

ESCOLA POLITÉCNICA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

LETICIA DOS SANTOS MACHADO

EMPIRICAL STUDIES ABOUT COLLABORATION IN COMPETITIVE SOFTWARE
CROWDSOURCING

Porto Alegre
2018

Leticia Santos Machado

Empirical studies about collaboration in competitive
software crowdsourcing

This Thesis has been submitted in partial
fulfillment of the requirements for the degree
of Doctor of Computer Science, of the
Graduate Program in Computer Science,
School of Technology of the Pontifícia
Universidade Católica do Rio Grande do Sul.

Sanctioned on March 28, 2018

Committee Members:

Prof. Dr.Fernando Figueira Filho (UFRN)

Prof. Dra. Milene Selbach Silveira(PPGCC/PUCRS)

Prof. Dra. Tayana Uchôa Conte (PPGI/UFAM)

Prof. Dr. Cleidson R. B. de Souza (PPGCC/UFPA - Co-advisor)

Prof. Dr. Rafael Prikladnicki (PPGCC/PUCRS – Advisor)

DEDICATION

To my daughter Laura

ACKNOWLEDGEMENTS

After spending these past few years working on my doctorate, I have many people
I would like to thank.

First of all, I would like to thank my advisor, Rafael Prikladnicki, for his guidance.
He has always inspired and encouraged in leaving the comfort zone.

Second, but not least important, I would like to thank my co-advisor Cleidson R.B.
de Souza. The guidance and helpful discussions through all these years have put me on
track whenever I got lost.

I extend this gratitude to Prof. André van der Hoek from UCI for having welcomed
me virtually in his research group and for the opportunity to interact during the whole time
we spent designing the experiment. It was a valuable lesson.

This PhD would not be possible without the agreement PUCRS/HPE for having
financed and for having encouraged my research. I extend this greeting to Brazilian
Science without Borders Program Project.

I am very grateful to my first advisor Karin Becker during my master course. She
opened my eyes to research activity. I extend this grateful for all the members of my
qualifying committee and final examining committee. It was a pleasure to receive feedback
and comments from a group of such outstanding researchers: Sabrina Marczak, Igor
Steinmacher, Erran Carmel, Milene Selbach Silveira, Tayana Conte, and Fernando
Figueira Filho.

Along these years, I also made new friends and colleagues. I thank each and every
one of them for their friendship: Caroline Queiroz, Carolina Paz, Alexandre Zanatta,
Josiane Kroll, Ricardo Marinho, Bernardo Estácio, Graziela Basílio Pereira, Carolina
Toscani, Júlia Couto, Olimar Borges, Alessandra Costa. I could not forget all the
colleagues from MunDDos research group.

I cannot forget the PPGCC staff for their prompt help. Special thanks go to Régis
Escobal da Silva and Diego Cintrão.

Thank you, all participants of the conducted empirical studies, for having accepted
to contribute with this research.

Finally, I would like to thank my family: my husband Sébastien, who understood
and pushed me to move forward during this journey; my little daughter Laura, my parents,
who understood the reasons for my absence. This thesis is for and because of you.

EMPIRICAL STUDIES ABOUT COLLABORATION IN

COMPETITIVE SOFTWARE CROWDSOURCING

ABSTRACT

Software Crowdsourcing (SW CS) is an emergent software development strategy where
a large number of people have been engaged to contribute in several software activities.
Such strategy (based on the crowd), has been used for companies who are seeking to
increase the speed of their software development efforts. This strategy is usually
structured around platforms that allow a requester submit a task to be performed and
connect with the crowd that assigned and provide a solution for the task. These platforms
usually explore a competitive approach: members of the crowd independently create a
solution while compete against each other by monetary rewards for task completion. While
competition usually reduces collaboration, some recent studies surprisingly indicate that
there is collaboration in SW CS platforms. These studies have focused on two aspects.
First, collaboration concerns between platform and requester in terms of crowd’s
assignment to the challenges (task allocation and submission) and second, the impact of
the collaboration among crowd members in the quality of the submitted solutions. Other
aspects of the collaboration among crowd members have been largely unexplored. In this
thesis, our goal is to identify collaboration’s characteristics and barriers faced by crowd
members in competitive software crowdsourcing. To achieve this goal, we have conducted
multiple studies, using mixed research methods divided in two phases: one exploratory
and one evaluatory. For the exploratory phase, we used data collected from: (i) the three
involved parties in SW CS projects (requester, crowd and platform) through semi
structured interviews with practitioners and companies, (ii) studies selected via literature
review; and (iii) an empirical study about how developer collaborated with each other in a
SW CS competitive platform – TopCoder. The most frequent collaboration barrier was
associated to lack of proper communication among the parties. Based on this barrier we
decided, in the evaluatory phase, to conduct a (iv) qualitative analysis of the main
communication channel used by the crowd: forums hosted on TopCoder platform and (v)
a survey aimed at developers who had competed on TopCoder to assess the influence of
collaboration in task performance. Our results from these evaluatory studies suggest that
collaboration among crowd members is correlated with delivering winning solutions in SW
CS challenges.

Keywords: Software Engineering, Software Crowdsourcing, Collaboration, Barriers,
Characteristics, Communication, Competition, Software Development, Crowd, Platforms,
Challenges.

ESTUDOS EMPÍRICOS SOBRE COLABORAÇÃO EM SOFTWARE
CROWDSOURCING COMPETITIVO

RESUMO

Software Crowdsourcing (SW CS) é uma estratégia emergente de desenvolvimento de
software onde um grande número de pessoas tem se engajado para contribuir em várias
atividades de software. Tal estratégia (baseada na multidão), tem sido utilizada pelas
empresas que estão buscando aumentar a velocidade de seus esforços em
desenvolvimento de software. SW CS está geralmente estruturado em torno de
plataformas que permitem que um solicitante submeta uma tarefa e conecte-a com uma
multidão de pessoas que irá prôver soluções para a tarefa. Essas plataformas geralmente
exploram uma abordagem competitiva para realização da tarefa: membros da multidão,
independentemente, criam uma solução para a tarefa enquanto competem uns contra os
outros em busca de uma premiação financeira ao final da tarefa entregue. Uma vez que
a competição pode reduzir a colaboração, recentes estudos, surpreendentemente,
indicam que a colaboração existe em plataformas de SW CS. Estes estudos têm focado
em dois aspectos. O primeiro, em problemas de colaboração entre plataforma e
solicitante com relação a atribuição da multidão e as tarefas a serem desenvolvidas nos
desafios de competição (alocação e submissão de tarefas) e, o segundo aspecto,
relacionado ao impacto da colaboração entre membros da multidão e a qualidade das
soluções submetidas. Outros aspectos referentes a colaboração entre os membros da
multidão ainda são amplamente inexplorados. Nessa tese, nosso objetivo é identificar
barreiras e características de colaboração enfrentadas pelos membros da multidão em
SW CS competitivo. Para alcançar este objetivo, nós conduzimos múltiplos estudos
utilizando diferentes métodos de pesquisa divididos em duas fases: exploratória e
avaliatoria. Para a fase exploratória, os dados coletados foram obtidos a partir de: (i)
partes envolvidas em projetos de SW CS (solicitante, multidão e plataforma) através de
entrevistas semi-estruturadas com profissionais e empresas, (ii) estudos selecionados
através da revisão da literatura e; (iii) estudo empírico sobre como desenvolvedores
colaboram entre si em uma plataforma de SW CS competitivo – TopCoder. A barreira de
colaboração mais frequente encontrada está associada a falta de comunicação
apropriada entre as partes. Baseado nessa barreira decidimos na fase avaliatória
conduzir uma (iv) análise qualitativa do principal canal de comunicação utilizado pela
multidão: fórums hospedados na plataforma TopCoder e, finalmente, (v) realizamos um
survey destinado aos desenvolvedores que competiram na TopCoder para avaliar a
influência da colaboração no desempenho da tarefa. Os resultados obtidos nos estudos
avaliatórios sugerem que a colaboração entre os membros da multidão está
correlacionada com a entrega de soluções de software vencedoras nos desafios de SW
CS.

Palavras-chave: Engenharia de Software, Software Crowdsourcing, Colaboração,
Barreiras, Caracteristicas, Comunicação, Competição, Desenvolvimento de software,
Crowd, Plataforms, Desafios.

LIST OF FIGURES

Figure 1 - Research Design .. 15
Figure 2 - SW CS involved parties ... 25
Figure 3 - Software development strategies .. 27
Figure 4 – TopCoder phase .. 35
Figure 5 - TopCoder Screen – List of challenges.. 36
Figure 6 - TopCoder screen – registration screen details .. 37
Figure 7 - Communication flow among involved participants 38
Figure 8 - Challenge’s Forum ... 38
Figure 9 - Participant's information ... 43
Figure 10 - Extracted data from collaboration barriers ... 51
Figure 11 - Statistics of barriers to collaboration in SW CS ... 53
Figure 12 - Collaboration barriers model ... 81
Figure 13 - Model identified per study .. 82
Figure 14 -Example of selectors used for data collection .. 84
Figure 15 - Example of coding from messages in the forum 90
Figure 16 - Number of messages sent in forums between copilots and the crowd ... 93
Figure 17 – Coder’s classification ... 98
Figure 18 – Message category ..100
Figure 19 – Message topics in the forums ..101
Figure 20 - Forum categories of winners and submitters ..102
Figure 21 – Forums topics for winners and submitters ...102
Figure 22 – Winner communication pattern by categories and topics107
Figure 23 – Submitter communication pattern by categories and topics110
Figure 24 – Quitter communication patterns by categories and topics112
Figure 25 – Number of times participants registered ...116
Figure 26 - Number of solutions submitted ...117
Figure 27 – Total of submitters and quitters ...117
Figure 28 - Summative between submission and communication118
Figure 29 - Results of questions about communication vs task performance120
Figure 30 - Communication channel used between crowd ...126
Figure 31 - Communication channel used between other developers.......................126

LIST OF TABLES

Table 1 - Crowds' characteristics.. 24
Table 2 - Requester’s characteristics ... 24
Table 3 – Platform’s characteristics ... 25
Table 4 – Task’s characteristics ... 25
Table 5 - Enablers and blockers’ aspects in SW CS .. 44
Table 6 - Review Literature in SW CS publications .. 49
Table 7 - Snowballing search .. 49
Table 8 - Final set of publications ... 50
Table 9 - Map of Collaboration barriers from LR ... 52
Table 10 - Collaboration barriers and SW CS elements .. 68
Table 11 - Collaborations barriers from crowd .. 77
Table 12 - Summary of criteria definitions ... 86
Table 13 - Examples from category coding ... 87
Table 14 – Message Categories ... 87
Table 15 – Message Topics .. 88
Table 16 - Examples from topics coding .. 90
Table 17 - Challenge data ... 92
Table 18 - Winner coders in the forum ... 94
Table 19 - Winner’s communication ... 96
Table 20 - Winners who did not communicate .. 96
Table 21 – Winners who communicated .. 97
Table 22 - Questions and Answers on Help – Requirements103
Table 23 – Questions on Identified problems – Processing104
Table 24 - Questions on Identified problems – Requirements104
Table 25 - Questions on Confirmation request - Deadline ..105
Table 26 - Questions and Answers on Invitation - Access ..105
Table 27 - Tips on Processing ...106
Table 28 – Winner Quotes from Problems response category...................................109
Table 29 - Quotes winner from Identified problem on Requirements109
Table 30 - Quotes from Quitters ..112
Table 31 - Total number of participants in the communication forum118
Table 32 - Quotes of survey's participant who did not communicate120
Table 33 –Question 2 and quotes by participants who communicate121
Table 34 - Question 2 and quotes by participants who did not communicate122
Table 35 - Question 4 and quotes by participants who communicate123
Table 36 – Question 4 and quotes by participants who did not communicate123
Table 37 - Question 6 and quotes by participants who communicate124
Table 38 - Question 6 and quotes by participants who did not communicate125
Table 39 - Example of quotes about latency information barrier131
Table 40 - SW CS collaboration recommendations ...133

LIST OF ABBREVIATIONS

AMT Amazon Mechanical Turk
API Application Programming Interface
CSCW Computer Supported Cooperative Work
OSS Open Source Software
GT Grounded Theory
HIT Human Intelligence Tasks
IEEE Institute of Electrical and Electronics Engineers
SW CS
Q&A

Software Crowdsourcing
Questions and Answers

CS Crowdsourcing
IT Information Technoloy
AI Artificial Intelligence
HTML Hypertext Markup Language
GUI Graphical User Interface
DSD Distributed Software Development
CSV Comma Separated Values

TABLE OF CONTENTS

1. INTRODUCTION ... 13
1.1. Research design and thesis organization .. 14
1.2. Scope .. 16
1.3. Main Contributions .. 17
1.4. Other Results .. 19

1.4.1 Published Papers .. 19
1.5.1 Participations .. 20
1.5.2 Advising .. 21

1.6 Funding .. 21
1.7 Collaboration, Research Visits, and Course Work ... 21

2. THEORETICAL BACKGROUND ... 23
2.1 Software Crowdsourcing .. 23

2.1.1 SW CS Elements .. 23
2.1.2 SW CS characteristics .. 26

2.2 Application models in SW CS .. 27
2.3 Phases of software development and SW CS platforms ... 28
2.4 Opportunities in SW CS .. 30
2.5 Challenges in SW CS ... 30
2.6 Collaborative software development ... 31

2.6.1 Collaboration challenges in software development ... 32
2.7 Competition Software Development .. 33

2.7.1 Forum Communication ... 37

3. COLLABORATION BARRIERS IN SW CS ... 41
3.1 Exploratory Phase .. 41
3.2 Semi structured interview from three SW CS elements ... 41

3.2.1 Settings and methodology .. 41
3.2.2 Data Analysis .. 43
3.2.3 Results .. 44
3.2.4 Discussion ... 45

3.3 Literature review from three SW CS elements ... 47
3.3.1 Settings and methodology .. 47
3.3.2 Data Analysis .. 47
3.3.3 Results .. 50
3.3.4 Discussion ... 67

3.4 Case Study by Crowds’ participants .. 71
3.4.1 Settings and methodology .. 71
3.4.2 Data Analysis .. 73
3.4.3 Results .. 73
3.4.4 Discussion ... 79

4. COLLABORATION CHARACTERISTICS ... 83
4.1 Evaluatory Phase... 83
4.2. Qualitative analysis of communicattion’s forums ... 83

4.2.1 Settings and methodology .. 83
4.2.2 Data Collection ... 85
4.2.3 Data Analysis .. 86

4.3 Initial Results .. 91
4.3.1 Coders and Copilots collaboration .. 91

4.4 Results about Coder’s communication and performance ... 95
4.4.1 Winners who communicate vs Winners who did not communicate................................. 95
4.4.2. Winners group who communicated the most (C1, C2, C3) vs Winners who communicate
(C4-n) .. 96
4.4.3 Discussion ... 98

4.5 Communication patterns from coders .. 100
4.5.1 Introduction ... 100
4.5.2 Common communication patterns for winner, submitter and quitter 103
4.5.3 Winners Communication Patterns .. 106
4.5.4. Communication Patterns of Submitters ... 110
4.5.5 Communication Patterns of Quitters ... 111
4.5.6 Discussion ... 113
4.5.7 Limitations .. 114

4.6 Survey Data ... 114
4.6.1 Introduction ... 114
4.6.2 Data Collection ... 115
4.6.3 Demographics information ... 116
4.6.4 Results .. 118
4.6.5 Discussion ... 127
4.6.6 Limitations ... 128

5. DISCUSSION ... 129

6. CONCLUSIONS AND FUTURE WORK ... 135

REFERENCES .. 139

APPENDIX A ... 148

APPENDIX B ... 149

APPENDIX C ... 151

APPENDIX D... 153

APPENDIX E ... 154

APPENDIX F ... 156

APPENDIX G... 161

13

1. INTRODUCTION

Nowadays, software products are built by many people located in different places
worldwide [KAG13], [AGE15], [KAL15]. Software Crowdsourcing, or simply SW CS, is a
particular way of designing and creating software through the engagement of a global pool
of online workers – the crowd – who can be tapped on-demand to contribute to various
types of software development tasks (e.g., requirements, design, coding, testing,
evaluations, and maintenance) [PRI14], [STO14].

The first SW CS studies were published by Archak [ARC10], Begel et al. [BEG13]
and LaToza et al. [LAT13]. After these studies, this topic has raised interest of different
researchers. For instance, Stol and Fitzgerald [STO14] describe a series of issues in
crowdsourced software development projects, including communication and coordination,
and quality assurance, among other aspects. Other authors have built tools to support and
explore software crowdsourcing. LaToza et al. [LAT14], for example, developed a
crowdsourcing application called CrowdCode for decomposing programming work into
micro-tasks.

SW CS is usually structured around platforms. These are marketplaces that allow
requesters to seek workers to perform their tasks and, at the same time, support workers in
finding tasks to work on. Examples of SW CS platforms include TopCoder [TOP17], uTest1,
and Passbrains2 [ZAN16]. In general, these platforms explore a competitive approach
[LAT16], in which crowd workers independently create solutions, competing against each
other anchored by a monetary reward after task completion. While competition reduces
collaboration [HUT11], some studies [NAG12], [BOU14], [GRA16] have surprisingly
indicated that there is collaboration in competitive SW CS platforms. In other words, the
work conducted by a crowd is not as independent, autonomous, and isolated as it is often
assumed to be [GRA16]. In fact, recent results suggest that collaboration can improve the
quality and quantity of crowdsourced task submissions [LAT15], [TAU17], [YAN16]. SW CS
platforms play an important role in supporting, or hindering, collaboration [NAG12],
[PEN14]. For instance, Machado and colleagues [MAC17], found out that TopCoder
supports communication among crowd members in a restricted way, given the fact that
TopCoder explores a competitive model.

The context described above suggests there is a gap between research and practice:
current competitive SW CS platforms provide limited support for collaboration, but, at the
same time, there is evidence that collaboration does take place in SW CS, which increases
the quality of the crowdsourced task. To address such disconnection between research and
practice, we have conducted multiple studies, using mixed research methods, to understand
how collaboration takes place in SW CS, including the barriers participants face, as well as
the characteristics of this collaboration, including which participants are more likely to
collaborate with, and how this collaboration correlates with participants’ performance in the
tasks.

1 https://www.utest.com
2 http://www.passbrains.com

14

The broader research focus of this work is on identifying the barriers and
characteristics of collaboration among participants in competitive SW CS. Such focus cannot
be explored within the limits of a single thesis; thus,

To be more specific, the questions addressed by this thesis are:

• RQ1. Which collaboration barriers do the crowd face when performing tasks in a
competitive SW CS environment?

• RQ2. Which current collaboration characteristics are present in competitive SW
CS?

• RQ3. How might the collaboration impact in crowd productivity?

The study presented in this thesis was divided in two phases, one exploratory and
one evaluatory. In the exploratory phase, we began studying whether collaboration takes
place in SW CS, and if so, which collaboration barriers participants faced. In this case, we
used semi-structured interviews and a literature review as research methods. In addition,
we conducted an exploratory case study to identify the collaboration barriers faced by the
crowd when trying to submit their solutions to the most important SW CS platform,
TopCoder. The main aspect underlying these collaboration barriers was the communication
among members. Therefore, in the confirmatory phase, we decided to conduct a qualitative
analysis of the main communication channel used by the crowd: forums hosted on the
TopCoder platform. To validate our results, we carried out a survey with developers who
had competed on TopCoder.

Our results suggest that collaboration can be found among crowd competitors,
crowd-platform, and the platform requester. However, several barriers are faced, generating
tension during the SW CS contest, and reflecting on the quality of performed tasks when
submitting and winning tasks. Finally, we conclude this thesis by suggesting practical
implications on the role of collaboration for the crowd, requester, and the competitive SW
CS platform.

1.1. Research design and thesis organization

As presented in the previous section, our goal is to identify collaboration’s characteristics
and barriers faced by crowd members in competitive SW CS platforms. In order to do so,
we adopted qualitative methods of investigation for data collection and analysis. This
perspective allowed us to collect information about the collaboration barriers participants
face during a competition, and, more importantly, about the characteristics of such
collaboration, including who participants are more likely to collaborate with, and how this
collaboration correlated with participants’ performance in SW CS contests.

We used multiple empirical methods to address this thesis’ research problem and
answer the research questions. More specifically, this research results from combining a
literature review, a qualitative analysis of semi-structured interviews, an exploratory case

15

study, a qualitative analysis of textual messages from communications on forums hosted on
TopCoder platform, and a survey with developers who had competed on TopCoder.

A better understanding of the analyzed context, the people, the artifacts, the
processes, the elements, and the relationships involved are necessary actions to reach the
proposed goal of this research. With so, it is possible to find issues and points of
improvement in the analyzed situation. Figure 1. summarizes the phases (exploratory and
evaluatory), and the research strategies employed in this thesis.

Phase I – Exploratory. This phase comprises studies conducted with participants
involved in projects in SW CS: the requester, the platform, and the crowd. In the first step,
we investigated how SW CS has been adopted in the IT industry, and the main challenges
faced during its adoption, i.e., we adopted to work at a macro level of analysis. This was an
(i) empirical study using semi-structured interviews with practitioners and companies. We
observed that collaboration issues, scarce context on project information, and unclear
documentation were by far the most mentioned challenges interviewees reported [PRI14],
[MAC16]. In addition, we conducted a (ii) literature review of the available data repository
provided by [MAO15a], combined with a snowballing search approach [WOH14] aiming to
organize the collaboration barriers identified in the studies. We observed that the
collaboration barriers impacted all participants, but, most significantly, on the performance
of crowd participants.

In order to empirically explore which barriers crowd participants faced while
performing a task in competitive software crowdsourcing, we also conducted (iii) an
exploratory case study on TopCoder platform (one of the most important competitive SW
CS platforms) [MAC17]. This study suggested that collaboration issues play a central role
on competitive SW CS environments in terms of communication.
Thus, the main contribution of the exploratory phase was aggregating and organizing the
collaboration barriers evidenced by different studies, and creating a collaboration barriers’
model in SW CS.

Phase II – Evaluatory. The evaluatory phase is comprised of two studies. Our goal
was to evaluate the collaboration barriers identified in Phase I, but now at the micro level,
therefore we focused specifically on crowd members. First, we performed (iv) a qualitative
empirical study of the main communication channel – foruns – used by crowd participants
on TopCoder platform. Collecting detailed data by content post from communication forums
is a novel process in SW CS studies since, as far as we know, no previous work has reported
content analysis from TopCoder’s forum as a strategy of research and analysis in the SW
CS area. The outcomes obtained from this analysis provided evidence from the collaboration
characteristics, including which participants are more likely to collaborate with, and how this
collaboration reflects in the task performance and quality in SW CS contests.

To validate these results, we carried out (v) a last empirical study based on a small
survey with developers who had competed on TopCoder. The results suggest that the
potential benefits of collaboration among crowd members is correlated with delivering
winning soltuions in competitive SW CS.

This thesis is organized as follows: in Chapter 2, we present a broader review of

16

software crowdsourcing, including application models and platforms. In Chapter 3, we
describe the collaboration barriers’ model obtained through the exploratory phase, followed
by the description of the adopted methods for data collection, and the analysis in each one
of the settings. Chapter 4 presents the results of the evaluatory phase, illustrating the
qualitative analysis and the data from the survey. It discusses the correlation between
collaboration characteristics and task performance. Finally, in Chapter 5, we present the
discussion about our research, and, in Chapter 6, our conclusions and future directions.

Figure 1 – Research Design

1.2. Scope

In this subsection, we describe the scope of this research and define some terms.
Regarding of focus, we restrict this thesis to paid and competitive software crowdsourcing
models instead of general crowdsourcing projects, because of the distinct nature of the
former. Therefore, our claims are not directly generalizable to SW CS in other models.

In addition, when we refer to “software crowdsourcing” we mean open call [HOW06]
whitin software engineering tasks [MAO15b]. We focus on competition crowdsourcing model
[LAT16], in which development is typically carried out by an undefined and potentially large
group of online workers (the crowd), who competes with each other. In an open call from
competitive crowdsourcing software development, projects, challenges, and tasks can be
publicly visualize. However, to access the complete parties of the project (specification
documents, artifacts, communication channel, etc.) by any skilled person who wants to
participate of the challenges (s)he first needs to became a member of the current SW CS
platforms, choose, and register in a challenge.

17

In our study, we investigate the crowd-level collaboration with other participants
(crowd, platform and requester), in several challenges on one site, TopCoder – the leading
online SW CS contest platform. On TopCoder, participants compete of monetary prizes,
reputation points, and, sometimes, job opportunities.

In addition, we avoid projects from programming marathons, data science, and
microtasking contests, including platforms for specific software development phases such
as crowdtesting, or crowddesign; and platforms for analytics and predictive modeling. These
kinds of crowdsourcing projects have other characteristics and may involve different levels
of collaboration, which can obscure some possible barriers encountered by participants,
since the projects are related to domain and specific technologies.

In TopCoder platform there are different categories and subcategories for those
participating in SW CS project contests, as mentioned before, including algorithm
marathons, design, data science, and development. In this thesis, we solely focus on the
development challenges’ category and the coding tasks’ subcategory during registration and
submission phases. Therefore, we define crowd participants as developers (i.e., people with
a development background), who want to participate in a competitive SW CS project,
regardless of whether or not they have won previous challenges. More specifically, the
crowd participants on the analyzed platform, TopCoder, are mentioned in this thesis as
coders (i.e., platform members who participate in the development challenges).

We aim to identify how characteristics collaboration takes place in competitive SW
CS among the involved participants. We are not interested in analyzing what had called
crowd participants’ attention to join a contest, for instance.

Instead, we seek to understand how collaboration barriers and characteristics
influence task performance among participants, alongside with who participants are more
likely to collaborate with, and how this collaboration correlated with participants’
performance in the contests. In this sense, we present a collaboration barriers’ model that
would be influential to participants’ task performance. Besides that, we show which
participants are more productive and win the challenges through the collaboration patterns
found in SW CS contests.

We claim that a major issue within the SW CS strategy is not providing potential
collaboration ways to support the collective performance among participants during the
software competition.

1.3. Main Contributions

In this work, we discuss the barriers and characteristics of collaboration brought by
the new phenomenon in a contemporary software development context - competitive SW
CS. In this new work setting, specifically in the work of software development through online
systems (platforms) that allow the broadcasting/ distribution of "open" and "crowd-enabled"
calls, there is a need for a clearer and deeper understanding of how and who the participants

18

who collaborate are, as well as how collaboration impacts on productivity and quality
solutions submitted during SW CS contests.

By answering the proposed research questions, this thesis presents the following
main contributions. First, it provides an empirically grounded understanding of collaboration
characteristics and the barriers faced by crowd workers during SW CS task fulfillment.
Moreover, another contribution of this dissertation is a discussion on the three involved
parties in the SW CS context – requester, crowd, and platform, which helps to bring up the
collaboration aspects that influence this contemporary software development strategy.
Among such aspects, communication (as expected) and coordination are the most important
ones. In other words, this thesis illustrates how the crowd works, and submits their solutions
to the platform. A third contribution comprises how crowd workers collaborate to improve
their productivity, winning the challenges they are taking part of, which is demonstrated
through an analytical framework of communication patterns. The fourth contribution is by
means of insights about crowd competitors, conditions, processes, and outcomes of
collaboration to both research on and design of SW CS contests. In order to do so, we
present an approach for identifying dependencies/correlations between better
communication and productivity in development software contests among crowd workers,
that is, an approach for the requesters who demand SW CS tasks, for the crowd, who
delivers/solves solutions to the tasks, and, finally, for the platforms, which intermediates this
market.

In this sense, we investigated to what extent SW CS is a collaborative software
development strategy, which barriers crowd workers face when performing a task in a SW
CS contest, and how communication is necessary to support crowd workers in boosting
submission rates and winning SW CS challenges.

The platforms can benefit from the communication patterns presented in this thesis
in various ways. Once collaboration and their characteristics between submission and
winning ratio are related to these communication patterns, it becomes possible to examine
the actual communication over forum challenges and, from this measure, identify potential
submitter and winners. The platform could make the decision to elaborate alternative
competitions and, take steps to facilitate more suitable flows of communication.

These results suggest that communication strongly influences the crowd’s
productivity, besides impacting on the amount of crowd workers who registered for the task
but did not submit their solution. Thus, we shall say that there is an unrealized potential for
more collaboration in competitive SW CS.

This thesis contains main novel contributions, which map into the research questions
presented in Chapter 1. and, are related to the artifacts generated in research phases I and
II, as presented in Section 1.1. Therefore, our mentioned contributions are:

• An empirical identification and modeling of collaboration barriers in competitive
SW CS;

• Understanding crowd workers’ communication behavior, assisting platforms to
better design software crowdsourcing development challenges;

• An analytical framework of communication patterns that was used to analyze
and understand the impact on crowd workers’ productivity in competitive SW
CS.

19

1.4. Other Results

This research resulted in scientific publications, undergraduate diploma theses, and
project funded by national agencies. In the following subsections, we present these results.

1.4.1 Published Papers

 During the PhD program, we published papers related to the topic of this thesis. So
far, the main results were published in papers at emergent SW CS events, namely, ICSE,
FSE, ICEIS, and IEEE Software. The summarized references for the papers originated from
this research are presented as follows:

2018
Melo, R.R.M.; Machado. L.; Prikladnicki. R.; Souza, C.R.B. “Um Estudo Qualitativo sobre o
Crowdsourcing: Análise da Colaboração na plataforma TopCoder”. In: XXI Congresso
Ibero-Americano em Egenharia de Software (CibSE), 2018. (to appear)

Zanatta, A.L; Machado. L.; Steinmacher, I. “Competence, Collaboration and Time
Management: Barriers and Recommendations for Crowdworkers”. In: 5fh International
Workshop on CrowdSourcing in Software Engineering (CSI-SE). Collocated with the 40
International Conference on Software Engineering (ICSE), 2018. (to appear)

2017
Zanatta, A. L.; Steinmacher, I.; Machado, L. S.; Souza, C.; Prikladnicki, R. “Barriers Faced
by Newcomers to Software-Crowdsourcing Projects”. IEEE Software, vol. 34, 2017, pp. 37-
43.

Machado, L. S.; Zanatta, A. L.; Marczak, S.; Prikladnicki, R. “The Good, the Bad and the
Ugly: An Onboard Journey in Software Crowdsourcing Competitive Model”. In: 4th
International Workshop on CrowdSourcing in Software Engineering (CSI-SE). Collocated
with the 39th International Conference on Software Engineering (ICSE), Buenos Aires, 2017,
pp. 2-8.

2016
Zanatta, A. L.; Machado, L.; Pereira,G.; Prikladnicki, R.; Carmel, E.
“Software Crowdsourcing Platforms”. IEEE Software, vol 33(6), 2016, pp.112-116.

Machado, L.; Kroll, J.; Marczak, S.; Prikladnicki, R. “Breaking Collaboration Barriers through
Communication Practices in Software Crowdsourcing”. In: Global Software Engineering
(ICGSE), 2016 IEEE 11th International Conference, pp. 44-48.

20

Machado, L., Kroll, J., Prikladnicki, R., de Souza, C. R. and Carmel, E. “Software
Crowdsourcing Challenges in the Brazilian IT Industry”. In: 18th International Conference on
Enterprise Information Systems (ICEIS), Rome, Italy, 2016, pp. 482-489.

Machado, L., Meneguzzi, F., Prikladnicki, R., Carmel, E.; de Souza, C. “Task Allocation for
Crowdsourcing using AI Planning”. In: 3th International Workshop on Crowdsourcing in
Software Engineering (CSI-SE). Collocated with the 38th International Conference on
Software Engineering (ICSE), Austin, Texas, 2016, pp. 36-40.

2015
Machado, L.; Prikladinicki, R. “Software Crowdsourcing: Barriers Faced by the Crowd.” In:
2nd Latin-American School on Software Engineering (ELA-ES), UFRGS, 2015.

Machado, L.; Pereira, G.; Prikladinicki, R.; de Souza, C. R. B; Carmel, E. “Uma Visão sobre
a Adoção do Crowdsourcing para Desenvolvimento de Software no Brasil. In I Workshop
sobre Sistemas de Crowdsourcing (SCrowd) in conjunction with Congresso Brasileiro de
Software: Teoria e Prática, Belo Horizonte, MG, 2015.

2014
Prikladnicki, R.; Machado, L.; Carmel, E.; de Souza, C. R. B. “Brazil Software
Crowdsourcing: A First Step in a Multi-year Study”. In: 1st International Workshop on
Crowdsourcing in Software Engineering (CSI-SE). Collocated with the 36th International
Conference on Software Engineering (ICSE), Hyderabad, India, 2014, pp. 1-4.

Machado, L.; Pereira, G.; Prikladnicki, R.; Carmel, E.; de Souza, C. R. “Crowdsourcing in
the Brazilian IT industry: what we know and what we don't know”. In: 1st International
Workshop on Crowd-based Software Development Methods and Technologies
(CrowdSoft). Collocated with the 22nd Foundations of Software Engineering (FSE), Hong
Kong, 2014, pp.7-12.

1.5.1 Participations

ICSE 2017 - Student Volunteer

Poster Session – “Software Crowdsourcing in Brazil IT Industry”. Collective Intelligence
Conference. Santa Clara, CA, 2015.
Authors: Leticia Machado, Rafael Prikladnicki, Cleidson Souza e Erran Carmel

Poster Session – “Software Crowdsourcing: A Transformação da Indústria de Software”.
Les Doctoriales Rio Grande do Sul. Bento Gonçalves, RS, 2015.
Authors: Leticia Machado e Rafael Prikladnicki

21

Poster Session - “Is Software Crowdsourcing a collaborative software development model?”
SIGCHI Writing Workshop at IHC/SBSC 2015, Salvador, BH, 2015.
Authors: Leticia Machado, Sabrina Marczak, Rafael Prikladnicki e Igor Steinmacher

Poster Session – “Crowdsourcing: Software Industry transformation and disruption”. Warm
Up Symposium for ICSE 2017. Co-located with Congresso Brasileiro de Software: Teoria e
Prática (CBSoft), Maceió, AL, 2014.
Author: Leticia Santos Machado

1.5.2 Advising

Graduation Thesis 1. Marcos Cezar Szczepanik. “Desafios para o Gerente de Projetos
em Ambiente de Software Crowdsourcing”, 2017. Trabalho de Conclusão de Curso -
Universidade do Vale do Rio dos Sinos. Advisor: Leticia Santos Machado.

Graduation Thesis 2. Felipe Amadeus Junges. “Software Crowdsourcing: Um estudo sob
a perspectiva da multidão”, 2016. Trabalho de Conclusão de Curso - Universidade do Vale
do Rio dos Sinos. Advisor: Leticia Santos Machado.

Graduation Thesis 3. Sâmara Knorst. “Crowdtesting: Um estudo da caracterização das
plataformas de teste para a multidão”, 2014. Trabalho de Conclusão de Curso -
Universidade do Vale do Rio dos Sinos. Advisor: Leticia Santos Machado.

1.6 Funding

a) Scholarship granted by HPE Company
b) Brazilian Science without Borders Program Project (PVE) – “Brazil

Crowdsourcing: Software Industry transformation and disruption”

1.7 Collaboration, Research Visits, and Course Work

During this study, we had the opportunity to collaborate with professors from
American University, Washington/DC and University of California, Irvine (UCI). Professor
Erran Carmel, who is a recognized researcher in the area of globalization of technology
work, which involves global teams and global sourcing, visited Brazil as a Visiting Professor
of the Science Without Borders Program, which the author of this thesis was part of. The
project on the study of the subject “Crowdsourcing na Indústria de TI Brasileira” involved the
partnership between Federal University of Pará, American University and PUCRS during
the period from 2015 to 2017.

We did a research visit to UCI to interact with Professor André van der Hoek and
other researchers. During our time there, we mainly had the opportunity to design and carry

22

out an experimental study in the form of an online contest to understand how crowd
collaboration can improve the quality of the results of a competitive software development
task. This experiment was based on a previous one [LAT15], focused on software design,
to assess the value of recombination approach.

Our collaboration and research visit to UCI contributed mainly to the follow aspects
of this study:

• Acquiring a better understanding of the quantitative research method
• Reviewing the research design
• Partially executing the evaluatory phase

Furthermore, still during the academic course of this thesis, it was possible to develop
a collaboration that resulted in the analysis and characterization of collaboration through
messages obtained on TopCoder platform forum, carried out in partnership with then
master's student Ricardo Marinho and his advisor, Prof. Dr. Cleidson R.B. de Souza.

Part of the obtained results were presented in Chapter 4 and served as input for the
extension of the messages analysis of TopCoder’s forum that resulted in the collaboration
characteristics described in subsection 4.3 of this thesis.

Throughout the courses attended during the PhD program, the student carried out work
related to Crowdsourcing in the fields of AI, Natural Language – Ontology, and Emerging
Themes in Database.

23

2. THEORETICAL BACKGROUND

The theoretical background represents an important research step [YIN01],

containing the main concepts and theories of the researched areas. In this chapter, we
present the fundamental concepts on SW CS, competition model and, SW CS platforms.

2.1 Software Crowdsourcing

Crowdsourcing in software development derives from Crowdsourcing (CS) on the
whole and keeps in its definition the act of engaging a global set of online workers [MAO15b],
who contribute to providing software solutions or services on demand [PRI14].

Technology encourages unprecedented levels of collaboration among people from
different backgrounds and farthest geographical locations, with online communities at the
heart of CS providing the context and structure within which "work" takes place [HOW08],
[ZHA14].

With the broad growth and accessibility of the Internet, driven by Web 2.0 [PEN14],
[STO14], we can notice the emergence of online communities organized according to
different areas of interest, thus, favoring CS activities [EST12], [BEG13]. The advantage of
using global and heterogeneous resources by assigning a problem or task to the public
rather than passing it on to a single company seems to be indisputable to most authors who
study the area of Crowdsourcing [DOA11], [SCH11], [KIT13], [KAG13], [SAX13]. Thus, as
in other application domains in which CS is used such as creative [KIT10], [BOU14], and
innovation [DOA11], Software Engineering (SE) also seeks to employ the benefits of open
collaboration.

In SW CS literature, several definitions of the term have been found according to
different authors who study the adoption of CS for SE [WU13], [LAT13], [TAJ13], [STO14],
[MAO15a]. The SW CS definition adopted in this research will be that of Mao et al.
[MAO15b], that refers to the act of externally transfer any task of the software development
process to a potential and undefined large group of online workers – the crowd, in an open
call format.

2.1.1 SW CS Elements

In each area where CS is applied, including the area of SW CS, it has always been
noticed the use of four main elements, defined as: (i) requesters (companies or individuals),
who post the issues they want solved— as a freelance job or competition; (ii) the community
of online workers – crowd participants, who have signed up for the platforms and then decide
(as individuals or small teams) whether to take on a challenge (open call); (iii) the platform,
that mediates and connects requester with online workers to solve tasks, and (iv) the task,
a unit that has been fragmented to be assigned as the activity/problem to be solved. Based

24

on the view of Hosseini et al. [HOS14a], those four elements: crowd, requester, task, and
platform, were considered as the main pillars of SW CS.

Considering the extremely distributed nature in SW CS, in [HOS14a] the authors
recognized that the participants involved in SW CS projects have different characteristics as
described. The central unit that involved participants - the software task, is also mentioned
according to its features.

 Table 1 presents the five distinct features from the Crowd.

Table 1 - Crowds' characteristics

Feature Description
Diversity It means the recruitment of different people within the

crowd to accomplish a task. Such diversity can be divided
in spatial diversity, different backgrounds and,
competence.

Unknown-ness Is the condition or fact of being anonymous. The crowd
participating does not know the requester (crowdsourcer)
and does not know other members.

Largeness Refers the large potential number of the crowd
participating in a crowdsourcing activity.

Undefined-ness It means randomness selection procedures, without
imposed borders to select a group of people.

Suitability It means suiting a given propose, ocasion. Crowd
suitability means the fit of the crowd for performing a
crowdsourcing activity.

The requester’s characterisrtics are show in Table 2.

Table 2 - Requester’s characteristics

Feature Description
Incentives Referes to incentives provided as a kind of extrinsic or

intrinsic motivation for the crowd as payment and peer
recognition, respectivetly.

Open call It means that the task is open to anyone (public) who is
willing to try out an act.

Ethicality It means conforming to moral standards, or to the standards
of conduct of a given profession or group.

Privacy It means that the requester should not disclose the crowd’s
personal and private information to other participants, other
organizations and other entities.

Table 3 summarises the features of the platform according to [HOS14a].

25

Table 3 – Platform’s characteristics

Feature Description
Crowd-related
interactions

Refers to interactions such as enrolment, authentication,
submission, feedback mechanisms, etc. provide by the CS
platform between the crowd and the platform.

Crowdsources-related
interactions

Refers to register, authentication, broadcast, negotiation,
verification mechanisms, etc. provide by the Cs platform and
crowdsourcer (requester).

Task-related facilities Include aggregation results, storing history of completed
tasks and threshold mechanisms for the quality and quantiy
of the obtained results.

Platfrom-related
facilities

Include online environment, feasible interface, attractive and
interact interface and payment mechanism.

Finally, Table 4 summarise the features of the crowdsourced task.

Table 4 – Task’s characteristics

Feature Description
Modularity Decompose complex tasks into a set of smaller tasks.
Complexity Condition or quality of being complex or simple task.
Solvability Capability to be solved for uhmans.
Automation
characteristics

A task diffculty to automateor expensive to automate.

User-driven Activity that the crowd should provide a solution to a particular
problem.

Contribuition type Contribution of the crowd can be individual and can be a
collaborative contribution.

Figure 2 represents the interaction flow among task, requester, platform, and crowd,
in which:

Figure 2 - SW CS involved parties

1. Posting task: it represents the disclosure of tasks submitted by the requester in a

certain platform.

26

2. Selecting task: it refers to the selection and reception of tasks by the crowd. At this
stage of interaction, the platform can play an important role in directing certain tasks
to crowd members who meet the requirements of interest, competence, and
experience that the task may require.

3. Submitting solutions: it characterizes the submission flow of solutions sent by the
crowd. At this stage, validations can be made for the selection and aggregation of
solutions that have met the specifications and quality criteria of the tasks initially
defined by the requester.

4. Obtaining deliverables: it represents the moment of choosing the solutions submitted
by the crowd. In this step, the consolidation of the obtained results can be reviewed
by the requester, so that the task remuneration is accomplished, finishing the task.

2.1.2 SW CS characteristics

To assist in understanding SW CS characteristics related to other development
strategies such as outsourcing, opensourcing, and innersourcing development, , extracted
from [ÅGE15], is presented. Through the figure, the authors highlight SW CS characteristics
considering whether the group knew each other or not, and in terms of professionals’
payment format.

In Figure 3 a quadrant matrix has two dimensions. The first represented dimension is
the participants’ degree of knownness in a software project. In both strategies, innersourcing
and outsourcing, the workforce is “known”, that is, all project members know each other
face-to-face or establish a virtual contact where each person’s basic social and technical
information (e.g., experience, origin, etc.) is known, and it is possible to have a certain
guarantee of collaboration, although the degree of collaboration may vary. In the traditional
outsourcing scenario, a customer clearly knows with whom they close a contract, the
location and form of work that has been specified. In the innersource, developers will be
known by their corporate ID (for example, corporate email address). In opensourcing and
crowdsourcing strategies, this identification does not occur [SCH09]. In these approaches,
developers are usually unknown.

From the software managers’ point of view, utilizing external, unknown, uncontrollable
crowd workers would put their projects under greater uncertainty and risk compared with in-
house development [SAR17].

27

Figure 3 - Software development strategies

Font: [ÅGE15]

The second dimension of Figure 3 represents the payment format of software
development strategies. Developers involved in an opensourcing context may or may not
be paid. A project that will be carried out through the open source community is initially a
project that could attract volunteer developers, similar to CS projects. At the same time, the
organization that performs open source projects may still be involved in projects where its
developers can be paid to keep them engaged in the project. In opensourcing, communitie’s
knowledge is shared with a focus on developing better software and few or no attention to
profitability. In general, opensourcing is more based on the voluntary aspect of participation,
where the network of developers tends to be more stable, with long-term collaborative ties.

Regarding crowdsourcing developer’s networks tend to be more competitive, short-term
collaborative and driven by monetary participation [OLS13], the common motivation
relationships between open source and crowdsourcing are based on the reputation that such
activities can offer and flexibility in performing activities (usually carried out at home), to
explore the self-interest about a certain subject or knowledge [OLS13].

Developers of an innersource project are, by definition, always paid, because they are
employees of an organization. Developers in a “conventional” outsourcing context can also
be paid “by task” (short-term), or they can be hired (long-term). In turn, crowdsourcing differs
from outsourcing, because, besides developers not knowing each other, they will never be
“hired” in a CS setting but will always be paid by task.

2.2 Application models in SW CS

According to the CS definition, the CS open call format to request a particular task, the
involvement of unknown crowd participants, and the potential group of people that may be
covered in these tasks distinguish CS from other software development strategies, as it was
presented in subsection 2.1.2 of this document. According to [LAT16], by varying the
aspects of how a complete task can be or not decomposed into smaller tasks, how crowd
members collaborate, among others, a number of CS models have emerged and made the
concept of collective intelligence and open innovation common in the performance of
software development activities.

28

In [LAT16], peer production, microtasks, and competition are proposed as the three main
CS models for SE. Such classification is based on the form of crowd participation in software
projects.

Competitions: The competition model receives much attention in software
development, since TopCoder platform, pioneer in SW CS tasks, offers to requesters access
to diverse solutions in which it is possible to obtain results with high quality. At the same
time, additional not foreseen costs in this model can arise due to specific knowledge of the
tasks, the number of participants involved, and the quality of the solutions [STO14], [LAT16].

Microtask: The microtask model, in which work is partitioned and can be completed in
a few minutes, is often used for a number of application domains because of its high
scalability. In software development, the authors [LAT16] discuss the success of this model
for testing tasks – crowd testing. There are a large number of platforms intended for testing
(functional, interface, etc.), which will be presented in subsection 2.3. Since it becomes
possible to quickly allocate specialized workforce, or not, to complete test tasks with greater
coverage of devices, operating systems, among others; in less time, this model offers good
opportunities for the market.

Peer production: The peer production model is a very widespread example in the open
source community. It follows a model in which control is decentralized, where contributions
and decisions of project scope and objectives are made by the members of the community
themselves, motivated by a good cause or by the reputation they can achieve. In addition to
OSS, other forms of peer production are currently being used, such as the Q&A site and
StackOverflow3, where developers share knowledge through answering questions asked on
the site [LAT16], [STO10].

2.3 Phases of software development and SW CS platforms

Innovation in modern crowdsourcing is in the platform itself— and the services it
provides. These services include management and coordination of processes and people
at both technical and business levels. For example, Topcoder [TOP17], Upwork4, and
Crowdplat5 have tools that support project managers, team leads, and any other governance
needs [ZAN16]. The requester creates a task and submits a request describing the main
requirements, including instructions, constraints, acceptance criteria, and goals. The
requester also defines the target audience, taking into account the crowd’s abilities, and the
task’s duration, resulting in a document that goes through the platform. The platform assigns
the task to the crowd. The crowd, in turn, participates and executes the request. At the end
of the process, the requester validates the request and rewards the crowd on the basis of
the accepted solutions.

Some general platforms, such as Amazon Mechanical Turk6 (AMT), Stack Overflow,

3 https://www.stackoverflow.com
4 https://www.upwork.com/
5 https://crowdplat.com/
6 https://www.mturk.com/

29

Innocentive7, and Freelancer8, are not specifically for software development, but they
support it. Amazon Mechanical Turk is the main platform for microtasks, and it has been
employed, for instance, to support GUI testing [KIT08], [KAU11]. Microtasks are self-
contained units of work that are granular and might take a few seconds or minutes to
complete, with correspondingly small payments. Stack Overflow is a question-and-answer
portal that has been used to improve software documentation.

Multiple Development Phases - TopCoder is the world’s largest software-
crowdsourcing platform, which manages competitions in online algorithms as SRM (Single
Round Matches), data science, development, and design competitions. The crowd often
works on each phase separately as a competition. The standard phases include
requirements’ exploration (application specification), architecture, design, component,
deployment, and testing. The software produced is licensed for profit by TopCoder, and the
competitors involved in its creation receive royalties based on sales. Upwork is a giant
platform with services ranging from graphic design to software development. CrowdPlat is
a small startup. Its model differs somewhat from that of Topcoder once it connects
requesters to either virtual freelance project teams or project teams from small consulting
firms.

Requirements - Crowdsourcing can support the requirements’ phase because the
crowd could be potential users of software, designed to meet their own requirements.
Requesters could harness the power of the crowd to understand its requirements as part of
requirements’ elicitation. The open source model has validated this approach. Some
research, such as CrowdREquire [ADE12], has examined this phase in the SW CS tasks.

Design - Parsing design out to the crowd is challenging. Numerous platforms do
design, although most of it is visual— from logos to webpages. DesignCrowd uses a
competition model and freelance jobs to distribute projects. Requesters can send the crowd
private messages and view a specific design during a competition. Evaluation of designers’
performance is through reviews and positive or negative feedback. Requesters can offer
second and third-place prizes or even pay designers just to compete as a guarantee. The
biggest player in this niche is 99designs9. Competitions have four stages: the qualifying
round, selecting the finalists, the final round, and selecting the winner.

Coding - This phase is covered largely by the general-purpose platforms we
mentioned before. Basically, requesters describe their problem and post a task, and
programmers bid or compete to provide solutions. We recently notice platforms here:
Codeforces10, HackerEarth11, HackerRank12 and, Codewars13.

Testing - Crowdsourcing’s immense power is evident in software testing. Here, a
large crowd tests software, using many testing platforms in which the applications run on

7 https://www.innocentive.com/
8 https://www.freelancer.com/
9 http://99designs.com
10 http://codeforces.com/
11 https://www.hackerearth.com/
12 https://www.hackerrank.com/
13 https://www.codewars.com/

30

different devices, operational systems, browsers, and language versions. Testing can be
quick, with ramp-up and ramp-down, in different environments and situations. Typically,
requesters pay only for the valid bugs found. Some crowd-testing platforms have experience
with diverse skill levels, minimum functionality, and security during operational execution. A
crowd-testing platform must coordinate activities in the crowd, track work progress,
guarantee task deadlines and quality, and ensure project confidentiality, safety, security,
and terms and conditions. Some of the main crowdtesting platforms are uTest, Passbrains,
BugFinders14, Testbirds15, and 99tests16.

For some software applications such as Kaggle17, a data science SW CS platform is
one of the most representative examples [TAU17], [ZHO17].

SW CS taps global inputs in new ways. Crowdsourcing platforms have introduced
dramatic innovations to software development, from competitions, to coder ratings, and
massive crowd testing. These benefits come with some complications. The platforms have
been evolving, so both requesters and workers must choose the best platform for a project.
Additionally, sourcing some parts—or the whole—of a project increases both the need for
coordination and the risks. Challenges include cross-task coordination, lack of
communication, virtual-team organization, determining the target audience, integrating
crowd’s deliverables, and ensuring software quality.

2.4 Opportunities in SW CS

The opportunities obtained for the adoption of SW CS are widely reported in several
studies [STO14], [TAJ13] [LAT16]. These opportunities are: faster time-to-market, cost
reduction, higher quality through broad participation, allocation on demand of resources to
distribute tasks and, generating ideas and proposing unconventional solutions

Since the first three benefits mentioned above (cost, time and quality) directly address
with well-known three central problematic areas of the Software Engineering, SW CS has
the potential to become a common strategy to software development according [ÅGE15].

2.5 Challenges in SW CS

In crowdsourcing software projects, some development challenges are inherited from
Distributed Software Development (DSD) [CAR01], and Open Source Software (OSS)
[OLS13]. There is a consensus in the literature about the main challenges encountered in
SW CS projects according to [MAO13], [LAT15], [PEN14], [LAT16], [MAO15a], [STO14],
[LI15], [ÅGE15]. These challenges were organized through a framework presented in
[STO14]. The set of six key areas with particular relevance in the context of SW CS are task

14 https://www.bugfinders.com/
15 https://www.testbirds.com/
16 https://99tests.com/
17 https://www.kaggle.com/

31

decomposition, coordination and communication planning and scheduling, quality assurance
and, knowledge and intellectual property. This thesis is focused on the coordination and
communication challenge in SW CS projects.

2.6 Collaborative software development

Software Development is rarely an individual activity. In general, it is a collaborative
activity with the work of several professionals to design solutions and produce quality code.
Members of a software development team need to coordinate their activities, plan new
actions, make decisions, carry out planned activities, and also communicate to develop
software [WHI10], [SOM11].

The word collaboration comes from the Latin words com (prefix together) and
laborare (verb to work), It means that two or more individuals work jointly on an intellectual
endeavor [OXF17].

Collaboration is a complex, multi-dimensional process characterized by constructs
such as coordination, communication, meaning, relationships, trust, and structure,
according to [KOT05]. Another definition of collaboration is given by Pimentel and Fuks,
[PIM12] where communication, coordination, and cooperation appear together in action
among two or more people.

In the Computer Supported Cooperative Work (CSCW) domain, design of systems
for collaborative work is modeled sociability [LEE15]. They argue that concepts of “group”
and “group work” can denote special types of cooperative relations characterized by shared
responsibilities. For a long time, CSCW focused on small and homogenous groups to
support cooperation, and it ignored or even dismissed the major challenges posed by the
system design for collaborative work by a large and maybe undetermined number of
participants. In [LEE15], the authors presented MoCA, a new conceptual mapping of
collaborative work types, consisting of seven dimensions of coordinated action in order to
cover the new characteristics in which collaboration is involved: synchronicity, physical
distribution, scale, number of communities of practice, nascence (describing the creation
and use of temporary and unstandardized artifacts), planned permanence (short-term or
long-term), and turnover.

Software development work is inexorably a collaborative activity that is interwined
with individual activities [WHI07]. A collaborative activity refers to any activity that requires
interaction with another person, for instance, informal meetings, hallway conversations,
phone calls, and e-mail messages [GON11]. Individual activities do not require other
developers’ participation (e.g., coding), whereas collaborative activities require more than
one person to be involved (e.g., a meeting).

Thus, knowing that the collaboration is present in the process of software construction
(local or distributed), it must be ensured that it occurs in a satisfactory way to successfully
provide the developed software product or service. In the work of [OLS00], they pointed five
factors that contribute to the success of a collaboratory computer-mediated science, usually

32

at a distance: the nature of work, common ground, collaboration, readiness, management,
and technical readiness.

A SW CS project involves a decentralized and online developer’s community who
collaborate to produce or bring something new in a software product. The main characteristic
to collaborate in SW CS is the communication (synchronous and asynchronous) using
forums, mailing lists, specification’s documentation, and concurrent versioning systems
(CVS). Although each crowd developer work individually (isolate codebase and artifacts
copies) to building their software solution they collaborate. The crowd makes indirect and
direct collaboration through communication. Crowd’s developers participate in the forum
communication supported by major of SW CS platforms. We use the term indirect and
passive collaboration to represent the group of crowd developers who only read and
consume the text messages posted by other developers on forum during task execution.
The direct and active collaboration represents the group who communicate with other
crowds’ developers on forum.

In this sense, collaboration is represented in this thesis as a kind of activity or action
that occurs in a group within a specific context, and it involves in its core communication
between two or more people. Communication is essential to collaborate occurring in planned
or imprompty interaction [WHI07]. In the SW CS, collaboration and communication concepts
are integrated once the communication among crowd and platform during each development
challenge is strongly focus on the task (goals, requirements, restrictions, technology and so
on) in terms of request for help, help answers, identified problem, and problem response.

2.6.1 Collaboration challenges in software development

Since collaboration is strongly associated with communication among those involved
in the software development process, some characteristics of computer-mediated
communication through which there is collaborative development are presented [HER02].

Communication media are usually classified in the classic time/space matrix,
according to both the spatial dimension (collocated/distributed, i.e., where the interaction
occurs), and the temporal dimension (synchronous/asynchronous, i.e., when the interaction
occurs). Media can also be classified according to another dimension, ‘richness’, which can
be defined as the media ability to convey a large amount of information in different forms.

Common Ground (CG) theory [STR07] posits that people should attempt to achieve
common ground (i.e., mutual understanding) with techniques available in a communication
medium that lead to the least collaborative effort. CG theory presents eight properties that
a medium may impose as constraints on the grounding process: co-presence, visibility,
audibility, contemporality, simultaneity, sequentiality, reviewability, and revisability. No
medium has all the attributes at the same time. When some medium lacks one of these
characteristics, it forces people to use alternative grounding techniques with different costs
for the speaker, the receiver, or both. Participants in a face-to-face conversation usually
establish common ground on the fly, as they have access to clues like facial expression,

33

gestures, and voice intonation. Instead, when participants communicate over media, the
fewer clues they have, the harder to construct it is. As a consequence, people who do not
share mutual knowledge largely benefit from using audio/video channels for completing
collaborative tasks, whereas those who have an extensive preexisting common ground can
communicate effectively also on lean media such as email.

The classic models of knowledge collaboration in groups give particular weight to the
need for convergence. Convergence around a single goal, direction, criterion, process, or
solution helps counterbalance the forces of divergence, allowing diverse ideas to be framed,
analyzed, and coalesced into a single solution. In fluid online communities, convergence is
still likely to exist during knowledge collaboration, but the convergence is likely to be
temporary and incomplete, often implicit, and it is situated among subsets of actors in the
community rather than the entire community [FAR11].

The challenges of working as a team increase under conditions where it is difficult for
members to communicate and coordinate with each other and effectively manage their
mutual dependencies [OSL00]. We refer to these more difficult conditions as “team
coordination complexity.” Specifically, we are considering the challenges of team size and
dispersion.

Compared to the DSD challenges at the time it arise, the changes that SW CS
development are causing also have a major impact [KAG13], [JOH11], [KIT13], not only on
the market itself, but on the way, products are being created, modeled, built, tested, and
delivered to requesters [KAZ10]. Moreover, the authors [STO14], [AGE15], [WU13],
[TAJ13], and [LAT16] point out that working with SW CS (to all involved parties: crowd,
requester and platform), is one of the greatest challenges that the current development
environment presents, from the point of view of the nature of the model, where some issues
stand out such as decomposition and allocation of software tasks, communication and
coordination among those involved, motivation and compensation of tasks, and quality
assurance of solutions submitted by the crowd.

The barriers that had affected DSD development in the past decade were basically
influenced by the geographic and temporal distance that the teams involved faced on their
different sites. Other barriers imposed by distance can also be cited: language and culture
distance, organization, process and management issues, reduced informal communication,
infrastructure and product architecture complexity, and trust. These challenges have
strongly impacted collaboration between teams in global and distributed environments
[CAR01].

2.7 Competition Software Development

Competition software development, as already mentioned in subsection 2.2, is a CS
model that operes around online software platforms. The platform supports the independent
software development challenges (by decomposing into multiple sub-tasks) in which the
crowd developers compete with each other by monetary rewards [MAO15b].

34

Topcoder is one of the main platforms for competitive SW CS projects worldwide,
created in 2001 [ARC10], [LAK10]. It covers all phases of the software development
lifecycle, from elicitation to deployment, in which an open call/open contest to the crowd is
made for each of these phases.

TopCoder has over 1 million workers from over 190 countries, averaging 30 thousand
logins every 90 days, 7 thousand challenges hosted per year, and 70 million dollars in
challenge payouts. In this sense, TopCoder has been investigated by several empirical
studies in the literature, [STO14], [MAO13], [ARC10], [LAK10], [MAC17], [ZAN16], [YAN16],
[YAN17].

Each development task is organized as a challenge through open competition. Designed
to enable wide task accessibility and self-selection, TopCoder platform allows crowd
developers to freely choose to engage tasks based on their personal skills, experience, and
interests [YAN16], [SAR15].

A larger pool of potential developers may lead to a significant increase in registrations
and participation in competitions on TopCoder. The growth of the pool of available
developers appears to have dramatically increased over TopCoder’s history, from 50,000
members in 2004 to over one million members in 2017.

Due to the perception that the crowd with expertise requisite is very large, this brings
implications for requesters/companies who are seeking increased speed of software
development through crowdsourcing [STO17]. However, an important issue in competitive
SW CS is that worker decisions are highly volatile from task registration to task submission.
In several research findings, there is a negative effect on the crowd’s submission/ interest
in competitions [STO14], [YAN15], [YAN16], [SAR17]. The negative effect is the difference
in number of those workers who only register for a task, but do not submit their solution.

The open call is composed of six phases [MAO15a], [MAO15b], [LI15], [LAK10] as
illustrated in Figure 4 and described as follow.

• Posting: the disclosure of a task happens through its publication on the TopCoder’s
website (posting phase). The basic information contains an overview of the task, desired
technologies for performing the task, the award value, and the deadline for solution
submission. Its duration includes two important dates: the deadline for task registration,
and the deadline for task submission.

• Registration: all developers who are interested in participating must announce their
decision publicly through their registration in the competition. This means that online
developers can observe information from opponent developers, including performance
history and skill ranking, including the information exchanged in the task forum. The
registration phase is usually available for a few days. Subscribers can obtain detailed
documents about the task and participate in the forum's communication channel
supported by the platform for each task.

• Submission: registered members are asked to submit their solutions until the
submission deadline.

35

• Review: All submitted solutions are collected by the platform, so that a community review
board shall perform a thorough review based on scorecards (pre-defined evaluation
criteria for each challenge). Once the evaluation process is finished, the coders are
individually notified on their submission results. The reviewed evaluations during the
review phase are announced, and the classified competitors are ranked according to the
average score given by the reviewer of the solutions for each task. The award structure
and reputation mechanisms among members of the TopCoder community are mainly
based on the analysis of the evaluation received by the fulfillment of the delivery quality
requirements in the competitions.

• Appealing: competitors get a chance to appeal the decision made by the reviewers after
submissions have been evaluated.

• Winner: once all appeals have been resolved, the placement is determined by the
average score, and the winner(s) is/are announced.

Figure 4 – TopCoder phase

Fonte: [MAO15a]

Thus, to each phase of SW CS process sucha as Requirements. Architecture,

Component development, Assembly, Ceritification, Deployment and, Maintenance (Figure
Figure 4), TopCoder associates the phases of the open call task, previously described.

On Topcoder, there is a mediator between the platform and the crowd, named copilot,
to follow up on task development. The copilot may be a member of the crowd playing the
representative role of the requester who demanded the task. The copilot’s main
responsibilities are related to managing questions submitted by crowd members in task-
based forums, and answering them, updating information, and so on. It is possible for task
participants to open new threads within the forum and reply to messages from anyone
(crowd and copilot) who is active in the forum.

The platform offers services expressed in the form of tasks organized into challenge
categories, as follows: Design Challenge, Development Challenge, Data Science
Challenge, and Competitive Programming.

A task in the Development Challenge category is categorized in one of the following
sub-categories: Architecture, Assembly, Bug hunt, Code, Concept, Content creation,

36

Copilot, Component design, Component development, First to Finish (F2F), Marathon, RIA,
Spec, Test scenarios, Test Suites, or UI prototype. Despite the category, each task has a
scope and is composed of technical requirements that define the expected behavior of that
software task, and the necessary interfaces to integrate with other parts of the system. For
the development challenge-based tasks, TopCoder has started making available UML tools,
such as sequence, class, use case, and activity diagrams.

Figure 5 illustrates examples of the open challenges for the “Development” category.
Each challenge has its challenge title, technologies, prize value, phase, phase deadline,
number of subscribers, number of submissions, and deadline.

Figure 5 - TopCoder Screen – List of challenges

The registration deadline specifies the time by which all individuals willing to

participate must register for the competition, which is usually two or three days after the
competition posting date. The submission deadline specifies the time by which all solutions
must be submitted, which is usually within five to seven days’ interval after the competition
posting date. Every competition has associated payment that is given to the competition
winner, and, in some cases, 50% of this amount is given to the first runner-up. it

The registration information is public, so that competitors can see who else has
registered. This is achieved by clicking on items in the “Registrants” tab. The result may look
like what is shown in Figure 6. Moreover, information is updated instantly: as soon as one
competitor has registered for the contest, others can see it.

37

Figure 6 - TopCoder screen – registration screen details

2.7.1 Forum Communication

During TopCoder’s development challenge, the communication flow is established
basically by online forums, and interaction frequently happens between Platform and Crowd
workers, and Platform (crowd specialist – copilot) and Requester (in-house specialist), as
shown in the Figure 7.

According to Topcoder phases, crowd participants who are interested in the challenge
need to subscribe, and they will then have access to the complete description of the task,
documents, artifacts, etc., besides accessing the task’s specific communication forum. All
communication happens via online forum. The platform sends emails only to notify about
the start and finish of the phases after task’s submission (review and appeals).

The Requester communicates with the platform (TopCoder) in order to plan (schedule,
budget, etc.), post tasks, select solutions, and pay the winner. On the other hand, the
platform communicates with the requester to coordinate changes and confirm task
requirements’ details.

The interaction among the platform and the crowd (attending the challenge) occurs to
monitor task performance and submission, and to give feedback via the copilot. The
challenges that present high technical and interface complexity can count on the presence
of two platform copilots to mediate while the competition is occurring. In this flow, the
platform acts as a requester’s representative. The interaction between the crowd and the
platform (copilot), in turn, may happen (through opening a new thread on the forum or

38

through a reply mechanism) to exchange information about different topics during the
competition, as it will be detailed in Chapter 4.

However, the interaction among crowd workers in the same challenge (acting as
competitors) can only happen through replying (some of them send the message using
@nick as an id).

The interaction between the requester and the crowd and vice versa does not happen
most of the time and it was represented indirectly through documents of task specification.

Figure 7 - Communication flow among involved participants

Figure 8 represents a view of the forum threads. It is possible to observe that the

platform shows information on the number of views of messages posted on the forum, that
is, this can be an indicator of the forum's audience. TopCoder platform has used as practice
in development challenges to address two main threads for code questions and code
documents.

Figure 8 - Challenge’s Forum

There is little research considering that contest communities both promote and benefit

from simultaneous collaboration and competition, and that both types of relationships need

39

to be emphasized at the same time. Some studies such as [GNY11], CS [TAJ13], [NAG12]
argued that the concept of “co-opetition” might be relevant for innovation’s success on the
individual level within contest communities.

Hutter et al. [HUT11], introduce the term ‘communitition’– community-based
collaboration among competing contest participants – to refer to the phenomenon of co-
opetition in contest communities. The concept includes elements of competitive participation
without disabling the climate for co-operation.

[HUT11] and [BUL10] showed how competition and collaboration as extreme poles
of individual behavior might occur at the same time in competitive co-creation and
community-based innovation contests, similarly to the concept of co-opetition on the firm
level [TAJ13], [NAG12]. Interestingly, Bullinger et al. [BUL10], showed that people not only
compete in the challenges to win the prize, but also to socially interact and collaborate with
other users, e.g., by commenting, giving feedback, and exchanging ideas. They also found
a higher probability for so-called communitators to be ranked high by the community
evaluation and, claimed a positive correlation between both competitive and collaborative
behavior, improving the quality of submission ideas and allowing the future potential of an
idea to shine through the so-called ‘wisdom of the crowd’ [HOW06].

These studies addressed the collaborative competition or competitive collaboration by
community-based innovation and creative contests.

In software crowdsourcing, only a few studies have focused on collaboration and
competitive behavior as a characteristic that would influence in the rate of task’s submission,
and the quality of solutions in SW CS market. Most of them focused on the influence of task
pricing [MAO13], inappropriate task-worker matching [STO14a], and imperfect
information of the crowd about the task’s goal and affordability [YAN15], [YAN16].

One of the pioneering studies that discusses collaborative competition through the
phases and the process adopted by TopCoder platform was carried out by Nag et al.
[NAG12], [NAG13]. In the authors' view, TopCoder uses competition and collaboration
hybrid that organizes individuals to work towards a common goal through financial incentives
and reputation. Collaboration allows these individuals to achieve larger goals together;
however, they point out that development through competition requires a careful balance
between competition and collaboration so that those goals are achieved and, finding ways
to bring collaboration to the competitive model without losing the benefits of competition.

In addition, most studies are from the perspective of task requesters or crowdsourcing
platforms [STO14a], [MAO13], [YAN15], and there is lack of research on qualitative analysis
from individual crowd workers, and collaboration under the crowd workers’ perspective.
Other studies investigating the crowd perspective have used transactional data available via
the TopCoder platform’s API to generate statistics and predictions on crowd behavior. To
our knowledge, no other study has used qualitative data of the platform, through interviews
with platform members. This thesis also presents, for the first time, the content analysis of
the forum repository that the platform uses during the competition phases. Therefore, once
the way how collaboration between the crowd and the platform predicts success in

40

submissions has not been systematically investigated in the literature, this thesis aims to
address such gap.

The present thesis differs from related work by considering which collaboration
challenges are present during the task performance of the crowd workers in the specific
context of competitive SW CS. We have been exploring how communication and
collaboration among coders during the challenges can improve the quality and quantity of
submissions.

To do so, it was based on the standards of messages that are sent on the task forums
during the competition progress.

From the winning submissions, we could relate the variable communication and non-
communication, in which coders who communicated better, by using a set of communication
messages over challenge timeframe time, were those who won the challenges by becoming
more productive and achieving higher performance.

41

3. COLLABORATION BARRIERS IN SW CS

3.1 Exploratory Phase

To identify and organize the collaboration barriers faced by the involved elements
(requester, crowd and platform) in SW CS projects, we conducted a qualitative study relying
on three different sources: semi structured interviews, literature review and, an exploratory
case study on TopCoder platform. To analyze the data, we used Grounded Theory coding
techniques [STR07], which are increasingly used to study the human aspects of Software
Engineering [HOD10].

We analyzed the data separately and after, we integrated the results from three
exploratory studies adopting a unique set of categories and topics [STR07].

We present our results in an integrated way – Collaboration barriers model in SW CS.
The model was built to organize the identified collaboration barriers, mapping and
categorizing them as a taxonomy of collaboration barriers faced by crowd workers in SW
CS projects.

In these studies, we observed that the competitive nature in SW CS poses as an
inhibitor of collaboration between the involved parties, especially for crowd workers.
Although it may seem unnecessary to co-operate in an environment where each crowd
worker competes with each other, collaboration may becomes important under two points:
the first one refers to the crowd's own engagement in completing SW CS challenges, thus,
becoming eligible for the best solution award, and the second point is directly related to the
requesters, who expects to receive solutions to their problem, and the platform that, in turn,
needs to keep the supplier and provider to its business.

 In the following sections, we detail the methods used to conduct the interview field
study, the literature review, and the exploratory case study to collect data from the crowd,
platform, and requester, followed by details about the data analysis.

3.2 Semi structured interview from three SW CS elements

3.2.1 Settings and methodology

During Phase 1 from research method illustrated in Figure 1, the opportunity was
taken to visit a pioneering researcher in the area of global software development (follow the
sun model), Professor Erran Carmel (from American University), to conduct an exploratory
field study based on semi structured interviews with companies, researchers, and IT
professionals to better understand how crowdsourcing software has been adopted in the
Brazilian IT industry. The visit was part of the activities planned in the “Special Visiting
Professor” project of the Science without Borders program supported by the Brazilian

42

government. The project also has the partnership of Professors Rafael Prikladnicki
(PUCRS), and Cleidson de Souza (UFPA), in addition to the researcher and author of this
thesis.

In order to identify the candidates for the first stage of interviews, professionals and
IT organizations were allocated at TECNOPUC (Technology Park of PUCRS), and other
regions of Brazil (SP, MG, and RJ). Contact was made via LinkedIn and research
collaborators’ recommendations.

In the second stage of interviews, in order to compare the initial results on the
adoption of CS in the IT market, the data collected was gathered in national and international
scientific congresses between 2014 and 2015. We interviewed participants during the
Brazilian Conference on Software: Theory and Practice (CBSoft 2014 in Maceió, and CBSoft
2015 in Minas Gerais), during the I Workshop on CrowdSourcing in Software Engineering
(ICSE 2014 in India); and during the Collective Intelligence Conference in Santa Clara / CA,
2105.

We conducted a total of 20 interviews, in which the majority of interviewees were
male (18), and the other female (2). Thirteen participants were from the industry, and 7
participants were from the academic field, as shown in Figure 9. They have had different
work experience, including IT managers, media and Internet corporations’ members, Brazil’s
CS platform CEOs, and academic researchers. Participants have had at least three years
of working experience in average.

The participants are classified under three different CS elements: requester, platform,
and crowd [MAC14]. We interviewed participants from two pioneer Brazilian CS platforms –
Crowdtest18 and WeDoLogos19, which represented, at that time, the two largest crowd
testers and crowd designers in Latin America.

18 http://www.base2.com.br/en/crowdtest/
19 https://www.wedologos.com.br/

43

Figure 9 - Participant's information

Semi-structured interviews were conducted firstly with Brazilians and, following, with

global practitioners from different countries (India, USA, Europe) with the intent of
understanding the main challenges, opportunities, and any other relevant phenomena to
adopt CS in the IT industry. Questions were designed to encourage the participants to talk
about their experiences in SW CS under different aspects: organizational motivations for
leveraging the crowd, impacts on the organization, experience participating in this new
market (as suppliers and requesters), professional and business aspects, measuring
success, and so on. In order to guarantee that the same topics of interest were addressed
in different interviews, we used an interview guide, which was, to some extent, used in both
national and international interviews to guarantee that similar issues were addressed. We
present the interview guide in Appendix A.

Each interview lasted between 30 and 60 minutes. We conducted the interviews face-
to-face, by voice or video conference call, and by email. Some conversations were not audio
recorded because of companies’ confidentiality issues.

3.2.2 Data Analysis

Our data analysis was guided by techniques associated with less procedural versions
of the grounded theory (GT). Specifically, we applied the techniques of coding and constant
comparison as recommended by Corbin and Strauss [STR07]. These techniques helped us
to elicit emergent themes in the Brazilian IT industry, to identify concepts in the collected
data and to link these concepts to higher level categories.

44

GT does not require a prior theory about the data, that is, a set of hypotheses to be
tested. Instead, grounded theory’s goal is precisely to generate theory grounded exclusively
on existing data. In other words, it aims to develop a theory or explanation about what is
going on in the field, or more specifically, what is available in the collected data. In open
coding, we analyzed the interview notes manually (line-by-line) to identify categories.
Categories grouped concepts together under a more abstract high-order concept to explain
what is happening [STR08]. The categories were defined at a level of detail that could allow
us to understand which enablers and blockers’ factors were, based on three perspectives:
crowd, requesters, and platform.

An enabler factor means a characteristic that promotes or motivates SW CS practice.
On the other hand, a blocker factor means a characteristic that inhibits or limits SW CS
practice. Table 5 shows these factors.

3.2.3 Results

Our findings showed that, even though the CS area in software development was still
incipient in Brazil, the international IT market also shares most challenges and opportunities
that SW CS development presents.

As enablers, there is the collective intelligence of the software engineering industry
with more diversity, creativity, and knowledge sharing. Scalability, cost reduction, and time-
to-market are also important enablers for platforms and requesters. Based on the crowd’s
perspective, the main opportunities pointed out were knowledge exchange and being up-to-
date with the new technologies, besides the possibility to earn extra money [MAC16a].

Table 5 - Enablers and blockers’ aspects in SW CS

Actors

Enablers

Blockers

 Crowd

Extra money Poor feedback

Shared knowledge Few collaboration

Curiosity Scarce context project information

Free time Unavailability of documentation

Requester Save money and time Low quality of services

Creativity Maturity of suplliers (crowd)

New ways to do the same Identifying a specific process

Platform Fast delivery Data confidentiality

Reduced cost Very specific business rules

Diverse types of testing Laws and taxes involved

45

As blockers, the requesters pointed out the low quality of services, the difficulty to
identify a specific process to distribute tasks to the crowd, the maturity and, adoption of CS.
Users are not familiar with CS processes. Participants from the requester’s and crowd’s
groups emphasized limitations to adopt SW CS initiatives in terms of collectively
coordination, communication and collaboration:

“Brazil is a very conservative country and it needs to prepare people to work with
crowdsourcing. It is necessary to have a strong process behind the platform and
people to support business.” – Participant 13

“Crowdsourcing is difficult in our company because it is necessary to have a visibility
of tasks (progress activities, for instance “to do”, “doing” and “done”). We have a
strong work process orientated on quality and productivity. Crowdsourcing could be
a new direction to the future but it requires a maturity level and another mindset.” –
Participant 16

Considering the crowd’s side, it was observed challenges related to lack of

communication in terms of little collaboration with other crowd workers, poor feedback, and
task information issues.

“Disappointed with the other testers of the CS platform because it isn’t a “real”

community and collaboration just to peer production.” – Participant 1

Some cultural aspects in SW CS are presented in terms of language and participants’
diversity of experience, practices, and background. While communication in international
platforms happens in English, populations who do not speak other languages face a
communication barrier.

“Brazil is a conservative country in terms of distributed software development.
Usually, Brazil receives a lot of outsourcing demands but it is not used to outsource.
The most of the time, Brazil is much more a supplier than a consumer.” – Participant
19

“The country is a special case in terms of software development. Brazilians companies
and labor participate in global CS marketplaces, but it also “plays in their own sandbox.
It may happen because of language issues.” – Participant 18

3.2.4 Discussion

CS is an emerging topic in software industry. It provides a new approach for
companies involve their workers with innovation activities. However, despite the positive
effects, many challenges are identified for CS practice. The Brazilian IT industry has specific
challenges that make this country different from others. Even with some differences, we

46

found that the main challenges faced by practitioners and companies are concentrate in
three areas Tasks, Processes, and People. We also found ten enablers and blockers factors
for the CS practice in Brazil and other countries as mentioned in Table 5.

Tasks are difficult to manage in CS environments. Requesters expect to receive a
task with certain level of quality. However, in some cases the delivery does not attend the
expectations of the requester. The factors of quality for CS tasks are the number of
participants, tasks assignment to workers according to their individual expertise, and the
reward amount [LI13]. The inappropriate worker-task matching may harm the quality of the
software deliverables [MAO15a]. On the other hand, workers report the lack of information
that can result in a task delivered with low quality. When workers understand what
information is need for the task specification, it will be possible to provide solutions to
problems that meet customers’ needs. However, to Mao et al. [MAO13] the vendor selection
has a direct correlation with the quality of an outcome. Workers are attracted by an open
call format rather than being selected. It encourages the non-skilled workers to participate.
The list of countries with higher level of active members showed Brazil on 16º ranking
position20 between 50 countries in 2017.

The lack of processes definition is another challenge faced by IT industry. To take
advantage the power of software CS, it is important to define the proprieties, elements,
responsibilities and interaction flows of software CS as a new software development process
[KIT13], [HOS14a]. While other countries like United States adopt and invest in
crowdsourced development processes, Brazil adopts a timid posture regards to it. Brazil has
only two CS platforms to support software activities. We believe that online markets for
software CS tasks such as software project development activities, still have not received
attention from companies and workers. In literature, few authors explore region-specific
practices in CS software project.

Europe and United States are well populated with CS participants, but that still does
not say much about potential differences in acceptance of CS across the globe. In our study,
some cultural aspects in CS are presented. Brazilians are highly creative in their own way,
but the country is still underdeveloped in terms of software CS. Cross-cultural differences in
the adoption of CS and open approaches to business are still under-explored. Every country
is unique and has its own specific challenges when it comes to change the way of work, like
implementing software CS. This study gives a starting point on region-specific practices in
crowdsourced software development.

20 https://community.topcoder.com/stat?c=country_avg_rating

47

3.3 Literature review from three SW CS elements

3.3.1 Settings and methodology

A literature review was used to explore current research in SW CS area to support
our research methodology according Figure 1.

As the SW CS literature, focuses on aspects such as decompose tasks [LAT14],
planning and scheduling [MAO15a], [MAC16b], process concerns [YAN16], motivation
[MAO13], quality assurance [WU13] and coordination [STO14], several other forces can
influence in the success of SW CS projects, and these studies neglect focusing on the level
of collaboration barriers of the parties involved in SW CS projects. Counter examples are
[PEN14] [MAC16c], and [MAC17], which explicitly focus on studying collaboration barriers
that influence the success of SW CS projects among involved parties in terms of
productivity, task fulfillment, and receiving solutions from the problems demanded by the
requester and the platform.

Considering the findings from the initial study, in which SW CS is a very particular
approach of designing and creating software and, recognizing that there is a gap in the
current literature on how crowdsourcing platforms affect modern collaborative software
development among the involved parties (i.e., the crowd, requesters, and platforms), we
conducted a Literature Review (LR) to identify possible collaboration issues in SW CS
projects [MAC16c]. The goal was to list the barriers evidenced by the different studies in a
collaboration barrier model. Since we were interested in gathering studies related to
software development, we restricted the literature review to the SW CS domain. The
following question guided our LR.

What are the barriers to collaboration in SW CS projects?

By answering this question, we aim to capture the existent evidence on barriers to

collaboration in SW CS. “Barriers” are the forces that present obstacles to the involved
requester and crowd workers who perform a SW CS task in an online platform. These forces
can inhibit communication and coordination in terms of orchestrating highly distributed
crowd workers and promoting a period to share insights and experiences by the crowd to
ensure the success of SW CS projects for all the involved parties. We make no distinction
regarding the process phase of SW CS (i.e. posting, submission, screening/review, and
winner), or the involved parties (requester, platform, and crowd).

3.3.2 Data Analysis

We split our LR into two steps. In the first one, we conducted a qualitative mapping
analysis in an already consolidated systematic literature review report about SW CS
[MAO15b]. Second, we organized a snowballing review based upon guidelines established
by [WOH13] and [WOH14].

48

A data repository built by [MAO15b]21, was adopted to identify relevant
papers/publications in SW CS collaboration barriers. The database includes papers in
English from diverse categories (e.g., peer-reviewed conference papers, journal articles,
technical reports, and master and PhD theses) published between January 2006 and May
2015. Online library search using seven major search engines: ACM Digital Library, IEEE
Xplore Digital Li85 brary, Springer Link Online Library, Wiley Online Library, Elsevier
ScienceDirect, ProQuest Research Library and Google Scholar.

Based on results from the literature review, we performed a backward and forward
snowballing search approach as the second step. The goals of this literature review (study
2) were to identify as many SW CS papers as possible extending the publication of Mao et
al. [MAO15b] and provide an in-depth understanding of the collaboration barriers, their
relations, and their relevance in SW CS context. We conducted this search between April
to May 2017.

According to [WOH14], the key actions of the snowballing search strategy are: 1)
identifying a starting set of primary papers; 2) identifying further primary papers using the
reference lists of each primary paper (backward snowballing); 3) identifying further primary
papers that cite the primary papers (forward snowballing); 4) repeating steps 2 and 3 until
no new primary papers are found.

We used a set of 18 primary SW CS papers (seeds) provided by automatic and
manual searches as input for our snowballing strategy.

The exclusion criteria consisted of removing duplicate results, full papers not
available, papers that were not within the scope of this research, papers not written in
English, and thesis and dissertation publications.

When the title and abstract of one publication did not give enough information for
making a decision, we further reviewed full-text of the paper. This step excluded 163
publications from the survey in Mao et al. [MAO15b] in which refereed papers were not
meeting the inclusion criteria as shown in Table 6.

In total, 210 publications were reviewed by examining their titles and abstracts from
this repository that fit our research questions. Regardless of collaboration definition the
publications were screened according challenges, difficulty, barriers and problems related
to collaboration in SW CS scenarios to guide our inclusion and exclusion decisions for both
approach (literature review and snowballing) used in the search process. For a study to be
included it must report barriers faced by involved parties (platform, crowd, and requester)
in SW CS contexts.

In the first step - qualitative mapping analysis based on systematic literature review
report in [MAO15b], we excluded 171 publications from, and all other candidate publications

21 https://github.com/Rhapsod/software-crowdsourcing-papers

49

were analyzed by at least two reviewers. Finally, we retrieve 39 unique publications
remained for further analysis in this publication (Table 6).

Table 6 - Review Literature in SW CS publications

Exclusion criteria Excluded Total of remaining publication

Initial set of publications 210

Duplicates 2 208

Full publications not available 1 207

No related to collaboration in SW CS 163 44

Thesis/Dissertations publications 5 39

Final set of publications 171 39

In the second step – snowballing search, the exclusion criteria discarded 969
publications from the backward and forward snowballing search. We found out that some
publications were much less cited than others, or even having no citation at all. We argue
that publications without a minimum number of citations after getting published for a specific
period could be considered as not significant in terms of research impact and continuation.
It is also important to note that every candidate publication is cross-checked by two
reviewers before any inclusion or exclusion decision. After all, we have ended up with five
publications (Table 7).

Some of the publications selected in our snowballing process were also cited by
[MAO15b] publication. Since these 13 publications [STO14a], [TAJ13], [WU13], [Nag12],
[NAG13], [PEN14], [BOU14a], [LAT15b], [LAK10], [LAT13], [KAZ09], [BEG13], [LAT14]
were already included as candidate publications in the selection process in the literature
review step, we have decided to exclude them from our snowballing final set of publications.

Table 7 - Snowballing search

Exclusion criteria Excluded Total of remaining publication

Initial set (Backward: 686, Forward: 282) 968

Not written in English (Backward: 0, Forward: 16) 16 952

Title and abstract (Backward: 539, Forward: 164) 703 249

Duplicate (Backward: 12 , Forward: 36) 48 201

Thesis/Dissertations publications (Backward: 1,
Forward: 9) 10 191

Full publications not available (Backward: 1,
Forward: 1) 2 189

No related to collaboration in SW CS 171 18

Duplicates in the LR final set 13 5

Final set of publications 963 5

50

The final set of SW CS publications related to collaboration were 39 from qualitative
mapping, and five (5) publications from snowballing, accounting for a total of 44 publications
as show Table 8.

Table 8 - Final set of publications

Exclusion criteria Excluded Total of remaining paper

Total set of papers (LR and snowballing) 1178

Duplicates 1128 50

Full papers not available 1125 3

No related to collaboration in SW CS 791 334

Thesis/Dissertations publications 776 15

No written in English 760 16

Title and abstract (snowballing) 57 703

Duplicates in the LR final set (snowballing) 44 13

Final set of papers 44

Given the set of studies, we created a list of barriers that each publication evidenced.
After this, each barrier was linked to supporting text segments from the publications in which
they were identified. Using the text segments, we classified the barriers applying coding
procedures from Grounded Theory (GT) [STR07] grouped according to their properties to
represent categories.

A summary of this literature review is presented in Appendix B and the related results
are detailed below.

3.3.3 Results

This study aimed to understand that collaboration assumes specific characteristics in
SW CS projects, and these characteristics should impact the involved actors (requester,
platform, and the crowd) positive and negatively. In SW CS projects, there is a main aspect
that makes these software projects peculiar - the competitive nature to design of work,
where this characteristic aggravates the problems of the temporal and physical distance of
software development. While SW CS projects enable an increase of alternatives and non-
conventional solutions for the same problems due to the crowd diversity, it can, on the other
hand, lead to more complicated coordination and communication aspects among
competitors in SW CS project.

51

Our LR revealed preliminary 36 barriers to collaboration in SW CS. For each selected
publication the author of this thesis and two more researchers were involved into three steps
as follow: each researcher independently read the entire publication, quoted and coded any
collaboration barrier cited in the respective publication (using the text segments) [STR07].
We used a spreadsheet to catalogue the extracted data (Figure 10) in publication (author,
year, title and venue), collaboration and description of the barriers.

Once we finished data extraction that each publication evidenced and, coding each
collaboration barriers, we peer reviewed the results. Discrepancies around barriers and
coding were discussed between the 2 researchers and resolved with the help of a third one.
Next, the author of this thesis reanalyzed the barriers obtained and proposed categories to
aggregate the collaboration barriers. The goal of this reanalysis was to combine the findings
to accommodating all the evidenced barriers in a more unified mapping. After all, we
discussed among 3 of the researchers (including the author of this thesis) and critically
reviewed in several review sessions until it was considered stable the categories and
collaboration barriers. This was done to mitigate the bias caused by a single researcher and
to reach a common understanding about the code nomenclature and categories.

The preliminary results of this mapping are part of the results publicated in Machado
et al. [MAC16c] in ICGSE.

The SW CS collaboration barriers’ resulting mapping of the analysis was the emergence of
23 barriers grouped into five categories: social interaction, process management, cultural
diversity, competition models, and task design. We also identified with frequency each
barrier is mentioned in studies (see column 3 of Table 9). An overview of the results can

Figure 10 - Extracted data from collaboration barriers

52

be seen in Table 9. We describe each category and its associated barriers in the next
section.

Table 9 - Map of Collaboration barriers from LR

Category Barriers (B) Freq. Reference

(BA1) Lack of Informal communication 7 [STO14a], [TAJ14], [GUA15],
[TAJ13], [NAG12], [MAC17],
[GRA16]

(BA2) Lack of interaction among crowd
members

6 [PEN14], [BOU14a], [GRA16]
[MAC17], [LAT14], [RIE17],
[LAT15a]

(BA5) Lack of real-time collaboration 5 [LAS15], [MEH14], [GOL11a],
[GOL11b], [BOU14a]

(BA7) Scarce social media support 4 [BEG13], [BAR13], [STO14b],
[TSA14]

(BA8) Few interaction among involved
participants inside the platform

4 [TAJ13], [FIT15], [NAY14],
[BOU14a],

(BA15) Asynchronous communication 3 [BOU14a], [PEN14], [MAC17]

(BA19) Weak internal collaboration between
the platform and the requester

2 [STO14a], [FIT15]

(BA23) Lack of feedback among participants
in the platform

1 [Hoß14]

(BA3) Information management complexity 6 [STO14a], [BOU14a], [FIT15],
[GUA15], [MIN12], [DWA15]

(BA6) Technical and infrastructure setting
issues

5 [PEN14], [GOL11], [TSA14],
[LAT14], [HOS14c]

(BA11) Difficulty in team management in
large scale distributed settings

4 [PEN14], [HOS14b] [KAZ09],
[NAY14]

 (BA16) Hurdle single point of contact 4 [STO14a], [FIT15], [MEH14]

(BA13) No unified software process
methodologies

3 [STO14a], [FIT15], [KAZ10]

(BA9) Low global project view 4 [STO14a], [TAJ13], [LAT13],
[LAT15c]

(BA10) Micro-task decomposition issues 4 [STO14a], [ZHA15], [LAT14],
[SCH11]

(BA17) Lack or incomplete documentation 3 [STO14a], [FIT15], [LAK10].

(BA21) Security and privacy issues 2 [STO14], [Hoß14]

(BA22) Difficulty to find fit task allocation 2 [STO14a], [LAT15b]

So
ci

al
 In

te
ra

ct
io

n
Pr

oc
es

s
M

an
ag

em
en

t
Ta

sk
 D

es
ig

n

53

Category Barriers (B) Freq. Reference

(BA4) Difficulty for dealing with competitors 6 [WU13], [NAG13] [HOS14b],
[WU13], [NAG12], [BOUG14b]

(BA12) Weak commitment between involved
actors

3 [TAJ13], [NAP13], [HOS15]
[HOS15]

(BA14) Difficulty to increase and keep
participants' motivation

3 [TAJ13], [BOU14a], [HOS15]

(BA18) Teams heterogeneity 3 [TAJ13], [BOU14a], [HOS15]

(BA20) Diversity of languages 2 [PRI14], [MAC16a]

We ranked these categories according to the number of barriers that evidence them
(show Figure 11). In each category, some studies support more than one barrier. Some
barriers also are cause and effect of other barrier. For example, "information management"
is a barrier that can be posed to "low global project view" and "weak interaction among
involved actors" barriers, because of reduced opportunities to communicate in SW CS
platforms.

Figure 11 - Statistics of barriers to collaboration in SW CS

The category with the greatest number of barriers is related to social interaction

among actors involved in SW CS environment, accounting for 30 studies distributed in eight
barriers.

Secondly, process management and task design categories grouped five barriers
each one. The other two categories range from Competitive model and Cultural diversity
each one distributed in three and two barriers, respectively.

a) Social Interaction

It represents the collaboration barriers related to the possibility to exchange
messages among involved parties and, the way they interact with each other during the task
performance in the SW CS platform, including issues related to how the three involved
parties communicate, which mechanisms are available for collaboration, and what social

C
om

pe
tit

io
n

M

od
el

C

ul
tu

ra
l

D
iv

er
si

ty

54

structure are present. This category is one of the most evidenced among the selected
studies, appearing in 33 studies (70%). Within this category, we identified evidence of eight
different barriers that can influence collaboration in SW CS: BA1(Lacking of informal
communication), BA2 (Lacking of interaction among crowd members,) BA5 (Lacking of real
time collaboration), BA7 (Scarce social media support), BA8 (Few interaction among
involved parties inside the platform), BA15 (Asynchronous communication), BA19 (Weak
internal collaboration between requester and platform) and, BA23 (Lack of feedback among
participants in the platform).

Lacking of informal communication (BA1) is evidenced in SW CS studies by
misunderstandings, no direct communication, and fleeting relationship. We found evidence
of this barrier in seve of the primary studies [STO14a], [TAJ14], [GUA15]; [NAG12],
[MAC17], [GRA16], [TAJ13]. This barrier can have big impact on the quality of the final
solution, and thus may have an impact on the contributors end up doing something that is
slightly different from employers' wishes. To [TAJ14] lacking of informal and direct
communication affects the satisfactory understanding of task's goals. So, because of that,
communication between the crowd and the clients is vital for the success of a CS project,
mainly to answer crowd's questions. [GUA15] have also appoint the necessity of more
informative and communication-oriented crowd because of the number of crowd questions
about task details on testing platforms, specifically. On the other hand, [STO14a] emphasize
that this fleeting relationship due to the indirect (asynchronous) nature of the communication
with the crowd filter through of the co-pilot (platform mediator) provided by TopCoder
platform does not promote a real opportunity to build up a more active collaboration with
any crowd developers: "However, there is no informal communication mechanism. You
cannot yell at the person in the next cubicle and get the answer very quickly. In contrast to
distributed development which typically involves other developers from the same
organization, the only relationship which tended to build over time was that with the TC co-
pilot. There was no real opportunity to build up a relationship with any of the TC developers,
as interaction was filtered through a number of layers" [STO14a], [NAG12] attribute that few
communication channels reduce the level of interactions among involved parties (crowd,
platform and requester) about topics of interest to this community assigned to the same
task or without any associated task.

Lacking of interaction among crowd members (BA2) occurs on disperse and
competitive SW CS settings. This barrier is related to the perceived lack of communication
among crowd workers. In this way, SW CS platforms also no provide alternatives
communicate channel. According six studies in the literature there is insufficient support for
collaboration among crowd members specifically during the execution of the same tasks or
in different ones. This barrier was evidenced in six studies by [PEN14], [BOU14a], [GRA16],
[MAC17], [LAT14], [RIE16].

The incentive to crowd's interact by side of the SW CS platforms is restricted as
mentioned by [PEN14] "Crowdsourcing platforms provide little support for collaboration
among crowd members".

55

Boudreau et al. [BOU14A] add: "Regarding socially emergent processes, we find
evidence of a virtuous circle of effort and collaborative interactions taking place. The
likelihood an individual chooses to participate relates to levels of teammates’
communications and communications among teammates begot more communications and
more effort. These patterns of reciprocating complementarities are consistent with the
importance of setting productive social interactions and dynamics into motion in order to
catalyze collaboration even in this rather weak social context."

Riedl and Woolley [RIE17], investigate how to effectively incorporate team-based
collaboration in a setting that has been individual-based. In a field experiment on online
platforms they evaluate the influence of members skills, incentives and emergent
collaboration process on performance of crowd-based teams. The authors evidenced this
barrier through of coordination, a collaboration characteristic in SW CS: "temporal patterns
of coordinating are a particular challenge in crowd-based teams, as, in addition to being
globally distributed participants also tend to touch their contributions in around the edges of
their "regular" activities, leading to an even less regular schedule than we would observe in
global teams in work organizations".

The study conducted by [GRA16] shows when platforms do not natively support
collaboration among the crowd, workers create widespread yet invisible forms of
collaboration that take place off-platform. They focus on understanding how workers
collaborate organically with other crowd worker assigned to the same tasks. Their findings
have already associated with BA1. [MAC17] presents another case of a barrier supported
by evidence from a case study where their results show that collaboration in SW CS
competitive model was perceived as explicit and direct between the platform and crowd via
forum and, in a more indirect way between crowd and crowd, according participants who
work in a task.

LaToza et al. [LAT14] in the opposite way, offers some strategies to overcome restrict
visibility among crowd workers. They implemented a CrowdCode tool that provides a
number of features to help workers maintain awareness of the current state of the project,
it added to a personal activity feed letting workers track their work. Other example is the
"Ask the Crowd feature" to enable the crowd to still make progress in the face of unexpected
information needs.: "It also enables workers to go off topic and forge closer relationships
with other workers... A majority of participants who worked on a small programming task
agreed that the opportunity for communication beyond what was provided would help them
to work more effectively. Participants cited a desire to share technical experience, clarify
tasks, ask questions about material that others had written."

Lacking of real time collaboration (BA5) occurs when technical decisions limit
communication between parties, e.g. the CS platform needs to be able to support the
exchange of messages among requesters and crowd in order to reduce gaps and ambiguity
in timely manner. We found evidence of this barrier in five of the primary studies [LAS15],
[MEH14], [GOL11a], [GOL11b] and, [BOU14a].

In [GOL11a] and [GOL11b] the authors discuss "a scenario where the lacking of real
time communication introduces problems in a collaborative coding where program

56

compilation errors introduced by other users". Results from these studies revealed that
synchronous collaboration and transparency between programmers allows team members
to better understand and identify changes made in the code since the last handoff session,
thus it avoid rework. To [LAS15], platforms should provide real time CS infrastructure "to
facilitate self-managing and real time crowd coordination". Furthermore, "timely completion
of the subtasks and their collaboration can only be achieved through real-time collaboration
and synchronization between the crowd-workers", [MEH14].

Scarce social media support (BA7) describes scarce integration of the social media
technologies supported by SW CS platforms that crowd workers face when trying to
communicate through other channels. We found evidence of this barrier in four of the
primary studies [BAR13], [STO14b], [BEG13], [TSA14]. In three studies using Q&A websites
(Stack Overflow), social coding (GitHub)22 [BAR13], [STO14b], [BEG13], it is approached
social media for collaborative development and crowdsourcing content in software
engineering. Even solitary developers need to interact directly or indirectly with others to
learn, to understand requirements and to seek feedback on their creations. Low integration
with social media systems in CS platforms was mentioned as a constant threat to smooth
interaction and it also reduces the collaboration to share knowledge among online
communities.

To Storey et al. [STO14b], developers should use social media to understand how
they communicate and collaborate, and to gain insights into the challenges that they face.
In preliminary results from a large survey with developers who work on projects mediated
through GitHub, several respondents mentioned "issues when the tools they use lack
integration with programming artifacts. This lack of support caused friction when switching
between tools and led to poor traceability between discussions and software artifacts."
Besides, Begel et al. [BEG13], reports the role social networking play in today's software
development world among different tools and systems.

Few interactions among involved parties inside the platform (BA8) refers to the
friction that happens when specific business rules of some tasks shall require contact with
the client/request for further clarification and decision-making and it is important to answer
the questions by the crowd in time during task execution specially, for competitive SW CS
platforms because the deadline of the contest. This barrier is evidenced in four of the
primary studies [TAJ13], [FIT15], [NAY14] and, [BOU14A].

[FIT15], describes collaboration and interaction between client and requester as "a
required discipline to ensure that submissions of the crowd can be internally reviewed by
client in a short period to report possible problems". Topcoder platform, for example, has a
process in which the solution review phase can have several interactions between platform
and requester, who needs to accept or reject the submissions within a specific timeframe.
Considering the task estimated deadline, interactions happen in a short term and the client
needs to be available for feedback so that the process is not delayed or does not take too
long. Thus, in case interaction through internal communication among the parties does not

22 ttps://github.com/

57

happen within the given forecast time, it poses a collaboration barrier for the crowd. In this
way [NAY14] report "that misalignment among involved parties (crowd, requester and
platform) as a major risk for successful completion of software projects mainly due to no
software physical presence and restricted and asynchronous communication.

Other studies provide more evidence towards weak interaction among involved
parties and its importance for promote collaboration in SW CS environment. For instance,
[BOU14b] claims that "the crowdsourcing projects are also often transitory or short-lived.
Thus, the baseline conditions for any sort of collaboration and team effort towards a
collective joint goal seem sparse at best and potentially fraught with failure." [TAJ13] focus
on three determinants to achieve success in CS software development: the characteristics
of the project, the composition of the crowd and the relationship among key players. They
highlight the influence of maintaining a communication quality to the success of CS software
development: "Relations among developers and between crowdsourcer and community are
of utter importance. (...). On the other hand, trust formation, communication quality, and
identification with the project team are factors that have been associated with success of
OSS and due to similarity of the development methods we can expect the same to hold true
for crowdsourcing."

Asynchronous communication (BA15) occurs when SW CS platform just provide
asynchronous interaction channels among involved parties while conducting work in the
task’s period. In this way, the asynchronous interactions no providing rapid feedback among
members it becomes one of the communication issue on SW CS collaboration. This barrier
was mentioned by three studies [BOU14b], [PEN14], [MAC17] and, it is also associate with
other barriers emerged by our analysis such as - lack of informal communication (BA1),
lacking of real time collaboration (BA5), weak interaction among involved actors inside the
platform (BA8) and, lacking of interaction among crowd members (BA2).

Boudreau et al. [BOU14], mention several problems relate to communication via
forums such as: communication feedback’ is delayed, and interruptions or long pauses in
communication often occur not facilitating the direct and online communication. At the same
time that asynchronous communication mechanisms are useful to support and stored the
exchange information about task’s details in different timezones, and it pose as thread off
within SW CS communication’s projects. The task update's that happen during the forum
board can't be updating of the spec documentations of the task. The authors appointed: "In
an asynchronous discussion, typically many topics are active at the same time, with team
members making contributions at different times, possibly on different topics. This pattern
can increase information overload and may reduce the synergy of team members if there
are no links among the responses."

In addition, [PEN14] says: "Crowdsourcing platforms support communication by
providing task-specific forums for crowd members to ask questions and communicate with
each other... However, crowdsourcing platforms provide little support for collaboration
among crowd members."

In a more recent study Machado et al. [MAC17] presented a case study using
TopCoder platform try to understand how crowd workers perceived collaboration and which

58

challenges they faced to perform a task. They found that consider the competitive
environment, the platform intentionally supports communication among members of the
crowd in a restricted way via forum "tasks can lead to misunderstanding and thus may have
a big impact on the quality of the final solution and in the influx of newcomers". Thus, the
asynchronous and unstructured communication on online forums barrier suggests that a
significant challenge facing online teams’ coordination and collaboration of the temporal
patterns of group behavior, which has been shown to be critical to performance.

 Weak internal collaboration between requester and platform (BA19) is evidenced in
two of the primary studies [STO14], [FIT15]. It occurs when at least two parties request
inside collaboration in a particular subject, e.g. internal collaboration between requester and
platform where one of them is required to elaborate adequate documentation and artifacts
for the requirement task specification to than share it with crowd participants. The second
point is to ensure internally reviewed of the submitted solutions by crowd and communicate
the platform about reviewer’s decisions [FIT15]. The period is too short to create documents,
coding stands and templates, evaluation criterias, and rewarding crowdsourced tasks
provides between requester and platform. Besides that, report problems of solutions
submitted by crowd emerge also how a barrier in SW CS to internal coordination and
collaboration [STO14a].

Lack of feedback among actors in the platform (BA23). Be available during the CS
task through feedback channels is an important issue to promote collaboration and engage
crowd workers while they performing task. The feedback channel should be accessible
throughout the whole task, not only at the end of it.

We found evidence of this barrier in Hoßfeld et al. [Hoß14]. The authors showed that:
"Even with simplified language, proper instructions, and training sessions test participants
might face issues while participating in tests. These issues might either occur due to
misunderstandings or other unclear points, but also due to hard- and software issues.
Therefore, it is important to provide a feedback channel to the users to contact the
experimenter.”

Some providers do not allow contact between crowd workers and employers outside
the platforms. External, interactive feedback channels should be provided by platform
include e.g., live chat or email support for small tests or forum threads for larger test groups.

In general, all questions from the users should be answered. An intensive discussion
with the workers and a reasonable support helps to improve the task design and respectively
the task results. Moreover, it helps to increase the employer’s reputation, as workers tend
to gather in virtual communities and share their experiences with certain employers and
tasks according [Hoß14].

b) Process Management

This category describes project and process management problems which have
been evidenced as barriers to SW CS participants. Such problems are related to outdated
information between documentation and decision making happening in the communication

59

channels, coordination among several participants and so on. We have identified five
barriers in this category, namely BA3 (Information management complexity), BA6
(Technical and infrastructure setting issues), BA11(Difficulty in team management in large
scale distributed settings), BA13 (No unified software process methodologies), and BA16
(Hurdle single point of contact). Evidence gathered from primary studies representing the
difficulty to mediate SW CS virtual teams in terms of extra overhead under the management
perspective was highlighted by [GUA15], [STO14a], [BOU14a], [MIN12], [DWA15], [FIT15],
[KAZ10], [TAJ14], [NAY14], [PEN14].

Information management complexity (BA3) is a barrier due to lack or overhead of
information. It may also influence on the solution quality, as previously mentioned in the
asynchronous communication barrier, because contributors (crowd) end up doing
something that is slightly different from requesters' expectations. The need of a more
communicative and informative platform to serve the crowd and to disseminate practices
(testing, expected results, objectives) of the tasks were emphasized according to [GUA15],
specifically for the crowdtesting environment. We found evidence of this barrier in six of the
primary studies [STO14], [BOU14a], [FIT15], [GUA15], [MIN12], [DWA15].

The level of temporal and asynchronous coordination across widely distributed
crowd contributors remains as important challenges as mentioned in [BOU14a]
principalmente pela poorly designed CS tasks and insufficient interaction among the crowd
and requesters. Thus, the authors in revealed the importance to provide as much as
possible interaction about task's instructions or share information with each other.

During task execution period (often short-lived), the crowd participants can need
information on time provided by platforms in terms of requirements details, technical
clarifications, artifacts, setup environment to start the tasks and so on. Some of this
information are gathered though requester that demands the task and it can imposed
overhead communication based on the effort necessary of the requesters to answer the SW
CS community inquires during the realization of the tasks according to [STO14a]. In this
way, information via clearly requirements documentation plays an important role, once this
is the key channel through which crowd developers will know what to develop: "Finding the
right balance is important; giving either too little or too much information will result in a
deliverable that is likely to be unacceptable" [FIT15].

The exchange information between requester, platform and crowd need to be
coordinated during the task's period. How each participant is an individual member who
develops and executes your task solutions's in isolated actions, SW CS platforms should
be guarantee visibility and low latency of information via online communication to reduce
gaps of requirement and tacit assumptions of the tasks as mentioned in [DWA15]. As also
indicated by [MIN12], "the time waiting for human response while conducting work during
the task’s period can be critical for the crowd participants", specially in SW CS competition
approach's. A significant amount of time in provide these answers by platform affect the
collaboration during the activity due to manage information complexity in real time as
mentioned in lack of real-time collaboration barrier (BA5).

60

No unified software process methodologies (BA13). This barrier was evidence by
[STO14], [FIT15], and [KAZ10] once in SW CS environment, a requester has no knowledge
of the developers in the crowd that deliver the software, nor of the process who they might
follow and, therefore has no control over these aspects. Aligning different software
development process cultures with SW CS projects can be problematic and difficult to deal
with in terms of collaboration and coordination among requesters and crowd participants.

In [KAZ10] the authors the authors highlight the new norm to conducted software
projects by open teams: "In the past we managed development as traditional projects,
employing closed teams of developers who work from a consistent set of requirements.
Now, volunteer projects and decentralized production processes with no managers and no
centralized decision-making processes are becoming the norm."

In the case study conducted by [STO14], they pointed a set of concerns in
crowdsourcing software development: "Of particular concern in crowdsourcing is that a
customer has no knowledge of the developers that deliver the software, nor of the process
that they might follow, and therefore has no control over these aspects." A complementary
study in [FIT15] reported: "It is important to become familiar with the crowdsourcing process
at the outset, so that architects, developers and project managers can prepare and discuss
internally what needs to be done for a smooth interaction with the crowd".

Technical and infrastructure issues settings (BA6). We found evidences of the
technical and infrastructure issues that influence on collaboration level by crowd in terms of
effort to each setting up environment task's, effort to understanding unclear tasks
instructions and no providing share code repositories. Besides that, in a collaborative
software development all community members should be able to access the same artifacts
and environment to write and test theirs codes. Out of five studies that mention this barrier,
three of them are results reported from tools which were developed by the own authors in
order to alleviate technical and infrastructure problems. Such tools comprise distributed
code edition in real time, system for tracking work, and Q&A system to support crowd work
during work in progress.

Few transparency during software development can cause a problem introducing
compilation coding errors by other users. In [GOL11b], the author proposed a Collabode
tool to support real time code edition and transparency between programmers as mentioned
in "Lack of real-time collaboration" (BA5).

In [LAT14] and [LAT15], the authors developed CrowdCode, a cloud IDE for crowd
development to track changes, enable workers to write code, reuse functions, test, and
debug within self-contained microtasks. As already mentioned in the "Lack of interaction
among crowd members" barrier (BA2), this tool also provides social features to help workers
maintain awareness of the current state of the project. Besides that, the authors in Besides
that, the authors in [LAT15] investigated if the Q&A would help crowd workers share
knowledge about technical decisions and artifact conflicts. The result obtained by the study
that used a Q&A system in a controlled experiment was: "Workers also used the Q&A
system to ask questions about how CrowdCode itself worked. Finally, workers sometimes
used Q&A for explicit coordination, requesting others who might be working on an artifact

61

to take an action with it or to gain an understanding of the current overall status of the
project."

High heterogeneous infrastructure needs adequate mechanisms to catalyze
collaboration specially in different SW CS tasks demand. Hence, the absence of a
centralized management and environment to control code commit, issue trackers, and share
version control is particularly sensitive to the external collaboration success, as cited by two
studies. In Tsai et al. [TSA14], the authors mentioned that crowdsourcing platforms should
support setting environment during task broadcast by the crowd: "Given software
crowdsourcing’s distributed nature, it needs a powerful development environment to
facilitate software design, coding, test, and deployment across distributed and
heterogeneous infrastructures".

In the same way, [PEN14] mentioned: "It’s quite easy for a group to conduct its
development tasks if the platform can automatically allocate the required resources, such
as virtual machines, tools, libraries, and testing environments".

Difficulty in team management in large scale distributed settings (BA11). Large scale
collaboration with distributed and heterogeneous members is mentioned by literature how
a barrier in terms of coordination, quality control and task decomposition. This barrier was
highlighted by literature in four studies as follow.

Nayebi et al. [NAY14] reported some issues that this barrier can cause: "In the
presence of large-scale and distributed development, decision processes include various
stakeholders across different locations. Group decision support systems are intended to
accommodate this challenge."

 According [PEN14], "developers collaborate at different levels and some of them
might work on the same piece of the project (source code, UML diagram or interfaces
design) or collaborate on a set of shared artifacts with the support of version control
systems."

In [KAZ09], the authors cited important aspects related team management in distributed
setting: "However, future crowdsourced systems will be community-driven and
decentralized, with little overall control. (...) opening a project to the crowds, management
accepts that they consist of unknown people at disparate locations anywhere on the Internet
and in time zones, countries, and cultures. This is certainly the case for nontrivial OSS
projects. Managing them means the periphery shares in their success and, to a large extent,
is self-governing and self-adaptive."

In terms of coordination, the difficult to mediate and orchestrate virtual teams is
potentialize in SW CS by dynamic and transitory nature where the crowd members can
leave or entry arbitrariamente during task's performance. Besides that, more overhead in
management (feedback, screening and select task's solution) process by solution submitted
among different crowd providers of the same task as mentioned by [HOS14c].

There is not a lot of group cohesion because of the mish-mash of background,
perspectives, artifacts and tools when trying to development a solution. In contrasting of

62

small and homogenous groups, SW CS context have a "discontinuities" of team distribution
due your unstable, large, open and diverse participant´s nature.

This barrie is also associated with the lack of real time collaboration (BA5), internal
collaboration between platform and requester and, (B3) weak interaction among involved
parties.

Hurdle single point of contact (BA16). Interacting flow with the crowd during the task's
period can be very time-consuming activity due the nature of interaction in SW CS
environments. In [FIT15], the authors evidenced the import issue in terms of "assign a
special person to answer questions from the crowd" to alleviate the communication and
collaboration difficulties among requester and crowd. The election of one focal point from
the customer side to manage communication (technical or operational answers), review and
feedback of the crowd on the Q&A forum is crucial during work in progress to provide more
guidance for the crowd workers. However, coordinating different participants with different
capabilities can overload the requester side and the eligible mediator from platform. For
example, at TopCoder, the interaction with crowd contestants is mediated by co-pilots, in
the uTest, the platform elected a Testing Technical Leader (TTL) how point of contact
among crowd tester and requesters. This mediator, often can not respond in time all
questions demands of the crowd, especially for issues that depend on a decision of the
requester. Such a situation, effort and energy to respond each participant and delayed client
responses influences the collaboration among SW CS actors according to [STO14a].

There are new several roles which emerge in crowdsourcing software development. The
identification of roles and responsibilities of the involved actors is an important issue to carry
out collaboration between each role as evidenced by [MEH14].

Machado et al. [MAC17], pointed in their case study, that "communication and
coordination via forum can impose an overload and time latency during SW CS projects in
terms of the effort to prepare task specification, documentation, significant amount of
answers crowd questions, evaluating and feedback to submitted solutions by crowd
participants".

c) Competition Model

This category represents the problem related to competitive behavior that crowd
workers face on software development contests in the platforms that follow a competitive
engagement model, where tasks are posted as a challenge. Workers, based on their
interests and skillset, register for the challenge and submit their solutions for a monetary
reward. Paid, online and competitive CS platforms include general-purpose marketplaces
(e.g. Innocentive, Upwork) as well as markets for specific expertise (uTest, 99Designs,
TopCoder).

Difficulty for dealing with competitors (BA4). According many authors, competition
can be an important issue that affects collaboration in SW CS environment among crowd
members because of the monetary incentives. Besides that, platforms use ranking and

63

reputation level of more experienced competitor (with a high rating) to classify the crowd
participants. These issues may help explain the crowds' low levels of collaboration, and the
barrier was evidenced in six studies. Different crowd providers' solutions for the same tasks
by a monetary reward.

Hosseini et al. [HOS15] discuss the effect of the ranking and reputation in the CS
competitive model to establish collaborative relationships with other participants, especially
among seasoned and newcomer participants: "The competent crowd might also include
participants’ inflated egos which would then reduce the level of collaboration and lead to
conflicts and inconsistency."

The competition model can inhibit participation from crowd developers’ newcomers
as reported Wu et al. [WU13]: "While competitions promote creativity and support quality
software development, but stiff competitions may also restrict massive participation. (...)
Thus, stiff software competitions may restrict the activities of the crowd." Related this
problem, the authors proposed in a continuous study, an evaluation framework to analyze
collaborative and competitive nature of software crowdsourcing processes toward different
goals such as broadening participation [WU13].

[NAG13] and [NAG14], discuss the applicability of crowdsourcing and competition for
problems that require a collaborative or cooperative effort to be successful. The author
showed the results of a development spaceflight software tournament in TopCoder platform.
"Development through competitions requires a careful balance of competition and
collaboration to achieve its goals." Much of the collaboration in TopCoder is structured
collaboration, i.e. the TopCoder process dictates how that collaboration takes place".

Regarding the SW CS competition model, the authors in [BOU14a], found that levels
of effort are driven by cash incentives and the presence of other interacting teammates. In
contrast, the level of collaboration was not sensitive to cash incentives but for actively
interaction among individual crowd: "Instead, individuals increased their communication if
teammates were also actively participating."

Weak commitment among involved actors (BA12). Collaboration in paid, online,
competitive, and often unknown participants (know only by aliases), as the SW CS context,
influence in reduced social interaction among involved actors. Competitive SW CS
platforms, introduces new challenges such as ensuring reliability participants and cheating
prevention. This barrier is mentioned by [TAJ13], [NAP13] and [HOS15].

Low relationship in which the firm and community act as “no good member” damaging
collaborative interactions in various aspects - "failure to deliver promised code, code
misappropriation, free riding, law firm involvement, or attempts by firms to influence the
community in their own interest", according observed in [NAP13]

SW CS Competitions models can influence participants in establish trust among each
one. Besides that, it is difficult to implement collaboration with anonymity and cash
incentives. The anonymity also encourages some participants works sloppy or to cheat in
order to increase their income, by maximizing the number of completed tasks per time
[HOS15]. "Furthermore, anonymity is one way of assuring users’ privacy and security.

64

However, it can also be risky as it would allow malicious users to join in. Finding the right
incentives and how it is linked to competence, intrinsic motivation and anonymity are other
research challenges to investigate."

Tajedin and Nevo, [TAJ13], argue that "cohesion among project team members
would lead to more effective communication and learning". For the cohesion make possible
in SW CS context is needs to provide trust information, and communication quality. These
attributes have been associated with collaborative projects as presented by the authors.

Difficulty to increase and keep participants' motivation (BA14): Crowd motivation in
collaborating can be decreased due competition aspects, onboarding process, task
documentation and so on. According to [TAJ13], "the motivation could have different levels
and can be related to intrinsic (reputation in the community) and extrinsic motivation factors
(explicit rewards)". Other factor that can be influence on keeping crowd participants
motivated to persevere and collaborate with platform (e.g. to accept more tasks) is related
to feedback process during task completion: "Providing feedback to the crowd is often seen
in a positive way. (...), which can improve the performance of participants and also motivate
them to persevere and accept more tasks." [HOS15]

A contradictory result was present in a study by [BOU14a] from a field experiment on
TopCoder platform where they discuss the role of incentives versus social processes in
catalyzing motivation to collaborate. The authors found that there is "a growing body of work
on participation and motivations of workers in collaborative online contexts that points to the
importance of non-cash-based incentives and motivations".

d) Task Design

This category represents the issue related to difficulties that the three actors involved
face when planning, decomposing, broadcasting and assigning a SW CS task. That
happens because work is split into a set of smaller tasks instructions, which are often
incomplete or ambiguous. Besides that, the participants who submit solutions are not part
of the organization (requester) which demands the task, reducing the context of work from
crowd participants. This category has five barriers: BA9 (Low global project view), BA10
(Micro-task decomposition issues,) BA17 (Lack or incomplete documentation), BA21
(Security and privacy issues) and BA22 (Difficulty to find fit task allocation).

Low global project view (BA9): Once the crowd does not take part in the organization
that demanded the task, the concerns regarding intellectual property and, business rules
are addressed as few contexts that crowd members receive in the tasks of the SW CS
initiatives. About this issue, it is crucial to provide information as much as possible to
attenuate the communication issues and provide more guidance to the crowd better
understand what is expect according to [TAJ13].

In [LAT13], as consequences of all this scarce global view during SW CS tasks’, the
collaboration barriers are influenced in terms of communication and information
fragmentation: "Crowd development may not be well-suited to all domains, such as those
that require large amounts of domain expertise, safety critical systems, or those with

65

sensitive business information". In [LAT15c] the authors cast doubt on what aspects of
software engineering can be done with only local information, and what aspects require a
global view of the project. Once the crowd does not have a vision of the whole project, just
a task goals' overview, it is more challenging for workers to understand the impact and
meaningful of the task.

In [STO14a] the authors argue the scarce context about tasks' specification: "There
is a fine balance between providing a sufficiently detailed specification for the tasks being
crowdsourced on the one hand, and hiring innovation or critical business rules with overly
detailed specifications on the other hand". Some information about software aspects cannot
be shared globally with anonymous crowd workers due to privacy or intellectual property
concerns, and this issue discouraging collaboration among the crowd workers.

Microtask decomposition issues (BA10) is a barrier in SW CS because there are a
lot of dependencies between tasks. [LAT14] argue that "decomposing smaller pieces of
work can increase the amount of overhead leading to corresponding challenges, such as
communication since more workers may need to understand some of the same aspects of
the current status of the work to move on and contribute with it." Similar challenges can be
seen in coordinating contributions and managing dependencies among microtasks' software
during development work by crowd. [STO14a], describe that decomposing a software
project as a key concern in SW CS: "Given the interdependencies in software, different
developers working on a task can’t know how their code fits into the resulting software
product, in terms of understanding interfaces and assumptions made." Thus, to enabling
mass contribution by crowd developers who can be worked at the same time, requires an
extra work to ensure information about coding standard and templates, and technical
specifications. This aspect was pointed in the information management complexity barrier
(BA3) as a concern to promote symmetric information between crowd and requesters.

To overcome the information loss caused by task decomposition, in [SCH12] the
authors, conducted an experiment by recruiting workers from Amazon’s Mechanical Turk to
perform code verification with VeriWeb. In their results, he: "characterize the minimal
communication overhead incurred when VeriWeb is used collaboratively by observing two
pairs of developers each use the tool simultaneously to verify a single program".

In this way, for interface design phase, the authors in [ZHA15] presented a
comparison between a normal decompose workflow with an interactive workflow that helps
crowd designers to broadcast and manage their work in different parts of the design that
they are working on. The result of this study provided insights into communication, earlier
feedback and collaborative view about interface design tasks among the crowd workers who
participated of the experiment.

Lack or incomplete documentation (BA17). Tasks represent the starting point of the
SW CS activity, it plays an important role through which crowd developers will know what
they need to produce. Regarding task documentation, [STO14a] pointed: "Organizations
may be hesitant to provide too many details on a certain task (i.e., module or component)
that is crowdsourced, yet sufficient detail in the specification is necessary for developers in
the crowd to understand what the crowdsourcing organization is requesting”. "The same

66

authors [FIT15], in a complementary study, reported a common problem in CS software
development: "The documentation that specifies the context and the requirements for the
software development task at hand must be easy to understand and provide sufficient
information for crowd developers to do their task". Overwhelming the crowd with unclear
and insufficient instructions impact in few or even no participation task's submissions and
poorly solutions by crowd.

As Lakhani et al. [LAK10] narrate “...clients discovered that contest participation
decreased if they were unclear about what problems they wanted to solve or presented
problems that were too complex or vast in scope".

The evidence found in the literature suggest that provide proper documentation will
likely lead to decrease time spent on responding to crowd's queries about task's
documentation as mentioned in barrier about hurdle single point of contact (BA16).

Difficulty to find fit task allocation (BA22). In open software development contributions
by the unknown crowd, new challenges emerge by side of requester and platforms in
coordination at scale, collaboration to work together and, to achieve the highest possible
quality of service. To distribute and allocate tasks to appropriate and competent people, SW
CS platforms should in promoting the group formation or self-organization of people with
either similar or diverse, cross-functional skills or background.

This barrier is evidenced by [LAT15c], "How can workers be matched to microtasks,
most efficiently allocating the knowledge workers bring to bear to the work to be done?
Which aspects of software work benefit most from expertise, and how can this expertise
best be leveraged?"

In [STO14a] the authors reports: "Multiple tasks in parallel have implications for
coordination and quality in order to attract sufficient crowd participants with required skill to
be allocate or assignment on crowdsourced tasks".

Security and Privacy issues (BA21). This barrier refers for collaboration and
cooperation among requester (task creator) and crowd in two aspects: (i) Intellectual
property (IP) concerns, the solutions that crowd workers submit are not theirs as happen in
open source code and (ii) confidentiality of the data to protect interests of requesters.

In [STO14a], the authors comment that "organizations may be hesitant to provide too
many details on a certain task (i.e. module or component) that is crowdsourced."

Hossfeld et al. [Hoß14] mentioned: "Along with these new opportunities, however,
come a host of technical challenges as well as privacy-related issues."

Regarding privacy, security, or intellectual property concerns are need to balance in
how much information should be shared to motivate and retain workers and how to share
context without introducing confidential problems to the core business value.

e) Cultural Diversity

Geographical, organizational, and cultural diversity has been shown to cause of several
problems in software development. In SW CS, it is amplified due to large and open

67

community nature. As it increases in diversity, it also deteriorates the performance of
coordination and communication and, it requires proper mechanisms to lead with these wide
differences. In this category, we identified two barriers: BA18 (Teams’ heterogeneity) and
BA20 (Language’s diversity).

Teams’ heterogeneity complexity (BA18) is related to the huge heterogeneity of
language, backgrounds, and expertise of the crowdworks. This aspect can influence in
collaboration to keep willing participants to delivery good contributions in order to establish
a common grounded on task's specification (technical and operational view), and effective
communication among involved parties.

This barrier is reported in three studies [BOU14a], [TAJ13], [HOS15] and [BOU14b]
describes how heterogeneity and sparse social context among crowd individuals' results in
a miscommunication and different point of views around the tasks specification increase the
level of temporal coordination within the team. On the other hand, Tajedin et al. [TAJ13]
highlights the strength points of CS is the different viewpoints and methods to solving
problems: "But one can imagine a maximum point for this after which not only with the
increase of diversity the performance does not improve but also it deteriorates due to
problems that emerge because of coordination and communication.” To Hosseini et al.
[HOS15], geographical diversity, inadequate communication, difficulties in knowledge
management and, issues related to timezone differences are causes of several problems in
the field of crowdsourcing for requirements elicitation.

Language’s diversity (BA20) occurs in global software environments. When working
on a global software project, the language diversity between large communities and
customers poses a threat to effective team-customer collaboration by limiting their
understanding of each other’s perspectives. Workers with limited ability to read/write a
common language are likely to incur greater overhead when communication with others
workers and when you put together a diversity of skills and perspectives. This barrier is
evidenced by [PRI14] and [MAC16a].

To Prikladnicki et al. [PRI14] languages differences poses challenges to collaborate
between for non-native English speakers. English is a universal technical language for
software development projects and, the crowd participant's must be able to speak the same
language for large communities in order to be more effective communication, learning and
collaborative relations [MAC16a].

3.3.4 Discussion

Considering collaboration barriers from different perspectives such as platform,
requester, and the crowd, some of these barriers cannot be considered a barrier. For
example, from the platform's perspective, “competition model” category is a desired “feature”
(rather than a “barrier”) used by many crowdsourcing platforms such as TopCoder and
uTest. In turn, this “feature” can create a collaboration barrier in terms of lateral
communication from the crowd’s standpoint.

68

On the other hand, our findings reveal which barriers are common across all the
actors, and which ones are unique to each one of them. There are five barriers to
collaboration that are common to all actors in SW CS environment: i) Few interactions
among involved actors inside the platform, ii) Security and privacy issues, iii) Lack of
feedback among actors, iv) Weak commitment between involved actors, and v) Technical
and infrastructure setting issues.

The literature shows that lateral communication and coordination are important to
most actors in the SW CS. A particular challenge for the crowd and platform is the diverse
mix of people. Specifically, for the platforms’ side, the instability of resources (control willing
crowd workers) represents a huge collaboration barrier, and workers’ decisions are highly
volatile from task registration to task submission, given that zero or failed submissions may
cause negative effects on SW CS projects.

As it was possible to observe through evidence found in the literary (Table 10) the
greater number of collaboration barriers refere to social interaction category and affects
crowd workers. In this way, it is crucial to understand how collaboration barriers limit
interaction in terms of lack of communication and restricted communication channels
supported by competitive SW CS platform, affecting workers when they try to execute such
activity and intent to submit their software solutions. Those collaborative barriers may impact
in few or even no participation of tasks, and poor solutions by the crowd, putting SW CS
projects at risk.

Table 10 - Collaboration barriers and SW CS elements

ID Barrier

Crowd Request Platform

1 Lack of Informal communication (BA1) x
2 Lack of interaction among crowd members

(BA2)
x

3 Information management complexity (BA3) x
4 Difficulty for dealing with competitors (BA4) x
5 Lack of real-time collaboration (BA5) x
6 Technical and infrastructure setting issues

(BA6)
x

7 Scarce social media support (BA7) x
8 Few interactions among involved parties inside

the platform (BA8)
x

9 Low global project view (BA9) x
10 Micro-task decomposition issues (BA10) x x
11 Difficulty in team management in large scale

distributed settings (BA11)
 x

12 Weak commitment between involved parties
(BA12)

 x

13 No unified software process methodologies
(BA13)

 x

14 Difficulty to increase and keep participants'
motivation (BA14)

 x x

15 Asynchronous communication (BA15) x
16 Hurdle single point of contact (BA16) x

69

17 Lack or incomplete documentation (BA17) x
18 Teams heterogeneity (BA18) x
19 Weak internal collaboration between the

platform and the requester (B19)
 x

20 Diversity of languages (BA20) x
21 Security and privacy issues (BA21) x x
22 Difficulty to find fit task allocation (BA22) x
23 Lack of feedback among participants outside

the platform (BA23)
x

Looking at collaboration barriers in SW CS projects, we evidenced:

a) Collaboration over limited human interaction

The competitive SW CS environment imposes communication limitations. Crowd
workers are limited to written communication and lack spontaneous discussion. They have
little real-time interaction with each other. By checking literature, we observed that
collaboration is strongly connected to message exchange and seeking information about
the task on communication forums. No direct communication to share information freely
during the development of SW CS tasks may lead to misunderstandings and thus may have
a big impact on the quality of the final solution.

The incentive to crowd's interact by side of the SW CS platforms is restricted as
mentioned by [PEN14]:

"Crowdsourcing platforms support communication by providing task-specific forums
for crowd members to ask questions and communicate with each other... However,
crowdsourcing platforms provide little support for collaboration among crowd
members."

The study conducted by [GRA16] said:

“(…) when platforms do not natively support collaboration among the crowd,
workers create widespread yet invisible forms of collaboration that take place off-
platform.”

LaToza et al. [LAT4] implemented a CrowdCode tool and the findings revelead about
communication’s issue:

“A majority of participants who worked on a small programming task agreed that the
opportunity for communication beyond what was provided would help them to work
more effectively. Participants cited a desire to share technical experience, clarify
tasks, ask questions about material that others had written."

b) Collaboration over competition

Regarding SW CS that operates on a structure of competitions the level of
collaboration and mutual support drastically decreases when crowd community become
rivals and compete against each other.

70

The developers are concerned about their solutions would be stolled and reluctance
to exchange information and share knowledge. Differently of open collaboration and free
revealing found in the context of open-source software development [HUT11].

The competing behaviour present in CS platform-based contests implies in reduced
participating actively in network interaction, sometimes intentionally, provoke by platforms
in order to benefit from good performance. Therefore, crowd workers desire to socialize and
to interact with others who share similar questions and interests, resources and,
information.

Hosseini et al. [HOS15] discuss the effect of the ranking and reputation in the CS
competitive model to establish collaborative relationships with other participants, especially
among seasoned and newcomer participants:

"The competent crowd might also include participants’ inflated egos which would then
reduce the level of collaboration and lead to conflicts and inconsistency."

[NAG12] and [NAG13] discuss the applicability of crowdsourcing and competition for
problems that require a collaborative or cooperative effort to be successful. The author
showed the results of a development software tournament in TopCoder platform.

"Development through competitions requires a careful balance of competition and
collaboration to achieve its goals. Much of the collaboration in TopCoder is structured
collaboration, i.e. the TopCoder process dictates how that collaboration takes place".

c) Collaboration over dynamic coordination

The coordination in SW CS is complex to manage all the contingencies (e.g.
deadline, artifacts, number of tasks, questions from the crowd, uncertainly resources and
so on). In this way, coordinate across individuals with different expertise and capabilities
require an extra management of the resources [KIT13]. Unstable resources and problems
that emerge unpredictably in the course of actions during task's period in SW CS
environment have to be resolved through flexible coordination. In SW CS, people don't work
together effectively, people must not agree on how the product will be developed. Instead
of, would be sufficient to establish effective coordination with each crowd worker para
melhor o quantidade e qualidade de submissoes de solucoes.

In Stol and Fitzgerald, [STO14a] the authors reports:

"Multiple tasks in parallel have implications for coordination and quality in order to
attract sufficient crowd participants with required skill to be allocate or assignment on
crowdsourced tasks".

In [RIE17] the authors investigate how to effectively incorporate team-based
collaboration in a setting that has been individual-based. In a field experiment on online
platforms they evaluate the influence of member skills, incentives and emergent
collaboration process on performance of crowd-based teams. The authors evidenced this
barrier through of coordination:

"(…) temporal patterns of coordinating are a particular challenge in crowd-based
teams, as, in addition to being globally distributed participants also tend to touch their

71

contributions in around the edges of their "regular" activities, leading to an even less
regular schedule than we would observe in global teams in work organizations".

3.4 Case Study by Crowds’ participants

3.4.1 Settings and methodology

After the literature review study, as illustrated int the first chapter (research design),
we decided to focus on competitive SW CS, which is a model of CS in software development
[LAT16]. Then, we decided to gather more evidence of the research problem we were
addressing. We conducted a case study (Figure 1), to explored how crowd participants
perceived collaboration in a competitive SW CS platform, what collaboration challenges they
faced to perfom a single task during a contest, the suggestions to overcome the challenges
basead on their experience and, refleting upon their feedback from which collaboration, or
the lack of it, influenced the submission of task solutions during a TopCoder challenge,
[MAC17]. Therefore, it was in the interest of the research to provide the participation of
computer professionals in a new approach to development, and, more importantly, to
understand what practical implications of collaboration barriers are faced by participants in
SW CS challenges.

We found that for most participants, the perception of collaboration among crowd
members during task performance was weak, restrict, and indirect. Besides that,
collaboration was strongly connected to message exchange and seeking information about
the task on communication forums. There was evidence that reduced collaboration impacts
crowd workers in a negative way when it comes to performing the task and completing the
challenge. After conducting this study, we defined the collected data directly from
communication forums from TopCoder challenges and started Phase II studies of this thesis
to verify if lack of or reduced communication would influence in the crowd workers’ decision-
making process to drop out or not submit the tasks’ solution.

According to [HOP96], the case study is particularly suitable for the exploratory
examination of phenomena that have not yet been studied and that need to be investigated
in their environment of occurrence. The application of this method is indicated when one has
to learn about the state of the art and generate new theories supported in practice, to
understand the nature and complexity of the process as it happens, and to bring new factors
and information, evidenced during the execution of the studied process [YIN13].

Being case studies empirical investigations especially employed when the
boundaries between the contemporary phenomenon and the actual occurrence context are
not clearly evident [YIN13], the exploratory case study was defined as part of the strategy
of this thesis to bring to life the real-world phenomenon in a contemporary software
development context.

The case study took place as part of a graduate course project on Collaborative
Software Development (CSD) at PUCRS, Brazil (Appendix D). The course discusses the

72

history of collaborative systems and CSCW principles, as well as different models of
collaborative software development including global software engineering and software
crowdsourcing. We selected TopCoder as the platform for the project to take place in the
Development Challenge (DC) category to work on.

The course is offered once a year during 16 weeks (during August and December in
2016), has, in average, about 15 students enrolled per session.

The students were told they had to work independently and that they have six weeks
to conclude the SW CS task between August and December in 2016, and then submit they
would have to submit it on the platform. Besides that, they were given two additional weeks
to observe and respond to any feedback, if given, from the platform. An assignment was
associated to each of the above-mentioned activities as follows:

a) Report 1 - Task Description: the student reported on the selected task and provided
us with a brief description of the task goal, sub-category within the Development
Challenge category, and estimated period of completion. A brief explanation on the
reasons for selecting this task was also provided;

b) Report 2 – Open experience report: the student had to respond to nine open
questions (Appendix C), where students were able to debrief and explain their SW
CS experience in terms of collaboration activities and barriers about the onboarding
process while trying to place their code solution on Topcoder;

c) Report 3 – Open-ended online questionnaire: this questionnaire provided us with
profiling information on the students’ background and Likert-scale-based questions
about their opinion on the course project.

As the case study was embedded in a larger project that involved other research
topics related to SW CS (task's requirements, newcomers' challenges and motivation), only
Report 2 was used in order to answer the defined research questions for the sake of this
thesis. Thus, of the total of nine questions presented to the group of participants, only three
of them correspond to the objectives of this study and will, therefore, be reported in this
section.

For validation of the questions used to compose Report 2, face-content validation
was performed by two research colleagues in SW CS domain, and the course teacher who
has extensive experience in collaborative software development and SW CS. The validation
phase contributed to the refinement of the questions that made up the final version of the
questionnaire. The original questions were reordered and rewritten to allow greater
consistency in the terminology adopted by the platform.

From the group of 21 students, 16 (76%) participated in a SW CS initiative for the first
time, that is, they submitted a SW CS task on Topcoder for the first time, whereas some of
them (24%) had already submitted SW CS task solution in other platforms such as Upwork,
and People per Hour23, besides TopCoder. The 13 graduate students (62%), have had an
average of over six years of software industry experience, ranging between 26 and 30 years

23 https://www.peopleperhour.com/

73

old. The main professional activities mentioned were programming (57%), and system
analysis (24%). The other activities comprised project manager and tester jobs.

The students took part in “F2F” and “Code” tasks on TopCoder, which means that
only these two types had been chosen from DC category. A task in the DC category can be
categorized in several subcategories, as mentioned in subsection 2.7, such as: architecture,
assembly, code, component design, component development, First to Finish (F2F), etc.

3.4.2 Data Analysis

The data from the “Case Study” were collected through the analysis of the open
questions which guided the elaboration of the reports delivered by the participants of the
study, and also complemented by the group discussion among the participants. The data
were used to: 1) identify relevant codes in the context of collaboration in SW CS, 2) analyze
the relationship between these codes and 3) identify the categories to group these
previously found codes. The synthesis of these categories is a list of the main collaboration
barriers associated with SW CS contest, more specifically the collaboration barriers
associated with the TopCoder platform, as well as the characterization of the collaboration
in this context illustrated from the selection of significant sections of the answers that
mention them. As described, the case study was divided into three main deliveries; however,
for the specific objectives defined in the exploratory case study of this thesis, only part of
Report 2 was used.

Similarly, to our previous study, we analyzed the open-ended questions using coding
techniques from Grounded Theory [STR07]. We integrated the results from the literature
study adopting a unique set of codes (category and topics), extracting the most significant
results, that is, discovering, through the conditions in which phenomena occur, the barriers
faced in crowdsourcing software activities.

Most of the categories identified showed a consensus with the LR performed in study
2 of the exploratory phase of this thesis. The categories patterns obtained through data
analysis were related to collaborative forces or barriers that include: restricted
communication between the involved parties during the execution of the task, the
competitive nature of the SW CS platform, and unclear task documentation, as described in
the following section.

3.4.3 Results

The most evident result in the case study was reported by the crowd members in the
recognition of collaboration on the TopCoder platform through asynchronous
communication via forum, and, in the same way, the most significant collaboration problems
were mentioned to be the restricted communication via forum between members and the
platform, and the competitive nature of software development.

74

The question related to participants’ collaboration perception was as follows: “How did
you perceive collaboration in SW CS on Topcoder among crowd members, and between
the platform (requester) and its members?”

The collaboration perception in SW CS on the platform and the task execution sought
to investigate how and when the involved parties (crowd, platform, and requester)
collaborate in the work setting. As a consequence, this feedback helped us understand to
what extent SW CS competitive model allows and requires collaboration during task
execution among members, contributing to the same software product development.
Findings suggest that the collaboration perception in SW CS competitive model was fuzzy,
which was gathered through three answers given by them: those who perceived
collaboration, those who partially perceived it, and the ones who did not perceive
collaboration while participating in the task execution on Topcoder.

Some quotes are presented, referring to the answers from those who perceived
collaboration clearly or partially, which are strongly connected to message exchange, and
seeking information about the task on communication forums.

a) Among platform members:

“Collaboration on the platform, as far as I have noticed, works through messaging
forums, where developers ask direct questions to the requester, and the answers can
be viewed by everyone who is attending that particular task and can also make use of
that information”. – P14

“… I noticed that other colleagues had already identified problems in the archives and
had exchanged information that was useful to carry out the activity.” – P6

“Among the members who were developing solutions to the problem posted, I could
see collaboration through the platform to clarify doubts and get reference materials that
could help in obtaining relevant information to the development of the solution." – P13

b) Between the platform (or requester) and platform members:

For most tasks performed in the study, participants reported the “presence” of a copilot
in the forums, which may justify the responses/feedback from participants about the
perception of collaboration more explicitly between the copilot and the crowd to refine the
scope and support doubts about task documentation.

"Collaboration happens better between the requester and the platform members with
the use of forums.” – P9

"(…) Between the requester and the user, there is certain collaboration through a
forum that the platform makes available, but this collaboration is more used to
document the task, and check on doubts about some item of the task that was not
clear” – P12

The email tool was perceived as a collaboration between the platform and the crowd,
cited by only one of the participants. Emails were mentioned mainly in the post submission
review process of the solution developed for the task.

75

“The information that the platform makes available to the developer refers to reviews
of the task going through and the deadline. Other information I received from the
platform was through emails about the process, but most of the time they were
repeated.” – P14

Regarding those participants who reported not noticing collaboration in SW CS, it was
observed that this fact is intrinsically bound to three main reasons: (i) not working together
with other members to write code, (ii) not using the forum to communicate during task
development, and (iii) competition inhibiting collaboration.

"On the challenge forums, I did not identify any kind of collaboration regarding coding"
– P1

" I could not visualize the collaboration within the platform, at least not in the task I
performed.” – P16

“In fact, the very nature of the platform, competition, makes this type of collaboration
discouraged, which in my opinion is something negative.” – P4

Communication as a way to collaborate in Competitive SW CS

It is noteworthy that, through the patterns found in the analyzed data, the
communication via forum on TopCoder platform is seen as a synonym of collaboration in
the task development process according to crowd workers. Thus, the forum – considered
as an asynchronous tool of communication among task participants (crowd), and between
the task mediator (copilot) and the crowd – represents the most used means to share task
specification documents, and exchange information. Furthermore, narrowing down to
Topcoder, forums are used as a task communication and coordination resource, and they
are just visible to those participants who have registered to the task. From this moment
onward, participants can post messages or simply read and gather information from the
posts of other task participants.

“I also read some posts with questions from other developers.” – P8

“(...) A participant’s question can be shared and answered only by reading the forum.”
– P9

“I resorted to the forum to find more details, since the description of the activity was
very succinct.” - P8

The lack of collaboration through communication problems on the platform was
mentioned by the participants. For most of them, the perception of collaboration among
crowd members during the task performance was weak, what might have been influenced
by the context of TopCoder’s online contest (competition), the financial reward, and the time
to be the first to send the best solution, as mentioned by some participants in this study.

“I only noticed the collaboration between the requester and developers through the
forum. And I think this is the downside of the model adopted by Topcoder. As work is
conducted as a competition, collaboration among members is minimized.” – P20

76

"I did not observe collaboration among users, they are trying to finish the task as soon
as possible so that they can get the reward." – P19

For example, participant P6 reported:

“Collaboration was undoubtedly essential, and it worked objectively. Specifically, in the
activity I chose, I did not find the files to download and I searched for information on
the task’s Forum. Not only did I find the files but I realized that other colleagues had
already identified problems in the files and had exchanged information that was useful
for the execution of the task.” – P6

In addition, another participant states:

“Collaboration among members of TopCoder platform is non-existent; identifying
other members on the platform is very difficult. Between the requester / platform and
the user, there is certain collaboration through a forum the platform offers, but this
collaboration is more used for task documentation, and clarifying doubts about some
items of the task that were not clear.” – P1

This answer indicated that there are interaction and communication among involved
participants but, in the participant’s point of view, collaboration is more significant between
platform and requester. This quote can be associated with specific characteristics of the
platform in terms of anonymity of the requester and crowd community and, lack of social ties
and informal communication inside the platform.

Collaboration Barriers in SW CS Projects
The questions related to participant’s collaboration challenges was as followed: “What

collaboration difficulties did you face on TopCoder platform?”
a) Analysis considering competitive behavior vs. collaborative behavior

Open calls for competing solutions in SW CS projects apply a model of independent and
individual work that can inhibit the opportunity for developers of the crowd to collaborate in
exchanging information, sharing experience, ideas, and so on. It was observed in results
that some SW CS activities are performed individually by crowd members, i.e., individual
behavior does not require other developers’ participation (e.g., coding, reading
documentation, onboarding task process), whereas collaborative behavior requires more
than one person involved to interact, for instance, decision-making, informal conversations,
chat in real time communication, and email messages. Thus, during the execution of SW
CS tasks, the collaboration takes on new characteristics in this competitive model,
influenced by the transitory, remote, disperse, undefined, and unknown/anonymous aspects
of the crowd, making it easier to recognize individual behavior rather than collaborative
behavior among platform members who share an award for the best submitted solution as
referenced by Machado et al. [MAC17].

As mentioned by [HER99] and [HER01] global distance affects collaboration in the
process of software development, and, given that SW CS development operates on a
structure of competitions [5], these can impose a restriction to crowd members to collaborate

77

with one another. In this way, we were surprised that participants reported about
collaboration during their experience in SW CS tasks on TopCoder.

Thus, new aspects to coordinate distributed individuals online and manage the flow of
communication emerge in a competitive SW CS context: Shall we expect collaboration?
Shall we reconsider what we know? Tasks are being defined to a single developer to work
on his/her own, but is this possible?

b) Analysis on the use of asynchronous communication to interact and collaborate

Informal communication among crowd members during tasks’ execution is restricted
to asynchronous tools, according to what was observed in this study. Asynchronous
communication via forum in each task performed by the participants of the study reinforces
that interaction among crowd members and the copilot may impact collaboration for task
development. We may think that the platform intentionally supports communication among
members of the crowd in a restricted way, by considering the competitive model it acts. No
direct communication during the development of SW CS tasks may lead to
misunderstandings and thus may have a significant impact on the low solution submission
[YAN16], and the quality of the final solution [STO14], [PRI14].

Asynchronous interactions do not provide rapid feedback among members. For
instance, in forums, feedback communication is delayed, and interruptions or long pauses
in communication often occur [BOU14]. However, forums have a considerable influence on
the interaction for communication during a SW CS task execution on TopCoder, as we have
found in the results. In connection to the usage of asynchronous communication to
collaborate and interact in this platform, it becomes possible to think if forum resource in
competitive SW CS represents a particular collaboration way among the involved parties
(crowd, requester, and platform) to development software tasks in this context.

Once again, we merged some barriers, reorganized them, and added new ones
(Table 11). The categories and topics were obtained after coding analysis. By categories we
mean the group of the concepts of the phenomenon (collaboration in SW CS). Meanwhile,
topics were used to classify each collaboration barrier that crowd workers face in SW CS
challenges. This analysis happened with the open questions reported by specifically crowd
workers after registered on TopCoder platform.

Table 11 - Collaborations barriers from crowd

Case study
categories

Topics emerged from the case study

Literarure
review

categories

Communication

• Communication only via forum and restricted
between crowd - crowd

• Communication focused on the task (without
informal communication)

• No communication between crowd and requester

78

• Integration with other collaboration tools (GitHub,
stackoverflow)

• Long time responses on the forum for doubts
• Review process without interaction with

stakeholders

Social
interaction

Visibility

• No synchronization of decisions taken in forum vs.
documentation (and vice versa)

• Evolution transparency in each phase of the
challenge

Task

• Unclear and inconsistent documentation
• Setting up the environment for task

implementation
• Documentation with little detail
• Task onboarding

Task design

Competition

• Competition discouraging collaboration
• Tendency for the oldest ones (seasoned

TopCoder members) to compete and win
• Financial reward

Competition

model

Cultural • Language difficulty
Cultural
diversity

Process

• Feedback (code review) without personalization
• Information management
• Platform Onboarding

Process
management

Crowd workers in SW CS contests in relation to the competition model consider the

environment setting as a collaboration barrier, and this might be due to the fact that the
platform does not use collaboration tools like code hosting (GitHub, BitBucket) for task
development. Likewise, regarding the barrier related to the category "Process Management"
and to the theme feedback without personalization, and technical code review without tool
support, participants pointed out:

“(…) On the development environment, this was one of the factors that I considered
negative, since each task (not being tasks from the same project) requires a new
environment setting, which ends up taking a lot of time.” – P1

“I was also hoping that the review process would be open to everyone, and that I
could review the code that other people submitted. (see day 17/10/2016 of the
logbook). What happened in the review process were two people reviewing the
deliverable of everyone... the code review process could be improved if there was a
code review tool where I could see notes in the code of which part should be
improved”. – P1

About the competitive nature of TopCoder contest and the advantage that older
platform members have over newcomers, the participants said:

79

" To what extent will new developers be encouraged to join the platform, since more
experienced developers have a tendency to always win the challenges (there is a
cycle of the same people always winning the challenges)?" – P8

“Tendency for the same participants to always win the challenges” – P14

Regarding the difficulty to communicate in another language, besides other barriers
already evidenced in the study, the participant comments:

“Difficulties can happen, such as assembling the development environment, writing
and reading in another language, or in the usability of a tool, which can be minimized
with study and practice. All knowledge acquired in each project, be it at work or in the
accomplishment of a course, adds to the next one.” - P18

3.4.4 Discussion

The feedback from the exploratory case study helped us understand to what extent
SW CS competitive model allows and requires collaboration during the task execution
among members, contributing to the same software product development. Besides that, the
study also helped characterizing the communication behavior on TopCoder. Furthermore,
we investigated how developers collaborated with each other in a competitive work setting,
and what the main collaboration challenges faced by them were in this context. As
contribution, some preliminary suggestions to the collaboration challenges in SW CS under
the crowd perspective were provided through data analysis from the exploratory case study.
These suggestions should provide subsidies to improve the platform requirements to be
more assertive in setting collaboration aspects, onboarding processes, and increase
submission solutions in a satisfactory way. The unexpected collaboration between crowd
competitors can be mentioned as good aspects in the SW CS onboard process. On the
other hand, there is the need to improve the communication usability of the platform, adding
a particular focus on improving the communication channels.

As limitations, our study concentrated in one crowdsourcing platform, and the strategy
of offering to participants of the study only one option of challenge category on Topcoder
(Development Challenge) for task selection led many of them to choose the same kind of
task, which was, in this case, First to Finish (F2F). This recommendation also led many of
them to carry out, even if in an individual way, the same task. Therefore, we cannot claim
the generalizability of the results.

Finally, this empirical study, aimed to understand that collaboration assumes specific
characteristics in SW CS contests, and that they should impact the involved parties in a
positive and negative way. Afterwards, we analyzed the outcomes (coding of collaboration
barriers) obtained from the qualitative studies interviews (study 1) and case study (study 3)
with the literature review (study 2), which each barrier emerged from these studies was used
as the input for the mapping and resulting in the collaboration barriers’ model in SW CS
presented in Figure 12, along 29 collaboration barriers. The analysis process was similar for
all studies, where we found categories and codes identified during each study. The

80

categories represent the main aspects associated to collaboration in SW CS projects and
these barriers were classified into five categories once them: social interaction, process
management, cultural diversity, competition model, and task design. Regarding to codes,
they respresent the collaboration barriers emerged in each study and, they were refined,
merged and rearranged to accommodating all the barriers evidenced from of the three
studies executed in the exploratory research’s phase. This step was need because we
observed an overlap between some barriers and also, a group of barriers displayed similar
proprieties and dimensions.

Therefore, the collaboration barriers’ model presented in Figure 12 reflects the final
structure observed on SW CS collaboration barriers following the three qualitative studies.

Based on the categorization proposed in the collaboration barriers model in SW CS,
we evaluate the social interaction category focusing on communication issues among crowd
workers of the largest SW CS platform that operates in a competition model - TopCoder. In
this way, it was possible to cover the other categories of the model as well, since we
observed through the obtained results with the studies carried out in the exploratory phase,
a strong dependence and interrelationship between cultural diversity, task design, and
process management during the execution of software tasks in the SW CS projects.

81

Fi
gu

re
 1

2
- C

ol
la

bo
ra

tio
n

ba
rri

er
s

m
od

el

82

Figure 13, present the barriers emerged from each study. We highlighted with
different color each barrier per source. The two (2) ellipses in gray displays qualitative
analysis interviews (study 1), the ellipse in red present 20 barriers identified by literature
review (study 2) and, the exploratory case study (study 3) is represented by 16 yellow
ellipses. In this final collaboration model, some barriers overlapped the studies, as show
Figure 13, where the barriers are displayed with two colors. For example, in Social
Interaction the barriers overlapped are: lack of informal communication, few interaction
among involved parties and lack of interaction among crowdworkers.

Figure 13 - Model identified per study

83

4. COLLABORATION CHARACTERISTICS

4.1 Evaluatory Phase

In the evaluatory phase, we identified an analytical framework to measure
collaboration characteristics among crowd workers, and the “fit” between these collaboration
characteristics and the productivity (winners) by the crowd. This measure of fittness is called
congruence [CAT06] and has been studied in both industrial [CAT06], [KWA11] and open-
source [WAG05] software development projects. Using qualitative data from TopCoder’s
platform forums that were analyzed using GT procedures [STR07], in this study, we found
that patterns of collaboration among crowd workers influence on task performance,
suggesting that crowd workers who communicate via forum is important for task’s
completion in the TopCoder challenges, in other words, there is also congruence on SW CS
for the task performance and winner of the challenge.

The second study was a survey with developers who have competed on TopCoder
and it aimed to validate the results of the qualitative forum analysis. Questions from this
survey focused on collaboration, task performance and communication channels used by
crowd workers during task execution. We used correlations and qualitative approach for
analysis of the questions [KIT02a], [KIT02b], [KIT02c], [KIT02d], [KIT03].

In the next sections, we provide more details about the design and analysis results of
the empirical studies based on real-world data gathered on the Topcoder’s communication
forums, and the collaboration in the SW CS survey with crowd workers who had participated
in the development challenge on the same platform.

4.2. Qualitative analysis of communicattion’s forums

4.2.1 Settings and methodology

As mentioned, one of the objectives of this thesis was to analyze the collaboration
between crowd workers in competition challenges on the TopCoder platform. This was done
by qualitatively analyzing the messages exchanged between the crowd workers, here
defined as coders, on the forums that are created for the challenges.

The TopCoder’s forums analysis were carried out in partnership with Ricardo Marinho
during her Master course. In the partnership’s work, he analyzed how much crowd workers
communicate in the SW CS forum’s challenges and it served as input for the extension of
the messages analysis of TopCoder’s forum executed by the author of this thesis. Here, we
analyze what crowd workers communicated about, i.e., the categories and topics identified
in their messages. Thus, we presented the collaboration characteristics described in
subsection 4.3 of this thesis.

84

To extract the data from the forums, a tool called Web Scraper24 [MEL18] was used.
This tool allows the creation of sitemaps to navigate the page and extract data. Unlike other
tools that extract data only from HTML, Web Scraper can also extract data that is loaded or
dynamically generated with JavaScript. Using different types of selectors, Web Scraper
extracts various types of data - text, tables, images, links, among others. The data, once
extracted, could be exported as CSV. It was necessary to register to participate in the
development challenges, in tasks of the Code type, from July to August 2017, meeting the
established criteria, as defined in Table 12. Thus, it was possible to access the data related
to the messages among active coders in the discussions, available in the project area, called
challenge forum. With this participation, data were extracted to return textual results, such
as: date and time (i), thread (ii), sender (iii), recipient (iv), and finally the message itself (v),
as shown in Figure 14

Figure 14 -Example of selectors used for data collection

The discussion forums on TopCoder are normally used for sharing task

documentation. Besides that, it is the channel where questions are asked and answered by
platform moderators (copilots) and among all crowd participants (coders) registered in the
challenge. The prevalent questions are related to task’s documentation such as,
communicating useful information (technical and managerial), removing requirements’
misconceptions, setting deadlines, solving understanding problems on documentation and
so on.

On the forum, there is a feature that allows users to click on the “feedback” link to
mark posts with useful information, and a feature to manage forum “views” by the crowd
participating in the competition. The number of feedbacks to each post is visible to all forum
registers. We might contrast coders who are active forum members from those who are not.

24 http://webscraper.io/

85

However, we cannot track coders’ viewing log, so it is hard to see which coders combined
knowledge from the forum without speaking up (i.e., posting a post). We consider these
interactions via forum as acts of socialization and collaboration among the involved parties
during a SW CS competition.

All coders that participated in task forum discussions represent the TopCoder
members who had registered in one of the 25 challenges analyzed. Some coders may have
registered for more than one challenge at a time.

Coders have different levels of participation during the challenges they perform. Yang et
al. [YAN16] see crowd participants as a set of quitters, submitters, winners, and
uninterested, that is:

• Quitter: includes crowd workers who did not make submissions to a task they once

signed up for, by the given deadline;
• Submitter: includes workers who have submitted a task but did not win the

competition;
• Winner: is a crowd worker who has submitted a piece of code for the stated task and

was evaluated as the winner or runner-up among all submissions;
• Uninterested: comprises those workers who were active in the TopCoder platform but

did not register for a task.

Despite the difference, all members are important to the success of the SW CS
strategy. It is evident that, by making direct submission and winning a challenge to the
software development at platform, winners and submitters are vital to SW CS development,
but it is essential to consider that quitters and uninterested crowd workers are also the
source of new submitter members, so supporting them is important to the long-term success
of SW CS.

In this thesis, we employ the first three coder status/category, namely, quitter,
submitter and winner [YAN16], as the labels on competitor outcomes that describe crowd
participation in SW CS tasks. While the reasons for different crowd participants to quit of a
competition may be complex, in this thesis we investigated the correlation of collaboration
among crowd members and different levels of participation (task performance) of winners,
submitters, and quitters during a task competition.

4.2.2 Data Collection

From several development challenges (SW CS tasks) hosted on Topcoder [TOP17],
we selected a sample of challenges for analysis. The selection of the sample was based on
the criteria as can see in the Table 12.

86

Table 12 - Summary of criteria definitions

Category Metric Description

i. Active period of
analysis

Between July and
August 2017

Tasks available and open for registration in
the period

ii. Number of
registrants

> 15 Number of crowd workers who applied for a
task

iii. Financial reward > $500 Task budge. The value the task requester is
willing to pay

iv. Task phase Registration and
submission

Indicating the task status (registration,
submission, review)

v. Task challenge Development
Challenges

Indicating the challenge area (design,
development, and data science)

vi. Task category Code Capturing the different categories for tasks
(conceptualization, design, coding, etc.)

Total 25 challenges Total of challenges during the period
(July - 9 tasks, and August - 16 tasks)

The first criterion was based on Dubey’s et al. [DUB16] study, where the authors

analyzed July and August as the two months when the maximum number of tasks are posted
on TopCoder. We have also restricted our sample to tasks with at least fifteen (15)
registrants in the challenges with a minimum of financial reward (500 dollars). For these
criteria (ii) and (iii) were considered the reasonable number to generate a forum discussion
within medium reward to willing competitors.

Following the sampling criteria, our final sample consists of 25 challenges, more
specifically, technical coding challenges (vi). Collecting detailed data by content post from
communication forums is an arduous manually process. But, as far as we know, no previous
work has reported content analysis from TopCoder’s forum as a strategy of research and
analysis in the SW CS area.

4.2.3 Data Analysis

The content of each message was analyzed using GT procedures [STR07] to identify
categories and topics. By categories we mean the type of message being post including,
public announcements, reported problems, tips, etc. (Table 13). Meanwhile, topics were used
to better classify the message, i.e., the subjects being discussed in the messages. The

87

messages (conversations) codified into categories are present in Table 14, and the topics
can be seen in Table 15 [MEL18].

The coding process was conducted separately by the author of this thesis and
Ricardo (partnership’s researcher) in his dissertation between December 2017 and
February 2018. Then, they together reviewed every category and topic to reach an
agreement about the final categories and topics to be used. The final coding scheme
included the following categories: Public Announcement, Tips, Request for Help, Help
Answers, Confirmation Request, Confirmation Response, Invitation Request, Invitation
Response, Identified Problem, and Problem Response. As for the topics, they are: Access,
Library, Connection, Deadline, Inputs, Style, Processing, Requirements, Outputs,
Scorecard, and Units.

Table 13 - Examples from category coding

Categories Messages

Public Announcement “[...] The purpose of this document should be to train the ML
system to identify data in the schedule.”

Request for Help “All sections of the specification document seem to have a
good purpose, except section 9.3. Should we use the
formulas in section 9.3? How?”

Problem Response

“[...] You should first add corresponding class into .scss file,
save that, and only then use it in .jsx. I should check,
whether this behaviors can be improved.”

 We defined ten categories that represent the message type “source-destination”. For
example, the forum thread can be posted by a copilot or coder (sender) and destined for a
different copilot or other coders. The response(s) to this message can be given via reply by
the copilot or by the coders themselves.

Table 14 – Message Categories

Coding 1 - Category Description

i - Public Announcement

It has an informative aspect, it does not characterize
a problem or solution. It usually starts a thread by
the copilot. The Copilot provides technical
information about the task through links and the
documents created for the task in the forum.

ii - Tips

It has a solution aspect for a possible question or
problem, in a way that it suggests to solve a certain
request. The copilot or coders themselves pass on
task specification details based on the forum
participants’ questions.

88

iii - Request for Help They are usually open-ended questions, asking for
an answer to solve and clarify a problem. Most of
them are “W questions”.

vii – Help Answers Request for Help Responses.

iv - Confirmation
Request

They are usually closed questions, just to confirm
the information already mentioned. Most of them are
"Yes/No questions".

viii - Confirmation
Response

Response of the Confirmation Request for the
approval of using certain tools, libraries, etc. which
are not formally described in the task specification.

v - Invitation Request
It has a requisition aspect for certain access on
some platform. Most of them sends emails to users
of any platform, requesting to be added. Request to
provide certain file access, or private key.

ix - Invitation Response It is a reply to the Invitation Response (for access or
connection)

vi - Identified Problem It has an informative aspect and it characterizes a
problem. It does not request a response directly, nor
does it present questions.

x - Problem Response
It is a Response to an Identified Problem (it points
out inaccuracies in zip files, documentation, etc.,
associated with the task)

Table 15 – Message Topics
Coding 2 - Topic Description

i - Access

It usually characterizes topics from code repositories, or
from a given platform.

Access to certain data, private key, and directories.

ii - Library

In this topic, technical aspects of several libraries /
frameworks, APIs, plug-ins, tools, code repositories,
components and code specific to each task are
highlighted.

iii - Connection It is usually characterized by issues that involve login and
password to connect within the application itself.

iv - Deadline
Deadlines established for the delivery of solutions and the
time / latency of return between a request or response are
discussed.

v - Inputs It is characterized by input variables to be established.

89

vi - Style This topic discusses formatting styles, subjects related to
the interface or application frontend.

vii - Processing It is characterized by the compilation of codes/errors of
execution in the application and in servers, and case tests.

viii -
Requirements

It refers to the requirements’ specification document,
involving input and output issues. It also includes the
artifacts and files used to support the documentation
located on Github, Google Drive, and Dropbox.

ix - Output It is characterized by comparing the results of an
application.

x - Scorecard In this subject, the relevant scores for the classification of
the solution are discussed.

xi - Units It considers units of measure of a given variable.

Figure 15 - Example of coding from messages in the forum

Figure 15 presents an example of coding procedure from an Excel screenshot. It

contains an excerpt of messages exchanged among the involved participants in the
TopCoder challenge. The columns describe date and time, thread, sender, recipient,
message and applied coding. For instance, in the sender and recipient’s column, we
identified the cells in red as the copilots, green cells as the winning coder, and yellow and
transparent represent, respectively, the submitter and quitter coders who communicated in
the forum of the analyzed challenges.

90

Figure 15 - Example of coding from messages in the forum

All forum messages were coded in a similar fashion, with categories being defined at

a level of detail that could allow us to understand collaboration barriers participants face,
and the characteristics of this collaboration, including who the participants are more likely to
collaborate with, and how this collaboration correlated with participants’ performance in the
contests. During the next step, those categories were broken into topics so that eleven topics
were encoded, as follows (Table 15): units, style, inputs, outputs, processing, connection,
library, access, requirements, deadline, and scorecard.

Table 16 - Examples from topics coding

Topics Messages

Requirements “In the specification it is given, the program shall use a
standard directory as follows: ï‚· README.txt Should we
need to give txt read me file or Markdown read me file?”

Processing “I'm having some trouble with my android studio and i am
not able to build the app. Will work at it. Thanks for the
help.”

Deadline

“Is it possible to provide an additional extension of just 24h?
I am definitely going to submit this”

Library “Do you really need D3JS here? Why don't you want just
render svg elements using the standard ReactJS?”

91

 Communication forums keep a set of information capturing the questions and
answers that took place during TopCoder’s registration and submission phases as
mentioned in the section 2.7. The communications that occurred in the review and appeal
phases that integrate the workflow of the platform are also directed to the forum, but in
smaller number.

4.3 Initial Results

 According the criteria presented in Table 12, our communication’s analysis in the
initial stage examined the messages exchanged among coders and co pilots during
development SW CS challenges hosted on TopCoder as describe section 4.3.1. Afterwards,
we restricted our forums’ communication analysis just between coder and coder. The results
about coder’s communication, performance and pattern are detailed describe in the 4.4 and
4.5 sections.

4.3.1 Coders and Copilots collaboration

 From the analysis conducted according to the methodology described, the following
results were obtained. As mentioned, a subset of this analysis was published at [MEL18]. In
general, 1,184 messages were collected, and, regarding the registration and submission
phases criterion (iv), defined in Table 12, 1,053 messages were analyzed between July and
August 2017 (496 messages sent by copilots and 557 messages sent by the crowd). These
messages, in total, were sent by 120 active coders in the forums (11 copilots and 109 crowd
members), distributed among 216 threads in 25 challenges of the category Development
and subcategory Code during the period of analysis.

The average number of coders registered by challenge was 37,32 (at least 17 coders
and at most 62 coders). Moreover, the average number of messages sent per challenge
was 42.12 (a minimum of 2 messages and a maximum of 122 messages), while the average
number of threads was 10.76 (a minimum of 2 threads and a maximum of 24 threads). The
average total award is $1,775 with a maximum of $3.500 and a minimum award of $900,
and, on average, most of the tasks last 5.84 days from the first day of registration to the
submissions deadline (minimum of 4 days and maximum of 10 days). 40% of the challenges
have a number of registered coders less than or equal to 31, with the number of submissions
less than or equal to 4. On the other hand, 50% of the total challenges received more than
34 registered coders. In short, it is possible to observe that the forums are somewhat active
despite the short duration of most tasks. In addition, a large number of coders register to the
challenges, but only a small part of them effectively submits a solution.

Table 17 describes the number of coders, threads and messages in each challenge,
the duration in days, and the awards in dollars ($).

92

From the messages sent via forum, the copilots presented a thread participation rate
of more than 90%. This is an expected outcome, because as mentioned in Chapter 2, this
is the copilot’s role (messages are focused on solving the task without much informal
communication). On the other hand, even in a competitive environment, crowd members
can still construct a dialogue with a certain reciprocity in the exchange of information in each
thread, given the presented average of coders per thread of 2.8 coders (minimum of 1 coder
and maximum of 12 coders). One should also note that each thread had an average number
of 10,76 messages (minimum=2 and maximum=24).

Table 17 - Challenge data

Challenge Coders Duration Threads Msgs. Reward 1st
position

2nd
position

3rd
position

DJ1 62 8 days 14 102 $1500 $1000 $500 -
DJ2 43 5 days 7 21 $1500 $1000 $500 -
DJ3 34 5 days 12 60 $1800 $1200 $600 -
DJ4 42 6 days 5 18 $1600 $1100 $500 -
DJ5 33 5 days 8 43 $900 $600 $300 -
DJ6 52 7 days 13 23 $3500 $2000 $1000 $500
DJ7 27 5 days 4 8 $1200 $800 $400 -
DJ8 43 6 days 20 76 $1500 $1000 $500 -
DJ9 48 6 days 11 19 $2800 $1500 $700 $600
DA1 47 5 days 10 35 $1200 $775 $425 -
DA2 48 9 days 24 115 $3000 $2000 $1000 -
DA3 17 4 days 17 71 $1500 $1000 $500 -
DA4 28 5 days 8 27 $1200 $800 $400 -
DA5 26 5 days 3 7 $1125 $750 $375 -
DA6 19 7 days 8 47 $1200 $800 $400 -
DA7 43 5 days 15 32 $2400 $1600 $800 -
DA8 33 5 days 6 22 $1800 $1200 $600 -
DA9 26 5 days 9 29 $1500 $1000 $500 -
DA10 20 6 days 9 22 $2250 $1500 $750 -
DA11 50 10 days 17 36 $2400 $1500 $600 $300
DA12 24 4 days 2 2 $1200 $800 $400 -
DA13 52 5 days 16 122 $2100 $1400 $700 -
DA14 49 7 days 11 35 $1600 $1000 $600 -
DA15 36 5 days 12 53 $1800 $1200 $600 -
DA16 31 6 days 8 28 $1800 $1200 $600 -
Total 933 146 269 1053 $44375 $28725 $14250 $1400

Average 37,32 5,84 10,76 42,12 $1775 $1149 $570 $466,6
Minimum 17 4 2 2 $900 $600 $300 $300
Maximum 62 10 24 122 $3500 $2000 $1000 $600

93

 Figure 16 illustrates that the higher the number of messages sent, the lower the
number of coders who send the message, that is, there is a concentration of messages sent
by only a few coders during the challenges. As already mentioned, the copilot is the person
who most sends messages in the forums.

Figure 16 - Number of messages sent in forums between copilots and the crowd

It is possible to observe that the challenges begin with a high average of registered

coders. However, at the end of the challenge, few solutions are submitted Table 18. In some
cases (challenges DJ2, DJ3 and DA3), only one solution was submitted. This is evidenced
by the number of messages sent in the forums of each challenge where few coders
exchange messages about the tasks through classified message types. In contrast, it is
possible to notice that 9 active coders submitted their solutions to challenge DJ6.

Most coders sent between 1 to 5 messages (Table 18). The coders who exchanged
most messages with their copilots submitted solutions and obtained a good placement in
their challenges.

Table 18 shows the number of messages sent by the coders that sent messages in
the forum, and the number of messages sent by the winners (W1, W2, and W3) in order of
first, second and third places on the task’s classification. The winners sent messages via
forum in 20 out of 25 challenges studied.

The column 'submitted solutions' represents the total number of solutions submitted
in each challenge. Columns C1, C2, and C3 identify the three coders with the highest
number of messages posted in the forum of each analyzed challenge. The ranking order of
the challenge winners is identified in W1, W2, and W3.

79

16
12

1 1 11
5 5

0

10

20

30

40

50

60

70

80

90

1 a 5
messages

6 a 10
messages

11 a 20
messages

21 a 30
messages

31 a 40
messages

41 a 50
messages

>50
messages

Number of messages sent by coders and copilots

Coders Copilotos

94

Table 18 - Winner coders in the forum

Challenge Coders in
the forum

Submitted
solutions

No of send
messages

C1 C2 C3 W1

W2

W3

DJ1 6 5 102 21* 16** 16* 16 10 -
DJ2 6 1 21 4 3 3 1 - -
DJ3 15 1 60 15 6** 4 6 - -
DJ4 4 2 18 6 3** 2** 2 3 -
DJ5 5 3 43 7 7** 6* 0 7 -
DJ6 9 7 23 11* 7 4 0 0 0
DJ7 4 2 8 1** 1** 1* 1 1 -
DJ8 14 4 76 7** 7 5* 7 2 -
DJ9 5 3 19 4** 2** 2 2 4 0
DA1 7 4 35 10 5** 1* 0 5 -
DA2 8 3 115 41** 9* 4** 41 4 -
DA3 8 1 71 12** 11 3 12 - -
DA4 4 2 27 10** 2** 1 2 10 -
DA5 3 2 7 2 1 - 0 0 -
DA6 8 3 47 10** 5 3 10 0 -
DA7 6 4 32 8* 4* 3 1 - -
DA8 4 3 22 5** 4** 4 4 5 -
DA9 5 4 29 10** 4* - 10 - -

DA10 7 3 22 8** 1** 1* 8 1 -
DA11 9 3 36 7** 5** 3** 3 5 7
DA12 1 2 2 - - - 0 0 -
DA13 45 3 122 21** 5** 4* 21 5 -
DA14 3 2 35 12** 7** - 7 12 -
DA15 14 2 53 15* 2** 1 2 - -
DA16 7 3 28 5** 4** 1 5 4 -

In Table 18, cells marked with (*) represent coders with a submitted solution to the

challenge. In the cells highlighted with (**), there are coders who won the challenge. The
markings with (-) do not present available awards in the challenge or there was no winner in
this position. The cells with 0 represent the coders that won the challenge but did not
exchange messages in the forum, that is, there was no active communication in the forum.

Regarding the ranking of the 25 challenges, we have the following setting:

• 25 challenges awarded the 1st place (W1)
• 25 challenges awarded the 2nd place (W2)
• 3 challenges awarded the 3rd place (W3)

Thus, 25 challenges offered awards only for the 1st and 2nd places, and only 3

challenges (DJ6, DJ9, and DA11), included the award for the 3rd place, i.e., TopCoder would
select and pay for the three best submitted solutions as shown in

95

Table 17.

The DA12 challenge is considered an outlier of the set of forums analyzed since no
messages were exchanged by the coders. Only the copilot used the forum to share task’s
documentation. The two winning submissions on W1 and W2 were from coders who did not
communicate on the forum.

Analyzing the DA12 challenge, one can notice that the duration of the challenge was
short, 4 days only between registering and submitting solutions. In addition, yet not the focus
of this study, the technology involved in the challenge was about iOS development, which
may have reflected on the poor communication and engagement of coders in submitting
solutions, since this requires knowledge about a very specific technology feature in market.

4.4 Results about Coder’s communication and performance

In this section we restricted our forums’ communication analysis just between coder
and coder on TopCoder’s challenges. Our results reflect collaboration through
communication exchanged among all coder who communicate during registration and
submission tasks.

4.4.1 Winners who communicate vs Winners who did not communicate

Coders who communicated won 20 out of 25 challenges (80%) of which they
registered.

a) Ranking of Winners (W1, W2, W3) who sent messages in the forums

In the 25 challenges that rewarded the 1st place (W1), the coders who communicated
(sent messages in the forum) won 80% (20/25) of the challenges. As for the 25 challenges
that awarded the 2nd place (W2), the coders who communicated won 60% of them (15/25).
At last, in the 3 challenges that rewarded the 3rd place, the coders who communicated won
only in one of them, representing a rate of 33.3% (1/3).

For the first place (W1) award, the 25 challenges received more than one submission,
and, from this total number of submissions, it was possible to select the best solution W1 for
the 25 challenges, i.e., for the 25 winning coders. Table 19 details the number of challenges
won by the group of coders who communicated more (C1, C2, and C3), and the challenges
won by the coders who communicated with fewer messages in the forum (C4-n). In other
words, C1 means the coder who sends the highest number of messages in a challenge; C2
is the second highest number of messages; and so on and so forth. This means that the
coders who sent more messages were often those who won the challenges.

96

Table 19 - Winner’s communication

Winners who
communicate W1 W2 W3

Total
winners

C1, C2, C3 18 13 1 32

C4-n 2 2 0 4

Challenges won 20 15 1

Total challenges 25 25 3

 % 80% 60% 33.30%

The challenges DJ2, DJ3, and DA3 received only 1 (one) submitted solution, where
it awarded the winner of the first place (W1) of the challenges (Table 19).

In the DA7 and DA9 challenges, four solutions were submitted, and in the DA15
challenge, two solutions were submitted. However, no submissions were selected as the
winning ones in these challenges. This fact implies that, in these 6 (six) challenges, the
submitted solutions did not reach the expected quality for the defined criteria and, therefore,
were discarded.

b) Ranking of Winners (W1, W2, W3) who did not send messages in the forums

The coders who did not communicate in the challenges won 20% of the total number
of challenges (5/25). The distribution of awards for the coders who did not communicate is
presented below (Table 20):

Table 20 - Winners who did not communicate

Winner who did not
communicate W1 W2 W3 Total

Coders 5 4 2 11

Total challenges 25 25 3

 % 20% 16% 66.6%

4.4.2. Winners group who communicated the most (C1, C2, C3) vs Winners who
communicate (C4-n)

 The coders who communicated the most – group C1, C2 and, C3 won 18 out of 20
W1 challenges (90%) of which they registered. In 86% (13/19) of W2 challenges, and 100%
(1/1) of the W3 challenges (Table 21).

97

Table 21 – Winners who communicated

Group communication
winners W1 W2 W3

Total of group
communication winners

C1 9 4 1 14

C2 7 8 0 15

C3 2 1 0 3

Total C1 C2 C3 18 13 1 32

C4-n 2 2 0 4

 Challenges 18/20 13/19 1/1

% 90% 86.6% 100%

a) Winner Status from the Group of Those Who Communicated (C1, C2, C3)

Regarding the task performance of coders who communicated in groups C1, C2, and
C3, the following results defined the coders as "winner", "submitter", and "quitter" status. As
described in subchapter 4.2, winners represent the winning coders of the challenges,
submitters include workers who submitted a solution but did not win the competition, and
quitters included the coders who did not make submissions for the challenge.

a) Winners: 32 coders communicated the most (C1, C2, C3) and submitted winning
solutions with a rate of 88.8% (32/36), which represents the total proportion of the
C1, C2, and C3 groups for coders who communicated in relation to the total coder
that communicated and won in the 25 challenges.

b) Submitters: with a rate of 11.9%, coders of the group that most communicated (C1,
C2, and C3 groups) only submitted their solutions to the challenge task. The
proportion of submitter coders was (13/109) (according to Table 18), which represents
the total number of coders that most communicated (group C1, C2, C3) in relation to
the total coders that communicated during the challenge.

c) Quitters: the total of 23 coders that communicated the most of the groups C1, C2,
and C3 did not submit their solutions. The rate of quitters was 21.1%, considering the
relation of the total coders who communicated with the quitter coders of the group
that most communicated (23/109).

It is possible to perceive a high rate of coders that communicated and won the
challenges. This shows that the communication has a positive influence on coders’ task
performance.

98

4.4.3 Discussion

While the level of collaboration and mutual support can drastically decrease when
community members become rivals, i.e., when they compete against other [HUT11], we
evidenced that collaboration happens among crowd workers.

Coders communicate in an iterative process to collect information and share
questions about tasks’ requirements, access to files, and other aspects as we illustrated on
Table 14. During the task course the co-pilot plays a significant role in social technical
coordination through an asynchronous communication channel (the forum) by providing
initial guidance and support for coders’ concerns, removing misconceptions, getting the
registered coders aware of deadline, clarifying requirements and, so on. The co pilot is
especially important in an online collaboration, since there is no face-to-face interaction and
the communication channel is limited to text [STO14a], [MAC17]. The dialogue among
coders is task-oriented and focused on specification’s technical and functional questions of
the tasks.

We distinguish between coders who communicated from those who did not
communicate via forums on TopCoder’s challenges. This way, we introduce a method to
identify productive coders through the variable communication extending the ranking of the
winner, submitter, and quitter proposed in Yang et al. [YAN16]. Thus, for a coding analysis
we have some combinations as shown in Figure 17.

We can see that the great majority of coders who communicated won the challenges.
It is possible to observe that communication contributed to the coders submitting their
solutions to the challenges in which they were registered and thus, competing in the choice
of the best solution.

From the analysis of the winners of the 25 analyzed challenges, the results suggest
that collaboration characteristics have a correlation with coder’s likelihood of completing the

Figure 17 – Coder’s classification

99

task and submitting solutions that meet the demand of requesters who have utilized the
TopCoder platform.

Of the total coders that submitted winning solutions, coders who did not communicate
won in only 5 challenges. Thus, if we compare the challenge rate, according to the presented
results, the coders who communicated had their solutions selected and awarded in 80% of
the challenges compared to the rate of 20% of the challenges won by the coders who did
not use the communication forum. In addition, it can be seen that the most productive coders
that participated in the analyzed challenges were the coders who communicated more.

To understand whether communication affects productivity of winner coders, the
number of forum posts of the three registered users that most sent messages individually in
the forum (C1, C2, C3) in each competition was correlated with the ranking position (W1,
W2, W3) of each winner coder in each competition.

To understand whether communication helps submission and would reduce the
number of quitter, that is, if it would influence the coders to submit their solutions, the number
of forum posts of the three registered users that most sent messages in the forum (C1, C2,
C3) in each competition was correlated with those who were not in the ranking position (W1,
W2, W3), but who had performed the task submission. Such information is obtained in the
own tool that maintains the information of who the coders that have already sent their
solutions are.

Other aspects can affect the level of collaboration in the communication forum both
to ask questions and to receive answers from the crowd itself or the platform’s mediator
(copilot). One of the reasons for this can be given in relation to the time crowd workers
dedicate for the accomplishment of the tasks. Developers can be in full-time employment,
and the average duration of competitions (5 days) allows for weekend work to be a
possibility. Otherwise, some developers could be working part-time to dedicate themselves
to the competitions, and this issue can implicate in collaboration and consequently in
submitted solutions, since many doubts occur related to understanding documentation and
removing misconceptions on requirements. In many of these cases, crowd workers may
register for more than one task in a challenge at a time and drop the ones they cannot
complete before the submission deadlines. A task with many unreliable workers is subject
to high risk of failure or cancellation [SAR17].

Prize value can also affect the level of collaboration between participants in the
challenges. There may be a greater interest in competing for the prize and therefore,
increasing the number of messages exchanges on the forums. As it can be seen in the rates
in Table 13.

Depending on the complexity of technical attributes of the task, the level of
collaboration may be greater for the cases in which the crowd is seeking to understand and
clarify points about the task by producing a more active communication via the forum. On
the other hand, collaboration among the crowd may be lower because of the unfamiliarity of
the platform members with the technology required for the development of the solution.

100

4.5 Communication patterns from coders

In this section we restricted our results based on interpretation of the content messages
exchagend by just coders who communicate on TopCoder’s forums challenges.

4.5.1 Introduction

In order to identify how collaboration characteristics among crowd workers impact in
the task performance (winner, submitter, quitter), productivity and quality of both SW CS
competitors and contests are presented in the next sections.

Figure 18 shows the distribution of message categories in the challenge forums by
coders and copilots in the months of July and August.

The 10 categories defined as previously mentioned were: Public Announcement,
Tips, Request for help, Confirmation Request, Invitation Request, Identified Problem, Help
answers, Confirmation Response, Invitation Response, and Problem Response.

Figure 18 – Message category

The category “Confirmation Request” displays a large number of messages (Figure
18). In this category, a question is sent to check and ensure the understanding of the crowd
participants on a given subject, usually relating to the task documentation to the requirement
aspects, library, processing, among others, as it can be seen in Figure 19. Accordingly, the
number of messages sent by the copilot for the category “Confirmation Response” is high,
and it includes the response to crowd questions.

41

3

43

1

178

25

130

1

4

69

7

47

4

72

70

171

27

130

10

20

Problem reponse

Identified problem

Invitation response

Invitation request

Confirmation response

Confirmation request

Help answers

Request for help

Tips

Public annoucement

Classification of messages by category

Coders Copilotos

101

 The topics that emerged in the second coding of the forums' message analysis are
presented in Figure 19, summarized between coders and copilots.

Figure 19 – Message topics in the forums

 In this section, we present communication patterns (categories and topics) found for
winners, submitters, and quitters who communicated in the challenges. We analyzed the
relationship between the type of messages (category and topic) exchanged in the forum
among coders and their status: winner, submitter, and quitter. A set of patterns was found
for the messages sent by the coders during the analyzed challenges. In addition, it has been
observed that coders offer technology-related and development tips, they identify
specification problems, broadcast useful information about the task, keep the copilot aware
of their interest in submitting a solution for the challenge, among several other aspects.

The number of coders who won tasks with similar communication patterns were
illustrated in Figure 20 and Figure 21.

122

51

15

48
31 25

69

159

31

3 3

100

52

13
36 31 28

54

156

23
2 1

Acce
ss

Lib
rar

y

Connecti
on

Dea
dlin

e
Inputs

Sty
le

Proce
ssi

ng

Req
uirm

en
ts

Output

Sco
reca

rd
Units

0
20
40
60
80

100
120
140
160
180

Classification of messages by topic

Coders Copilots

102

Figure 20 - Forum categories of winners and submitters

Regarding the category defined as Identified Problem related to the topic of
Processing was highlighted as the highest record. In the category Confirmation Request,
the questions related to the topics Output, Processing, Deadline, and Requirements were
highlighted. The topics Processing and Requirements were highlights in the Request for
Help category.

Regarding the Response topics, the category defined as Confirmation Response,
related to the topics Input and Output, was highlighted as the largest record. In the category
Help Answer, the answers related to Inputs, Processing, Outputs, and Requirements were
highlighted. In the Tips and Problem Response categories, the incidence was higher in
Processing and Requirements, respectively.

Figure 21 – Forums topics for winners and submitters

1

10

100
Problem response

Identified problem

Invitation Response

Invitation request

Confirmation
response

Confirmation request

Help answers

Resquest for help

Tips

Public
announcement

Winner Submitter

1

10

100
Access

Library

Connection

Deadline

Inputs

StyleProcessing

Requirements

Output

Scorecard

Units

 Winner Submitter

103

4.5.2 Common communication patterns for winner, submitter and quitter

The common communication patterns found for the status of winner, submitter, and
quitter on the analyzed forums associated with categories and topics are described below.

For the message topics, coders presented a common pattern on Requirements,
Processing, Deadline, Access. Meanwhile, commons pattern for the message categories 9
of 10 were identified: Tips, Identified problem, Request and help answers, Invitation request
and response, Public announcement, and Confirmation request and response. Appendix G
gives evidences of the commons pattern.

 On the relative values of messages sent by coders it is possible to observe that 4.04
winners sent messages about requirements, where this average is obtained by total of
requirement’s messages sent (89/22) and by total of winners who communicated in the
challenges. The same average was calculated for submitters and quitters thus, 2.2
submitters and 0.44 quitters exchanged messages about requirements of the task.

Questions and answers on Help are send when some information that helps and
clarifies subjects about coding compilation, and comparisons of results’ output, for example.
Here again we see a clear collaboration among coders and the importance of
communication to allow a coder to be able, individually, to find a solution to a problem during
the development of the task solution

For this pattern some quotes are illustrated in Table 22. The quotes were extracted
from two threads of different challenges.

Table 22 - Questions and Answers on Help – Requirements

Quotes from challenge 1

Coder 1 quitter

“Regarding the same response for no array situation: since the
consequent initial URL will point to segment 1, shouldn't the
playbackUrl stay the same regardless of what happened? If we specify
manifests/<recId>/1/manifest.m3u8 as initial, there will be no need to
change that URL, or player will request recording by Id instead?”

Coder winner

Should it be treated as a deficiency if, when the recording is
segmenting-enabled, (I think VOD and TSB recordings should not have
segmenting enabled) the recording has a segments array even though
there is only one segment? This does not interfere with anything and
can possibly simplify some coding.

Coder 2 quitter
“I'm going with the spec (in the GitLab issue) for the review: "Normally,
if a recording is only a single segment, we'll show the information we do
now". Minor requirement.”

Quotes from challenge 2

Coder 1 submitter

“All sections of the specification document seem to have a good
purpose, except section 9.3. Should we use the formulas in section
9.3? How? (It seems the equivalent engineering constants are not
needed.)”

104

Coder quitter
“If you have a look at summary file, it says that for laminates we need to
output engineering constants. Engineering constants (Laminate only)”

Coder 1 submitter

“Thank you (…) Now the "how" question remains: #1. Is t sub k = T sub
k ? #2. What is t sub lam? #3. What is C sub {1,1,Lam}? #4. C sub
{2,2,Lam} and so on? We have matrices A, B, and D; but not C. I
checked this fast in the given links, but couldn't this information.”

Processing topics is evidenced with an average de 1.36 messages per winner, 1.15
messages per submitter, and 0.26 per quitters. The questions on Processing are illustrated
among coders in the following quotes:

Table 23 – Questions on Identified problems – Processing

Quotes

Coder
submitter

“I am so confused. the console says up to date. but nothing is
updated. https://gyazo.com/04d99146ddfb4aa44b75d0350621fffa”

Coder winner It's fine, just a little annoying to me, have to restart it manually.

Table 24 - Questions on Identified problems – Requirements

Quotes from challenge 1

Coder
submitter

“I am so confused. the console says up to date. but nothing is
updated. https://gyazo.com/04d99146ddfb4aa44b75d0350621fffa”

Coder winner It's fine, just a little annoying to me, have to restart it manually.

Quotes from challenge 2

Coder 1
winner

“Why the contents of "Dashboard transitions" and "Profile effects" are
identical? Thanks”

Coder 2
winner

“In screen, why we have the "tick" sign in step 1 section? I think step 1
in this screen is still not completed yet? Is it a design mistake? Please
refer: http://i.imgur.com/E3T16pC.png”

Coder
submitter

“I think we can safely ignore the sample files and use the pdf. I have
validated my code against the numerical problems in the pdf (not the
specs, the other one that was put up on google drive) and the formulas
work pretty well against all the problems. (…).”

For the deadline topic, most of the winner's messages (1.0 message) refer to the
response that he/she will submit his/her solution to the challenge. During the challenge, the
copilot makes a prediction of who is intending to submit his or her solution.

This situation is confirmed because the winner actually submits his solution. After all,
(s)he is the winner.

105

Submitters and quitters sent respectively 0.9 message and 0.15 message for
deadline. Such standard implies that submitters and quitters face time problems to complete
their solutions and ask the copilot for an extension in the challenge deadline. In some cases,
this request is answered by the copilot, and the challenge deadline is extended in a few
hours or days, whereas in other situations the deadline is unchanged.

The main concern about deadline of the task can see in the quotes below.
Table 25 - Questions on Confirmation request - Deadline

Quotes

Coder winner “I'm working hard on this challenge and plan to submit. Thanks.”

Coder 1 submitter “Since there are 3 prizes, no doubt there will be a few
submissions, but an extension would give all of us time to
improve quality of submission, and make sure it runs smoothly on
AWS etc..”

Coder 2 submitter “Hello, Can you pls extend this challenge for 24 hours.”
Coder quitter “I support this request, can you please extend?”

The request of the access topic refers the request of coders to the copilot to release
access to certain platforms for accessing code components, needs to start the task
development. This topic was also a common communication pattern identified by winners
and no winner (submitter and quitters). 0.9 messages are send per winner, 0.3 messages
per submitter, and 1.03 message per quitter. Access was the most frequently topic identified
for quitters (95 messages in total). This kind of pattern confirms that quitters only demand
messages for access the code repositories and, they do not complete the task of challenge.

Table 26 - Questions and Answers on Invitation - Access

 Quotes

Coder winner “(…) says - You are not invited to this organization. Please contact
org admin. My email: (…)@gmail.com username: (…)”

Coder submitter “My handle is (…) Thanks”

Coder quitter “My github username is (…)Thanks.”

The message classified as Tips prevails between the winning coders (7 messages in
the total) and represents the collaboration between coders through the message of solutions
to doubts or problems about the task and, in this way, can aid in their resolution. The tips
were related to the topics: library, inputs, access, requirements and, mainly processing.

Only message of Tips about processing was sent by submitter.

Noticed also in the quitter’s status two messages about Tips for processing and
inputs topics were exchange during challenges.

106

Coders share useful information to perform the activity related for instance, on
alternative tools to perform task and, can be verified in the following quotes in Table 27:

Table 27 - Tips on Processing

Quotes from challenge 1

Coder submitter à coder winner “But just a heads up, the numerical problems aren't free from
errors, you better have a calculator nearby:)”

Coder winner à coder submitter “You should google about ABD matrix and read the Spec more
carefully. Clearly, we can calculate the ABD matrix with the
input data. The spec contains almost everything you need to
know.”

Coder submitter à code winner

“Yes. It's used to calculate Engineering constants and ABD
matrix. You see we need to calculate Qk* matrix. But it uses Tk
matrix which contains many sin and cos. To calculate Tk, we
need angles from "Ply Orientations". (…)”

Quote from challenge 2

Coder quitter à winner I use the Win10 Ubuntu Subsystem to for node and git... And to
an extent apache/mysql if i need those as well. Apt-get works
pretty well. https://msdn.microsoft.com/en-
us/commandline/wsl/about A little off topic, but just in case
people didn't know about it.. :)

Quotes from challenge 3

Coder winner (Inputs Tips) “iPad has a split view on designs, I propose we show the root
folder on the left, and when opened show the contents on the
right. Sounds ok?

Coder winner (Access Tips) That's still not good enough, files are returned per-directory, so
we need to select one to be able to view files (otherwise it's
cascading requests for each folder). So, in addition to that I
propose selecting on the left (like messages) will show files for
that folder (or no resources if empty). By default show files in
root folder

4.5.3 Winners Communication Patterns

 Communication patterns are associated with winners from the first 3 positions (W1,
W2, and W3), and with the coders who sent more messages in the forum (C1, C2, C3)
suggesting that when coders communicate, task submission and winning increases.

 A communicative coder can be more productive than an uncommunicative one
according the results showed in subsection 4.2. We found that winning coders communicate

107

better with other participants in the challenge. We observed that coders who are winners
are involved in all kinds of messages (categories and topics) as show Figure 22.

 With a total of 240 messages, winners presented the highest concentration of
distributed messages. We highlight the categories Problem response for requirements and
processing as a differential for winners where they sent 6 messages associated with this
category. Although, the winners present common patterns of communication with other
coder, the winners are more active on forum and they contribute directly in several technical
and non-technical topics during task’s activities. The top five topics from winners are:

• Requirements à 89 messages
• Library à 36 messages
• Processing à 30 messages
• Deadline à 22 messages
• Access à 20 messages

Figure 22 – Winner communication pattern by categories and topics

 Not necessarily the volume of messages is important, that is, coders do not need to
send more messages in the forum to become winners, but by sending messages about
categories such as Problem response and Confirmation request that included most of the
time, topics related on requirements, library and processing.

 They end up being more assertive in the developed solution, and, therefore, meeting
the expected quality criteria for the task. This way, all involved within SW CS projects are
benefited, (crowd winners received financial reward for the dedicated effort, requesters got
solutions to their problems, and the platform successfully completed the project between the
crowd and requester).

The winner communicates through message exchanges in the category Help for
different topics. This category happens when a coder asks questions for example, to clarify
style questions (frontend components), technical coding details (processing, inputs, library

108

and output) and, mainly, to obtain help about task’s requirements that are needed to deliver
the solution as illustrates in Figure 22.

The categories Confirmation Request and Confirmation Response were the
categories who winners most exchanged message, including all related topics. The
predominant requesting confirmation messages on the various topics confirms that
discussions on task documentation (goals, context, technology, tools, etc.) are crucial during
development solution and, demands of collaboration and human-driven coordination.

The largest exchange of messages occurred on the requirements topic (45
messages), library (26 messages) and, processing (12 messages) as show Figure 22.

There can be many imperfect information in the documentation and winner coders
ask to confirm and provide solution for document failures.

The winner communication pattern for the category Identified Problems occurred
more frequently for the topics requirements, libraries, and inputs. Such pattern indicates
that, through the reporting of requirement issues, the coder is reporting that there are
inconsistencies in the documentation or some problems with incorrect variables presented
in the documentation, and other artifacts made available for the task.

The identification and discussion of such problems via forum demonstrates that the
winner coder has already acquired the knowledge/understanding of the task context,
technologies, and details involved for its implementation. This aspect is confirmed by
messages identified only for winner coders on Problem response category (Table 28).

The category Problem response is prevalent and unique in the winner communication
pattern and occurred more frequently for the following topics: requirements and processing.
Such pattern indicates that, through the reporting of requirement issues, the coder is actually
reporting that there are inconsistencies in the documentation or some problems with
incorrect variables presented in the documentation and other artifacts made available for
the task.

The problem alert, on the other hand, points to the weakness of the documentation
developed by the requester. The informative report of the coders for identified problems is
a differential in the set of messages sent by the winner and can demonstrate a more
advanced level in the construction of the solution that he is developing. Through problem
messages, the copilots confirm and adjust the new information "on the fly", redirecting
technical and functional decisions about the task. In some of these situations, the problem
of non-synchronization of the initial document of specification with the new decisions
discussed in the task forum is identified, bringing disadvantages to those who are not using
the forum to develop their solution. On the other hand, both active and passive forum
participants may be aware of the issues shared by competing coders.

Some quotes exemplify the notifying errors and inconsistency in the task
documentation provided by requesters, among coders and copilot Table 28.

109

Table 28 – Winner Quotes from Problems response category

Problems response on Requirements - Challenge 1

Quitter For this Challenge, the goal is extracting all tables that are a
"schedule" or *might* contain Panelboard schedule data. In the
SampleB-12.pdf file, a successful solution would extract five (5)
(…) -- and/or provide a Confidence Score (for each table)
indicating the probability it contains Schedule data.

Coder 1 winner Okay. Thanks for the detailed info.

Coder 2 winner My two cents opinion: we already have a xlsx file
(PanelSchedule-TableExtraction-PDF_Legend) which contains
the number of tables per each PDF file. This should give a
direction to contestants for development and to reviewers to
check how a submission fits with contest requirements.

Coder 1 winner We can't be sure if that excel sheet is 100% error-free and is
based on the latest criteria as communicated by MDuchek. And
anyway, because the number of test pdfs will be fairly limited, I
think it's better if the reviewers simply open the PDFs and verify
things visually.

Problems response on Processing – Challenge 2

Submitter Yes quite clearly you can generate the ABD matrix from the
inputs given. However, the particular ABD matrix printed in the
sample summary file can't be generated from the data in the
sample laminate input file(…)

Winner In my calculation, the sample's data is overall accurate. I got the
same result of Engineering constants and Qk matrix and A
matrix. But there are some errors in B matrix and D matrix. I have
said that B matrix should be 0 for symmetry laminate. I believe
these errors come from float number calculation. It really makes
sense and I explained that in my submission.

Table 29 - Quotes winner from Identified problem on Requirements

Identified problem on Requirements

Coder 1 winner “Why the contents of "Dashboard transitions" and "Profile effects"
are identical? Thanks”

Co pilot “Sorry this was a copy paste mistake in the spec. I've fixed it.”

110

Coder 2 winner “In screen, why we have the "tick" sign in step 1 section? I think
step 1 in this screen is still not completed yet? Is it a design
mistake? Please refer: http://i.imgur.com/E3T16pC.png”

Co pilot “You are right on this. It should show the tick once fields for Step
1 have been filled.”

4.5.4. Communication Patterns of Submitters

 The submitter who communicate via forum in competitive SW CS has different
patterns of communication rather than winner. It was possible to notice by the reduced
number of categories involved in the messages sent by the submitter. As Figure 24
illustrates, the response and problem categories and invitation response were not identified
among the submitter messages. With regard topics, submitters are involved in topics related
to style, processing, input, access, library, output, connection, and units. With the largest
number of posts are related to requirement topic (higher concentration of messages - 29
posts) and deadline (12 posts).

Figure 23 – Submitter communication pattern by categories and topics

 With a total of 98 messages submitters collaborated through the categories and
topics. The top five topics are:

• Requirements à 29 messages
• Processing à 15 messages
• Output à 14 messages
• Deadline à 12 messages
• Inputs à 8 messages

111

It was noted that the submitter coder most of the time sent messages related to the

topic defined as Deadline as illustrated in quotes Table 25. According to its characterization,
Deadline refers to messages that discuss the date and time set to submit the task. Such
standard implies that submitters face time problems to complete their solutions and ask the
copilot for an extension in the challenge deadline. In some cases, this request is answered
by the copilot, and the challenge deadline is extended in a few hours or days, whereas in
other situations the deadline is unchanged. In cases where the request for an extended
deadline is accepted and such a discussion occurs among those involved, this may benefit
the entire SW CS project indicating that communication is also favorable in the presented
pattern. Therefore, there will be more and better solutions benefiting the requester and the
platform.

For the Help category, submitter communication patterns were similar to the ones
found for the other coders (winners and quitters), because it presented a high number of
messages sent within this category for all coders. The topics identified in Request for Help
were: access, requirements connection, processing and inputs.

Submitters reported only for one category on Identified Problems - questions,
indicating a slightly difference from winner, which reports to both categories of problems
(questions and answers). It is possible to infer that the coder that only submits is not
attentive to the possible problems found in the tasks, and, therefore, does not realize that
something is inconsistent or even incorrect regarding the technical and functional
specification of the task. The following identified problem by submitters topics were found:
processing, requirements and, outputs.

4.5.5 Communication Patterns of Quitters

Quitters who collaborate via forum is a communicative coder and s(he) is involved in
many categories as well as the winner, however it concentrates their messages to the
different topics as requirements, deadline, processing and mainly, access as seen in Figure
24.

112

Figure 24 – Quitter communication patterns by categories and topics

With a total of 216 messages the coders quitters collaborated through of top five
topics distributed in different categories:

• Access à 95 messages
• Requirements à 41 messages
• Processing à 24 messages
• Deadline à 14 messages
• Style à 13 messages

The most frequently category Questions on Invitation identified for quitters was
related on Access topic (98% of the messages exchanges by them in this category). This
kind of pattern confirms that quitters only demand messages for access the code
repositories and, they do not complete the task of challenge.

The other frequently pattern evidenced was related to process, requirements and
deadline. This communication pattern supports the huge concern in SW CS projects about
problems on documentation [STO14a], [FIT15], [ZAN17], [MAC17].

Table 30 - Quotes from Quitters

Quotes from Confirmation request – Requirements

Coder 1 quitter
“For the scope of this challenge, it is safe to assume tables will
remain on a single page & will not span multiple pages?”

Coder 2 quitter

“This will still work using Filters. It's clear from iPad design that
tapping a user on left will filter messages on the right. I think the
requirement is about iPhone only.

113

4.5.6 Discussion

Collaboration Characteristics and Productivity

Who must collaborate with whom to get the task done? Congruence [CAT06] between
collaboration and productivity illustrates how winners, particularly the most productive ones,
are involved in the exchange of different types of information during task performance,
achieving higher congruence.

Since communication in competitive SW CS is limited to written documentation via
forums, the documentation definitions are required at every stage thus, one can observe
that seeking information through the very narrow chat communication forum is quite
frustrating and time-consuming. This means that identifying the most relevant information
pertinent to the task at hand is particularly important for the crowd workers in the TopCoder’s
challenges.

Thus, we had effective ways of identifying detailed the factors that impact on the
productivity of the crowd over task timeframe, we would be in a much better position to
design software development crowdsourcing contests. That may lead to a significant
increase in registrations and submissions solutions for the challenges.

We acknowledge that there is a difference in the communication patterns among
winners, submitters and quitters. The first difference refers to the number of messages
exchanged for each type of coder. The submitter coders presented a much smaller number
of exchanged messages, 98 messages related to winner coders (240 messages), and
quitters (216 messages). The second difference is attributed to the number of categories
and themes that the coders are involved with. As presented in subsection 5.5.3 the winner
coders were involved in communicating all 10 categories and 11 topics defined through
analyzing the content of the messages. were involved in a smaller number of messages
distributed through 8 of the 10 categories with a recurring communication pattern on the
category Request for help and confirmation request of the topics associated with task
requirements. In the quitters’ group, it was observed the exchange of messages for request
for help on access, confirmation request about requirements, and high number of messages
for the category invitation request associated with the topic access. The significant
communication pattern raised an interesting question: are all coders able to identify
problems and, most importantly, to provide some sort of answer to the reported problems
accordingly?

Our results suggest that congruence helps increase crowd workers submitted
solutions and become a winner of the challenges. In addition, the results showed that
winners are involved in several types of collaboration (categories and topics) through
communication patterns and, they are more active via forum by better communicating with
other competitors in ways that are more congruent with the work they perform. Moreover,
the most productive competitors reach higher levels of congruence that the less productive
ones. These results suggest that conventional views of competition vs. collaboration need
to be change.

114

The communication patterns proposed in this thesis extends the standard measure
of quantity /frequency of exchange messages in forum communication channel on the
TopCoder platform by providing a finer-grain level of collaboration characteristics analysis
and assessing the role of collaboration in competitive SW CS.

4.5.7 Limitations

The number of analyzed forums, only from the category development challenge and
subcategory code. With regard to collecting data from the forums, it is worth mentioning that
the challenges are "open calls", and once the participant is a member of the platform and
registers in the challenges, it is possible to access the repository of forums of each
TopCoder’s challenge.

We did not visualize all the coders who did not communicated in the challenge and
submit and no were winner and, those did not submit.

4.6 Survey Data

4.6.1 Introduction

In this section we present the survey study following our research design. We
conducted an online survey with a group of developers who have recently participated in the
TopCoder’s challenge to assess their opinion about the influence of collaboration in task
performance. Surveys can be used to compare users’ attitudes, perceptions, and
experiences across user segments, time, geographies, and other aspects (e.g., competing
applications). Such data enable researchers to explore whether users’ needs and
experiences vary across geographies, assess application’s strengths and weaknesses
among competing technologies, and evaluate potential application improvements while
supporting in the decision making between a variety of proposed designs [KIT02a], [KIT02b],
[KIT02c], [KIT02d], [KIT03].

Our survey was structured based upon guidelines established by [KIT02a], [KIT02b],
[KIT02c], [KIT02d], [KIT03], and included questions about basic demographics, and more
importantly, collaboration and communication in competitive SW CS. In our case, we
designed and carried out a survey to evaluate our hypothesis comparing:

• How useful would it be (or has it been) to communicate via forum for a crowd worker
on the TopCoder challenges? This question is designed to assess whether
collaboration impacts on task performance within the classification of crowd
participants as winners, submitters and, quitters. Specifically, these questions aim to
check whether the coder who communicates can be more productive with a solution
and win a challenge.

115

• How much the collaboration via forum influences the productivity of the crowd
workers during a TopCoder’s challenge? This question is designed to investigate
whether those who did not communicate can also win the challenges.

• What is the communication pattern that potentially assists crowd workers in the
effectiveness to win a competition? This question is designed to investigate whether
the coder winner sends certain messages that help in choosing their solution.

4.6.2 Data Collection

We designed and conducted an online survey, consisting of three steps. First, we
invited the group of participants. We sent an invitation letter by email (Appendix E).
Secondly, each participant answered the questions from the survey about communication
and collaboration aspects on TopCoder. Lastly, we analyzed the answers based on the
experience in preforming SW CS tasks from the group of developers who participated in
TopCoder challenges.

The survey was pretested with five colleague researchers who are familiar with
competitive SW CS. After several rounds of adjustment, the survey was ready to be fielded
to the entire sample.

We designed the survey with 20 questions divided into three sections. The first section
asked questions about the TopCoder experience of the respondents in registering,
submitting, and winning development challenges. The second section was carried out using
Likert scale and open-ended questions about collaboration characteristics, about who the
participants are more likely to collaborate with, and how this collaboration correlated with
participants’ performance in the contests, regarding the influence of communication in
submitting and winning a challenge. Still in the second part of the survey, two questions
were included related to self-determination with the use of other communication channels
among the participants who compete in the platform. Finally, the third section collected
demographic information from respondents.

The survey was distributed by email to a population of 51 software developers who had
competed on TopCoder. We received 11 responses, i.e., the response rate was 21.5%. The
data collection was conducted between January 23rd and February 15th 2018: a period of 4
weeks. A Google Forms was designed and used to collect data. For details about these
forms, please see Appendix F.

We used inferential correlations [MÜL14] to assess whether the collaboration
characteristics were most strongly associated with crowd winner who communicate in the
SW CS challenges. In addition to analyzing the closed-ended responses, the review of open-
ended comments contributed to a more holistic understanding of the survey data and
revealed important insights that cannot otherwise be extracted from closed-ended
responses [MÜL14].

116

4.6.3 Demographics information

In the total of entries from gender, of those who indicated, 60% of the respondents
are male and 40% female. They all live in Brazil and are highly educated: 100% of them are
graduate students (Master or PhD) and rather young (75% between ages of 23-39). They
all are experienced developers with an average of 63% of them having between 5 and 10
years of software development experience.

Being the sample non-probabilistic and intentional, where the selection of respondents
was for convenience from the selection of developers who had competed on TopCoder
platform, the answer to the question “How many development challenges have you
participated (registration phase) on TopCoder?”, unveiled that most respondents, 90%
of the total, had participated in more than one TopCoder challenge, see Figure 25.

Figure 25 – Number of times participants registered

The question “Have you ever submitted any solutions to challenges on

TopCoder?”, about task performance in terms of solution submission during the challenge,
has had the following set of answers: Of the total respondents registered in the challenges,
the data show that 36% of them did not submit any solution (Figure 26). For the participants
who submitted their solutions, in turn, 64% of the total of solutions submitted to the
challenges were performed at least once, twice, and between three and five times.

117

Figure 26 - Number of solutions submitted

For the total number of registered participants in the platform development challenge,
it is observed that the rate of submissions exceeded the rate of non-submissions (quitters)
for the challenges reported in the survey. Figure 27 shows the rate of 64% of solutions sent
to the task (including submitters and winners), and the rate of 36% of respondents who did
not submit their solution to the challenge. For the analyzed population, only 1 (one)
respondent won one of the challenges of which he competed.

Figure 27 – Total of submitters and quitters

In general, these results mean that these respondents somewhat experienced with

the TopCoder platform having participated in more than one challenge, having mostly
submitted solutions and even won a competition. This all means that they can provide more
insightful answers than first timers on the platform.

118

4.6.4 Results

This subsection is organized as follows. First, we present the results for the questions
related to use of communication channel during task performance.

Correlation Communication vs Task Performance

Regarding the use of communication, a smaller number of respondents collaborated

through the forum 45% (5/11) meanwhile 54% (6/11) of the competitors did not use the
forum during the challenges they participated on TopCoder. Figure 28 also shows the
number of times that respondents who communicated or not, submitted their solutions. The
results on task performance from participants who communicate are: winner 20% (1/5),
submitter 60% (3/5) and, 20% (1/5) quitter.

Developers who communicated via forums were able to submit to at least one
challenge in which they participated, which suggests, according to the characteristics of
collaboration evidenced in this thesis, that the interaction between the participants on the
forum contributes to the task performance as a whole (submitter and winner). Note also that
the rate of quitters was 50% for developers who did not communicate compared with 20%
of the developers who did communicate (Table 31).

Figure 28 - Summative between submission and communication

Table 31 - Total number of participants in the communication forum
Do you use the TopCoder forums to communicate
with the co pilot or other crowd members during a
challenge?

Tot
al %

Yes. Participants who communicated 5 45%
No. Participants who did not communicate 6 55%
Total 11 100%

1

2

1 1

0

3

1

2

0 0
0

0.5

1

1.5

2

2.5

3

3.5

No, never Yes, one time Yes, twice Yes, between three
and five

Yes, more than five
times

Submission vs Communication

Communicate No communicate

119

Note that the respondents who answered “No, never” for the question “Have you ever
submitted any solutions to challenges on TopCoder?” are the quitters, i.e., coders who failed
to submit their solutions. The number of quitters (who did no communicate) surpassed the
number of coders who are quitters but communicated using the forums. In turn, respondents
who communicated surpassed the number of times they were able to submit their solutions
compared to those who did not communicate.

The use of forums enabled respondents with the status "submitter" to deliver their
solutions at least once (two entries) and between three and five (one entry) times. In the
“Yes, twice” entry, we had a slightly variation, participants who did not collaborate on forum
submitted once more.

This data again suggests that there is correlation between communicating in the
forum and not being a quitter, i.e., submitting a solution. This confirms the results presented
on section 4.4.

Answers of questions for participants who communicate vs who did not
communicate

Figure 29 reports the results of the questions related to Likert scale to prioritize the
respondents’ choices given as collaboration barriers and characteristics in competitive SW
CS evidenced in this thesis. The questions focused on assessing the collaboration
characteristics and task performance congruence.

We observed that 45% of the respondents agreed and strongly agreed with question
2, which is about engaging in communication with other crowd workers as something
beneficial during TopCoder challenges. 36% of the informants reported neutral for this
question.

We observed the same pattern (45%) regarding respondents agreeing and strongly
agreeing about communication via TopCoder forums (sent or read posts) as something that
helps crowd members to submit a task solution during competitions (question 4).

Question 6 asks about the potential of communication via forums to win a challenge.
In this case, we perceive a concentration, with 45% responses of the neutral type. This can
be explained by the high number of respondents who did not win a challenge on the platform
(90%) and, therefore, could not evaluate whether the forum could or could not contribute to
their chances of becoming a winner. The majority of the respondents (64%) reported that
they did not use the challenge forum during task’s activity. According our previous results
about the characteristics of collaboration, an assessment of the survey confirms that coders
who not communicate are less productive than coders who communicate during TopCoder
challenges.

120

Figure 29 - Results of questions about communication vs task performance

Disagreements from the participants selected “strongly disagree and disagree” in their
responses were found for questions 2, 4, and 6 (Figure 29). Analyzing the results, we noticed
that one specific respondent (Participant 9) disagreed with all three questions; in his open-
ended questions we found possible explanations. He mentioned that the platform did not
answer on time, and when they did, other questions did not help, they were not satisfactory.
He also mentioned that there were not enough explanations in the forums of the challenges
he participated. We can see that quotes related to questions for Participant 9 (Table 32).

Table 32 - Quotes of survey's participant who did not communicate

 Answers for questions Q2, Q4, Q6

Participant 9

“They did not respond in a timely manner and when they did, they did
not clarify all the doubts” - Participant 9

“There were not enough explanations in the forums” - Participant 9

“If you cannot ask questions, imagine helping to win the competition.”
- Participant 9

A) Question 2 - Engaging in communication with other crowd members is beneficial

during a TopCoder challenge?

We asked the participants to answer: Do you agree or disagree with the following
statement: "For me, engaging in communication with other crowd members is beneficial
during a TopCoder challenge, and to complete their answers with question: “Regarding
question 2, WHY do you agree/disagree? Can you think about an example or situation?"

1
0

2

0

31

0

3

0

1
4

0

2

0

5

4

0

2

0

1

1

0

2

0

1

0

2

4

6

8

10

12

Q2 - Communication
engage

Q4 - Communication
submit

Q6 - Communication
win

Collaboration impact for task perfomance

Strongly disagree Disagree Neutral Agree Strongly Agree

121

Table 33 presents the responses from the survey. As mentioned, one respondent disagreed
and his answer was already discussed.

Answers for participants who communicate

We have a total of 45% (5/11) developers communicated during the challenges that they
registered. The results on task performance from them are: winner 20% (1/5), submitter 60%
(3/5) and, 20% (1/5) quitter.

The developers who communicated was able to submit to at least one challenge in
which they participated, which suggests, according to the characteristics of collaboration
evidenced in this thesis, that the interaction between the participants on the forum
contributes to the task performance as a whole (submitter and winner). While the rate of
quitters was 50% for developers who did not communicate compared with 20% to the
collaborative developers.

Table 33 –Question 2 and quotes by participants who communicate

 Communication engaging in TopCoder’s platform

Winner “In order to deliver the TopCoder challenge/task itself the
communication with other crowd members should not be necessary
beneficial. But for the personal development and knowledge exchange
then yes.” – Participant 11

Submitter “clarifying technical questions or picking up tips / ideas for certain
situations” – Participant 2

“So that everyone can reach the same level or as close to it as possible
in relation to the task.” - Participant 5

Quitter “It can be useful in sharing experiences” - Participant 7

The winner neither agrees nor disagrees about the fact that communication is

beneficial in the development of the task.

However, one perceives the positive inclination given at the end of his answer to the
question, where the forum centralizes information that can be useful for the construction of
the individual knowledge of the competitors. It can be inferred that the exchange of
knowledge through the communication in the forums not necessarily benefits participants
collectively, that is, in some cases, for those who are only participating in the forum in a
passive way (viewing and reading posts), the exchanged messages are not useful, in which
case the participant may decide not to interact and keep his questions about a task.

As for the results for the submitters (Participant 2 and Participant 5) we highlight the
impact from forums in anticipating issues and doubts about software development in the
context of SW CS tasks. In the same way, Participant 7 pointed out the forum utility to
sharing task information despite being a quitter.

122

Answers for participants who did not communicate

We have a total of 54% (6/11) developers who did not communicate during the
challenges. The results on task performance of these group are: submitter 50% (3/6) and,
quitter 50% (3/6).

The developers who did not communicate were able to submit once at least and at
most twice in challenges which they participated. However, these participants did not win
any challenge and the rate of quitters surpassed in 30% as compared to developers who
did not communicate. The participants were inquired on the benefits of communication
during the challenges (Table 34), in which the submitters answered:

Table 34 - Question 2 and quotes by participants who did not communicate

Communication engaging in TopCoder’s platform

Submitter

“I had no reason to go the forum” – Participant 1

‘About business requirements I see people helping each other, but no
technically. - Participant 6

Quitter

“I didn't have this opportunity during my experience.” – Participant 4

“I have not engaged in such activities.” – Participant 8

“I agree. However, I did not feel confident enough to talk to any of the
other members. Instead, I just followed other people doubts to found
out my solutions.” – Participant 10

An important point illustrated by Participant 6 is that s(he) accessed the forum and

read some posts indicating a passive participation in the forum and confirming the
collaboration among crowd members during task activity.

The quote from a quitter (Participant 10) with the same passive participation on the
forum illustrates the agreement about the forum’s benefits; however, the participant did not
feel confident to collaborate during the challenge. This result is supported by literature in
Gray et al. [GRA16], where the authors discuss workers with less English fluency or
familiarity with the discussions via forum who are unable to fully take advantage of the
opportunities to collaborate.

b) Question 4 - Communication via TopCoder forums (sent or read posts) helps me to
SUBMIT a task’s solution?

To verify how the use of communication influenced participants’ submitted their
solution from TopCoder’s challenges, we asked: Do you agree or disagree with the following
statement: "Communication via TopCoder forums (sent or read posts) helps me to SUBMIT
a task’s solution".

123

Answers for participants who communicate

Table 35 the submitters participants (Participant 2, 5 and 7) were not the winners with
their solutions but they clearly considered activities associated with the forum important for
task performance. This show that most part of the participants noticed the positive influence
on forums during task execution. For Participant 7, the forum helped in mutual questions,
but added an issue about time effort to understand the discussion associated with task. This
issue can be attributed to collaboration barriers on difficulty to communicate in asynchronous
channels and low global project view. Besides that, the short timeframe to deliver solutions
during the SW CS contests.

Table 35 - Question 4 and quotes by participants who communicate

 Communication helps to submit

Winner “The forum posts may clarify some of my questions regarding the task.” -
Participant 11

Submitter “In my case, it clarified a doubt about the deliverables of a challenge.”

– Participant 2

“It helps you to ask questions and have a better understanding of the task.” –
Participant 5

Quitter “Help with questions that may not have been raised until viewed on the
discussion forum. But sometimes they can bring even more doubts (demanding
more time in the understanding).” – Participant 7

Answers for participants who did not communicate

The participants who did not collaborate (in active way on the forum), both submitters

and quitters, mentioned that they were benefited from the messages posted on the forum
by other participants of the challenge. The quotes on Table 36 from Participant 6 and
Participant 10 illustrate that.

Table 36 – Question 4 and quotes by participants who did not communicate

 Communication helps to submit

Submitters

“It is simple to submit a task” – Participant 1

“I don’t use forums” – Participant 3

“Other members ask questions about the task and then when I read, sometimes
it answers questions that might have had.” – Participant 6

Quitters

“I didn't have this need during my experience.” – Participant 4

“I have not engaged in such activities.” – Participant 8

“By reading some of other members messages I was able to solve part of my
problems (however, I never sent any solution).” – Participant 10

124

c) Question 6 – Communication via TopCoder forums (sent or read posts) helps me
WIN a competition.

The last question about collaboration and productivity congruence we asked: Do you

agree or disagree with the following statement: "Communication via TopCoder forums (sent
or read posts) helps me WIN a competition". The additional question 7 says: Regarding
question 6, WHY do you agree/disagree? Can you think about an example or situation?

Answers for participants who communicate

The winner (Participant 11) mentions the forum had a crucial role in clarifying the
details of the task and supported him/her to win. This result suggests that collaboration via
forums contributes to become more productive, and, this way, results in a task solution that
is acceptable and that meets what the requester needs (expectations) in competitive SW
CS.

Participant 2 reported his/her feeling about the competitive nature of challenges and
the contradiction in collaborating in that context.

Analyzing the quote presented by Participant 7 individually, his answer is related to
the fact that he had not had the experience of winning a challenge. On the other hand, the
participant mentioned in the previous questions (2 and 4) that the forum is the channel that
enables visibility for crowd competitors, which is an important collaboration feature.

Table 37 - Question 6 and quotes by participants who communicate

Communication helps to win

Winner “The forum posts may clarify some of my questions regarding the task and so
support me to win the competition. But it is not a must, that is the reason I select
4 and not 5 points for the question 6. On the challenge that I won the company
provide details on the Forum (not started by any member question). So, in this
case, the forum supported the task development”. - Participant 11

Submitter “I do not believe it helps, and in my case, it did not help even because it was a
competition.” - Participant 2

Quitter “I cannot answer if it would help to win a challenge or not.” - Participant 7

Answers for participants who did not communicate

Some participants did not answer the question 6, since the questions were not
mandatory. While other participants repeated their answers from previous questions.

We believe that participants did not feel able to answer the questions about
correlation between communication and win a challenge because they did not communicate
via forum nor won a challenge.

125

Table 38 - Question 6 and quotes by participants who did not communicate

Communication helps to win

Submitter “Never won” – Participant 1

Quitter “I didn’t win any competition” – Participant 4

Participant 8 and participant 10 just repeated in this question their answers gave for

questions 2 and 4.

Questions related on other communication channels

Still in relation to communication, respondents were asked: “How often do you use
each of the following communication channels to interact with crowd members in order to
gather any information to apply in your task solution on TopCoder?”

It was noted that respondents used other channels to communicate with TopCoder
members. Figure 30 exhibits the distribution of use of the following communication channels:
55% of respondents confirmed the use of TopCoder’s forum, 36% indicated they used one
of the code hosting services (GitHub, BitBucket25, Google Code26, or SourceForge27) for
communication among TopCoder members, and 54% answered they use one of the Q&A
sites such as Stack Overflow and Quora28. Most respondents used the TopCoder forum to
communicate during the challenge, since the specific information about the task is located
there (documentation or technical information discussed among the participants); however,
it is important to highlight the use of collaborative code hosting tools and Q&A sites.

It can be inferred that the use of external channels of collaboration such as Q&A
among TopCoder competitors may be used as a way to seek information to clarify doubts
about the technologies requested in the tasks or to gain insights in other communities of
software developers and that can be applied in the development of the solution to be
submitted on TopCoder. There is a growing trend in the use of Q&A sites to discuss, share
experiences, doubts, and knowledge among the software developer community [STO14a].

25 https://bitbucket.org/
26 https://code.google.com/
27 https://sourceforge.net/
28 https://www.quora.com/

126

Figure 30 - Communication channel used between crowd

Regarding the question “How often do you use each of the following communication

channels to interact with OTHER DEVELOPERS (who are NOT participating in the
challenge) in order to gather any information to apply in your task solution on TopCoder?”,
it was possible to observe (Figure 31), that respondents also make use of Q&A sites,
including the microblog service (e.g., Twitter29), to communicate externally with other
developers and seek knowledge from other communities to assist in resolving the challenge
tasks, as state by [BEG13], [STO14a].

Figure 31 - Communication channel used between other developers

29 https://twitter.com/

127

4.6.5 Discussion

Correlating Collaboration, Task Performance, and Productivity

The questions and the quotes presented to ground our findings about the collaboration
impact, task performance and, productivity is positively correlated, and, in this case, the
collaboration among participants during the challenge is an important driver for them to
improve task performance and be more productive in relation to the other competitors.

It is possible to notice that the new roles which emerge in SW CS development such as
copilot (platform), and the requester who demands the task, are not clear to the crowd.
Considering that the interaction with crowd participants happened via asynchronous
communication channels and is mediated by copilots (experienced members of the crowd
community and platforms specialists) who interact with the requester [FIT15], this fact can
justify the participants' response.

Regarding this situation, the copilot, by sending information via forum, is
communicating and publicly distributing information that will be read by everyone who
accesses the forum. Using the forum, it is possible to discuss files with problems, clarify
doubts about the features that need to be delivered, etc. The discussions, however, tend to
be discreet as to the possible solutions of the task, without compromising the competitor
with relevant information about the strategies and decisions of their solution.

Among those who communicated and submitted a solution, one of them was the
winner of a challenge. Even with a reduced sample, it is possible to notice that the
communication has a positive effect for coders to complete the challenge and to be chosen
as the winners with the best solution for the registered challenge.

On the other hand, in 100% of cases, those who did not communicate also did not
win the challenge. Nevertheless, it is observed that, in some cases, the participants were
able to submit their solutions without communicating in the forum, which does not guarantee
they did not access it, i.e., they may have accessed the forum but passively. A passive
participation refers to the registered coders that only follow the messages posted in the
forum (Topcoder registers the views, as well as the feedback given, of the coders who report
how useful or not the messages posted were or the answer to their question message).
Such an action would imply saying that even by explicitly selecting 'No' for the question that
says: “Do you use TopCoder forums to communicate with the copilot or other crowd
members during a challenge?”, they have been benefited from the messages posted in the
forum and thus have managed to solve their solutions and submit them on time. This
indicates that even through an implicit / indirect collaboration, it is still possible to be
productive and send a solution.

Participants who did not communicate could not submit their solutions. In fact, they
did not access the forum at any point of the course of the challenge and did not become
aware of the messages and information that were being exchanged there.

128

Through the active or passive collaboration (reading or posting messages) in the
forum, where such messages may have been posted (messages such as question/ request
for help, confirmation or answers, tips, etc.) by the crowd or the copilot, the participants
agree that the forum helps in the process of task submission.

Thus, the survey aimed to assess the potential benefits of collaboration among crowd
members in terms of task performance, providing support for submitters complete the
challenge and helping to reduce the amount of quitters. Moreover, the results from survey
evaluated the congruence between collaboration and productivity in competitive SW CS.

4.6.6 Limitations

While our survey response and assess collaboration impact in task performance in
competitive SW CS we had limited opportunities to recruit other geographical set of
developers who had compete in TopCoder platform. It is important to mention that TopCoder
platform keeps profile information of their pool the resources / members in a sort of "black
box", where the community is basically identified by their nicknames. It is not obligatory that
TopCoder’s users mention any personal information in their profile (they can only associate
the technologies of which they have skill), and rare users associate their Github profile or
other websites. The anonymity of TopCoder users virtually makes the contact with both
access via platform and external access to other networks impossible. Alternative forms of
social engineering were used to try to connect with the community (through networks such
as LinkedIn and Facebook), but without success. Also, Topcoder users' discussion forums
have not been identified as it is common in OSS communities. Just a few isolated members
mentioned about how to get started and win a Topcoder challenge, and sought help solving
algorithms with Q&A sites such as Quora. In addition, email messages were exchanged with
Dave Mesinger, Chief Architect and VP of Product of Topcoder to arrange a collaboration
with the author of this thesis, and other students and researcher professors in SWCS of
MuNDDoS research group; however, this collaboration did not happen on time before the
conclusion of this study.

 We also designed and partially performed an experiment in the online format of the
competition like TopCoder, in collaboration with Prof. André van der Hoek from UCI (as
mentioned in section 1.7), but, due to the low number of participants, the experiment was
canceled, again affecting our empirical data collection in software development
competitions.

 Throughout a number of attempts, sending invitations to TopCoder registered coders
within recent tasks via post forum on the development challenges, and also through sharing
our survey in the general discussion TopCoder’s forum (coders community) (Appendix F),
all without answers, we noticed the distinctive culture of the “community”, and the great
difficulty of accessing and collecting data directly with a very specific sample of crowd
workers.

129

5. DISCUSSION

The SW CS strategy taps global talents to work on software development challenges,
but it also increases complexity to decide which development tasks are more suitable to be
crowdsourced as well as setting and orchestrating unstable and undefined virtual workers.
Besides that, SW CS platforms have a relevant importance providing directions for the task
management (allocation and submission) [STOa14], [YAN16] [ZAN17], quality assurance
[LAT15], [SAR17], motivation and remuneration [STO14a], [MAO13], [TAJ13],
communication, and the coordination [PEN14], [STO14a], [MAC17] of processes and people
in both technical and business levels.

Communication and collaboration among involved parties is a critical endeavor in
software development and our results suggest it is also a critical feature of SW CS
projects. It requires platforms to take the lead aiming to guarantee that members of the
crowd (indirectly) work together in an effective manner. The majority of current SW CS
platforms cannot meet the required collaboration mechanisms comprehensively [PEN14],
[MAC16c], [MAC17]. In fact, recent tools that explore collaboration among crowd workers
(like CrowdCode [LAT14]) have provided inspiring results regarding the quality of the
submitted solutions.

Communication and collaboration barriers in SW CS hinders SW projects for all
involved: crowd, requesters and platform owners. However, the organic nature of
collaboration among crowd workers was surprisingly identified in CS applications through
the analysis of different platforms by Gray et al. [GRA16] and Machado et al. [MAC17] such
as LeadGenius30 and TopCoder [TOP17]. The authors indicate that there are interactions
and social relationships among crowd members even in a competition, and that the crowd
uses collaborative strategies to articulate work on these platforms. In Gray et al. [GRA16]
study, they have identified different forms of collaboration (sharing administrative overhead
to reduce costs, seeking out job opportunity information to share with the crowd, and helping
other crowd active participants to advance or finish a given task), in the moment of the task
completion on CS platforms.

In our previous empirical studies and as a result of this thesis we argue that crowd
workers present collaboration characteristics that are strongly correlated with delivering
winning solutions in SW CS challenges. This is an important result that resembles traditional
and distributed software development [CAT06], [KWA11]. It is important to note that
requesters and SW CS platform owners assume that crowd participants do not communicate
with each other. While each challenge is inherently competitive and much of the
collaboration on TopCoder is a structured one, i.e., the TopCoder’s process dictates how
that collaboration takes place [NAG13], our results show that not only do crowd workers
communicate but they are also willing to help each other. For instance, crowd workers do
share tips among themselves.

Communication, as already mentioned, is a concern in SW CS [STO14a], [FIT15],
[MAC16a], [MAC17] and, it is accentuated when the main channel to exchange information

30 https://www.leadgenius.com/

130

is asynchronous. The authors in [BOU14a], discuss topics hindered in asynchronous
communication environments where typically many topics are active with team members
making contributions at the same time, possibly on different topics. In addition, long time
lapses between communication events can lead to discontinuous and seemingly disjointed
discussions. In [OSL00], they emphasized the role of synchronous interactions in providing
rapid feedback among team members, and in supporting design and collaborative problem-
solving.

The results are consistent with the barriers of collaboration identified in Chapter 3,
related to unclear and misconception task’s documentation and, non-synchronization of
information that is exchanged during the forum, it means, immediately when these crowd
questions are asked for the copilot, and he/she, in turn, answers or makes decisions directly
in the forum that end up not being updated in the document and are only registered in the
forum.

The collaboration barriers in the SW CS scenario creates a tension between the
needs and the capabilities of distributed software development environments, and leads to
misunderstanding, miscommunication, and coordination problems. While SW CS projects
and platforms have been increased, we observed there are opportunities for improvement
in collaboration among subsets of crowd workers and new workers.

With respect to unstructured collaboration, discussion forums enable participants to
ask questions, and discuss the requirements with other participants. This discussion often
adds additional details or reduces ambiguity in the contest specification. In this thesis, we
showed that the crowd collaborates via forums through these discussions and, thanks to
them, collaboration is correlated with task performance and productivity of the crowd.

Similarly, other researchers on SW CS [LAT15], [PEN14], [NAG13], [TAU17] suggest
that the quality improvement of the solutions is associated with the crowd dynamics of
collaboration. In this sense, any improvement of collaboration in the competitive SW CS
context will need to be considered by platforms of on-demand services.

One important question in crowdsourcing studies is “How can the “long tail” of the
crowd be mobilized to participate and submit their solutions in SW CS approaches?” That
is, while Topcoder boasts more than 1.2 million members [TOP17], only a fraction of its
members seems to be actively participating and submitting solutions to the challenges.
Another question is “How effective is the competition-based approach to crowdsourcing
compared to alternative and more collaborative approaches to crowdsourcing software
development?” A clear understanding of these aspects can prevent the requesters who
expect to receive quality solutions for their business from advertising competitions that are
not attractive and that, consequently, might fail due to lack of submissions. Thus, when
requesters are seeking to increase speed of software development through crowdsourcing,
they need to be aware and choose collaboration strategies for the crowd and supported by
the platform. Similarly, crowdsourcing software development platforms need to provide
support to connect crowd workers during task execution and beyond.

131

 The high task-quitting rate and low-quality solutions are huge concerns to competitive
SW CS platforms [SAR7]. Thus, the high number of registrants in the challenge is not a
guarantee of a high number of submissions. On the contrary, as other research [YAN16]
also shows that the low number of submissions reveals an alarming factor in the SW CS
projects. A number of empirical studies have attempted to relate the reasons that lead the
platforms to receive a small number of solutions from crowd participants who had registered
(specifically analyzing TopCoder data) such as: task allocation [MAO15a], [YAN16], unclear
documentation and onboarding tasks [ZAN17], and pricing the task [MAO13]. Recently,
studies involve the non-collaboration on a competition platform as a factor associated with
social and technical barriers to complete SW CS tasks [MAC16b], [MAC17].

 As the current baseline, the results extracted from TopCoder forums in this thesis
highlight the important role of collaboration in both solution submission and winning the
competition on the platform, i.e., task performance.

Consistent with previous empirical studies in this thesis, factors about communication
during SW CS tasks are related to significant collaboration. Collaboration among coders
facilitates one to share and gain insights into the best ways to drive the implementation of
his/her solutions. Besides that, during collaboration among competitors, communication
patterns evidenced some barriers mapped in the conceptual model of collaboration
presented in Chapter 3 of this thesis through categories social interaction, task design, and
process management. This confirms that the coders that collaborate in the forum seek to
alleviate doubts about lack or incomplete documentation details and artifacts of the tasks,
technical and infrastructure setting issues (requirements, library, processing, etc.), few
integrations with collaboration tools (access), information visibility issues, latency of time
between the question generated in the forum and the confirmation that the copilot must have
with the requester and so on.

Table 39 illustrate the quotes about latency information between co pilot – requester
and co pilot – crowd as one of the collaboration barriers identified in this thesis.

Table 39 - Example of quotes about latency information barrier

Confirmation response - Requirements

Co pilot

“These were all based on client feedback. I am checking with them on it.
Stay tuned.”

Co pilot “I've escalated this to the client and asked them to fix it asap.”

There is a trend that suggests through the results in the evaluatory phase, forum
analysis and data survey, that similar patterns of communication influence in the submission
rate and the selection of the best solutions provided by crowd workers. In other words, the
characteristics of collaboration among the crowd and the platform bring benefits for the
performance of individuals in a more productive way, being the winner better rewarded in
the contest.

132

Effectively does those who communicate submit a solution? Forum participants had
high winning rates, whereas low participation in the forum had high quitting rate. The
observed correlation implies that participants who were participatory via forum and were
involved in different types of collaboration, given a particular task’s dependency, tended to
do well, i.e., better collaboration, better results.

Effectively do those who communicate win the challenges? In 80% of the cases,
those who participated in the forum delivered solutions and ended up being chosen as the
winners of the challenge. Thus, our results found that higher congruence is associated with
better task performance it means, collaboration characteristics is congruent with crowd
workers productivity. Similar approach was mentioned by Cataldo et al. [CAT06] for the
coordination requirements domain. The authors found congruence between coordination
requirements and coordination activities where that congruence helps to reduce the amount
of time required to preform tasks.

SW CS in competitive model through the characteristics of collaboration between the
participants, presented in this thesis, proved to be crucial to solve and answer several issues
related to communication and coordination during the development of the tasks, as
evidenced in Chapter 3 and Chapter 4. It was observed the importance of discussing
information about the tasks collectively. Such discussion made it possible for the participants
to acquire a sort of “appropriation” of knowledge on the task they were providing.

The results suggest that, even though the challenges are realized in a competition
format, where the award is financial, there are different types of collaboration among coders.
Thus, a study on crowd collaboration on TopCoder may suggest mechanisms that
encourage coders to collaborate on the platform. We believe that this work will contribute to
increase knowledge on crowdsourcing in the context of collaborative software development,
since collaboration characteristics among the coders were presented, which it could be
seen:

a. Impact on the crowd in the understanding of the task and decision to carry on the
challenge (quitter, submitter),

b. Impact on the requester, receiving quality, diverse solutions, and fast delivery of
the crowdsource project,

c. Impact on the platform facing the productivity of the resource pool offered to
organizations, and for the success of the software development strategy offered
by the platforms.

Thus, our research can be used to provide design recommendations both to the
platform software requirements - supporting tools to connect workers, building collaboration
into their workflows, and designing the CS challenges, returning to the challenges of
mediating collaboration. Some examples to provide greater collaboration among the
participants can be cited: team formation, allowing crowd members to share solutions, and
the reduction of the ranking visibility of coders who have already submitted solutions to the
challenge.

133

Regarding the collaboration challenges recommendations for new software
requirements for CS platforms and for different design of development contests in SW CS,
we could mention analytical recommendations based on our TopCoder forums’ analysis
study, carried out in this thesis.

The recommendations display the difficulty to effectively guide online discussions
about the task’s requirements among crowd developers, platform and requesters and use a
range of online tools to support discussion about task's cycle (assigning, understanding
requirements, technical setting, coding, testing, delivering). We drafted a set of
recommendations useful for requester (companies or individual requester) that want to
obtain new (quality) or complementary (quantity) software solutions for their project’s
demands, for crowd developers who want to contribuite and be productive in SW CS projects
and, finally, for SW platforms that want to design effective online SW CS challenges.

Table 40 shows the recommendations to overcome collaboration barriers associated
with each collaboration category. We observed an overlap between some recommendations
with literature review study. For instance, lack of communication among crowd workers,
scarce social media support, taslk decomposition issue.

Table 40 - SW CS collaboration recommendations

Collaboration
categories

SW CS collaboration barriers SW CS collaboration recommendations

Social
interaction

Lack of Informal communication

No communication between crowd
and requester

à Conduct effective online feedback and
reflection for crowd workers to alleviate
fleeting relationship
à Support communication with other crowd
developers to reduce misunderstandings
and weak social context

Lack of real-time collaboration

à Provide real time collaboration
to avoid outdate information between
forum’s decisions and spec documentation

Restrict asynchronous
communication channel

Few interactions among involved
participants inside the platform

à Provide a synchronous communication
channel to minimize no direct
communication among crowd and platform
to perfom the task

à Co pilots create a more regulary useful
communication (on forums) with crowd
workers to monitor and estimulate some
discussions and clarify questions about task
requierement details

à Incentivizing a “warm up” to discuss
task’s context among requester (who desired
to participate) to anticipate crowd issues and
doubts about documentation task’s
specification

134

Competition
Model

Difficulty to dealing with
competitors

à To allow share solutions among crowd
developers to encourage collaboration
among crowd developers
à Reduction of the ranking visibility of crowd
workers who have already submitted
solutions to the challenge to keep willing to
task’s submission

Competition discouraging
collaboration

à Team formation to alleviate the
competition and rivaly relation

Task Design

No synchronization of decisions
taken in forum vs. documentation
(and vice versa)

à Greater visibility to tasks decisions’ making
update the documentation of task
requirements changed in the forum

Unclear and inconsistent
documentation

à Better divide and describe tasks due to
high granularity and complexity to
understanding
à To provide task’s documentation such
as: downloadable files, screenshots /
screens, images, diagrams, etc. as a
complementary infromation

Process
Management

Difficulty to management in alrge
scale distributed settings

à Manage producer-consumer relationship
to reduce latency of information via
asynchronous communication channel

Information visibility issues

à Provide mechanism to notify errors and
inconsistencies posted in the task
documentation to improve visibility and
reduce gaps of tacit assumptions of the tasks

Technical and infrastructure setting
issues

à Indicate and integrate tasks with other
development tools and collaborative
repository (Github, Stackoverflow, etc.) to
facilitate the understanding of source and
structure code and, reduce time-consuming

It is worth remembering that all suggestions presented refer to activities performed
just in the “Code” of Development Challenge category in Topcoder, and were not validated.

The second research phase, detailed in Chapter 4, occurred specifically to evaluate
the collaboration and communication difficulties during the registration and submission
phases of the software tasks that the crowd faces during the challenges of TopCoder
platform.

135

6. CONCLUSIONS AND FUTURE WORK

This research sought to contribute to the knowledge about SW CS in the development
of collaborative software through a study on TopCoder. In addition, it aimed to stimulate
studies on collaboration in this form of work and to allow greater understanding about the
crowd workers in the SW CS platform.

Data were collected from different sources and, specifically the source on messages
exchanged between crowd workers by content post from communication forums, as far as
we know, there are no previous studies have reported as a strategy of research and analysis
in the SW CS area.

Messages were coded into 10 categories and 11 topics. After analysis, we concluded
that although this is a competition, there are different types of collaboration between coders.
Continuous analysis of these data over a period of time may reveal the evolution of the
increase in coders' participation in the forums each month, which is ongoing. It is noteworthy
that the results sought to stimulate a greater contribution in empirical research in SW CS
instead of focusing only on the construction of platforms and applications. In other words,
understanding crowd collaboration, or at least part of it, can serve as a starting point for
investigating factors that aim to increase collaboration on Topcoder [LI13], and similar
platforms.

The barriers and collaboration characteristics identified in the competitive
environment of SW CS, emphasize that crowd workers collaborate to fulfill technical and
social needs left by the platform, independent of the strategy for designing and creating
software in which they act.

In the SW CS environment, particularly in competitive activities, there are potentially
misunderstanding mismatches, scarce or overwhelming communication, and lack of social
interactions to develop software activities that might impact on the success of the
project. The lack of appropriate communication can result in difficulties to understand the
task requirements at the time of deliver a solution, reducing the productivity and affecting
the solutions quality.

We then explored the consequences of collaboration in terms of task completion
during SW CS contests and the productivity of the crowd. Our analysis found that
communication helps to keep crowd workers to perform tasks and, can reduce the amount
of withdraw registers. In addition, the results show that crowd workers who have
communication patterns are more productive with the work they perform, submitted solutions
and consequently, winning a SW CS challenge. Moreover, the most productive workers
reach higher levels of collaboration than the less productive ones.

These results suggest that preventing collaboration from the point of view of
communication in competitive SW CS is negative to get the largest number of solutions and
increase speed of software development through crowdsourcing.

Furthermore, we bring a study on how developers collaborate on TopCoder, who the
participants that collaborate the most are during task completion, and which collaboration

136

characteristics related to these participants are. Regarding the communication patterns, we
found that crowd workers who collaborate in ways that are more congruent with the work
they perform. Moreover, the most productive crowd worker reaches higher level of
congruence than the less productive ones.

The collaboration barriers mentioned in this thesis can, at first, disturb SW CS
platforms that display a strongly competitive nature, limiting and inhibiting collaboration
among their participants.

If a while ago, software development was looking for solutions to deal with the
collaboration challenges imposed by physical distance, what we observe now is that
distance is no longer a factor that prevents collaboration. What has become clear, though,
is how competitive platforms in the context of SW CS are re-creating collaboration barriers
that have already been overcome with coordination and communication mechanisms over
the past years.

The idea that reducing dependency between tasks and software components would
also reduce the need for collaboration among participants in a software project was not
found in the context of SW CS. The results obtained in this thesis suggest that even in a
competitive and “isolated” environment, software engineering project work is a highly
collaborative activity, and promises to continue in this way.

In the Chapter 3 and 4, we reported the results for answering the three research
questions. The answers are briefly descrived in the following.

 RQ1. Which collaboration barriers do the crowd face when performing tasks in a
competitive SW CS environment? By analyzing different qualitative and empirical sources
such as interviews, literature review and case study we obtained a set of collaboration
barriers faced by crowd workers in competitive SW CS. In addition, we provide the
collaboration model in SW CS.

RQ2. Which current collaboration characteristics are present in competitive SW CS?
Based on the quantitative (statistics of forums’ messages among crowd – crowd and crowd-
platform) and qualitative analysis (interpretation of the content of the forums’ messages
among crowd and crowd) we evidenced different communication patterns from the crowds’
role such as winners, submitters, and quitters from SW CS challenges.

RQ3. How might the collaboration impact in crowd productivity? We analyzed the
crowd developers who communicated during task performing and shows that the most
productive developers are those with higher congruence, i.e., they communicate with the
developers with whom they have dependencies due to the code they are changing.

This thesis encourages academics, practitioners, and community members to refine
our ways of thinking about issues on collaboration in SW CS projects.

137

Limitations

As any other empirical work, we have limitations and topics that remain for future
work. As one limitation, our study concentrated in one SW CS platform. Although it is the
most used platform, we cannot say that the behavior identified here would replicate in other
platforms. Moreover, our approach does not consider other Topcoder competitions such as
Specification, Architecture, Design, Development, Assembly, and Test Suites. These
challenges could present a different communication behavior and, therefore, different results
for the productivity aspects of crowd workers, as well as for the patterns of communication
encountered. New coding of categories and topics for communication patterns could also
be identified in these challenges.

The number of analyzed forums and the manual form of analysis can also be
considered a limitation. However, qualitative analyzes face an initial thread off for the
recognition of desirable and emerging domains. The bias question of the categories of
communication found was alleviated by double checking with another researcher.

Barriers and collaboration characteristics impact on the quality of solutions and the
productivity of the participants involved in competitive SW CS. We presented examples of
these barriers and characteristics and illustrated who the participants are more likely to
collaborate with. These results have expanded our understanding on how collaboration
takes place in competitive SW CS, but there is still much work left to be done. A possible
extension for this study is to conduct a series of studies to:

• Mining platform’s forum repositories to confirm the barriers and
characteristics. Some of the identified barriers can be further analyzed using
software-mining techniques. A possible future direction could be to use these
techniques to verify which barriers a given project presents.

• Investigating on task’s descriptions and technologies required from the tasks to
have a relationship in terms of collaboration levels/characteristics and barriers.

• Mining sentimental analysis. An interesting future research direction could be to
use mining techniques and natural language processing to explore sentimental
analysis from exchanges of messages in the communication challenges like a forum
in SW CS projects.

• Adding new attributes. In the analysis of the barriers and characteristics of
collaboration, the experience of the platform participants could be analyzed,
evaluating their relationship with the productivity between experienced and beginner
participants.

• Another look at the barriers. The barriers and characteristics of collaboration can
be evaluated specifically from the perspective of requesters and the platform,
enabling a different perspective on the findings.

138

• Investigating different challenge categories. Consider other challenge categories

(data science) and subcategories of TopCoder, including other SW CS platforms, to
verify the relation between the existing and new characteristics and barriers to
collaboration.

• Advance to other SW CS competitive workflow phases. To extend the study of
collaboration to other TopCoder platform workflow phases such as: review and
appeal.

139

REFERENCES

[ADE12] Adepetu, A., Ahmed, K., Abd, Y.A. “CrowdREquire: A Requirements

Engineering Crowdsourcing Platform”. In: Proceeding of the Association for
the Advancement of Artificial Intelligence Spring Symposium: Wisdom of the
Crowd, 2012, pp. 2-7.

[ÅGE15] Ågerfalk, P. J.; Fitzgerald, B.; Stol, K. J. “Software Sourcing in the Age of
Open: Leveraging the Unknown Workforce”. Springer Briefs in Computer
Science, 2015, 71p.

[ARC10] Archak, N. "Money, glory and cheap talk: analyzing strategic behavior of
contestants in simultaneous crowdsourcing contests on TopCoder.com." In:
Proceedings of the 19th International Conference on World Wide Web,
2010, pp. 21-30.

[BAR13] Barzilay, O., Treude, C.; Zagalsky, A. “Facilitating crowd sourced software
engineering via stack overflow”. In: Finding Source Code on the Web for
Remix and Reuse, Springer Internacional Publishing, 2013, chap. 14, pp.
289-308.

[BEG13] Begel, A.; Bosch, J.; Storey, M.A. “Social networking meets software
development: Perspectives from github, msdn, stack exchange, and
topcoder”. IEEE Software, vol. 30-1, Jan 2013, pp.52-66.

[BOU14a] Boudreau, K.; Gaule, P.; Lakhani, K.R.; Riedl, C.; Woolley, A.W. “From
crowds to collaborators: Initiating effort & catalyzing interactions among
online creative workers”, Harvard Business School Working Paper, 2014,
pp.14-060.

[BOU14b] Boughzala, I.; De Vreede, T.; Nguyen, C.; De Vreede, G.J. “Towards a
maturity model for the assessment of ideation in crowdsourcing projects”. In:
Proceedings of the 47th Hawaii International Conference on System
Sciences, 2014, pp. 483-490.

[BRA08] Brabham, D. C. “Crowdsourcing as a model for problem solving: An
introduction and cases”. Convergence, vol. 14-1, Feb 2008, pp. 75-90.

[CAR01] Carmel, E.; Agarwal, R. “Tactical approaches for alleviating distance in
global software development”. IEEE Software, vol.18-2, Mar 2001, pp.22-
29.

[CAR99] Carmel, E. “Global software teams: collaborating across borders and time
zones.” Prentice Hall PTR,1999, 269p.

[CAT06] Cataldo, M.; Wagstrom, P.A.; Herbsleb, J.D.; Carley, K.M. “Identification of
coordination requirements: implications for the Design of collaboration and
awareness tools”. In: Proceedings of the 20th Anniversary Conference on
Computer Supported Cooperative Work, 2006, pp. 353-362.

[CRO17] Crowston, K. and Shamshurin, I. “Core-periphery communication and the
success of free/libre open source software projects”. Journal of Internet
Services and Applications, vol. 8-1, Jul 2017, pp.1-10.

140

[DOA11] Doan, A.; Ramakrishnan, R.; Halevy, A. Y. “Crowdsourcing systems on the
world-wide web”. Communications of the ACM, vol. 54-4, Apr 2011, pp. 86-
96.

[DUB16] Dubey, A.; Abhinav, K.; Taneja, S.; Virdi, G.; Dwarakanath, A.; Kass, A.;
Kuriakose, M.S. “Dynamics of software development crowdsourcing”. In:
Proceedings of the 11th International Conference on Global Software
Engineering, 2016, pp. 49-58.

[DWA15] Dwarakanath, A.; Chintala, U., Virdi, G., Kass, A., Chandran, A., Sengupta,
S.; Paul, S. “CrowdBuild: a methodology for enterprise software
development using crowdsourcing”. In: Proceedings of the 2nd International
Workshop on CrowdSourcing in Software Engineering, 2015, pp. 8-14.

[EST12] Estellés-Arolas, E.; González-Ladrón-De-Guevara, F. “Towards an
integrated crowdsourcing definition”. Journal of Information Science, vol. 38-
2, Mar 2012, pp. 189–200.

[FAR11] Faraj, S.; Jarvenpaa, S.L.; Majchrzak, A. “Knowledge collaboration in online
communities”. Organization Science, vol. 22-5, Feb 2011, pp.1224-1239.

[FIT15] Fitzgerald, B.; Stol, K.J. “The dos and dont’s of crowdsourcing software
development”. In: Proceedings of the 41st International Conference on
Current Trends in Theory and Practice of Informatics, 2015, pp. 58-64.

[GNY11] Gnyawali, D.R.; Park, B.J.R. “Co-opetition between giants: Collaboration
with competitors for technological innovation”. Research Policy, vol.40-5,
Jun 2011, pp.650-663.

[GOL11a] Goldman, M., Little, G.; Miller, R.C. “Real-time collaborative coding in a web
IDE.” In: Proceedings of the 24th Symposium on User Interface Software
and Technology, 2011, pp. 155-164.

[GOL11b] Goldman, M. “Role-based interfaces for collaborative software
development.” In: Proceedings of the 24th Symposium on User Interface
Software and Technology, 2011, pp. 23-26.

[GON11] Gonçalves, M.K.; de Souza, C.R.; González, V.M. “Collaboration,
Information Seeking and Communication: An Observational Study of
Software Developers' Work Practices”. Journal of Universal Computer
Science, vol.17-14, Jan 2011, pp.1913-1930

[GRA16] Gray, M.L.; Suri, S.; Ali, S.S.; Kulkarni, D. “The crowd is a collaborative
network”. In: Proceedings of the 19th Conference on Computer-Supported
Cooperative Work & Social Computing, 2016, pp. 134-147.

[GUA15] Guaiani, F.; Muccini, H. “Crowd and laboratory testing can they co-exist? an
exploratory study”. In: Proceedings of the 2nd International Workshop on
CrowdSourcing in Software Engineering, 2015, pp. 32-37.

[HER01] Herbsleb, J. D.; Moitra, D. “Global software development”. IEEE Software,
vol.18-2, Mar 2001, pp.16-20.

141

[HER99] Herbsleb, J.D.; Grinter, R.E. “Architectures, coordination, and distance:
Conway's law and beyond”. IEEE Software, vol.16-5, Sep 1999, pp.63-70.

[HOD10] Hoda, R.; Noble, J.; Marshall, S. “Using grounded theory to study the human
aspects of software engineering”. In: Proceedings of the 10th Human
Aspects of Software Engineering, 2010, pp.5.

[HOP96] Hoppen, N. “Um guia para avaliação de artigos de pesquisas em sistemas
de informação”, RevistaEeletrônica de Administração, vol. 2–2, Nov 1996,
pp. 31–52.

[Hoß14] Hoßfeld, T.; Keimel, C.; Hirth, M.; Gardlo, B.; Habgit, J.; Diepoldi, K.; Tran-
Gial, P. “Best Practices for QoE crowdtesting: QoE assessment with
crowdsourcing". IEEE Transactions on Multimedia, vol.16-2, Feb 2014,
pp.541-558.

[HOS14a] Hosseini, M.; Phalp, K.; Taylor, J.; Ali, R. “The four pillars of crowdsourcing:
A reference model”. In: Proceedings of the 8th International Conference,
Research Challenges in Information Science, 2014, pp. 1-12.

[HOS14b] Hosseini, M.; Phalp, K.; Taylor, J.; Ali, R. “Towards crowdsourcing for
requirements engineering”. In: Proceedings of the 20th International
Conference on Requirements Engineering Foundation for Sotware Quality,
2014, pp. 43-69.

[HOS14c] Hossfeld, T., Keimel, C.; Timmerer, C. “Crowdsourcing quality-of-experience
assessments”. Computer, vol. 47-9, Sep 2014, pp.98-102.

[HOS15] Hosseini, M.; Shahri, A.; Phalp, K.; Taylor, J.; Ali, R. and Dalpiaz, F.
“Configuring crowdsourcing for requirements elicitation”. In: Proceedings of
the 9th International Conference on Requirements Engineering Foundation
for Sotware Quality, Research Challenges in Information Science, 2015, pp.
133-138.

[HOW06] Howe, J. “The rise of crowdsourcing”. Wired Magazine, vol.14-6, Jun 2006,
pp.1-4.

[HOW08] Howe, J. “Crowdsourcing: “How the power of the crowd is driving the future
of business”. Random House Business, 2008, 304p.

[HUT11] Hutter, K.; Hautz, J.; Füller, J.; Mueller, J.; Matzler, K. “Communitition: The
tension between competition and collaboration in community‐based design
contests”. Creativity and Innovation Management, vol. 20-1, Mar 2011, pp.3-
21.

[JOH11] Johns, T.; Laubscher, R. J.; Malone, T. W. “The age of hyper
specialization”. Harvard Business Review, vol. 89-8, Jul 2011, pp.56.

[KAG13] Kaganer, E.; Carmel, E.; Hirschheim, R.; Olsen, T. “Managing the human
cloud”. MIT Sloan Management Review, vol. 54-2, Dec 2013, pp.23-32.

[KAL15] Kalliamvakou, E.; Damian, D.; Blincoe, K.; Singer, L.; German, D.M. “Open
source-style collaborative development practices in commercial projects
using github”. In: Proceedings of the 37th International Conference on
Software Engineering, 2015, pp. 574-585.

142

[KAZ09] Kazman, R.; Chen, H. M. “The metropolis model a new logic for development
of crowdsourced systems”. Communications of the ACM, vol.52-7, Jul 2009,
pp.76-84.

[KAZ10] Kazman, R., Chen, H.M. “The metropolis model and its implications for the
engineering of software ecosystems. In: Proceedings of the 10th Foundation
of Software Engineering workshop on Future of software engineering
research, 2010, pp.187-190.

[KIT02a] Kitchenham, B.; Pfleeger, S.L. “Principles of survey research: part 2:
designing a survey”. ACM Special Interest Group on Software Engineering
Notes, vol. 27-5, Jan 2002, pp.18-20.

[KIT02b] Kitchenham, B.; Pfleeger, S.L. “Principles of survey research: part 3:
constructing a survey instrument”. ACM Special Interest Group on Software
Engineering Notes, vol. 27-5, Jan 2002, pp. 20-24.

[KIT02c] Kitchenham, B.; Pfleeger, S.L. “Principles of survey research: part 4:
questionnaire evaluation”. ACM Special Interest Group on Software
Engineering Notes, vol. 27-5, Jan 2002, pp.20-23.

[KIT02d] Kitchenham, B.; Pfleeger, S.L. “Principles of survey research: part 5:
populations and samples”. ACM Special Interest Group on Software
Engineering Notes, vol. 27-5, Jan 2002, pp.17-20.

[KIT08] Kittur, A.; from the LR Chi, E.; Suh, B. “Crowdsourcing user studies with
Mechanical Turk”. In: Proceedings of the 26th Conference on Human factors
in computing systems, 2008, pp. 453– 456.

[KIT10] Kittur, A. “Crowdsourcing, collaboration and creativity”. XRDS: crossroads,
The ACM Magazine for Students, vol.17-2, Dec 2010, pp.22-26.

[KIT13] Kittur, A.; Nickerson, V. J.; Bernstein, M.; Gerber, E.; Shaw, A.; Zimmerman,
J.; J. Horton, “The future of crowd work”. In: Proceedings of the 16th
Conference on Computer-Supported Cooperative Work, 2013, pp.1301-
1318.

[KOT05] Kotlarsky, J.; Oshri, I. “Social ties, knowledge sharing and successful
collaboration in globally distributed system development
projects”. European Journal of Information Systems, vol.14-1, Mar 2005,
pp.37-48.

[KWA11] Kwan, I.; Schroter, A.; Damian, D. “Does socio-technical congruence have
an effect on software build success? a study of coordination in a software
project”. IEEE Transactions on Software Engineering, vol. 37-3, May 2011,
pp.307-324.

[LAK10] Lakhani, D.; Garvin, D.; Lonstein, E. “TopCoder (a): developing software
through crowdsourcing”. Harvard Bussines School Case, vol. 610-32, May
2010, p.20.

143

[LAS15] Lasecki, W.S., Kim, J., Rafter, N., Sen, O., Bigham, J.P.; Bernstein, M.S.
“Apparition: Crowdsourced user interfaces that come to life as you sketch
them”. In: Proceedings of the 33rd Conference on Human Factors in
Computing Systems, 2015, pp. 1925-1934.

[LAT13] LaToza, T. D.; Towne, W. B.; van der Hoek, A.; Herbsleb, J. D. “Crowd
development”. In: Proceedings of the 6th International Workshop on
Cooperative and Human Aspects of Software Engineering, 2013, pp. 85-88.

[LAT14] LaToza, T. D.; Towne, W. B.; Adriano, C. M.; Van Der Hoek, A. “Microtask
programming: Building software with a crowd”. In: Proceedings of the 27th
Symposium on User Interface Software and Technology, 2014, pp. 43-54.

[LAT15a] LaToza, T.D.; Chen, M.; Jiang, L.; Zhao, M.; Van Der Hoek, A. “Borrowing
from the crowd: A study of recombination in software design competitions”.
In: Proceedings of the 37th International Conference on Software
Engineering, 2015, pp. 551-562.

[LAT15b] LaToza, T.D., Di Lecce, A., Ricci, F., Towne, W.B.; Van Der Hoek, A. “Ask
the crowd: Scaffolding coordination and knowledge sharing in microtask
programming”. In: Proceedings of the Visual Languages and Human-Centric
Computing, 2015 pp. 23-27.

[LAT15c] LaToza, T.D. and Van Der Hoek, A. “A vision of crowd development”. In:
Proceedings of the 37th International Conference on Software Engineering,
2015, pp. 563-566.

[LAT16] LaToza, D. T.; van der Hoek, A. “Crowdsourcing Software Engineering:
Models, Motivations, and Challenges.”, IEEE Software, vol.33-1, Jan 2016,
pp. 74-80.

[LEE15] Lee, C.P.; Paine, D. “From the matrix to a model of coordinated action
(MoCA): A conceptual framework of and for CSCW”. In: Proceedings of the
18th Conference on Computer-Supported Cooperative Work & Social
Computing, 2015, pp. 179-194.

[LI13] Li, K. “Analysis of the Key Factors for Software Quality in Crowdsourcing
Development: An Empirical Study on TopCoder.com”. In: Proceedings of the
37th Computer Software and Applications Conference, 2013, pp. 812–817.

[LI15] Li, W.; Tsai, T. W.; Wu, W. “Crowdsourcing for Large-Scale Software
Development Crowdsourcing”. Springer, vol. 10-1, May 2015, pp. 3-23.

[MAC14] Machado, L.; Pereira, G.; Prikladnicki, R.; Carmel, E.; de Souza, C. R.
“Crowdsourcing in the Brazilian IT industry: what we know and what we
don't know”. In: Proceedings of the 1st International Workshop on Crowd-
based Software Development Methods and Technologies, 2014, pp.7-12.

[MAC16a] Machado, L., Kroll, J., Prikladnicki, R., de Souza, C. R. and Carmel, E.
“Software Crowdsourcing Challenges in the Brazilian IT Industry”. In:
Proceedings of the 18th International Conference on Enterprise Information
Systems, 2016, pp. 482-489.

144

[MAC16b] Machado, L., Meneguzzi, F., Prikladnicki, R., Carmel, E.; de Souza, C. “Task
Allocation for Crowdsourcing using AI Planning”. In: Proceedings of the 3th
International Workshop on Crowdsourcing in Software Engineering, 2016,
pp. 36-40.

[MAC16c] Machado, L.; Kroll, J.; Marczak, S.; Prikladnicki, R. “Breaking Collaboration
Barriers through Communication Practices in Software Crowdsourcing”. In:
Proceedings of 11th International Conference on Global Software
Engineering, 2016, pp. 44-48.

[MAC17] Machado, L. S.; Zanatta, A. L.; Marczak, S.; Prikladnicki, R. “The Good, the
Bad and the Ugly: An Onboard Journey in Software Crowdsourcing
Competitive Model”. In: Proceedings of the 4th International Workshop on
CrowdSourcing in Software Engineering, 2017, pp. 2-8.

[MAO13] Mao, K.; Yang, Y.; Li, M.; Harman, M. “Pricing crowdsourcing-based
software development tasks”. In: Proceedings of the 35th International
Conference on Software Engineering, 2013, pp. 1205-1208.

[MAO15a] Mao, K.; Yang, Y.; Wang, Q.; Jia, Y.; Harman, M. “Developer
Recommendation for Crowdsourced Software Development Tasks”. In:
Proceedings of the 9th Symposium Service-Oriented System Engineering,
2015, pp. 347-356.

[MAO15b] Mao, K.; Licia, C.; Harman, M.; Yue, J. “A Survey of the Use of
Crowdsourcing in Software Engineering”. Research Note,
University College London, 2015, pp.1- 30

[MEH14] Mehta, D. “An Insight into Software Crowd Sourcing: How Crowd can
transform the Business Model for Technology Service
Providers”. International Journal of Computer Applications, vol. 101-12, Jan
2014, pp.34-40.

[MEL18] Melo, R.R.M.; Machado. L.; Prikladnicki. R.; Souza, C.R.B. “Um Estudo
Qualitativo sobre o Crowdsourcing: Análise da Colaboração na plataforma
TopCoder”. In: Proceedings of XXI Ibero American Conference on Software
Engineering, 2018. (in press)

[MÜL14] Müller, H., Sedley, A. and Ferrall-Nunge, E., “Survey research in HCI”. In:
Ways of Knowing in HCI, Springer, 2014, chap. 10, pp. 229-266.

[NAG12] Nag, S.; Heffan, I.; Saenz-Otero, A.; Lydon, M. “SPHERES Zero Robotics
software development: Lessons on crowdsourcing and collaborative
competition”. In: Proceedings of the Aerospace Conference, 2012, pp. 1-17.

[NAG13] Nag, S., Katz, J.G. and Saenz-Otero, A., “Collaborative gaming and
competition for CS-STEM education using SPHERES Zero Robotics”. Acta
Astronautica, vol. 83, Feb 2013, pp.145-174.

145

[NAP13] Naparat, D.; Finnegan, P., “Crowdsourcing Software Requirements and
Development: A Mechanism-based Exploration of ‘Opensourcing”. In:
Proceedings of the 9th Americas Conference on Information Systems, 2013,
pp.7.

[NAY14] Nayebi, M.; Ruhe, G. “An open innovation approach in support of product
release decisions”. In: Proceedings of 7th the International Workshop on
Cooperative and Human Aspects of Software Engineering, 2014, pp. 64-71.

[OLS00] Olson, G. M.; Olson, J. S. “Distance matters”. Human-Computer Interaction,
vol. 15-2, Sep 2000, pp.139–178.

[OLS13] Olson, D. L.; Rosacker, K. “Crowdsourcing and open source software
participation”. Service Business, vol.4, Dec 2013, pp. 499-511.

[OXF17] Oxford Dictionary. Access in: https://en.oxforddictionaries.com/. October
2017.

[PEN14] Peng, X.; Ali Babar, M.; Ebert, C. “Collaborative Software Development
Platforms for Crowdsourcing”. IEEE Software, vol. 31-2, Mar 2014, pp.30–
36.

[PIM12] Pimentel, M.; Fuks, H. “Sistemas colaborativos”. Elsevier Editora, 2012,
375p.

[PRI14] Prikladnicki, R.; Machado, L.; Carmel, E.; de Souza, C. R. B. “Brazil
Software Crowdsourcing: A First Step in a Multi-year Study”. In:
Proceedings of the 1st International Workshop on Crowdsourcing in
Software Engineering, 2014, pp. 1-4.

[RIE17] Riedl, C.; Woolley, A.W. “Teams vs. Crowds: A Field Test of the Relative
Contribution of Incentives, Member Ability, and Emergent Collaboration to
Crowd-Based Problem Solving Performance”. Academy of Management
Discoveries, vol. 3-4, Dec 2017, pp.382-403.

[SAR15] Saremi, R.L.; Yang, Y. “Dynamic simulation of software workers and task
completion”. In: Proceedings of the 2nd International Workshop on
CrowdSourcing in Software Engineering, 2015, pp. 17-23.

[SAR17] Saremi, R.L.; Yang, Y.; Ruhe, G.; Messinger, D. “Leveraging crowdsourcing
for team elasticity: an empirical evaluation at TopCoder”. In: Proceedings of
the Software Engineering in Practice Track, 2017, pp. 103-112.

[SAX13] Saxton, G. D.; Oh, O.; Kishore, R. “Rules of crowdsourcing: Models, issues,
and systems of control.” Information Systems Management, Jan 2013, vol.
30-1, pp. 2-20.

[SCH09] Schenk, E.; Guittard, C. “Crowdsourcing: What can be Outsourced to the
Crowd, and Why”. In: Proceedings of the Workshop on Open Source
Innovation, 2009, pp.3.

[SCH11] Schenk, E.; Guittard, C. “Towards a characterization of crowdsourcing
practices”. Journal of Innovation Economics & Management, vol.1, Nov
2011, pp.93-107.

146

[SCH12] Schiller, T.W.; Ernst, M.D. “Reducing the barriers to writing verified
specifications”. ACM Special Interest Group on Programming Languages
Notices, vol.47-10, Nov 2012, pp.95-112.

[SOM11] Sommerville, I., “Software Engineering”. Addison-Wesley, 2011, 792p.

[STO14a] Stol, K.-J.; Fitzgerald, B. “Two’s company, three’s a crowd: a case study of
crowdsourcing software development”. In: Proceedings of the 36th
International Conference on Software Engineering, 2014, pp.187.

[STO14b] Storey, M.A.; Singer, L.; Cleary, B.; Figueira Filho, F. and Zagalsky, A. “The
(r) evolution of social media in software engineering”. In: Proceedings of the
on Future of Software Engineering, 2014, pp. 100-116.

[STO17] Stol, K.J.; Caglayan, B.; Fitzgerald, B., “Competition-Based Crowdsourcing
Software Development: A Multi-Method Study from a Customer
Perspective”. IEEE Transactions on Software Engineering, 2017, 19p.

[STR07] Strauss A.; Corbin, J. M. “Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory”. SAGE Publications, 2007,
312p.

[TAJ13] Tajedin, H.; Nevo, D. “Determinants of success in crowdsourcing software
development”. In: Proceedings of the 51st Conference on Computers and
People Research, 2013, pp.173-178.

[TAJ14] Tajedin, H.; Nevo, D. “Value-adding intermediaries in software
crowdsourcing”. In: Proceedings of the 47th Hawaii International Conference
on System Sciences, 2014, pp. 1396-1405.

[TAU17] Tausczik, Y.; Wang. P. “To Share, or Not to Share? Community-Level
Collaboration in Open Innovation Contests”. In: Proceedings of the Human
Computer Interaction, vol.1-2, Nov 2017, pp.100-123.

[TOP17] TopCoder, 2017. Access in: https://www.topcoder.com. July 2017.

[TSA14] Tsai, W.-t.; Wu, W.; Huhns, M. N. “Cloud-Based Software Crowdsourcing”.
IEEE Internet Computing, vol.18-3, May 2014, pp.78–83.

[WAG05] Wagstrom, P., Herbsleb, J., Carley, K. “A social network approach to
free/open source software simulation”. In: Proceedings of the 1st
International Conference on Open Source Systems, 2005, pp. 16-23.

[WHI07] Whitehead, J. “Collaboration in software engineering: A roadmap”. In:
Proceedings of Future of Software Engineering, 2007, pp. 214-225.

[WHI10] Whitehead, J., Mistrík, I., Grundy, J. and Van der Hoek, A. “Collaborative
software engineering: concepts and techniques”. Collaborative Software
Engineering, Springer, 2010, pp. 1-30.

147

[WOH13] Wohlin, C; Prikladnicki, R. “Systematic literature reviews in software
engineering”. In: Information and Software Technology, vol.55-6, Jun 2013,
pp. 919–920.

[WOH14] Wohlin, Claes. “Guidelines for snowballing in systematic literature studies
and a replication in software engineering”. In: Proceedings of the 18th
International Conference on Evaluation and Assessment in Software
Engineering, 2014, pp.10.

[WU13] Wu, W.; Li, W.; Tsa, W. “An evaluation framework for software
crowdsourcing”. Frontiers of Computer Science, vol.7-5, Oct 2013, pp.694-
709.

[YAN15] Yang, Y.; Saremi, R. “Award vs. worker behaviors in competitive
crowdsourcing tasks”. In: Proceedings of the 9th International Symposium
on Empirical Software Engineering and Measurement, 2015, pp. 1-10.

[YAN16] Yang, Y.; Karim, M.R.; Saremi, R.; Ruhe, G. “Who should take this task?
Dynamic decision support for crowd workers”. In: Proceedings of the 10th
International Symposium on Empirical Software Engineering and
Measurement, 2016, p. 8.

[YIN13] Yin., R. K. “Case Study Research: Design and Methods”, series Applied
Social Research Methods, 2013, 259p.

[ZAN16] Zanatta, A. L.; Machado, L.; Pereira,G.; Prikladnicki, R.; Carmel, E.
“Software Crowdsourcing Platforms”. IEEE Software, vol 33-6, Nov 2016,
pp.112-116.

[ZAN17] Zanatta, A. L.; Steinmacher, I.; Machado, L. S.; Souza, C.; Prikladnicki, R.
“Barriers Faced by Newcomers to Software-Crowdsourcing Projects”. IEEE
Software, vol.34, Mar 2017, pp. 37-43.

[ZHA14] Zhao, Y.; Zhu, Q. “Evaluation on crowdsourcing research: Current status
and future direction”. Information Systems Frontiers, vol.16-3, Jul 2014, pp.
417-434.

[ZHA15] Zhao, M.; van der Hoek, A. “A brief perspective on microtask crowdsourcing
workflows for interface design”. In: Proceedings of the 2nd International
Workshop on Crowdsourcing in Software Engineering, 2015, pp. 45-46.

[ZHO17] Zhou, W.; Yan, W.; Zhang, X. “Collaboration for success in crowdsourced
innovation projects: knowledge creation, team diversity, and tacit
coordination”. In: Proceedings of the 50th Hawaii International Conference
on System Sciences, 2017, pp.381-390.

148

APPENDIX A

First data collection Interview Guide

Actors Aspects Questions

Crowd
Requester
Platform

CS Initiatives Do you now CS?

Tell us about your experience?
Are you doing micro tasking specifically?
Or are you doing more complex task
projetcs?

Requester
Crowd

CS platforms Which platforms have you been used?

What the number of workers in the crowd?

Requester
Platform
Crowd

CS Tasks and
Projects

Quality envuring: What have you done to
achieve and inspect for quality in the
solutions submitted?
Control transparency project management:
How do you manage day-to-day tasks?
Are you a union member?
How many hours p week do you work? Are
you full-time; part-time?
 Is this a second job?

Requester CS payment Is the company encouraging/discouraging
the use of paid CS?

Platform
Requester

Business impact Current CS picture: Number of workers in
the crowd, number of the clients?
By what measure was it successful? What
has made this challenge a success?

Crowd
Requester
Platform

Future What is the CS scenario for the next three
years?

149

APPENDIX B

Literature Review – Data extraction

We identified how SW CS publications reporting barriers are distributed over the years (see

Figure 4). We can observe that it first appears in studies in 2009, and just a few other studies
appeared from then until 2012. The last 4 years contain the major number of relevant publications
for this study. It makes sense since SW CS has been increasingly adopted in the software industry
over the last few years.

Figure 4. Number of studies by year.

While reading the papers in full, we also classified based on the research approach. We

adopted the classification scheme provided by Petersen et al. (2008) to identify the study type:
● Evaluation research: techniques and solutions implemented in practice, where an

evaluation of the technique was conducted.
● Solution proposal: a proposal of a solution for a problem. This solution can be an

extension of an existing technique.
● Validation research: techniques or solutions investigated that have not yet been

implemented in practice.
● Philosophical papers: presents new things by structuring the field in the form of a

taxonomy or conceptual framework.
● Personal experience papers (1 study): reports the practical experience in a specific

topic.
● Opinion papers: the personal opinion of somebody on the usefulness of a certain

technique, methodology or topic.

Figure 5 shows the classification of the papers based on the categories proposed by
Petersen et al. (2008). The majority of the papers report evaluation research (35 studies - 79%) as
the type of study conducted, literature review (12 studies - 27%) and, case study (10 studies - 22%)
as the method to evidence the problems. Some of the studies that conducted an experiment and
case study also, conduct both an interview. An interesting fact here is that few studies report
interviews (5 studies) and, only one report ethnograph to collect data.

It is possible to see the lack of studies conducting qualitative analysis by interviews with SW
CS actors (platform, crowd and requester) as supporting the existence of collaboration problems.

150

There is still room available for studies based on interviews, content analysis from repositories of
platforms communication's channel and ethnograph.

Figure 5. Classification followed by Petersen et al. (2008).

We can also observe that the data analyzed by the studies are predominantly gathered from

TopCoder and Amazon Mechanical Turk (AMT) software platforms. Other data used by the studies
include tools or environment to simulate CS platforms and, it's were development by own authors
of the papers. Regards to research methods, the papers reported a mix-method study to evidence
the problems such as surveys, interviews, case study, and controlled experiments.

151

APPENDIX C

Case Study_ Report 2_TopCoder

Open questions

PUCRS – Faculdade de Informática – PPGCC
Desenvolvimento Colaborativo de Software – Profa. Sabrina Marczak

Software Crowdsourcing: Entrega 2 – Experiência com a Plataforma TopCoder

Nome Completo: <indique aqui seu nome>

Instruções Gerais
As questões abaixo devem ser preenchidas INDIVIDUALMENTE baseadas na sua EXPERIÊNCIA
PESSOAL de uso da plataforma TopCoder. Ou seja, na TAREFA (ou tarefas) que você realizou e
relatou na Entrega 1 do projeto. Você deve considerar as questões e respondê-las SEM discussões
prévias com os colegas de aula. Qualquer similaridade, total ou parcial, de conteúdo identificadas
como “plágio de ideias” entre dois ou mais colegas terão como resultado a anulação da avaliação
dos colegas envolvidos. Ainda, responda às questões de maneira crítica. Reflita sobre o que a
questão indaga, reveja suas atividades, anotações, etc e criticamente expresse sua opinião. Caso
você tenha realizado mais de uma tarefa, por favor, referencie aspectos relacionados a cada uma
das mesmas quando se aplicar.

Questões

1. Explique como se deu o processo de seleção da tarefa que você realizou na plataforma. Por
exemplo, como você decidiu por qual tarefa realizar? Você decidiu por uma tarefa e por algum
motivo acabou realizando uma outra? Qual a razão? Nota: Toda e qualquer informação
relevante para o entendimento do motivo da seleção da tarefa realizada é de interesse e deve
ser relatado.

<Insira aqui a sua resposta>

2. Que aspectos você considerou interessante na sua experiência em software crowdsourcing
com a plataforma TopCoder?

<Insira aqui a sua resposta>

3. Colaboração é considerado um aspecto importante durante o processo de desenvolvimento
de software, conforme foi discutido na disciplina. Como você percebeu a colaboração em
software crowdsourcing na plataforma TopCoder?

• Entre os membros da plataforma
• Entre a plataforma (ou cliente) e os membros da plataforma

<Insira aqui a sua resposta>

4. Você acredita que a plataforma utilizada suporta a colaboração? Justifique sua resposta.

<Insira aqui a sua resposta>

152
5. Na sua opinião, quais as dificuldades para colaboração você enfrentou na plataforma ou

durante a participação da tarefa? Se você acredita que não encontrou nenhuma dificuldade,
explique sua razão por ter esta crença.

<Insira aqui a sua resposta>

6. Quais as suas sugestões para minimizar as dificuldades de colaboração encontradas na
plataforma ou na participação de uma tarefa? Nota: A questão não precisa ser respondida caso
você tenha respondido que não enfrentou dificuldades na Questão 5.

<Insira aqui a sua resposta>

7. Quais são as atividades/etapas, na sua opinião, que mais necessitam de suporte durante a
participação na plataforma?

<Insira aqui a sua resposta>

8. Que outros tipos de dificuldades foram encontradas por você durante a participação na
plataforma? As dificuldades podem ser de ordem pessoal e/ou técnica, tanto na utilização da
plataforma como na realização da tarefa.

• Na utilização da plataforma
• Na realização da tarefa

<Insira aqui a sua resposta>

9. Que sugestões você propõe para minimizar estas dificuldades? Nota: A questão não precisa
ser respondida caso você tenha respondido que não enfrentou dificuldades na Questão 8.

<Insira aqui a sua resposta>

153

APPENDIX D

Confidentiality Term - SW CS Case Study

154

APPENDIX E

Emails VP TopCoder Contact

155

Email Group Survey Participants

Prezado aluno,

Você está recebendo este email pois foi aluno da Profa. Sabrina Marczak no semestre passado.

Estamos finalizando a pesquisa de doutorado da aluna Leticia Machado em Software Crowdsourcing e
estamos interessados em entender como a comunicação e a colaboração entre os desenvolvedores durante os
desafios da plataforma TopCoder podem melhorar a quantidade e qualidade de soluções submetidas.

Nós precisamos da tua ajuda e ficaremos muito grato se você puder nos ajudar a entender isso melhor
respondendo as questões disponíveis aqui: https://goo.gl/forms/rpdGcGNjgV8JsWW52.

Esta é uma pesquisa puramente acadêmica, sem interesses comerciais. Nós iremos compartilhar os resultados
publicamente para que todos possam se beneficiar com eles mas, eles serão tratados de forma anônima e
confidencial.

A Leticia é orientada por mim e a tua participação neste estudo é totalmente voluntária.

Agradeço desde já a tua participação!
Qualquer dúvida podem entrar em contato direto com a Leticia (leticia.machado.001@acad.pucrs.br).

Obrigado.
Prof. Rafael Prikladnicki

Invitation post in the general TopCoder’s forum

156

APPENDIX F

Survey Google forms

157

158

159

160

161

APPENDIX G

Collaboration Characteristics from TopCoder’s Communication Forum

