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Abstract—Reliable network time measurement tools are impor-
tant to ensure that monitoring network systems work properly,
but their development do not consider security as a concern
and, for example, delay attacks could compromise those tools
effectiveness. Indeed, nowadays the network time measurement
is not always reliable. Some researches do propose to increase
network time measurement reliability using Openflow. Nonethe-
less, those researches do not consider the impact of altering some
of the Openflow controller algorithms in their analysis. On one
hand, this paper investigates how the provided POX Openflow
Controller packet forwarding strategies could be applied to
compromise network time measurement reliability. On the other
hand, this paper also shows that the way those strategies are
applied could prevent against new attacks that need to trust on
network time measurement. Therefore, some experiments were
performed to show the impact of the POX packet forwarding
algorithms on network time measurement, either to compromise
or to help in protecting the network.

Index Terms—SDN, security, delay attack, inference attack,
RTT forwarding, Openflow, POX.

I. INTRODUCTION

Nowadays the complexity imposed by the wide options of
network topologies implies on several strategies to increase
network security. For instance, time is one of the aspects that
could be used to improve network security, or other network
attributes such as performance. Furthermore, in some complex
scenarios, such as mesh or cloud networks, usually time,
measured for some data to be sent from one node to another,
may be used to detect network problems, for example, host in-
accessibility, broken link, or bottlenecks caused by high traffic
or attacks. Therefore, due the importance of the network time
measurement, several tools were developed in the past (see,
for example, Ping, Traceroute, Pathchar, Iperf [1]). Hence, the
development of those tools focus on functional requirements,
i.e. just to measure the time a packet takes to travel from one
node to another. However, quality requirements usually are not
considered [2], for example, they do not consider that someone
could be, intentionally, alter time measurement.

One of the ways to solve the mentioned problem could be
to use Software Defined Networks (SDN) [3], which became
a large academic and industrial research topic[4]. The main
functional protocol for SDN is called Openflow [5] [6], which
was developed by Openflow Network Foundation (ONF). This

protocol separates the control plane from the data plane in
an ordinary network router or switch. The control plane is
located and managed from a network entity called Controller.
The Controller can communicate with many Openflow enabled
network switches and manages the traffic according to policies
or administrators decisions and rules. The data plane remains
in the network switch.

Moreover, during the development of Openflow, new secu-
rity challenges have emerged. Hence, researchers are engaged
in developing new technologies and mechanisms to prevent
attackers from controlling or compromising the network. Be-
sides, if the attacker are successful they may affect the main
security pillars: availability, confidentiality and integrity [7].

Indeed, the Openflow protocol could contribute to increase
security [8], and consequently the reliability of network time
measurements. One of the algorithms, implemented in Open-
flow, that has influence on network time measurement is
the packet forward algorithm. This algorithm is responsible
for choosing a route for any packet. In some Openflow
Controllers, such as POX [9], it is possible to choose the
network packet forwarding algorithm.

Some researches propose to increase network time mea-
surement reliability using Openflow [3], or how network time
measurement could be used as a way to facilitate attacks on
Openflow [10]. Nonetheless, those researches did not consider
the impact of altering the packet forwarding algorithm in his
analysis.

Therefore, on one hand, this paper investigates how the pro-
vided POX Openflow Controller packet forwarding strategies
could be applied to compromise network time measurement
reliability. On the other hand, this paper also shows that
the way those strategies are applied could prevent against
new attacks that need to trust on network time measurement.
Hence, some experiments were performed to show the impact
of the POX packet forwarding algorithms on network time
measurement, either to compromise or to help in protecting
the network. Thus, this work presents as main contribution
the package forwarding algorithm choice and how this choice
could compromise the Openflow support on trustworthy net-
work measurement field.

The remain of this paper is organized as follows. Section II
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presents some related work that help understanding the current
trends and challenges as well as some approaches related to
SDN security. Section III describes the environment setup
and the methodology applied to the experiments. The results
and analysis of our experiments are explained in Section IV.
Section V brings the conclusion and suggestions for future
directions.

II. BACKGROUND

The measurement of some network features, such as time,
bandwidth or jitter, is an essential concern in the design
of current networks. Network measurements are crucial for
the operation and security of the networks, since a network
manager can verify whether the bandwidth is being stressed
by normal usage or is being attacked by some malicious entity
(adversary), for example. Hence, if the measurement of some
of the features is compromised, an adversary could exploit that
in order to mask, or even perform, an attack. Thus, that could
make the whole system vulnerable, and important data could
be compromised, or even worse, the reputation of a company
could be damaged.

Some attacks, such as delay attacks [11], exploit the end-
host bandwidth bottleneck measurement mechanism. In order
to solve this vulnerability, Karame et alii [3] discuss the Open-
flow contribution on network measurements security, based
on bottleneck bandwidth estimation and network coordinate
measurement. To achieve that, in their work, they take into
consideration two entities: the prover and the verifier. The path
between those entities traverses a network domain managed by
an Openflow Controller. The bottleneck bandwidth estimation
is obtained using the packet-pair technique [11]. The verifier
requests that the prover inserts, on his header, a pre-defined
flag, announcing to the Openflow-operated switches on the
path that these packets correspond to bandwidth measurement
packets. Then, the verifier informs the prover IP address to the
Controller. The Controller propagates a rule to the outermost
switch that connects to the prover, requesting all packets with
the flag from the prover. Any additional delay inserted by the
transition of packet-pairs is removed in this step. Then, the
Controller requests to the switch all the packets that would be
forward to the verifier, before they are sent to the verifier. After
analyzing the packets, the Controller then sends the packets to
the verifier. This process allows to find out if the bottleneck
link is located between the verifier and the Openflow switch
or on the provers side of the Openflow switch. After that,
it is possible to measure in a more accurate way the times
in the network based on the mean of round trip time (RTT)
latencies. This may be used by the hosts to discover their
network coordinates relative to the other hosts, i.e. to establish
the network topology.

Although the Openflow protocol could be useful to offer
a more reliable network measurement, an attack exploring
that combination was proposed by [10]. This attack is a
sophisticated inference attack that an adversary can use to
learn more about a network. In this attack, a stream of timing
probes and a stream of testing packets are sent simultaneously

to the target network. Timing probes are Ping packets to a
possible server in the network that passes trough the control
plane, and RTT depends on the control planes load. Test
packets are spoofed packets, i.e. packets in which the source
or destination IP, or MAC, addresses could be altered. If a
stream of test packets causes the probe RTTs to increase, the
adversary can infer that the control plane is processing the
testing packets, for example, to discover a new rule for that
packet. The action of sending different test packet streams
can offer enough information about the network behavior. For
example, considering the scenario in which an attacker sends
packets to a target destination host from different source hosts.
On one hand, if the RTT for all packets are similar, then it
is very likely that the target destination is a server (or an
important host in the network), since all source hosts know
the route to the target host. On the other hand, if RTT is really
different for most of the packets, it might mean that the control
plane is processing some of the packets to discover new rules
for those packets. Hence, based on the forwarding rules that
match on both the source and destination, the attacker can
build a graph that represents the network topology. Hosts that
have several edges in the graph may be critical to the network
and an ideal target for Denial of Service (DoS) attacks, while
hosts with few edges may be less frequently used and an ideal
target for the adversary to infect while minimizing disruption
to the network.

The forwarding rules aforementioned are intrinsically re-
lated to the packet forwarding algorithm used by a Controller
to manage the network. Vaghani’s research [12] analyzes the
main forwarding algorithms available on the POX Controller.
The Controller is responsible for network control policies,
including how packets will be forwarded.

POX Controller offers a set of algorithms to configure
packet forwarding [12]. These algorithms are described next:

a) L2 Learning: The L2 learing algorithm behaves as a
layer 2 switch. As soon as it learns L2 addresses, it installs
flows that are exact-matches on as many fields as possible
[9], i.e., different installed flows are different TCP connections
results.

b) L3 Learning: The L3 learning behaves in the same
way as the L2 learning for forwarding. However, this algo-
rithm has a functionality to reply ARP requests [9]. It keeps a
table that maps IP to MAC and the corresponding ports. After
that, when the switch receives an ARP request, if the entry
exists on the table, then it will solve and answer the ARP
request; otherwise, it will flood it.

c) L2 Pairs: L2 pairs algorithm makes Openflow
switches behave like a type of layer 2 switch. Differently
from L2 Learning, this algorithm installs rules based on MAC
addresses.

d) L2 Flowvisor: L2 flowvisor installs rules in the same
way as L2 pairs. However, this algorithm uses a spanning tree
component to find and update the spanning tree. After that, it
conducts flooding for the selected ports from the spanning tree.
The L2 flowvisor uses a module called Discovery, which is
responsible for triggering link status events.
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e) L2 Multi: L2 multi ”learns” MAC addresses across
the entire network and selects shortest path(s) between them
[12]. This algorithm also uses the Discovery module to learn
the topology of the entire network [9].

This set of packet forwarding algorithms was applied to the
experiments of the Section III in order to evaluate the impacts
of Openflow configuration on the reliability of network time
measurement and also to reduce possible security attacks.

Since the Openflow Controller is a central point in an
SDN, it becomes a vulnerability that can be exploited by DoS
attackers [13]. In [13], researchers show how a DoS can be
performed against the Controller, and proposes a scoring sys-
tem to classify the incoming traffic in the Controller. In order
to achieve that, they use a Support Vector Machine (SVM)
algorithm [14] to avoid the malicious package processing. The
SVM algorithm learns network behavior from the incoming
traffic in order to identify which traffic is malicious.

III. ENVIRONMENT SETUP AND EVALUATION
METHODOLOGY

This section describes the set of experiments that represents
a scenario to show that our claims, i.e. that different strategies
to packet forwarding can affect network time measurement,
and on one hand, this can mask some types of attacks, but on
the other hand this can be used to avoid some types of attacks.
Our simulation is based in a similar way of the one presented
in [12], in which they use a mesh network composed of loops
and redundant links. The simulated network had to be complex
enough to be able to represent a situation in which Openflow
configuration would affect network time measurement. In the
simulated topology, each switch was linked to the Controller
and a host, as illustrated in Figure 1.

The experiment was simulated on Mininet 2.2.1 [15], using
an Intel Core 2 Duo CPU P8700 @2,53GHz with 4GB of
RAM. In addition, Mininet was installed on Ubuntu 15.04.5,
a Linux 3.19.0-28-generic kernel, and a POX 0.2.0 Controller
also was used.

Twelve switches, structured in a mesh network[16], com-
posed the topology, as represented by Figure 1. They were
configured to operate on Openflow v.1.0 [17].

To evaluate the communication among nodes the mean of
the RTT is used [18]. This mean of RTT is calculated as
follows. First the packet transmission time T is calculated
using Equation 1. This time represents the time between
sending a packet and receiving an acknowledgment that the
packet was received. This time is measured in milliseconds
(round trip transmission).

T = N/R (1)

In Equation 1, N represents the packet size (bits), and R is
the data rate bandwidth (bit/second). Hence, to calculate RTT,
Equation 2 is used:

RTT = S ∗RTTold + (1− S) ∗ T (2)

S1 S2
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S1

H1

Fig. 1. Network Topology

In Equation 2: RTT is the mean RTT (ms); S is the smooth-
ing factor, which is a factor to remove extreme variations on
RTT measures; RTTold is the old RTT; and, T is the packets
new round trip transmission time (Equation 1). It is possible to
measure RTT values using the Ping tool, in which S is equal
to 0.875.

To perform the experiments, the links illustrated in Figure 1
were configured with a bandwidth of 10 Mbps and 5ms of
propagation delay [12]. In the simulation, a host connected to
switch S1 will communicate with the host connected to switch
S11, i.e. the goal is to simulate communication that traverse
the whole network (one of the longest routes in the simulated
network).

For each experiment, the POX Controller was configured to
forward packets based on each forwarding algorithm explained
in Section II. Each experiment was performed during 370
seconds to allow idle timeout and hard timeout events of flow
removal [18]. For idle timeout, while matching packets, the
flow entry will not be removed unless hard timeout is reached,
then the flow entry will force to be removed. Actually, the
experiment sends 370 Ping packets, with 1 second interval
time between each packet to achieve those measures.

To verify the impact of the packet size, on each round of
370 packets the payload was increased from 56B, 4KB, 8KB,
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16KB, 32KB and 65KB. From each round, the RTT average
and standard deviation values were collected. The experiment
was repeated 6 times, resulting on 133,200 values. The RTT
average and standard deviation values were calculated for each
packet size, producing groups with values relative to each
packet forwarding algorithm.

The experiment also measured the impact of each forward-
ing algorithm on the inference attack presented in Section II.
First a packet, when a packet is sent to a switch, a switch
verifies whether the information in the packet matches or not
any existing rule in that switch, for example, to drop a packet
or to forward that packet. If there is no matching rule, then the
packet is sent to the Controller. Then the Controller decides
a rule for that packet and sends that new rule to all switches,
each switch will receive a new rule corresponding the route
for that type of packet in that switch. After that the packet is
forward to the first switch of the route. The difference between
a packet that already has a rule in the switch and the packet
that is sent to the Controller is the basis for the inference
attack [10]. Therefore to analyze the impact of the forwarding
algorithms in this type of attack, the experiment was replicated
10 times for each algorithm and also for the different sizes
of packets. Different from the previous experiment, in which
we analyzed the impact of the forwarding algorithm in the
network time measurement, in this experiment, we reset the
environment for each packet that was sent. The main objective
of this resetting was to analyze the worst case for each packet,
i.e. for each packet the creation of new rules and routes were
analyzed in a bare situation.

IV. RESULTS

In this section we showed the results of our simulation
and then relate those results to the problems mentioned in
the previous sections. The main idea is to verify whether the
different algorithms can influence network time measurement
and also what is their influence on inference attacks.

Table I presents the main results collected from running
each algorithm described in Section II. The values in the
table represent the average of RTT in milliseconds. For each
algorithm, the payload varied from 56B to 65KB. As can
be seen in Table I, the average response time for a 56B
payload using L2 Learning is 13.22% slower than when using
L2 Multi, and for a 65KB payload the difference increases
to 64.17% considering the same algorithms. Therefore, the
choice of the algorithm that will be used in the Controller
can, definitively, influence the RTT times in an SDN.

In order to better visualize the results shown in Table I,
the data from the experiments were organized in a graph as
shown in Figure 2. Each algorithm was categorized based on
packet size and RTT in milliseconds. Each bar represents the
mean RTT value and the lines at the side of the bar indicate
the amount of variation from the mean standard deviation. As
can be seen in the figure, on the one hand, when the packet
size is small, the RTTs are similar for all algorithms. On the
other hand, when the packet size increases the RTT value from
L2 learning and L3 learning algorithms are equivalent, but the

Algorithm 56B 4KB 8KB 16KB 32KB 65KB
L2 Learning 63.06 150.36 225.01 288.47 337.71 436.69
L3 Learning 61.28 143.06 219.63 282.52 282.60 401.94
L2 Pairs 60.97 63.48 70.67 82.79 109.70 163.33
L2 Flowvisor 60.95 63.54 70.65 82.82 109.73 163.33
L2 Multi 54.73 56.68 64.20 76.21 103.34 156.48

TABLE I
AVERAGE DURATION TIME IN MILLISECONDS FOR EACH ALGORITHM

L2 pairs, L2 flowvisor and L2 multi RTT values are more
than twice smaller than L2 learning and L3 learning. This,
also, clearly, shows that depending on the packet size, for big
packets, the influence of the algorithms are significant in the
RTT.

Fig. 2. Packet Forwarding Algorithms x Mean RTT

Based on those results, supposing that an Openflow network
was a way to prevent delay attacks, as claimed by previous re-
search [3], and the Controller was configured with L2 learning
or L3 learning packet forwarding algorithm, the change on the
algorithm to L2 pairs, L2 flowvisor or L2 multi could mask a
delay attack. For example, if someone is considering the time
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tl for a packet to travel from Host A to host B, when using the
L2 learning, if an attacker manages to change the algorithm
to the L2 multi, which takes tm (smaller than tl - see Table I
or Figure 2), then now the attacker has ta = tl - tm to alter the
packets that are being sent from A to B, and neither A or B
will detect that. Hence, despite what has been claimed in the
past, regarding the use of Openflow to overcome delay attacks,
they are still possible if the configuration of the Controller
is not performed in a careful manner. This algorithm change
could also be caused by an attack on the Controller, i.e., a DoS
attack could reset the Controller and a new algorithm could be
started [13] [19]. The algorithm change could be transparent to
hosts, because switches remain working with old flow tables,
allowing that communication continues working normally.

The results from the second part of the experiments are
related to discover the RTT for a packet that has an unknown
rule to a switch. In this situation, when the switch does not
know a rule for a packet, the switch sends the packet to the
Controller, which is responsible for establishing a rule for that
packet. This new rule, could be, for example, to drop such
packets or a set of rules for all the switches in the route,
from host A to B, for forwarding those type of packets. Once
the new rule was established by the Controller, the switch will
receive it and then executes the rule for that packet. The whole
time it takes for the packet, for example, to be sent from host
A to B, in such situation is called, in this paper, Peak time.
Figure 3 shows the measured times for different packets sizes
(the same sizes as in Figure 2). As can be seen in the figure,
when the packet size is small (56B), all algorithms except
L2 multi produce an equivalent time. However, bigger packets
impact directly on L2 learning and L3 learning performance.

As mentioned in Section III, the times shown in Figure
fig:exampleFig4 are used to understand the impact of our
measurements to detect when the inference attack is possible,
and when it is not. In Figure 4, we show the times from
Figure 2 are compared to times from Figure 3. Notice that,
in Figure 4 the Peak time is shown right under the mean RTT
for each algorithm. As can be seen in the figure, it is possible
to realize that, for big packets size (65KB), Peak time and
RTT are similar when using the L2 multi, L2 flowvisor and
L2 pairs algorithms. Therefore, the inference attack [10] will
not work properly, since, as explained in Section II and in
Section III, the attacker will not be able to distinguish between
the time a packet that is known by the switch and a packet that
is unknown to the switch takes to travel from host A to host
B. Hence, an attacker will have to use small packets to be able
to execute an inference attack, since the times for RTT and
Peak time are very different (see Figure 4) for small packets.
Therefore, if someone wants to detect a possible inference
attack in an Openflow network, a large number of small
packets from different sources to a same target destination
might indicate that that attacks is being performed. Besides,
this needs to be analyzed only during the time interval that
the rules are stored in the switches (see Section III). Hence,
an IDS/IPS tool could be configured to trigger alarms when it
detects stream of small packets during that time interval.

Fig. 3. Packet Forwarding Algorithms x Network Configuring time

V. CONCLUSION

Several applications rely on network time measurements to
work properly. However, some situations imply on fluctuations
on those values. It can be caused, for example, by a typical
network use or a delay attack. To protect the network from ma-
licious interference, the literature suggests the use of Openflow
[3]. However, as Openflow is a new approach, new attacks to
this technology have been developed and some of them rely
on network time measurements, e.g., inference attack [10].

This paper presented a set of experiments to verify the
impact of each packet forwarding algorithm on network
RTT measurement. The results indicate that a wrong packet
forwarding choice could affect significantly network mea-
surements. Furthermore, this decision could enable a delay
attack to be masked, and Openflow security contributions on
trustworthy network measurement could be compromised. To
solve this issue, the development of a network measurement
monitoring system that establish a communication with the
Controller, to detect any situation that will influence network
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Fig. 4. Comparison between first and second experiments

time measurement is needed. The results also indicate that
an attack that rely on network time measurements (inference
attack [10]) can be detected and, in some circumstances,
mitigated with the right forwarding algorithm choice. To
achieve that, an IDS/IPS system needs to be configured to
alarm stream of small packets.
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