

Breaking Collaboration Barriers through
Communication Practices in Software Crowdsourcing

Leticia Machado, Josiane Kroll, Sabrina Marczak, Rafael Prikladnicki
MUNDDOS Research Group - Computer Science School

Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
Porto Alegre, Brazil

{leticia.machado.001, josiane.kroll}@acad.pucrs.br, {sabrina.marczak, rafael.prikladnicki}@pucrs.br

Abstract—Software Crowdsourcing (SW CS) is an

emerging area in Software Engineering (SE). It has a dynamic
nature in which problems are opened up to crowds of people
through an open call to solve problems with the incentive of
prizes for the best solutions. Although SW CS has been
increasingly adopted in the software industry, many open
issues are still to be elucidated. For instance, collaboration
aspects are one of those issues. They impact communication
and coordination practices. This study aims to identify
barriers to collaboration in SW CS and communication
practices that might help overcome these barriers. We
identified the barriers and practices from a qualitative data
analysis study considering an available literature review
report. Our study contributes to the SE area by providing
insights for researchers, tool designers, and managers that
might help them to better understand collaboration issues and
proposed solutions to solve them.

Keywords – Software Engineering; Crowdsourcing;
Collaboration; Communication; Practice; Issue; Barrier.

I. INTRODUCTION
 The Crowdsourcing (CS) phenomenon emerged from
new collaboration technologies such as social media and
Web 2.0 [1, 2]. This term is coined by Howe and Robison
[2] and it is part of concepts such as mass collaboration,
open collaboration, and collective intelligence. This new
form of work in which ‘crowds’ of people can collaborate
and complete a software task (e.g., coding, testing) is an
alternative to software organizations. While the overall
impact has been mundane until now, SW CS has the
potential to and will impose disruptive changes in how
software will be developed in the next years [8, 9].

 SW CS is the engagement of a global pool of online
workers who can be tapped on-demand in order to contribute
to various types of software development tasks [12, 13, 14].
The CS process is mediated by platforms that connect
requesters with online workers. The platform allows the
requester to spread tasks to workers who volunteer to solve
them motivated by compensation (e.g. monetary, prestige).

In SW CS, the platform has a relevant importance
providing directions for the management and the
coordination of processes and people in both technical and
business levels [11, 13]. The platform also allows requesters
to find out talents beyond their boundaries and take
advantages of cost, time, quality, and expertise [8, 12, 13].

A recent study by Ågerfalk et al. [10] reports challenges
in SW CS. Communication and collaboration among the
crowd members are cited as open issues that lead to repeated
occurrences of poor management practices in SW CS [11].
By building collaboration into a model that is based on
competition, communication, coordination, and cooperation
related to problems are likely to emerge [6, 15].

In this study, we look back to literature to identify
barriers to collaboration and communication practices to
solve them. We investigate the current state of collaboration
and the underlying difficulties as well as the communication
practices used to support them in SW CS platforms. Our
results can potentially advance the theoretical foundation
into the latent characteristics that affect collaborative
relations in SW CS. In our qualitative analysis of literature,
we found 36 collaboration barriers and 30 communication
practices. Practices were associated to barriers in order to
investigate the relationship between them.

II. RESEARCH METHOD
 We conducted a qualitative mapping analysis in an
already consolidated literature review report about SW CS to
identify empirically-based evidences of barriers to
collaboration in such context and communication practices
that might be of help to reduce them. Our goal here was first
to extract a list of barriers to collaboration followed by a set
of communication practices and then propose an association
between the lists.

 For this study, we reviewed 241 papers. A data
repository built by Mao et al. [20] was adopted to identify
relevant papers. The database includes papers from diverse
categories (e.g., peer-reviewed conference papers, journal
articles, technical reports, thesis) published between January
2006 and May 2015. This repository is publicly available
online1. We extracted 229 papers from this repository that fit
our search criteria, which were: collaboration challenges or
issues, communication practices, and empirical work. We
also updated the dataset by including 10 new papers
published from May 2015 to January 2016, which were not
listed on the Mao et al. repository. We manually searched
well-known databases such as IEEEXplore Digital Library,

1 http://crowddev.kemao.uk/cse_repository

2016 IEEE 11th International Conference on Global Software Engineering

2329-6313/16 $31.00 © 2016 IEEE

DOI 10.1109/ICGSE.2016.32

44

ACM Digital Library, Springer Link Online Library,
Elsevier ScienceDirect, and Google Scholar.

 For each selected paper, one of the authors read the entire
paper and extracted any barrier to collaboration or any
communication practice cited in the respective study. We
used a spreadsheet to catalogue the extracted data. Once we
finished data extraction, we peer reviewed the results by
selecting a sample and having one of the authors redoing the
data analysis. Discrepancies were discussed between the 2
authors and resolved with the help of a third one. Next,
again, one of the authors proposed the mapping between the
collaboration barriers and the communication practices based
on the papers selected. The mapping was then discussed
among 3 of the authors and critically reviewed in several
review sessions until it was considered stable.

TABLE I. COLLABORATION BARRIES

ID Barriers (B) Reference
B1 Informal communication [13,21,22,24,26,47]
B2 Psychological issues of CS [26, 42, 35, 6, 11]
B3 Interaction between parties [25, 26, 18, 27]
B4 Software process methodologies [13, 50, 51, 52]
B5 Keeping participants motivation [29, 30, 11]
B6 Real-time collaboration [31, 15, 32]
B7 Plattform to support social media [43, 31, 32]
B8 Micro-task decomposition [35, 13, 25]
B9 Scarce context for the crowd [35, 25, 14]
B10 Collaboration among crowd members [11, 29, 30]
B11 Different languages [12, 23, 47]
B12 Reputation management in competitions [26, 29]
B13 Technical and privacy issues [33, 13]

B14 Large scale collaboration with distributed
members [11, 34]

B15 Orchestration of virtual teams [11, 30]
B16 Reusable software components [35, 36]

B17 Internal collaboration between the platform
and the requester [13, 25]

B18 Task allocation [37, 13]

B19 Management in asynchronous
communication environments

[19, 53]

B20 Software development infrastructure [38]

B21 Management of shared version control
systems and issue trackers [11]

B22 Information management [39]

B23 Self- management and real time crowd
collaboration environment [40]

B24 Collaboration between anonymous
participants in the crowd [41]

B25 Competition management [42]

B26
Programming metaphors and infrastructures
to support the design, and execution of
human computation

[44]

B27 Commitment between involved parties [45]

B28 Management a large amount of questions
from the crowd during task execution period [65]

B29 Single point of contact [13]
B30 Documentation [13]

B31 Reliability of remote participants and trust
among crowd participants [48]

B32 Reduced larger global project view [35]
B33 Definition of the crowd’s role [46]
B34 Teams heterogeneity [19]
B35 Crowd worker latency [44]

B36 Collaboration between workers and
employers outside the platform [40]

III. RESULTS
Our analysis of the data revealed 36 barriers to

collaboration and 30 communication practices. We present
our findings in the next sections.

A. Collaboration Barriers
 We extracted the barriers from the selected papers and
ordered them based on the number of papers they are cited.
Table I summarizes the identified list.

B. Communication Practices
 We identified 30 communication practices adopted in
SW CS. Similarly to the collaboration barriers, practices
were also ordered by the number of papers they are cited as
presented on Table II.

TABLE II. COMMUNICATION PRACTICES

ID Practices (P) Reference

P1 Asyncronous communication for knowledge
sharing

[11,13,26,30,50,
27, 28,18,16,53,
54]

P2 Integration of the social network to known
participants

[46, 18, 31, 53,
55, 6, 40, 31]

P3 Increasing communication between requester
and crowd

[56, 35, 57, 40,
21, 52, 11]

P4 Group or global chat to provide tasks’ details [50,40,58,54,45,
59]

P5 Task coordinator to manage and answer crowd
questions

[13, 25, 26, 30,
11]

P6 Feedback channel should be robust [40, 62, 33, 25]
P7 Discussion boards and wikis [50, 36, 58, 27]

P8 Collaborative software development
infrastructure [16, 27]

P9 Fine-grained explicit task [59, 33]
P10 Process documentation [27, 15]
P11 ‘In momento’ approach [59, 33]
P12 Communication between crowd to crowd [11]
P13 Information assurance [26]

P14 Community-driven and decentralized to
indirectly freely [39]

P15 Communication tools to facilitate trainings [33]
P16 Mobile apps [18]

P17 Continuous communication during task
execution period [21]

P18 Small groups of users for code sharing outside
of the group [60]

P19 Communicate by email new available tasks and
their feedback after a particular task be done [11]

P20 Task dashboard for the crowd [11]

P21 Platforms should provide communication
mechanisms to share artifacts [11]

P22 Transparency through activity feed/timeline [59]

P23 Iterative workflow to improve the design
solutions from the crowd [61]

P24 Programming tasks by types of context [64]

P25 Free-text responses in HITs (Human
Intelligence Tasks) [63]

P26 Collaboration tools [36]
P27 Annotations to share and track source code [52]
P28 Simply inspecting a code location [61]

P29 Simply understanding of the rationale
underlying the decisions [61]

P30 Crowd and requesters should know clearly the
role and relationship of each CS element [22]

45

IV. DISCUSSION
Our analysis focuses on their frequencies and on the

relationship between the two variables: collaboration issues
and communication practices. From the frequencies analysis
it is possible to see which barriers have been emphasized in
past research and thus to identify gaps and possibilities for
future research. On the other hand, the relationship mapping
analysis allows us to identify how communication practices
help overcome collaboration barriers in SW CS.

We found that the greatest number of papers (6 papers)
reports informal communication as the main challenge for
collaboration in SW CS. It is possible to infer that the B1:
Informal communication barrier is more frequently reported
given that CS platforms tend to restrict the exchange of
information between requesters and crowd [11]. Thus, it can
impact in the frequency in which interactions occur between
platform, requester, and crowd as corroborated by B3:
Interaction between parties.

The second most cited barrier B2: Psychological issues
of CS is reported in 5 papers. Given that SW CS
development operates on the basis of competitions [13],
these can impose a restriction to crowd members collaborate
with one another. However, competitions can increase
collaboration with other communities such private sector,
non-profit, and academic [27]. This ‘positive’ side of it has
to be further investigated. Same as B3, B4: Software process
methodologies is also reported in 4 papers. We have
observed that literature describe the adoption of traditional
software processes methodologies for SW CS [13, 25].
However, traditional software processes do not fully meet
collaboration in SW CS. Besides that, for the requester
(company) side, it is not trivial to match different
methodologies during the SW CS initiatives with internal
software development [46].

In regards to the communication practices, 6 of them are
the most reported in the papers (P1 to P7). Other 24 practices
are reported by only two or one study each. The greatest
number of papers recommends P1: Asynchronous
communication for knowledge sharing (11 papers).
Communication is needed between the developers and the
customer [13, 25]. In contrast, Boudreau et al. [19] discuss
topics hindered in asynchronous communication
environments. In an asynchronous discussion, typically
many topics are active at the same time, long time lapses
between communication events can lead to discontinuous
and seemingly disjointed discussions. Other six practices
(P2 to P7) aim to increase communication between parties.
These practices recommend the adoption of social network,
global chat, the election of a task coordinator, and strong
feedback to the participants.

The initial analysis of our findings shows the relationship
between collaboration and communication. In real-world
collaborations, interaction is the norm rather than the
exception. There are many advantages to interacting groups,
such as the ability to communicate. In order to show how
collaboration and communication are related, we associated
communication practices that help overcome collaboration
difficulties in SW CS (see Table 3).

TABLE III. ASSOCIATION MAPPING

ID Barriers Mitigation Practices
B1 Informal communication [1, 2, 3, 4, 12, 20, 22]

B2 Psychological issues of CS [1, 2, 3, 4, 6, 12,
11,14, 18, 28]

B3 Interaction between parties [1,2,3,4,6,10,12,15,17]
B4 Software process methodologies [6, 7, 12, 14, 17, 28]
B5 Keeping participants motivation [3, 17]
B6 Real-time collaboration [4, 6,7,16,17,21,24,29]
B7 Plattform to support social media [2, 16, 11]
B8 Micro-task decomposition [3, 5, 9, 10]
B9 Scarce context for the crowd [1, 4, 5, 10, 13]

B10 Collaboration among crowd members [1, 4, 6, 10, 12, 21, 22,
23, 25]

B11 Different languages [15]

B12 Reputation management in
competitions [13, 18, 24, 28,29]

B13 Technical and privacy issues [18]

B14 Large scale collaboration with
distributed members [5,7,8,6,17,21,22,25]

B15 Orchestration of virtual teams [1,14]
B16 Reusable software components [11, 21, 26]

B17 Internal collaboration between the
platform and the requester [5]

B18 Task allocation [9, 14, 17, 20, 30]

B19 Management in asynchronous
communication environments [3, 5, 6, 17, 19]

B20 Software development infrastructure [8, 11, 26]

B21 Management of shared version control
systems and issue trackers [11, 21, 25, 26]

B22 Information management [1, 3, 25]

B23 Self- management and real time crowd
collaboration environment [1, 2, 14]

B24 Collaboration between anonymous
participants in the crowd [1, 2, 3]

B25 Competition management [8, 21, 24, 29]

B26
Programming metaphors and
infrastructures to support the design, and
execution of human computation

[8, 23, 27]

B27 Commitment between involved parties [2, 7, 12, 21]

B28
Management a large amount of
questions from the crowd during task
execution period

[3, 5, 17, 18]

B29 Single point of contact [3, 5, 12, 15, 17,11]
B30 Documentation [9, 13, 21]

B31 Reliability of remote participants and
trust among crowd participants [1, 2, 3, 17]

B32 Reduced larger global project view [1, 4, 5, 13]
B33 Definition of the crowd’s role [28]
B34 Teams heterogeneity [2, 17]
B35 Crowd worker latency [17]

B36 Collaboration between workers and
employers outside the provided system [2,19]

V. LIMITATIONS
 Our study has some limitations. First, we analyzed data
from a data repository that was not built for us. This data
repository presents a list of papers related to the topic
investigated in this study. We could only remove those that
we consider did not fit our selection criteria. To reduce this
limitation, we conducted a pilot search to compare our
search results with the data repository list of papers. Since
we did not find significant discrepancy in our results when
compared to the data repository (aside from the 10 added
papers), we assume it covers the main publications in the
research field.

46

 Second, the findings of this study may have also been
affected as the data extraction and data classification
processes were based on human understanding of the data,
which is to a certain extent subjective, such as our own
interpretation of what a paragraph states. To reduce this
limitation, we preliminarily agreed upon the data analysis
process and extraction criteria and later had additional
researchers (co-authors) reviewing a sample of the findings
as well as we hold a few rounds of consensus meetings until
data was considered stable and final.

VI. CONCLUSION AND FUTURE WORK
 SW CS demonstrates a fundamental paradigm shift in
how software will be developing in the future. Consequently,
this raises a number of issues as well. SW CS taps global
inputs to work, but it also increases complexity to decide
which development tasks are more suitable to CS, cross-task
coordination and virtual team organization, setting target
audience, integrating crowd’s deliverables, and ensuring
quality of the software produced by the crowd.

 In general, we have characterized collaboration barriers
and communication practices in a particular domain (CW)
and we believe that the SW CS platforms can benefit from
our research to improve their software requirements.

 Future research will involve gathering empirical evidence
to assess our proposed mapping between collaboration
barriers and communication practices to solve/reduce them.
Also, to validate with a broader audience whether both lists
are exhaustive. We will also focus on searching for
commonalities and differences among barriers faced in
different domains in order to develop models and theories
about joining processes in SW CS communities. Researchers
can benefit from this study by using the results to conceive
strategies for collaboration support. By including the context
of the SW CS and related research literature, we provide a
starting point to conceive such support.

ACKNOWLEDGMENT
 The authors acknowledge financial support from CNPq
(projects 312127/2015-4 and 406692/2013-0), FAPERGS
(project 2062-2551/13-7), and the PDTI Program, financed
by Dell Computers of Brazil Ltd. (Law 8.248/91).

REFERENCES
[1] J. Howe, “Crowdsourcing: A definition,” http:// crowdsourcing:

typepad:com/cs/2006/06/crowdsourcinga:html, June 2006.
[2] ——, “The rise of crowdsourcing,” Wired magazine, vol. 14, no. 6,

pp. 1–4, 2006.
[3] S.A. Barnes, Sally, A. Green, and M. Hoyos, “Crowdsourcing and

work: Individual factors and circumstances influencing
employability,” New Technology, Work and Employment, vol. 30,
no. 1, pp. 16-31, 2015.

[4] E.E-Arolas and F.G-L-de-Guevara, “Towards an integrated
crowdsourcing definition,” Journal of Information Science, vol. 38,
no. 2, pp. 189–200, 2012.

[5] D. C. Brabham, “Crowdsourcing as a model for problem solving an
introduction and cases,” Convergence: The international journal of
research into new media technologies, vol. 14, no. 1, pp. 75–90, 2008.

[6] I. Boughzala, T. De Vreede, C. Nguyen, and G.J. De Vreede,
“Towards a maturity model for the assessment of ideation in

crowdsourcing projects,” in: Proc. Hawaii International Conference in
System Sciences, IEEE, Waikoloa, USA, 2014, p. 483-490.

[7] W. Wu, W.-T. Tsai, and W. Li, “An evaluation framework for
software crowdsourcing,” Frontiers of Computer Science, vol. 7, no.
5, pp. 694-709, 2013.

[8] T.D. LaToza and A. van der Hoek, “Crowdsourcing in software
engineering: Models, motivations, and challenges,” IEEE Software,
vol. 33, no. 1, pp. 74-80, 2016.

[9] E. Kaganer, E. Carmel, R. Hirschheim, and Olsen, “Managing the
human cloud,” MIT Sloan Management Review, 2013.

[10] P.J. Agerfalk, B. Fitzgerald, and K. Stol, “Software outsourcing in the
age of open: Leveraging the unknown workforce,” Springer, pp. 45-
60, 2015.

[11] X. Peng, M. Ali Babar, and C. Ebert, “Collaborative Software
Development Platforms for Crowdsourcing,” IEEE Software, vol. 31,
no. 2, pp. 30–36, 2014.

[12] R. Prikladnicki, L. Machado, E. Carmel, and C. de Souza, “Brazil
software crowdsourcing: a first step in a multi-year study,” in: Proc.
International Workshop on CrowdSourcing in Software Engineering.
IEEE, Hyderabad, India, 2014.

[13] K.J. Stol and B. Fitzgerald, “Two’s company, three’s a crowd: A case
study of crowdsourcing software development,” in: Proc. Int’l Conf
on Software Eng, IEEE, Hyderabad, India, 2014, p. 187–198.

[14] H. Tajedin and D. Nevo, “Determinants of success in crowdsourcing
software development,” in Annual Conference on Computers and
People Research. ACM, Cincinnati, USA, 2013, p. 173.

[15] G.D. Saxton, O. Onook, and K. Rajiv, “Rules of crowdsourcing:
Models, issues, and systems of control,” Information Systems
Management, vol. 30, no. 1, pp. 2-20, 2013.

[16] M.-A. Storey, C. Treude, A. van Deursen, and L.-T. Cheng, “The
impact of social media on software engineering practices and tools,”
in FSE/SDP Workshop on Future of Software Engineering Research,
ACM, Santa Fe, USA, 2010, p. 359–364.

[17] D. L. Olson and K. Rosacker, “Crowdsourcing and open source
software participation,” Service Business, vol. 7, no. 4, pp. 499–511,
2012.

[18] A. Begel, J. Bosch, and M.-A. Storey, “Social networking meets
software development: Perspectives from github, msdn, stack
exchange, and topcoder,” IEEE Sw, vol. 30, no. 1, pp. 52-66, 2013.

[19] K. Boudreau, P. Gaule, K. Lakhani, C. Riedl, and A. Woolley, “From
crowds to collaborators: Initiating effort & catalyzing interactions
among online creative workers”, Harward Business School, Working
Paper No. 14-060, 2014.

[20] K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use of
crowdsourcing in software engineering,” Research Note No. 15/01
University College London, London, UK, 2015.

[21] M. Nayebi and G. Ruhe, “An open innovation approach in support of
product release decisions,” in: Int’l Workshop on Cooperative and
Human Aspects of Software Eng, IEEE, Hyderabad, India, 2014.

[22] M. Saengkhattiya, M. Sevandersson, and U.Vallejo, “Quality in
crowdsourcing: How software quality is ensured in software
crowdsourcing,” Master Thesis No. 15 ECTS, Lund University, 2012.

[23] T. W. Schiller and M.D. Ernst, “Reducing the barriers to writing
verified specifications,” in: Proc. SIGPLAN Notices – OOPSLA,
ACM, Tucson, USA, 2012, p. 95-112.

[24] H. Tajedin and D. Nevo, “Value-adding intermediaries in software
crowdsourcing,” in: Proc. Hawaii International Conference on System
Sciences, IEEE, Waikoloa, USA, 2014, p. 1396-1405.

[25] B. Fitzgerald and K.-J. Stol, “The dos and don’ts of crowdsourcing
software development,” in: SOFSEM: Theory and Practice of
Computer Science. Lecture Notes in Computer Science, vol. 8939,
2015, pp. 58–64.

[26] K. Lakhani, A. D. Garvin, and E.Lonstein, “Topcoder (a): Developing
software through crowdsourcing,” Harvard Business School General
Management Unit Case, 610-032, Jan. 2010.

[27] S. Nag, I. Heffan, A. Saenz-Otero, and M. Lydon, “SPHERES zZero
Robotics software development: Lessons on crowdsourcing and

47

collaborative competition,” in: Proc. Aerospace Conference, IEEE,
Big Sky Resort , USA, 2012, p. 1–17.

[28] S.Nag, J.G. Katz, and A. S.Otero, “Collaborative gaming and
competition using SPHERES Zero Robotics,” CS-STEM Education
Acta astronautica, vol. 83, pp. 145-174, 2013.

[29] M. Hosseini, A. Shahri, K. Phalp, and . Taylor, “Configuring
crowdsourcing for requirements elicitation,” in: Proc. International
Conference on Research Challenges in Information Science, IEEE,
Atenees, Greece, 2015, p. 133-138.

[30] M. Hosseini, K. Phalp, and R. Ali, “Towards crowdsourcing for
requirements engineering,” CEUR.org, vol. 1138, 2014.

[31] O. Barzilay, C. Treude, and A. Zagalsky, “Facilitating crowd sourced
software engineering via stack overflow,” Finding Source Code on
the Web for Remix and Reuse. Springer, New York, 2013.

[32] S. Ramakrishnan and V. Srinivasaraghavan, “Delivering software
projects using captive university crowd,” in: Proc. International
Workshop on Cooperative and Human Aspects of Software
Engineering, IEEE, Hyderabad, India, 2014.

[33] T. Hossfeld, C. Keimel, and C.Timmerer, “Crowdsourcing quality-of-
experience assessments,” Computer, vol. 47, no. 9, pp. 98-102, 2014.

[34] A. Gritti, “Crowd outsourcing for software localization,”
https://www.welocalize.com, March 2015.

[35] T.D. LaToza, M. Chen, L. Jiang, M. Zhao, and A. von der Hoek,
“Borrowing from the crowd: A study of recombination in software
design competitions,” in: Proc. International Conference on Software
Engineering, IEEE, Florence, Italy, 2015, p. 551-562.

[36] M. Goldman, “Role-based interfaces for collaborative software
development,” in Proc. Symposium Adjunct on User Interface
Software and Technology, ACM, Santa Barbara, USA, pp. 23–26.

[37] L. Tran-Thanh, S. Stein, A. Rogers, and N. Jennings, “Efficient
crowdsourcing of unknown experts using bounded multi-armed
bandits,” Artificial Intelligence, vol. 214, pp. 89-111, 2014.

[38] W.-T. Tsai, W. Wu, and M. N. Huhns, “Cloud-based software
crowdsourcing,” IEEE Internet Comp., vol.18, no.3, pp.78–83, 2014.

[39] R. Kazman and H.-M. Chen, “The metropolis model a new logic for
development of crowdsourced systems,” Communications of the
ACM, vol. 52, no. 7, pp. 76-84, 2009.

[40] W. S. Lasecki, J. Kim, N. Rafter, O. Sen, J. P. Bigham, and M. S.
Bernstein, “Apparition: Crowdsourced User Interfaces that Come to
Life as You Sketch Them,” in: Proc. Conference on Human Factors
in Computing Systems, ACM, Seoul, Korea, 2015, p. 1925-1934.

[41] T. Hossfeld, C. Keimel, M. Hirth, B. Gardlo, J. Habigt, K. Diepold, P.
Tran-Gia, “Best practices for qoe crowdtesting: Qoe assessment with
crowdsourcing,” IEEE Trans. Multimedia, vol. 16, 2014, p. 541–558.

[42] F. Guaiani and H. Muccini, “Crowd and laboratory testing can they
co-exist?: an exploratory study,” in: Proc. Int’l Workshop on
CrowdSourcing in Sw Eng, IEEE, Piscataway, USA, 2015, p. 32-37.

[43] T. Xie, J. Bishop, R. N. Horspool, N. Tillmann, J. Halleux,
“Crowdsourcing code and process via code hunt,” in: Proc.
International Workshop on CrowdSourcing in Software Engineering,
IEEE, Piscataway, USA, 2015, p. 15-16.

[44] P. Minder and A.Bernstein, “Crowdlang: A programming language for
the systematic exploration of human computation systems,” Social
Informatics. Springer, 2012.

[45] D. Naparat and P. Finnegan, “Crowdsourcing Software Requirements
and Development: A Mechanism-based Exploration of
‘Opensourcing,” in: Proc. Americas Conference on Information
Systems, Chicago, USA, 2013.

[46] D.Mehta, “An insight into software crowdsourcing: How crowd can
transform the business model for technology service providers,” Int’l
Journal of Computer Applications, vol. 101, no. 12, 2014.

[47] T.W. Schiller, “Reducing the usability barrier to specification and
verification,” Dissertation, Universoty of Washington, USA, 2014.

[48] B. Gardlo, S. Egger, M. Seufert, and R. Schatz, “Crowdsourcing 2.0:
Enhancing execution speed and reliability of web-based QoE
testing,” in: Proc. International Conference on Communications.
IEEE, Sydney, Australia, 2014, p. 1070-1-75.

[49] J. Warner, “Next steps in e-government crowdsourcing,” in: Proc.
International Digital Government Research Conference, ACM,
College Park, USA, 2011, p. 177-181.

[50] R. Kazman and H.M. Chen, “The metropolis model and its
implications for the engineering of software ecosystems,” in: Proc.
FSE/SDP Workshop on Future of Software Engineering Research,
ACM, Santa Fe, USA, 2010, p. 187-190.

[51] A. Dwarakanath et al, “CrowdBuild: a methodology for enterprise
software development using crowdsourcing,” in: Proc. International
Workshop on CrowdSourcing in Software Engineering, IEEE,
Florence, Italy, 2015, p. 8-14.

[52] L. Ponzanelli, A. Bacchelli, and M.Lanza, “Leveraging crowd
knowledge for software comprehension and development,” in: Proc.
Conf on Sw Maintenance and Reeng., Genova, Italy, 2013, p. 57-66.

[53] M.A Storey, L. Singer, B. Cleary, F.F. Filho, and A. Zagalsky, “The
(r) evolution of social media in software engineering,” in: Proc.
Future of Software Eng, IEEE, Hyderabad, India, 2014, p. 100-116.

[54] W. Ebner, JM. Leimeister, U. bretschneider, and H. Krcmar,
“Leveraging the wisdom of crowds: Designing an IT-supported ideas
competition for an ERP software company,” in: Proc. Hawaii Int’l
Conf. on System Sciences, IEEE, Waikoloa, USA, 2008, p. 417-417.

[55] R. Pham, L. Singer, and K. Schneider, “Building test suites in social
coding sites by leveraging drive-by commits,” in: Proc. International
Conference on Software Engineering, IEEE, San Francisco, USA,
2013, p. 1209-1212.

[56] M. Zhao and A. van der Hoek, “A brief perspective on microtask
crowdsourcing workflows for interface design,” in: Proc.
International Workshop on CrowdSourcing in Software Engineering,
IEEE, Florence, Italy, 2015, p. 45-46.

[57] R. L. Saremi and Y. Yang, “Dynamic simulation of software workers
and task completion,” in: Proc. Int’l Workshop on CrowdSourcing in
Software Engineering, IEEE, Florence, Italy, 2015, p. 17-23.

[58] M. Goldman, “Software development with real-time collaborative
editing,” Dissertation, Massachusetts Institute of Technology, 2012.

[59] T.D. LaToza, W.B. Towne, C.M. Adriano, and A. van der Hoek,
“Microtask programming: Building software with a crowd,” in: Proc.
Symposium on User Interface Software and Technology, ACM,
Honolulu, USA, 2014, pp. 43-54.

[60] B. Hartmann, D. MacDougall, J. Brandt, and S. Klemmer, “What
would other programmers do: suggesting solutions to error
messages,” in: Proc. SIGCHI Conference on Human Factors in
Computing Systems, ACM, Atlanta, USA, 2010, p. 1019-1028.

[61] T.D. LaToza, W.B. Towne, A. Van Der Hoek, and J.D. Herbsleb,
“Crowd development”, in: Proc. Int’l Workshop on Cooperative and
Human Aspects of Sw Eng, IEEE, San Fco, USA, 2013, p. 85-88.

[62] M. Almaliki, N. Jiang, R. Ali, and F. Dalpiaz, “Gamified culture-
aware feedback acquisition,” in: Proc. Int’l Conference on Utility and
Cloud Computing, IEEE-ACM, Shanghai, China, 2014, p. 624-625.

[63] K. T. Stolee and S. Elbaum, “Exploring the use of crowdsourcing to
support empirical studies in software engineering,” in: Proc.
International Symposium on Empirical Software Engineering and
Measurement, ACM-IEEE, Bolzano, Italy, 2010, Article 35.

[64] T.D. LaToza, W. B.Towne, and A. van Der Hoek, “Harnessing the
crowd: Decontextualizing software work,” in: Proc. International
Workshop on Context in Software Development Workshop, 2014.

[65] Wei Li, Wei-Tek Tsai, Wenjun Wu, “Crowdsourcing for large-scale
software development,” Springer Berlin Heidelberg, 2015.

[66] E. Kalliamvakou, D. Damian, K. Blincoe, L. Singer, and D. German,
“Open source-style collaborative development practices in
commercial projects using GitHub,” in: Proc. Int’l Conference on
Software Engineering, IEEE, Florence, Italy, 2015, p. 574-585.

[67] K. Mao, Y. Yang, M. Li, and M. Harman, “Pricing crowdsourcing
based software development tasks,” in: Proc. Int’l Conf. on Software
Engineering, IEEE, San Francisco, USA, 2013, pp. 1205–1208.

[68] K. Li, J. Xiao, Y. Wang, and Q. Wang, “Analysis of the key factors
for software quality in crowdsourcing development: An empirical
study on TopCoder.com,” in: Proc. Computer Sw and Applications
Conference Analysis, IEEE, Kyoto, Japan, 2013, pp. 812–817.

48

