
Challenges and Lessons Learned on Preparing
Graduate Students for GSE Work: Brazilians’

Perceptions on a Multi-Site Course Experience

Josiane Kroll, Caroline Q. Santos, Letı́cia S. Machado, Sabrina Marczak, Rafael Prikladnicki
Computer Science School, PUCRS

Porto Alegre, Brazil

{josiane.kroll, caroline.queiroz, leticia.machado.001}@acad.pucrs.br,

{sabrina.marczak, rafaelp}@pucrs.br

Abstract—Global Software Engineering (GSE) has became a
part of the academic curricula in Computer Science courses.
However, training students for GSE inherits the challenges
of teaching Software Engineering (SE) in globally distributed
environments. Furthermore, the most related experience in
teaching graduate students reveals difficulties in developing GSE
competencies. In this paper, we report the Brazilians’ perceptions
in performing SE activities in a globally distributed environment.
We collected data from a collaborative project developed as part
of the DOSE (Distributed and Outsourced Software Engineering)
project. As a result, we identified 12 challenges and 7 lessons
learned on preparing graduate students for GSE. Our results
are helpful for practitioners and researchers in supporting new
strategies for training students in the future.

Index Terms—Global Software Engineering; Software Engi-
neering Education; Teaching; DOSE Project; Challenge.

I. INTRODUCTION

Global Software Engineering (GSE) has become a com-

mon practice in the software industry. GSE affords new

opportunities for cross-site modularization of development

work, potential access to a larger and better-skilled pool of

developers, and the possibility of greater innovation, learning

and transferring of best practices [3]. In this context, the

importance of teaching skills for geographically distributed

software development becomes essential [4].

The ”Distributed and Outsourced Software Engineering”

(DOSE) project [1] creates an opportunity to students de-

velop GSE competences working in software engineering (SE)

projects. Students from universities involved in the project

take part in a case study exploring techniques for making an

offshored project succeed or recover from problems [9].

In this paper, we report the experience of teaching GSE for

graduate students at PUCRS University, the largest private non

profit university in the South of Brazil. We collected data about

the students’ perception on performing SE activities in GSE

environments based on the 2014 course session of the DOSE

project. Our study highlight difficulties and lessons learned by

the students that are not different from what practitioners face

in daily projects, reinforcing the need to train students in GSE.

We present details of our study and findings next.

II. RELATED WORK

In GSE literature, there are many studies discussing SE

education. Similar to the experience presented in this paper,

other studies have reported challenges and lessons learned

from diverse GSE projects (e.g., [4] [9] [10] [13]). Given the

limited number of pages, here we discuss just some of them.

Damian et al. [4] report experiences in the design, teaching,

and evaluation of a course intended to prepare graduates for

GSE. The course was delivered as a collaboration among three

geographically distributed universities. The course emphasized

the learning of requirements management activities in a GSE

environment with time zone and language differences.

Nordio et al. [10] and Nordio et al. [11] describe a practical

experience in teaching GSE in the DOSE course. They discuss

how their experience enabled to recreate the atmosphere of an

GSE project, the challenges faced by the participants, and how

they dealt with these challenges. Similarly, Zei and El-Bahe

[13] also discuss challenges associated with the management

and execution of GSE projects in academic settings. More

specifically, they report on cultural factors that affected ini-

tiating a GSE course at the American University of Kuwait

(AUK). The goal of their project was to create an innovative

and highly challenging learning environment for educating the

next generations of software engineers.

Some other aspects of the DOSE course have also been

described in previous publications. For instance, Meyer et al.

[7] present in detail the first experience in GSE teaching from

the DOSE 2007 course. While Nordio et al. [12] take an

example from the 2008 session to illustrate the specification

risks of distributed development.

Our paper differs from the previous ones from the DOSE

course for taking into consideration the current setting of the

Brazilian site only: the course was run as a ’practical course’,

meaning that the students had to develop a project in practice

without learning theory along with it. When designing it, we

assumed that this format would offer the students an even

closer scenario from daily industry life where people often

start working with no preliminary training on GSE. We report

our findings here.

2016 IEEE 11th International Conference on Global Software Engineering Workshops

2329-6313/16 $25.00 © 2016 IEEE

DOI 10.1109/ICGSEW.2016.17

37



III. RESEARCH SETTING

In this section we describe the DOSE project and research

method followed in this study. We give details of the project

settings, GSE activities developed in the classroom by the

students, and how we collected and analyzed the data.

A. The DOSE project

PUCRS delivers a Master of Science and a Doctor of

Philosophy in Computer Science degrees. As part of these

programs, graduate students take classes in SE related topics

in which GSE is a peripheral topic.

From 2012 to 2014, PUCRS has participated of the DOSE

project where students develop SE activities in a distributed

software development setting. This project is organized in the

context of a distributed software engineering course carried

out in collaboration with several universities around the world.

The 2014 session had the following universities as partici-

pants: ETH Zurich, Switzerland; Innopolis University, Russia;

Politecnico di Milano, Italy; PUCRS University, Brazil; Uni-

versity of Rio Cuarto, Argentina; and Universidad Politecnica

de Madrid, Spain.

The DOSE project aims to favor the collaboration between

students prior to project development. It consists of making

teams in different countries work collaboratively to solve a

set of simple tasks [9].

ETH Zurich is the main head and coordinates the project

since 2007. In each partner university, an instructor coordi-

nated the activities of her respective students according to a

prior work plan established among the universities. The project

topic for the 2014 session, the case reported in this paper,

was a web-based project management system to support agile

distributed software development.

B. GSE Activities in the Classroom

In the 2014 DOSE course session, each university owned

several small groups of students. Each group had one require-

ments team, two development teams (front-end and back-end),

and one coordinator (instructor).

The project was organized into 8 groups implementing

each a web-based project management system to support agile

distributed software development (see Figure 1). Overall, there

were 24 different sub-teams, as follows: Argentina (6 teams),

Brazil (5 teams), Italy (3 teams), Russia (5 teams), Spain

(3 teams), and Switzerland (2 teams). Figure 1 shows the

organization of the 24 sub-teams into the 8 groups involved in

the DOSE 2014 edition. Each group worked independently and

distributed in three locations, and the communication among

its members was self-regulated; i.e., each group decided which

communication media to use, how to communicate, and so on.

The DOSE coordinator suggested an initial list of expected

basic and advanced functionalities the system-to-be-delivered

should have. Basic functionalities were focused on the project

planning and specification as follows:

• Backlog: a collection of requirements that will be imple-

mented by the project.

Fig. 1. Teams’ distribution at the 2014 course session of the DOSE project.

• Sprint log: a log that is used as part of a development

sprint.

• User management: users need to be able to register with

the system; users need to be able to assign users to

projects; basic user management (delete account, change

personal details). Support for different roles (for exam-

ple developers and ’master’). Functionalities should be

available depending on user roles.

• User authentication.

• Users can be assigned to requirements; maybe require-

ments need to be broken down into smaller tasks.

• Requirements should be assigned with ’points’ according

to their complexity. Users should also assign point to

tasks. Users who implement the requirements/tasks get

the ’points’ of the implemented requirements.

• Developers chart: all developers are ranked accord-

ing to the ’points’ received from the implemented

tasks/requirements.

Advanced functionalities were combined with basic func-

tionalities in order to succeed in the project, as follows:

• A dashboard that summarizes ongoing events of a project.

• Statistics that show project performances, compared to

the estimates.

• Team communication tools (e.g. a discussion board or

group chat).

• Integration with issue trackers (e.g. the tracker from

where the source code is hosted - Github, Bitbucket, etc)

or other platforms.

The project was developed through successive iterations.

Given the local school calendars, some universities joined or

concluded the project in different schedules from the official

project calendar–mid Sept to mid Dec 2014. PUCRS, for

instance, started in mid Aug and ended its’ teams activities

in late Nov.

Google Code was used for storing source code and doc-

uments (using a SVN repository) and for providing basic

information (using a Wiki page). English was the elected

language for communication among the distributed teams and

for the hand out of deliverables.

As shown in Figure 1, requirements teams were from Brazil

and Russia. Both teams started their activities before the

others students. These teams were instructed to prepare a

requirements document (SRS) based on the functionalities

38



Fig. 2. A sample of Taskboard screen prototype by Group 7.

listed by the customer (the DOSE project coordinator). In

addition to writing the requirements specification, the Brazilian

teams also prototyped the system screens (UI) in order to better

assist the development teams, as illustrated in Figure 2.

Each member of a group (excluding the requirements teams)

had to review the SRS document. During the review, the

member had to assess the quality of the document and fill-

in an online questionnaire about it. Reviews occurred until

the consolidation phase. The goal of the consolidation phase

was to agree on the requirements to be implemented. Groups

should discuss whether the requirements were feasible to be

tested, whether there were missing requirements, and also

identify needed clarifications or change requests. Any changes

to the SRS document had to be discussed and agreed with the

requirements team.

C. Data Collection and Analysis

At PUCRS, the students were evaluated based on the quality

of the SRS document and of their participation during the

checking-points meetings scheduled every other week during

the course period. Although it was not part of the course

grade, the students knew from day 1 they had to write a group

project report describing their perceptions about working in

a distributed fashion. We asked them to report on the diffi-

culties faced during the project development and the lessons

they learned throughout the project. A class discussion was

conducted in the last week once grades have been published so

the students could debate about their reports and speak freely.

Students gave consent to the course instructor to have their

notes consolidated and published. We performed a qualitative

analysis on the information provide by the students. Next we

present our results.

IV. RESULTS

Our analysis of the data revealed 12 challenges and 7 lessons

learned on preparing graduate students for GSE work. We

briefly describe each of them in this section.

A. Challenges

Challenges experienced by students were categorized in

three categories: Communication, Coordination, and Control.

Each challenge is also relating to a particular source charac-

teristic: temporal, geographical, or socio-cultural distance [2].

These challenges are summarized in Table I.

- Communication Challenges: Temporal, geographical,

and socio-cultural distance can impact communication pro-

cesses by creating challenges. In our study, students reported

four challenges related to communication. They felt difficulties

in understanding the scope of the project, scheduling meetings

with team members from other sites, getting the customer

involved, and getting to understand other team members

leading to cultural misunderstandings due to the inconsistent

communication. Following we describe these challenges.

• To understand the scope of the project: some partici-

pants did not understand well the project scope. They felt

that important aspects could be made more specific. A

few participants had a clear vision of what the customer

wanted and they were failing to understand the project

as a whole. Many client-directed questions raised by the

requirements team were answered simply with a ”go

ahead and define this yourselves”. Participants believe

that the lack of explanations about the clarification re-

quests might have contributed to controversial opinions

about the requirements.

• To schedule meetings: some teams did not attended

group calls due to the lack of agenda. It was diffi-

cult to find a common time for those involved in the

project. This difficulty was mainly because of time zone

differences and availability of the team members due

to class schedules and program dedication (some were

part-time students). Students mainly adopted e-mail as a

communication mechanism to discuss the requirements.

• To get the customer involved: some students faced

difficulties interacting with the customer. Only one asyn-

chronous clarification session with the client was made

during the project time. The students concluded that

one single session was not enough to debate the initial

list of requirements. Many pending clarifications led to

decisions to be made by the requirements teams, which

turned out to reflect on the downstream decisions from

the development teams.

• Inconsistent communication (miscommunication):
some team members felt difficulties in taking decisions.

When a decision was taken, the information was not be

spread out the other group members.

- Coordination Challenges: Temporal, geographical, and

socio-cultural distance can also impact GSE coordination. The

need for coordination increases when there is a substantial

dependency among various activities and team members [5].

In this category, students faced difficulties in defining tools for

communication, clarifying responsibilities of the requirement

teams and overall project roles, understanding the software de-

velopment process in order to define consistent work practices,

39



TABLE I
SUMMARY OF THE IDENTIFIED CHALLENGES

Category Challenge Source Category
Communication To understand the scope of the project Socio-cultural distance

To schedule meetings Temporal distance
To get the customer involved Geographical distance
Inconsistent communication (miscommunication) Socio-cultural distance

Coordination To define tools for communication Socio-cultural distance
To clarify responsibilities of requirement teams and project roles Socio-cultural distance
To define consistent work practices Socio-cultural distance
To establish collaboration among team members/sites Socio-cultural distance

Control To be proactive Socio-cultural distance
To adopt new tools and programming languages Socio-cultural distance
To build teams with different work dedication (full-time vs. part-time) Temporal distance
To motivate the team Socio-cultural distance

and establishing collaboration among members from the same

or different sites.

• To define tools for communication: students reported

the lack of clear rules to be followed by all teams about

which tool to use and how to use them. They reported

that they felt like there were ’weak ties’ to the team spirit,

which would have helped improve the overall perception

about how to solve issues, including this one. They also

reported difficulties in getting access to the development

team project repository (SVN).

• To clarify responsibilities of requirement teams and
project roles: project roles and hierarchy were not well

defined, for instance, the development teams had to rely

solely on the requirements team.

• To define consistent work practices: students were

spread in different countries, where differences in na-

tional culture, language, motivation, and work ethics

may impeded effective project coordination. They faced

difficulties in planning kick-off meetings, understand in-

terdependencies between systems, teams, and projects.

• To establish collaboration among team members/
sites: students reported difficulties in collaborating over

geographic, temporal, cultural, and linguistic distances.

English is not a language fluently spoken by Brazilians

although kids are taught it at school. Thus, the lack

of competencies concerned with cultural and language

barriers made collaboration even more difficulty.

- Control Challenges: Control challenges are recognized to

arise due to geographic, temporal, and socio-cultural distances

encountered in GSE environments [6]. Students faced control

difficulties related to get proactive, to adopt new tools and

programming languages, to build teams with different work

hours dedication, and to motivate team members to work

together. Following we describe theses challenges.

• To be proactive: during the project, students faced delays

in receiving answers to clarification requests about the

defined requirements. Students from Brazil considered

themselves as not proactive in answer questions and

solve conflicts. Comments such as ”we were not good
at providing feedback” were reported by the students.

• To adopt new tools and programming languages: the

development teams adopted a new programming language

and tools. These tools and language were not experienced

by all students. Thus, several problems occurred due to

the lack of skills in the technologies used in the project.

• To build teams with different work hours dedication
(full-time vs. part-time): some students were available

full-time and others part-time. These differences in work

hours resulted in several problems such as communication

misunderstandings, missed deadlines, lack of teamness,

and others.

• To motivate the team: not all Brazilian students were

feeling motivated and willing to make the project a

success. Thus, some activities were not completed during

the project for several reasons such as the course load

of the term in relation to their time dedication to the

Master/PhD program.

B. Lessons Learned

Taking into account that the concept of GSE is based on

the idea of performing software development with distributed

teams, project success and the satisfaction of stakeholders

must be ensured through the use of a process that facilitates

interaction among those involved, the use of best practices in

project management, and a good survey and specification of

system requirements.

Since the project involved students from different universi-

ties in different countries, and in addition, the class schedules

were different, communication was identified as a key factor

for the success of the DOSE project. We realized that multi-

cultural aspects are relevant to specify requirements systems

(and the other development cycle phases). Thus, we present

next the lessons learned by the PUCRS students in the 2014

DOSE project, along with a brief description of each one.

Lesson learned 1: Obtain prior knowledge on the problem-
area domain. Prior knowledge on the problem-area domain

would be essential for the system requirements specification.

Participants realized that after the release of the SRS document

not all members of their group knew the subject they were

working on (i.e., agile development). They believe that if a

leveling had been done before the beginning of the course

their performance would have been better.

40



Lesson learned 2: Define the standardization of terms
and expressions. Some teams realized belatedly that their

members used different terms to refer to the same subject.

For example, Sprint and Iteration were used to refer to ”release

cycles”. Perhaps this happened because it was done by many

people at the same time and there was not a careful review

before being released. An agreement was later negotiated,

which significantly contributed to the understanding of the

requirements.

Lesson learned 3: Adoption of best practices for commu-
nication. Communication among group members was done

by e-mail, Google Code, Google Docs, and Skype. For some

groups, meetings were unproductive because the lack of a good

meeting structure, e.g., purpose, agenda, required decisions

that need to be made, requests for make decision during the

weekend etc. For others teams, conversations via e-mail flowed

well. However, meetings by Skype were positive and allowed

the clarification of points that were not clear in the SRS. A

team highlighted that ”it would be interesting if a mandatory
weekly meeting was to be set”. Teams liked to interact with

the distributed members using Google docs. After the meeting,

all members received an e-mail containing a summary of what

was discussed at the meeting and delivery dates. Other issue

was the communication between instructors. Information about

the project was sent by the coordinator only to the students

and not shared with the local instructors.

Lesson learned 4: Do not expect feedback. Solicit re-
sponses in time to meet goals. There was a lack of feedback

from participants at the beginning of work. For instance, one

team has not sent its observations and questions about the

requirements. The requirements team waited for this feedback

to consolidate the SRS, which generated a warning from the

DOSE coordinator. There was a clear fail of communication

that resulted in unnecessary wear and tear in the group.

Lesson learned 5: Give clear instructions about work.
Guidelines for the requirements teams about the project scope

and purpose should have been shared at the beginning of the

PUCRS semester (not when the DOSE coordinator course

started its activities, a month later). The begin of work was

delayed and the group wasted precious work time. Project

scope was too large for the deadline and some features system

were not developed.

Lesson learned 6: Establish a prior testing plan. Re-

quirements teams should view and monitor development and

deliveries. However, until the eve of finalizing the course

date in Brazil, the development teams had not passed to

the requirements teams the system’s on-line address so the

system could be tested. So, the requirements teams could not

verify the developed systems. They believe that it would be

interesting if the requirements teams had been engaged in

formal user testing phase. That would have probably promoted

a higher engagement of the teams and offered them the feeling

that ”all dots tied together”.

Lesson learned 7: Allocate a project manager to the
project. The students lacked a project manager to introduce

the team, centralize the project information, mediate conflicts,

organize the communication, plan work processes and define

a project calendar (considering the different locations), dis-

tribute roles and responsibilities, define collaborative tools,

and explain the working model. The project manager’s role

was absent and this would have made a difference.
These learned lessons are intended for software developers

working in distributed teams and also for students. Thus, one

can take the ”good” lessons and aim to follow them, and use

the ”negative” lessons as an eye opener and try to avoid them

in similar new projects.
Based on the above, we suggest to include a profile of the

stakeholders in a shared course page as an simple action to

facilitate communication and awareness. Overall, the students

indeed agreed that it is more beneficial to learn about GSE

in theory before starting a project in practice. In addition, we

suggest establishing a Project Manager role to assist the teams

and mediate work among the different sites.
We highlight that UI prototypes helped in understanding

requirements documentation, mainly in this case in which

people of different locations worked together. Other positive

point was allowing an experience working with the distributed

software development and real life problems (industry) in an

academic environment.

V. DISCUSSION

At PUCRS, a GSE course is offered as an optional topic in

the academic curricula in the Computer Science undergraduate

program. Thus, a few students take the course and have the

opportunity to develop their competencies in GSE before start

working in the software industry or aim for a graduate degree.
While a variety of studies have been published in GSE field,

the most knowledge produced is not about teaching GSE. We

have observed that challenges faced by Brazilians students are

frequently discussed in the GSE literature. Most of them are

related to the distributed nature of GSE projects. For example,

the scope of a project and scheduling meetings. Scope changes

and maintaining the quality can be extremely challenging in a

distributed project team. The inherent lack of visibility into the

project progress can increase the project risks [8]. Scheduling

meetings is related to communication. Many studies describe

communication issues in GSE (e.g., [2] [5] [6]).
Regards to the lessons learned, these are associated with

challenges faced by students as show in Figure 3. Through

the students’ own perceptions of experiences and outcomes

associated with being part of a GSE team, we observed from

the lessons learned that students experienced complexities of

working in a GSE setting.
Figure 3 shows that for each lesson learned there is at

least two challenges associated with it. Furthermore, it is

possible to observe that lessons learned are distributed in more

than one challenge category. For example, ”Lesson learned 1:

Getting prior knowledge of the problem-area domain” deals

with communication and coordination challenges.

VI. CONCLUSIONS

In this study, we present the Brazilian students perceptions

in developing activities in a GSE project. As part of the DOSE

41



Fig. 3. Lessons Learned Map.

course, Brazilian students experimented GSE activities with

students from other universities. As a result of this study, we

identified a set of challenges and lessons learned on preparing

graduate students for GSE work.

The experiences described in this study shows the im-

portance on preparing students for GSE work. Students had

the opportunity of developing their GSE competences in a

’practical course’. The GSE complexities was discovery by

the students throughout the project where they realized the

importance of developing competences to mitigate the faced

challenges.

In future work, we plan to introduce GSE practices to

prepare students for GSE work in our regular undergraduate

courses, as well as create new approaches to teach GSE

competences. Further research of our lessons learned can help

in creating recommendations for non experienced students in

GSE. It is interesting to observe that students can also face

different challenges in new GSE projects. Thus, future studies

can also further investigate challenges reported in this paper.

ACKNOWLEDGMENTS

The authors would like to thank the participants of the 2014

DOSE project course session from all partner universities,

specially the PUCRS graduate students. The authors acknowl-

edge financial support in this research from CNPq (projects

312127/2015-4 and 406692/2013-0), FAPERGS (project 2062-

2551/13-7) and the PDTI Program, financed by Dell Comput-

ers of Brazil Ltd. (Law 8.248/91).

REFERENCES

[1] Dose project. http://se.inf.ethz.ch/research/dose/.
[2] P. J. Agerfalk, B. Fitzgerald, H. Holmström Olsson, and E. Ó Conchúir.

Making Globally Distributed Software Development a Success Story:
Proc. International Conference on Software Process, Leipzig, Germany,
chapter Benefits of Global Software Development: The Known and
Unknown, pages 1–9. Springer, 2008.

[3] E. O. Conchúir, P. J. , H. H. Olsson, and B. Fitzgerald. Global software
development: Where are the benefits? Communication of the ACM,
52(8):127–131, Aug. 2009.

[4] D. Damian, A. Hadwin, and B. Al-Ani. Instructional design and assess-
ment strategies for teaching global software development: A framework.
In Proceedings of the International Conference on Software Engineering,
pages 685–690, Shanghai, China, 2006. IEEE.

[5] S. Deshpande, S. Beecham, and I. Richardson. New Studies in Global
IT and Business Service Outsourcing: Global Sourcing Workshop,
Courchevel, France, chapter Global Software Development Coordination
Strategies - A Vendor Perspective. Springer, 2011.

[6] H. Holmstrom, E. O. Conchuir, P. J. Agerfalk, and B. Fitzgerald. Global
software development challenges: A case study on temporal, geograph-
ical and socio-cultural distance. In Proc. International Conference on
Global Software Engineering, Florianopolis, Brazil, pages 3–11, 2006.

[7] B. Meyer and M. Piccioni. The allure and risks of a deployable
software engineering project: Experiences with both local and distributed
development. In Proc. Int’l Conference on Software Engineering
Education and Training, Charleston, USA, pages 3–16, 2008.

[8] S. Mohan and J. Fernandez. Distributed software development projects:
Work breakdown approaches to overcome key coordination challenges.
In Proceedings of the India Software Engineering Conference, pages
173–182, Mysore, India, 2010. ACM.

[9] M. Nordio, H. C. Estler, B. Meyer, N. Aguirre, R. Prikladnicki, E. D.
Nitto, and A. Savidis. An experiment on teaching coordination in
a globally distributed software engineering class. In Conference on
Software Engineering Education and Training, Klagenfurt, Austria,
pages 109–118, 2014.

[10] M. Nordio, C. Ghezzi, B. Meyer, E. D. Nitto, G. Tamburrelli, J. Tschan-
nen, N. Aguirre, and V. Kulkarni. Teaching software engineering using
globally distributed projects: the dose course. In Collaborative Teaching
of Globally Distributed Software Development - Community Building
Workshop. ACM, 2011.

[11] M. Nordio, R. Mitin, and B. Meyer. Advanced hands-on training
for distributed and outsourced software engineering. In International
Conference on Software Engineering, Zurich, Switzerland, pages 555–
558, 2010.

[12] M. Nordio, R. Mitin, B. Meyer, C. Ghezzi, E. D. Nitto, and G. Tambur-
relli. The role of contracts in distributed development. In International
Conference on Software Engineering Approaches for Offshore and
Outsourced Development, Zurich, Switzerland, pages 117–129, 2009.

[13] A. Zeid and R. El-Bahey. Establishing a global software development
course: A cultural perspective. In Frontiers in Education Conference,
Oklahoma, USA, pages 1695–1701, 2013.

42


