
Exploration of Technical Debt in Start-ups

Eriks Klotins∗

Blekinge Institute of Technology

Karlskrona, Sweden

eriks.klotins@bth.se

Michael Unterkalmsteiner
Blekinge Institute of Technology

Karlskrona, Sweden

Panagiota Chatzipetrou
Blekinge Institute of Technology

Karlskrona, Sweden

Tony Gorschek
Blekinge Institute of Technology

Karlskrona, Sweden

Rafael Prikladnicki
Pontifical Catholic University of Rio

Grande do Sul

Porto Alegre, Brazil

Nirnaya Tripathi
University of Oulu

Oulu, Finland

Leandro Bento Pompermaier
Pontifical Catholic University of Rio

Grande do Sul

Porto Alegre, Brazil

ABSTRACT

Context: Software start-ups are young companies aiming to build

and market software-intensive products fast with little resources.

Aiming to accelerate time-to-market, start-ups often opt for ad-hoc

engineering practices, make shortcuts in product engineering, and

accumulate technical debt.

Objective: In this paper we explore to what extent precedents,

dimensions and outcomes associated with technical debt are preva-

lent in start-ups.

Method:We apply a case survey method to identify aspects of

technical debt and contextual information characterizing the engi-

neering context in start-ups.

Results: By analyzing responses from 86 start-up cases we found

that start-ups accumulate most technical debt in the testing dimen-

sion, despite attempts to automate testing. Furthermore, we found

that start-up team size and experience is a leading precedent for

accumulating technical debt: larger teams face more challenges in

keeping the debt under control.

Conclusions: This study highlights the necessity to monitor levels

of technical debt and to preemptively introduce practices to keep

the debt under control. Adding more people to an already difficult to

maintain product could amplify other precedents, such as resource

shortages, communication issues and negatively affect decisions

pertaining to the use of good engineering practices.

KEYWORDS

Software start-ups, technical debt

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5659-6/18/05. . . $15.00
https://doi.org/10.1145/3183519.3183539

ACM Reference Format:

Eriks Klotins, Michael Unterkalmsteiner, Panagiota Chatzipetrou, Tony

Gorschek, Rafael Prikladnicki, Nirnaya Tripathi, and Leandro Bento Pom-

permaier. 2018. Exploration of Technical Debt in Start-ups. In ICSE-SEIP ’18:

40th International Conference on Software Engineering: Software Engineering

in Practice Track, May 27-June 3, 2018, Gothenburg, Sweden. ACM, New York,

NY, USA, 10 pages. https://doi.org/10.1145/3183519.3183539

1 INTRODUCTION

Start-ups are important suppliers of innovation, new software prod-

ucts and services. However, engineering the software in start-ups is

a complex endeavor as the start-up context poses unique challenges

to software engineers [10]. As a result of these challenges, most

start-ups do not survive the first few years of operation and cease

to exist before delivering any value [4, 11].

Uncertainty, changing goals, limited human resources, extreme

time and resource constraints are reported as characteristic to start-

ups [10, 27]. To cope with such forces, start-ups make a trade-off

between internal product quality and faster time-to-market, favor-

ing the latter. As a consequence, start-ups accumulate technical

debt [5].

Technical debt is a metaphor to describe not quite right en-

gineering solutions in a product that adds friction to its further

development and maintenance. The extra effort associated with this

friction, i.e. the “interest”, needs to be paid every time a sub-optimal

solution is touched [21]. Over time, the cumulative interest may

exceed the effort needed to remove the debt, i.e. the “principal”.

The compound effects of sub-optimal solutions can reduce devel-

opment team efficiency and overall quality. However, there is the

belief among start-ups that any amount of technical debt can be

written off if a feature or the whole product is not successful in the

market [5].

The strategy to accumulate technical debt can backfire if a start-

up survives long enough and fails to put its technical debt under

control. An unstable and difficult to maintain product adds risk to

the company, for example, by limiting the ability to quickly enter

into new markets (i.e. to pivot [38]) or to launch new innovative

features [19, 39]. That said, we are not advocating for the removal

of all technical debt. Rather, we are interested to see an overview

75

2018 ACM/IEEE 40th International Conference on Software Engineering: Software Engineering in Practice

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden E. Klotins et al.

of how technical debt influences start-ups and to enable start-up

teams to make better decisions in regards to the trade-off between

quality and time-to-market.

Technical debt has been extensively studied in the context of

established companies and in relation to software maintenance [23,

34]. For example, Tom et al. [39] present a taxonomy comprising

precedents, dimensions, and outcomes of technical debt. We adopt

the terminology from this taxonomy to enable traceability.

Precedents are contextual factors in the development organiza-

tion that contribute to the accumulation of technical debt, e.g. a lack

of resources. Dimensions describe different types of technical debt,

e.g. documentation, architecture, or testing debt. Outcomes refer

to consequences of having excess technical debt, such as impaired

productivity or quality [39].

While technical debt is a liability, development teams should

manage it and use it as a leverage to attain otherwise unattainable

goals [39]. In the start-up context, the concept of technical debt

is explored only superficially. Giardino et al. [5] argue that the

need for speed, cutting edge technologies and uncertainty about

a product’s market potential are the main precedents for cutting

corners in product engineering. However, if a start-up survives past

its initial phases, management of technical debt becomes more and

more important [5, 7].

Our earlier study on software engineering anti-patterns in start-

ups [19] indicates that poorly managed technical debt could be

one contributing factor to high start-up failure rates, driven by

poor product quality and difficult maintenance. Negative effects of

technical debt on team productivity has also been observed [5].

In this study, we explore how start-ups estimate technical debt,

what are precedents for accumulating technical debt, and to what

extent start-ups experience outcomes associated with technical

debt. We use a case survey as data source and apply a combination

of quantitative and qualitative methods to explore technical debt in

the surveyed companies. Our objective is to provide a fine-grained

understanding of technical debt and its components that could

provide a basis for defining start-up context-specific practices for

technical debt management.

The main contribution of this paper is an empirical investigation

that identifies the key precedents for the accumulation of technical

debt in software start-ups, and the primary dimensions where the

accumulation of debt has been observed by practitioners.

The rest of the paper is structured as follows. In Section 2 we

introduce relevant concepts to understand our study. Section 3

presents the study design while results are presented in Section 4.

The results are discussed and interpreted in Section 5. Section 6

concludes the paper.

2 BACKGROUND AND RELATEDWORK

2.1 Software start-ups

Software start-ups are small companies created for the purpose of

developing and bringing an innovative product or service to market,

and to benefit from economy of scale. Even though start-ups share

many characteristics with small and medium enterprises, start-ups

are different due to the combination of challenges they face [25, 37].

Start-ups are characterized by high risk, uncertainty, lack of re-

sources, rapid evolution, immature teams, and time pressure among

other factors. However, start-ups are flexible to adopt new engineer-

ing practices, and reactive to keep up with emerging technologies

and markets [11, 37].

Start-up companies rely on external funding to support their

endeavors. In 2015 alone, start-up companies have received invest-

ments of 429 billion USD in the US and Europe alone [29, 30]. With

an optimistic start-up failure rate of 75% that constitutes of 322

billion USD of capital potentially wasted on building unsuccessful

products.

Earlier studies show that product engineering challenges and

inadequacies in applied engineering practices could be linked to

start-up failures [10, 19]. To what extent software engineering prac-

tices are responsible or linked to success rate is very hard to judge.

However, if improved software engineering practices could increase

the likelihood of success by only a few percent, it would yield a

significant impact on capital return.

2.2 Technical debt

Technical debt is a metaphor to describe the extra effort arising

from maintaining and removing suboptimal or flawed solutions

from a software product. Technical debt can be attributed to the soft-

ware itself (e.g. source code), and also other artifacts and processes

that comprise the product, and are relevant for maintenance and

evolution of the product. For example, user manuals, knowledge

distribution, operational processes, and infrastructure [39].

Suboptimal solutions find their way into software products due

to a variety of reasons, such as ignorance of good engineering

practices, oversight, lack of skills, or pragmatism [2]. Taking engi-

neering shortcuts and delivering flawed solutions is often used as

leverage to achieve faster time-to-market. However, the debt should

be re-payed by removing flawed solutions from the product [23, 39].

When not addressed, suboptimal solutions make maintenance

and evolution of software products difficult, any changes in the

product require more effort than without the debt. This extra effort

takes time away from developing new features and may overwhelm

a team with firefighting tasks just to keep the product running, and

decreases product quality altogether [21].

Giardino et al. [5] argue that technical debt in start-ups accu-

mulates from prioritizing development speed over quality, team

aspects, and lack of resources. We combine results from their work,

which is specific to start-ups, with a general taxonomy of technical

debt by Tom et al. [39]. We adopt the model of precedents, dimen-

sions, and outcomes as proposed by Tom et al. [39] and map it with

the categories of the Greenfield start-up model [5] to identify and to

focus on relevant aspects of technical debt for start-ups, see Fig. 1.

As precedents, we study engineering skills and attitudes, com-

munication issues, pragmatism, process, and resources. We explore

technical debt in forms of code smells, software architecture, docu-

mentation, and testing. Furthermore, we attempt to understand to

what extent team productivity and product quality is a challenge in

start-ups. We use this conceptual model of technical debt as a basis

to scope and define the research methodology, discussed next.

76

Exploration of Technical Debt in Start-ups ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

PRECEDENTS

Poor skills & attitudes

Pragmatism

Lack of process

Resource shortages

Communication issues

DIMENSIONS

Documentation debt Code debt

Testing debtArchitecture debt

OUTCOMES

Impaired productivity Decaying quality

Figure 1: Aspects of technical debt

3 RESEARCH METHODOLOGY

3.1 Research questions

To achieve our goal and to drive the study we formulate the follow-

ing research questions:

RQ1: How do start-ups estimate technical debt?

Rationale: Technical debt can incur in different forms, for example,

as code smells, incomplete or outdated documentation, suboptimal

software architecture, or shortcuts taken in testing [23]. We aim to

understand how start-ups estimate different types of technical debt,

what types of technical debt are prevalent in start-ups and primary

candidates for further investigation. In addition, what types of tech-

nical debt are least accumulated, i.e. are irrelevant or already well

managed in the start-up context.

RQ2:What are precedents of technical debt in start-ups?

Rationale: Earlier studies report a number of precedents contribut-

ing to the accumulation of technical debt, such as prioritizing time-

to-market over product quality and severe lack of resources [5],

developer skills and attitude, lack of process, oversight, and igno-

rance [39]. We aim to corroborate what precedents, identified by

earlier studies in other contexts, are also present in start-ups.

RQ3:What outcomes linked to technical debt do start-ups report?

Rationale:Decreasing productivity, decayingmorale, product qual-

ity issues, and increasing risks are reported as outcomes of technical

debt [5, 39]. Yet, there is a belief that any amount of technical debt

can be written off if a product or a specific feature does not succeed

in market [5]. We aim to corroborate what outcomes, identified by

earlier studies and linked to increased amounts of technical debt,

do start-ups report.

3.2 Data collection

We used a case survey method to collect primary data from start-up

companies [22, 28].

The case survey method is based on a questionnaire and is a

compromise between a traditional case study and a regular sur-

vey [17].We have designed the questionnaire to collect practitioners

experiences about specific start-up cases.

During the questionnaire design phase, we conductedmultiple in-

ternal and external reviews to ensure that all questions are relevant,

clear and that we receive meaningful answers. First, the questions

were reviewed in multiple rounds by the first three authors of this

paper to refine scope of the survey and question formulations. Then,

with help of other researchers from the Software Start-up Research

Network1, we conducted a workshop to gain external input on the

questionnaire. A total of 10 researchers participated and provided

their input.

Finally, the questionnaire was piloted with four practitioners

from different start-ups. During the pilots, respondents filled in the

questionnaire while discussing questions, their answers and any

issues with the first author of this paper.

As a result of these reviews, we improved the question formula-

tions and removed some irrelevant questions. The finalized ques-

tionnaire2 contains 85 questions in 10 sections. The questionnaire

captures 285 variables from each start-up case.

From all the variables, 45 variables focus on capturing the mag-

nitude of dimensions, precedents, and outcomes linked to technical

debt3. The questions capture the respondents’ agreement with a

statement on a Likert scale: not at all (1), a little (2), somewhat

(3), very much (4). The values indicate the degree of agreement

with a statement. Statements are formulated consistently in a way

that lower values indicate less precedents, less outcomes, and less

technical debt.

In addition to questions pertaining technical debt, the question-

naire contains questions inquiring the engineering context in the

start-up and applied software engineering practices.

The data collection took place between December 1, 2016, and

June 15, 2017. The survey was promoted through personal contacts,

by attending industry events, and by posts on social media websites.

Moreover, we invited other researchers from the Software Start-

up Research Network to collaborate on the data collection. This

collaboration helped to spread the survey across many geographical

locations in Europe, North and South America, and Asia.

3.3 Data analysis

To analyze the survey responses we used a number of techniques.

We started by screening the data and filtering out duplicate cases,

responses with few questions answered, or otherwise unusable

responses. In the screening we attempt to be as inclusive as possible

and do not remove any cases based on the provided responses.

The respondent estimates on technical debt aspects are measured

on an ordinal scale, measured from 1 (not at all) to 4 (very much).

Respondent and start-up demographics such as age and years of

operation are measured with categorical variables on a nominal

scale.

Overall, we analyze responses from 86 start-up cases, 75 data-

points per each case, and 6450 data-points overall. To gain an

overview of the data, the results were visualized by histograms,

box-plots and contingency tables [12].

We use the Chi-Squared test of association to test if the associ-

ations between the examined variables are not due to chance. To

1The Software Start-up Research Network, https://softwarestartups.org/
2 http://startupcontextmap.org/exp-survey/woifenw2
3The subset of questions used in this study is available here: http://eriksklotins.lv/
uploads/TD-in-start-ups-questions.pdf

77

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden E. Klotins et al.

Table 1: Interpretation of Cramer’s V test

Cramer’s V value Interpretation

≥ 0.1 Weak association

≥ 0.3 Moderate association

≥ 0.5 Strong association

prevent Type I errors, we used exact tests, specifically, the Monte-

Carlo test of statistical significance based on 10 000 sampled tables

and assuming (p = 0.05) [14].
To examine the strength of associations we use Cramer’s V test.

We interpret the test results as suggested by Cohen [6], see Table 1.

To explore specifics of the association, such as which cases are

responsible for this association, we perform post-hoc testing using

adjusted residuals. We consider an adjusted residual significant if

the absolute value is above 1.96 (Adj .residual > 1.96), as suggested
by Agresti [1]. The adjusted residuals drive our analysis on how

different groups of start-ups estimate aspects of technical debt.

However, due to the exploratory nature of our study, we do not state

any hypotheses upfront and drive our analysis with the research

questions.

Full results, contingency tables, histograms and calculation de-

tails are accessible on-line4 for a full disclosure.

3.4 Validity threats

In this section we follow guidelines by Runeson et al. [32] and

discuss four types of validity threats and applied countermeasures

in the context of our study.

3.4.1 Construct validity. Construct validity concerns whether

operational measures really represent the studied subject [32]. A

potential threat is that the statements we use to capture respondent

estimates are not actually capturing the studied aspects of technical

debt.

To address this threat we organized a series of workshops with

other researchers and potential respondents to ensure that ques-

tions are clear, to the point, and capture the studied phenomenon.

Each aspect, i.e. type of precedent, is triangulated by capturing it

by at least three different questions in the questionnaire. To avoid

biases stemming from respondents opinions about technical debt

and to capture the actual situation we avoid mentioning technical

debt in the questions. Instead, we formulate the questions indirectly

to capture respondent estimates on different aspects associated with

technical debt. For example, we ask whether they find it difficult to

understand requirements documentation.

To accommodate for the fact that a respondent may not know

answers to some of the questions, we provide an explicit ”I do not

know” answer option to all Likert scale questions.

3.4.2 Internal validity. This type of validity threat addresses

causal relationships in the study design [32]. In our study we use a

model of precedents, dimensions and outcomes of technical debt.

The literature, for example, Tom et al. [39] and Li et al. [23], suggest

that there is a causality between the three. We, however, present

4http://eriksklotins.lv/uploads/TD-in-start-ups-sm.pdf

respondent estimates on precedents, dimensions and the outcomes

separately without considering or implying any causality.

3.4.3 External validity. This type of validity threat concerns

to what extent the results could be valid to start-ups outside the

study [32]. The study setting for participants was close to real life as

possible, that is, the questionnaire was filled in without researcher

intervention and in the participants own environment.

A sampling of participants is a concern to external validity. We

use convenience sampling to recruit respondents and with help

of other researchers, distributed the survey across a number of

different start-up communities. Demographic information from

respondent answers shows that our sample is skewed towards

active companies, respondents with little experience in start-ups,

young companies and small development teams of 1-8 engineers.

In these aspects our sample fits the general characteristics of start-

ups, see for example, Giardino et al. [10, 11] and Klotins et al. [18].

However, there clearly is a survivorship bias, that is, failed start-ups

are underrepresented, thus our results reflect state-of-practice in

active start-ups.

Another threat to external validity stems from case selection.

The questionnaire was marketed to start-ups building software-

intensive products, however due to the broad definition of software

start-ups (see Giardino et al. [11]), it is difficult to differentiate be-

tween start-ups and small medium enterprises. We opted to be as

inclusive as possible and to discuss relevant demographic informa-

tion along with our findings.

3.4.4 Conclusion validity. This type of validity threat concerns

the possibility of incorrect interpretations arising from flaws in,

for example, instrumentation, respondent and researcher personal

biases, and external influences [32].

To make sure that respondents interpret the questions in the

intended way we conducted a number of pilots, workshops and

improved the questionnaire afterwards. To minimize the risk of

systematic errors, the calculations and statistical analysis was per-

formed by the first and the third author independently, and findings

were discussed among the authors.

To strengthen reliability and repeatability of our study, all survey

materials and calculations with immediate results are published

online.

4 RESULTS

To answer our research questions we analyze 6450 data-points from

86 start-up cases. The majority of these start-ups (63 out of 86, 73%)

are active and had been operating for 1 - 5 years (58 out of 86, 67%),

see Fig. 2. Start-ups are geographically distributed among Europe

(34 out of 86, 40%), South America (41 out of 86, 47%), Asia (7 out

of 86) and North America (2 out of 86).

Our sample is about equally distributed in terms of the product

development phase. We follow a start-up life-cycle model proposed

by Crowne [7] and distinguish between inception, stabilization,

growth and maturity phases. In our sample, 16 start-ups have been

working on a product but haven’t yet released it to market, 24 teams

had released the first version and actively develop it further with

customer input, 26 start-ups have a stable product and they focus

on gaining customer base, and another 16 start-ups have mature

78

Exploration of Technical Debt in Start-ups ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

'10 '11 '12 '13 '14 '15 '16 '17

5

10

15

20

'02 '03 '04 '05 '06 '07 '08 '09

Active

Paused

Acquired

Closed

Figure 2: Distribution of start-ups by the founding year and

their current state

products and they focus on developing variations of their products.

The distribution of start-ups by their life-cycle phase and length of

operation is shown in Fig. 3. In the figure, bubble size denotes the a

number of people in the team. Most start-ups in the sample (75 out

of 86, 87%) have small teams of 1 - 8 engineers actively working on

the product.

0 - 3 months 4 - 8 months 9 - 12 months 1 - 2 years 3+ years

In
ce

pt
io

n
S

ta
bi

liz
at

io
n

G
ro

w
th

M
at

ur
ity

Figure 3: Distribution of start-ups by product phase and

length of operation

About an equal number of start-ups had indicated that they work

on more than one product at the time. Start-ups in our sample do

per-customer customization to some extent: 10 companies (11%)

had specified that they tailor each product instance to a specific

customer, 30 companies (35%) do not do per-customer customiza-

tion at all, while 43 start-ups (49%) occasionally perform product

customization for an individual customer.

The questionnaire was filled in mostly by start-up founders (64

out of 86, 74%) and engineers employed by start-ups (15 out of 86,

17%). About a half of respondents have specified that their area

of expertise is software engineering (49 out of 86, 56%). Others

have specified marketing, their respective domain, and business

development as their areas of expertise.

Respondents length of software engineering experience ranges

from 6months tomore than 10 years. A large portion of respondents

(44 out of 86, 51%) had less than 6 months of experience in working

with start-ups at the time when they joined their current start-up.

4.1 Dimensions of technical debt

We start our exploration by looking at the extent to which the

dimensions of technical debt (documentation, architecture, code,

and testing) are present in the surveyed start-ups. We quantify the

degree of technical debt by aggregating respondent answers on

questions pertaining to each dimension, Answers were given on a

Likert scale where higher values indicate more estimated technical

debt in a given dimension.

Responses from thewhole sample indicate that start-ups estimate

some technical debt (2 on a scale from 1 to 4) in documentation,

architecture, and code dimensions, while testing debt is estimated

as the most prevalent (3 in a scale from 1 to 4). Fig. 4 shows the

median (dark horizontal line), first and third quartile, and minimum

and maximum estimates on all statements pertaining to a specific

debt type.

To explore the estimated degree of technical debt further, we

analyze the influence of respondent demographics, such as relation-

ship with the start-up and background, and start-up demographics,

such as product life-cycle phase, team skill level and longevity of

the start-up, on the responses.

Documentation
debt

Architecture
debt

Code
debt

Test
debt

Not at all (1)

A little (2)

Somewhat (3)

Very much (4)

Figure 4: Estimates for the prevalence of different dimen-

sions of technical debt from the case survey

The analysis shows that only start-up state, that is if the start-up

is active, paused, acquired, or closed, has an effect on the over-

all estimates of technical debt, see Table 2. In the table we show

strength (measured by Cramer’s V test) of statistically significant

associations (p < 0.05, measured by Chi-Square test) between rele-
vant characteristics of start-ups and technical debt dimensions. In

the last column we show if the characteristic has an effect on all

dimensions together.

Observe that the level of engineering skills and domain knowl-

edge pertains to the whole team. However, practical experience

pertains only to the respondent. We show respondent character-

istics as well to illustrate to what extent respondents background

influences their responses. For instance, respondents with more

practical experience estimate documentation debt more critically,

see Table 2, and are more critical about skills shortages, see Table 3.

79

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden E. Klotins et al.

Table 2: Results of Cramer’s V test on associations between dimensions and start-up characteristics with p < 0.05

Characteristic Documentation Architecture Code Testing All

1 State of the start-up 0.346 0.326 0.414 - 0.318

2 Product phase - 0.329 - - -

3 Overall team size - - 0.427 - -

4 Level of domain knowledge 0.334 - - - -

5 Per-customer tailoring - - 0.423 - -

6 Practical experience 0.337 - - - -

We highlight important findings in framed boxes and discuss

them in Section 5.

Finding 1: Start-ups that are in the active category estimate

technical debt, overall in all dimensions, lower than closed or

acquired start-ups.

Product phase, team size and level of domain knowledge have

effects on individual technical debt dimensions. We present these

results next.

4.1.1 Documentation debt. Documentation debt refers to any

shortcoming in documenting aspects of software development, such

as architecture, requirements, and test cases [23].

We look into requirements, architecture and test documenta-

tion because these are the essential artifacts guiding a software

project. Requirements capture stakeholders needs and provide a

joint understanding of what features are expected from the soft-

ware. Architecture documentation lists design principles, patterns

and components comprising the software. Documentation of test

cases supports testing activities and provides means for quality

assurance [33].

Only 1% (7 out of 84) of start-ups in our sample have explicitly

stated that they do not document requirements in any way. The

most popular forms of documenting requirements are informal

notes and drawings (50 out of 86, 58%), followed by organized lists

(20 out of 86, 20%).

Responses from the whole sample show that start-ups have some

amount of documentation debt (Median = 2.0), see Fig. 4. Explor-
ing what start-up characteristics have an effect on the estimates,

see Table 2, we found that start-ups who are active estimate docu-

mentation debt lower than acquired or closed companies. We also

found that teams with sufficient domain knowledge estimate docu-

mentation debt lower than teams with many gaps in their domain

knowledge.

4.1.2 Architecture debt. Architecture debt refers to compro-

mises in internal qualities of the software such as maintainability,

scalability, and evolvability [23].

Results from the whole sample show that start-ups experience

some architectural debt (Median = 2.0), see Fig. 4. By looking into
what start-up characteristics have an effect on how respondents

estimate architecture debt, we found that state of the start-up and

the product phase have an effect on the estimates, see Table 2. Ac-

tive start-ups have provided substantially lower estimates than

acquired and closed companies. We found that start-ups who have

just started on product engineering and haven’t yet released it to

market, experience almost no architectural debt. During stabiliza-

tion and growth phases the estimates become more critical. How-

ever, during the maturity phase estimates become slightly more

optimistic, see Fig. 5. Box-plots in the figure show responses from

all statements pertaining to architecture debt.

Inception Stabilization Growth Maturtiy

Not at all (1)

A little (2)

Somewhat (3)

Very much (4)

Figure 5: Box-plot showing how in different product phases

start-ups estimate architecture debt

4.1.3 Code debt. Code debt refers to a poorlywritten code. Signs

of a poorly written code are, for example, unnecessary complex

logic, code clones, and bad coding style affecting code readability.

Poorly written code is difficult to understand and change [24, 26,

39].

Results from the whole sample show that start-ups experience

some code debt (Median = 2.0), see Fig. 4. By looking into what
start-up characteristics have an effect on how respondents estimate

code debt we found that state of the start-up, team size, level of

per-customer tailoring has an effect on the estimates, see Table 2.

Active start-ups estimate code debt lower than acquired start-ups.

Start-ups with larger teams (9 or more people), provide higher

estimates on code debt than small teams. Start-ups who do not offer

per-customer customization estimate code debt lower. However,

start-ups that occasionally tailor their product to needs of a specific

customer estimates their code debt higher.

4.1.4 Testing debt. Testing debt refers to lack of test automation

leading to the need of manually retesting the software before a

release. The effort of manual regression testing grows exponen-

tially with the number of features, slowing down release cycles and

making defect detection a time consuming and tedious task [39].

80

Exploration of Technical Debt in Start-ups ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

Answers to questions inquiring use of automated testing show

that about a third (26 out of 86, 30%) of start-ups are attempting

to implement automated testing, and only 17 start-ups (20%) have

explicitly stated that no test automation is used.

Despite attempts to automate, companies across the whole sam-

ple estimate their testing debt somewhat high (Median = 3), see
Fig. 4. Manual exploratory testing is reported as the primary test-

ing practice, regardless of start-up life-cycle phase, team size and

engineering experience, and length of operation.

Finding 2: Despite attempts to automate, manual testing

is still the primary practice to ensure that the product is defect

free.

Similar results, showing that only a small number of mobile ap-

plication projects have any significant code coverage by automated

tests, and listing time constraints as the top challenge for adopting

automated testing, were obtained by Kochhar et al. [20].

4.2 Precedents for technical debt

We asked the respondents to estimate various precedents of techni-

cal debt in their start-ups, such as attitudes towards good software

engineering practices, pragmatic decisions to make shortcuts in

product engineering, communication issues in the team, level of

team engineering skills, time and resource shortages, and lack of

established SE processes.

Box-plots with median responses from the whole sample are

shown in Fig. 6. Higher values indicate stronger agreement with

the presence of a precedent in the start-up. Poor attitude is the least

common precedent for technical debt, while resource shortage is

estimated as the most prevalent precedent.

Looking intowhat start-up characteristics influence the responses,

we find that start-up team size and team’s engineering skills have

a significant effect on the estimates overall, see Table 3. Larger

teams of 9 or more people estimate the precedents for technical

debt higher than small teams.

In the results we show only characteristics with statistically rele-

vant associations, thus listed characteristics differ between Tables 2

and 3.

Finding 3: Start-up team size and level of engineering skills

have a significant effect on how severe the other precedents

are estimated.

4.2.1 Attitude towards good engineering practices. The responses

to questions about following good engineering practices suggest

that start-up engineers do realize the importance of following good

architecture, coding and testing practices (Median = 1), see Fig. 6.
Comparing how responses on attitude differ by start-up char-

acteristics we found that start-ups who are active, estimate their

attitudes more optimistically than acquired or closed companies.

That is, they agree more with benefits from following good en-

gineering practices, such as coding conventions and throughout

testing of the product.

Attitudes Pragmatism Communication Skills Resources Process

Not at all (1)

A little (2)

Somewhat (3)

Very much (4)

Figure 6: Box-plot showing how the sample estimates differ-

ent precedents for technical debt

4.2.2 Pragmatism. Estimates on statements about pragmatic

considerations, that is, prioritization of time-to-market over good

engineering practices, show that start-ups are ready to make short-

cuts to speed up time-to-market (Median = 2). However, the spread
of estimates suggests that different companies have very different

attitudes towards deliberately introducing technical debt, see Fig. 6.

Comparing how estimates on attitude differ by start-up character-

istics we found that start-ups with larger teams of 15 or more de-

velopers estimate pragmatic precedents higher than smaller teams.

4.2.3 Communication. Estimates on statements about commu-

nication show that communication issues could be one of the prece-

dents for introducing technical debt, see Fig. 6. We observe that

communication issues become significantly more severe in larger

engineering teams of 13 and more people than in smaller teams.

Moreover, the results suggest that teams with better engineering

skills experience fewer communication issues.

4.2.4 Engineering skills. Estimates to what extent start-ups face

lack of engineering skills show that skills shortage could be a prece-

dent for accumulating technical debt, see Fig. 6.

Comparing how estimates on skill shortages differ by start-up

characteristics we found that the state of the start-up, team size,

length of practical experience, and level of estimated engineering

skills have the significant influence on the estimates. We found

that active start-ups estimate skills shortages lower than closed

down companies. A somewhat expected result is that teams with

adequate engineering skills provide significantly lower estimates

for challenges associated with skills shortages.

4.2.5 Resources. Looking at differences between estimates on

time and other types of resources we found that they are tied to-

gether, see Fig. 6. That is, companies reporting time shortages also

report resource shortages. A potential explanation for the associa-

tion is that time pressure is created internally by a need to get the

product out and start generating revenue, and not by an external

market pressure. We also found that per-customer customization,

overall team size, and level of domain knowledge has an effect on

how start-ups estimate resource shortages.

Estimates of resources and time shortages show that resource is-

sues are the highest estimated precedent for technical debt (Median =

81

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden E. Klotins et al.

Table 3: Results of Cramer’s V test on associations between precedents and start-up characteristics with p < 0.05

Characteristic Attitudes
Pragma-

tism

Communication

issues

Skills

shortages

Resources

shortages
Process All

1 State of the start-up 0.339 - - 0.285 - - -

2 Per-customer tailoring - - - - 0.345 - -

3 Overall team size - - - 0.360 0.344 0.375 0.386

4 Development team size - 0.432 0.387 0.429 - 0.403 -

5 Level of engineering skills - - 0.331 0.465 - - 0.377

6 Level of domain knowledge - - - - 0.324 - -

7 Practical experience - - - 0.329 - - -

2.5). We find that occasional per-customer tailoring is associated

with higher estimates on resource shortages. Potentially, start-ups

suffering from lack of resources opt for occasional customization to

serve needs of an important customer, thus acquiring resources for

further development. Start-ups with smaller teams of 1-3 people

estimate resource shortages lower than larger start-ups of 9-12

people. A plausible explanation for this association could be that

supporting a larger team requires more resources.

4.2.6 Process. Respondent estimates on the software engineer-

ing process issues show that frequent and unplanned changes occur

and could cause difficulties in avoiding technical debt, see Fig. 6.

We found that estimates on process issues become more severe as

team size grows.

4.3 Outcomes of technical debt

To explore potential outcomes of technical debt we presented re-

spondents with statements exploring to what extent team produc-

tivity and product quality are concerns in their start-ups. Estimates

from the whole sample show that start-ups experience some quality

and productivity issues (Median = 2) that could be associated with
accumulated technical debt. We found that team size is the only

characteristic that influences the estimates (Cramer ′sV = 0.362).
Looking into what types of technical debt are associated with

specific outcomes linked to technical debt, we found a clear asso-

ciation between estimates of technical debt and estimates of the

outcomes, see Table 4.

Code debt has the most severe impact on both productivity and

quality. Architecture debt have a similar effect, albeit to a lesser

extent. Documentation debt impairs productivity. However, we did

not find a statistically significant association between testing debt

and loss of productivity or quality.

Finding 4:We found that from all types of technical debt,

code debt have the strongest association with productivity

and quality issues.

5 DISCUSSION

5.1 Reflections on the research questions

Our results on how start-ups estimate technical debt show that ac-

tive start-ups estimate aspects of technical debt significantly lower

than closed or acquired start-ups, see Finding 1 in Section 4.1. A

Table 4: Results of Cramer’s V test on associations between

types of technical debt and outcomes with p < 0.05

Debt type Impact on:

Quality Productivity Both

1 Documentation - 0.332 0.344

2 Architecture 0.399 0.331 0.440

3 Code 0.445 0.471 0.532

4 Testing - - -

All types 0.363 0.459 0.463

plausible explanation for this result could be that lower technical

debt helps start-ups to have a more stable and easier to maintain

product. Thus giving a start-up more room for evolving the prod-

uct into something the market wants, i.e. to pivot [3]. However,

excess technical debt hinders product evolution and could be one

of contributing factors to the shutdown of a company.

An alternative explanation is that technical debt could be invisi-

ble and compensated by the team’s implicit knowledge. However,

when a start-up is acquired by another company and the product is

transferred to another team, all the technical debt becomes visible.

Difficulties to capture undocumented knowledge and the associated

drop in performance of the receiving team has been recognized in

the context of agile project handover [36].

Results on how different types of technical debt are estimated

show that the most technical debt is estimated in the testing cat-

egory, even though start-ups do attempt to automate tests, see

Finding 2 in Section 4.1. A potential explanation could be that start-

ups lack certain prerequisites for full implementation of automated

testing [40]. Excess technical debt in other categories, for instance,

difficult to test code, lack of requirements documentation, and an

unclear return of investment, could be hindering the implementa-

tion of test automation, as it is also observed in traditional, more

mature companies [16, 20, 31]. However, we could not find any

statistically significant association between testing debt and quality

or productivity issues.

The comparison of results on architecture debt from start-ups in

different life-cycle phases shows another interesting pattern. Start-

ups who have not yet released their products to market experience

very little architecture debt, the debt increases as the product is

delivered to the first customer and peaks at the growth stage when

start-ups focus on marketing the product and drops slightly as

82

Exploration of Technical Debt in Start-ups ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

start-ups mature, see Fig 5. Marketing of the product could be a

source of new challenges for the product development team. For

example, the product must support different configurations for

different customer segments, provide a level of service, and cope

with a flow of requests for unanticipated features [7, 8]. Earlier

shortcuts in product architecture are therefore exposed and must

be addressed.

Overall team size and level of engineering skills could be themost

important characteristics contributing to precedents and linked to

technical debt in most dimensions, see Finding 3 in Section 4.2.

Larger teams of 9 or more people experience more challenges and

report higher technical debt in all categories. This finding is similar

to Melo et al. [9] studying productivity in agile teams. Smaller

teams are better aligned and more efficient in collaboration with

little overhead. However, as the team size grows more processes

and artifacts for coordination are needed [35]. Therefore larger

teams have more artifacts that can degrade.

Team size could be an indicator of the general complexity of a

start-up and the product. More people are added to the team when

there are more things to be taken care of. Therefore, the technical

debt could stem not only from the number of people but also from

increasing complexity of the organization itself.

Our results show that increase in team size is also associated

with outcomes of technical debt, a decrease in productivity and

product quality, see Finding 4 in Section 4.3. This result could be

explained by our earlier discussion on how larger teams require

more coordination for collaboration. However, the more critical

estimates by larger teams could be also associated with the increase

in product complexity as new features are added. Rushing to release

new features could contribute to the accumulation of technical debt

until deliberate, corrective actions are taken, as observed in mobile

application development [13].

As a software product grows, it naturally becomes more diffi-

cult to maintain. For instance, if individual product components do

not change and the new components are at the same quality level

as existing ones, the increased number of components and their

dependencies requires more effort from engineers to maintain the

product and creates more room for defects [15]. This is software

decay and is not the same as avoidable technical debt stemming

from the trade-off between quality and speed. Distinguishing be-

tween true technical debt and software decay is an important next

step in providing practical support for software-intensive product

engineering in start-ups.

5.2 Implications for practitioners

This study presents several implications for practitioners:

(1) Start-up teams with higher level of engineering skills and

respondents with more experience perceive aspects of tech-

nical debt more severely. Less skilled teamsmay not be aware

of their practices introducing additional technical debt, and

amount of technical debt in their products. Using tools and

occasional external expert help could help to identify unre-

alized technical debt, and to improve any sub-optimal prac-

tices.

(2) Start-up team size correlates with more severe precedents

and outcomes of technical debt. Keeping a team small and

skilled could be a strategy to mitigate precedents for techni-

cal debt. To support growth of the team, more coordination

practices need to be introduced, and impact on technical

debt monitored. Additional coordination practices require

more maintenance of coordination artifacts. Thus, there is a

practical limit how large a team can grow before it needs to

be divided into sub-teams.

(3) There is an association between levels of technical debt and

a start-up outcome. Having less technical debt could give a

start-up more room for pivoting and product evolution in

the long term.

(4) There are certain moments when the effects of technical

debt are the most severe. For example, shipping a product

to a large number of customers, scaling up the team, and

handing the product over to another team. The anticipation

of such moments and adequate preparations could help to

mitigate the negative effects of technical debt.

(5) The most significant type of technical debt in start-ups is

code smells. We found that poorly structured and docu-

mented code has the strongest association with issues in

team productivity and product quality. However, detection

of code smells can be automated with open-source tools,

thus alleviating removal of this type of debt.

6 CONCLUSIONS AND FUTUREWORK

In this paper, we report how technical debt is estimated in start-ups

building software-intensive products. We explore to what extent

precedents, dimensions, and outcomes, identified by earlier studies,

are relevant in the start-up context. We attempt to identify what

start-up characteristics have an amplifying or remedying effect on

technical debt.

Our results show that, even though start-up engineers realize

the importance of good engineering practices, they cut corners in

product engineering, mostly due to resource pressure and a need

for faster time to market. The results suggest that precedents for

technical debt become more severe as start-ups evolve and severity

of the precedents could be associated with the number of people

working in a start-up and a product life-cycle phase.

Our results show significantly different estimates from closed,

acquired and operational start-ups. The differences highlight how

start-ups use technical debt as a leverage, and emphasizes the im-

portance of careful technical debt management.

This exploratory study leads to a formulation of several hypothe-

ses:

(a) Technical debt peaks at the growth stage when a start-up

attempts to market the product.

(b) The number of people in a team amplifies precedents for

technical debt.

(c) There is an association between a start-up outcome and their

technical debt management strategy.

We aim to explore these hypotheses further by triangulating

results from this study with qualitative data from interviews and

artifact analysis.

83

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden E. Klotins et al.

7 ACKNOWLEDGMENTS

The authors of this paper would like to thank all practitioners who

found time and motivation share their experiences. Reaching this

diverse population of start-ups would not be possible without help

and support from Software Start-up Research Network community.

and specifically Nana Assyne, Anh Nguyen Duc, Ronald Jabangwe,

Jorge Melegati, Bajwa Sohaib Shahid, Xiaofeng Wang, Rafael Ma-

tone Chanin, and Pekka Abrahamsson.

Work of R. Prikladnicki is supported by Fapergs (process 17/2551-

0001205-4).

REFERENCES
[1] Alan Agresti. 1996. An introduction to categorical data analysis. Vol. 135. Wiley

New York.
[2] Nicolli SR Alves, Thiago S Mendes, Manoel G de Mendonça, Rodrigo O Spínola,

Forrest Shull, and Carolyn Seaman. 2016. Identification and management of
technical debt: A systematic mapping study. Information and Software Technology
70 (2016), 100–121.

[3] Sohaib Shahid Bajwa, XiaofengWang, AnhNguvenDuc, and Pekka Abrahamsson.
2016. How do software startups pivot? empirical results from a multiple case
study. In International Conference of Software Business. Springer, 169–176.

[4] Steve Blank. 2013. Why the Lean Start Up Changes Everything. Harvard Business
Review 91, 5 (2013), 64.

[5] Giardino Carmine, Nicolò Paternoster, Michael Unterkalmsteiner, Tony Gorschek,
and Pekka Abrahamsson. 2016. Software Development in Startup Companies:
The Greenfield Startup Model. IEEE Transactions on Software Engineering X,
September (2016), 233.

[6] J Cohan. 1988. Statistical power analysis for the behaviour sciences. (1988).
[7] Mark Crowne. 2002. Why software product startups fail and what to do about it.

In Engineering Management Conference. IEEE, Cambridge, UK, 338–343.
[8] Åsa G Dahlstedt, Lena Karlsson, Anne Persson, J Natt och Dag, and Björn Regnell.

2003. Market-Driven Requirements Engineering Processes for Software Products
- a Report on Current Practices. In International Workshop on COTS and Product
Software, RECOTS 2003.

[9] Claudia O. DeMelo, Daniela S. Cruzes, Fabio Kon, and Reidar Conradi. 2013. Inter-
pretative case studies on agile team productivity and management. Information
and Software Technology 55, 2 (2013), 412–427.

[10] Carmine Giardino, Sohaib Shahid Bajwa, and Xiaofeng Wang. 2015. Key Chal-
lenges in Early-Stage Software Startups. InAgile Processes, in Software Engineering,
and Extreme Programming, Vol. 212. 52–63.

[11] Carmine Giardino, Michael Unterkalmsteiner, Nicolo Paternoster, Tony Gorschek,
and Pekka Abrahamsson. 2014. What Do We Know about Software Development
in Startups? IEEE Software 31, 5 (sep 2014), 28–32.

[12] Shelby J Haberman. 1973. The analysis of residuals in cross-classified tables.
Biometrics (1973), 205–220.

[13] Geoffrey Hecht, Omar Benomar, Romain Rouvoy, Naouel Moha, and Laurence
Duchien. 2015. Tracking the Software Quality of Android Applications Along
Their Evolution (T). InAutomated Software Engineering (ASE), 2015 30th IEEE/ACM
International Conference on. IEEE, 236–247.

[14] Adery CA Hope. 1968. A simplified Monte Carlo significance test procedure.
Journal of the Royal Statistical Society. Series B (Methodological) (1968), 582–598.

[15] Clemente Izurieta and James M Bieman. 2013. and rot in evolving software
systems. (2013), 289–323. https://doi.org/10.1007/s11219-012-9175-x

[16] Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. 2013. Real challenges
in mobile app development. In Empirical Software Engineering and Measurement,
2013 ACM/IEEE International Symposium on. IEEE, 15–24.

[17] Eriks Klotins. 2017. Using the case surveymethod to explore engineering practices
in software start-ups. In Proceedings of the 1st International Workshop on Software
Engineering for Startups. IEEE Press, 24–26.

[18] Eriks Klotins, Michael Unterkalmsteiner, and Tony Gorschek. 2015. Software
Engineering in Start-up companies : an Exploratory Study of 88 Start-ups. 13, 9
(2015), 1–19.

[19] E Klotins, M Unterkalmsteiner, and T Gorschek. 2017. Software Engineering
Anti-patterns in start-ups. In review by IEEE Software (2017).

[20] Pavneet Singh Kochhar, Ferdian Thung, Nachiappan Nagappan, Thomas Zim-
mermann, and David Lo. 2015. Understanding the test automation culture of app
developers. In Software Testing, Verification and Validation (ICST), 2015 IEEE 8th
International Conference on. IEEE, 1–10.

[21] Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. 2012. Technical Debt : From
Metaphor. IEEE Software (2012), 18–22.

[22] R. Larsson. 1993. Case Survey Methodology: Quantitative Analysis of Patterns
Across Case Studies. Academy of Management Journal 36, 6 (1993), 1515–1546.

[23] Zengyang Li, Paris Avgeriou, and Peng Liang. 2015. A systematic mapping study
on technical debt and its management. Journal of Systems and Software 101 (2015),
193–220.

[24] Mika Mantyla, Jari Vanhanen, and Casper Lassenius. 2003. A taxonomy and an
initial empirical study of bad smells in code. International Conference on Software
Maintenance, 2003. ICSM 2003. Proceedings. OCTOBER (2003), 381–384.

[25] Andreas Metzger and Klaus Pohl. 2014. Software product line engineering and
variability management: achievements and challenges. In Proceedings of the on
Future of Software Engineering. ACM, 70–84.

[26] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Andrea De Lucia. 2014. Do they really smell bad? A study on developers’ percep-
tion of bad code smells. Proceedings - 30th International Conference on Software
Maintenance and Evolution, ICSME 2014 November 2016 (2014), 101–110.

[27] Nicolò Paternoster, Carmine Giardino, Michael Unterkalmsteiner, Tony Gorschek,
and Pekka Abrahamsson. 2014. Software development in startup companies: A
systematic mapping study. Information and Software Technology 56, 10 (oct 2014),
1200–1218.

[28] Kai Petersen, Deepika Badampudi, Syed Shah, Krzysztof Wnuk, Tony Gorschek,
Efi Papatheocharous, Jakob Axelsson, Severine Sentilles, Ivica Crnkovic, and
Antonio Cicchetti. 2017. Choosing Component Origins for Software Intensive
Systems: In-house, COTS, OSS or Outsourcing?–A Case Survey. IEEE Transactions
on Software Engineering (2017).

[29] Inc. PitchBook Data. 2015. European Middle Market Report 2H 2015. (2015).
[30] Inc. PitchBook Data. 2015. U.S. Middle market report Q4 2015. Technical Report.
[31] Randall W Rice, CSTE CSQA, and LLC Rice Consulting Solutions. 2003. Surviving

the top ten challenges of software test automation. CrossTalk: The Journal of
Defense Software Engineering (2003), 26–29.

[32] Per Runeson, Martin Höst, Austen Rainer, and Björn Regnell. 2012. Case study
research in software engineering. John Wiley & Sons, Inc., Hoboken, NJ, USA.

[33] Bran Selic. 2009. Agile documentation, anyone? IEEE software 26, 6 (2009).
[34] Dag I K Sjoberg, Aiko Yamashita, Bente C D Anda, Audris Mockus, and Tore

Dyba. 2013. Quantifying the effect of code smells on maintenance effort. IEEE
Transactions on Software Engineering 39, 8 (2013), 1144–1156.

[35] Bradley R Staats, Katherine L Milkman, and Craig R Fox. 2012. The team scaling
fallacy: Underestimating the declining efficiency of larger teams. Organizational
Behavior and Human Decision Processes 118, 2 (2012), 132–142.

[36] Christoph Johann Stettina and Egbert Kroon. 2013. Is there an agile handover?
an empirical study of documentation and project handover practices across
agile software teams. In Engineering, Technology and Innovation (ICE) & IEEE
International Technology Management Conference, 2013 International Conference
on. IEEE, 1–12.

[37] Stanley M Sutton, E C Cubed, and Mario Andretti. 2000. The Role of Process in a
Software Start-up. IEEE Software 17, 4 (2000), 33–39.

[38] Henri Terho, Sampo Suonsyrjä, Aleksi Karisalo, and Tommi Mikkonen. 2015.
Ways to cross the rubicon: pivoting in software startups. In International Confer-
ence on Product-Focused Software Process Improvement. Springer, 555–568.

[39] Edith Tom, Aybüke Aurum, and Richard Vidgen. 2013. An exploration of technical
debt. Journal of Systems and Software 86, 6 (jun 2013), 1498–1516.

[40] Je Voas, Ridgetop Circle, Lora Kassab, and College William. [n. d.]. Using Asser-
tions to Make Untestable Software More Testable Keywords 1 Introduction. 1
([n. d.]), 1–16.

84

