated several deep

learning architectures for handwritten recognition as well as a

late fusion method. The pipeline of the architecture includes

training CNNs in parallel to extract features (probabilities)

from images and classify unseen images by a late fusion

process. Using a subset of the Chinese characters from

HWDB1.1 dataset, we perform experiments showing that the

convolutional networks can indeed learn high-level relevant

features for handwritten recognition.

We verified that a single convolutional neural network per-

forms as good as multiple ones in the problem of classifying

handwritten Chinese characters. We assume that a single

network has sufficient power to extract all relevant features

in order to classify them. When we experimented on multiple

networks via late fusion, we observed that results did not

improve as expected. A single ZFNet (97.8% accuracy) has

shown better performance than 11 fusion combinations.

As future work, first we intend to train our CNNs using the

full version of HWDB1.1 (3755 classes), assuming we will

have enough computational power to perform those experi-

ments. Second, we intend to augment our dataset using hand-

crafted features such as histogram of optical flow (HOF), his-

togram of gradients (HOG), motion boundary history (MBH),

and dense trajectories to verify whether those features improve

the classification of CNNs. Finally, as an application, we

intend to build a translator app for smart-phones, in which: The

image of a Chinese character is obtained through the phone’s

camera; The image’s class is identified with our CNNs; The

character is translated to English via a translation API (e.g.

Google Cloud API); The identified Chinese character and its

translation are shown to the user.
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