
Evaluating the Use of Pair Programming and Coding Dojo in Teaching
Mockups Development: An Empirical Study

Bernardo Estácio
Pontíficia Universidade Católica

do Rio Grande do Sul
bernardo.estacio@acad.pucrs.br

Natasha Valentim

Universidade Federal do
Amazonas

natashavalentim@icomp.ufam.edu.br

Luis Rivero

Universidade Federal do
Amazonas

luisrivero@icomp.ufam.edu.br

Tayana Conte
Universidade Federal

do Amazonas
tayana@icomp.ufam.edu.br

Rafael Prikladnicki
Pontíficia Universidade Católica

do Rio Grande do Sul
rafaelp@pucrs.br

Abstract

Collaborative programming is an important
pedagogical tool in computer science higher
education. In this context, Pair Programming has been
established as an effective practice for teaching
programming. In addition, Coding Dojo has recently
emerged as a collaborative group practice that uses
Pair Programming as a mechanism to allow everyone
to participate. However, both Pair Programming and
Coding Dojo are rarely used in different types of
programming tasks such as front-end programming
tasks. In this paper, we present an empirical study
comparing Pair Programming and Coding Dojo in the
teaching of mockups development. Our goal was to
evaluate both practices regarding three dimensions:
motivation, user experience and learning perceived by
students. The results showed that Pair Programming
was well accepted by the students with positive results
in all three dimensions. Moreover, although Coding
Dojo has presented positive results in the leaning
process, students reported several challenges related
to motivation and user experience.

1. Introduction

Collaborative programming is an important
pedagogical tool in computer science higher education.
Students not only need to know how to develop a
software that can be easily comprehended by others,
but they also need to learn how to develop software
with others, learning to work in a team or how to be
part of a team [2]. For this reason, collaboration is one
of the key aspects in the teaching of software
development, providing a process of innovation and
ideas generation among the programmers [1].

In this context, Pair programming (PP) has been
established as an effective practice for teaching
programming. PP is one of the main practices from

Extreme Programming (XP), one of the most well
known agile methods [3]. PP promotes collaboration
between two developers. By collaborating in pairs,
such practice provides programmers with an enjoyable
environment [4] that promotes academic performance
[5]. The results can, in some cases, be reflected by
higher grades [6], and confidence increase [4], when
compared to individual programming.

Over the years PP has been established as a strong
foundation [7] and an effective pedagogical tool in
higher education [8]. Moreover, Cockburn and
Williams [9] report that PP is an effective pedagogical
tool due to its capability of increasing learning
capacity.

More recently, Coding Dojo has also emerged as a
collaborative programming practice, providing a non-
competitive environment of group participation and
learning. There are several variants of Coding Dojo
[10] and one of them is called Randori. This variant
adopts PP to promote the engagement of all
participants.

Few empirical studies explore the evidences of
Coding Dojo in higher education, but the initial results
are promising. Heinonen et al. [11] and Da Luz et al.
[12] report positive results on the leaning of agile
practices such as Test Driven Development (TDD) and
Pair programming. Coding Dojo also proved to be an
enjoyable practice for the students and a space to share
knowledge [10].

Most of the studies involving Pair Programming
and Coding Dojo are in the introductory programming
courses, dealing with programming tasks. Empirical
research rarely explores pair programming and coding
dojo in courses in which students are exposed to tasks
such as design tasks or front-end programming tasks
[8].

As an example, Canfora et al. [13] report an
experiment with the use of Pair Programming in design
tasks. The results showed benefits in time and the
quality of the work. The two controlled experiments

2015 48th Hawaii International Conference on System Sciences

1530-1605/15 $31.00 © 2015 IEEE

DOI 10.1109/HICSS.2015.602

5084

performed by Lui et al. [14] reported that the pairs
outperformed the solo programmers. Nonetheless, we
are not aware of any study aiming to investigate the
performance of using Coding Dojo in developing
mockups.

In order to explore the wider applications of Pair
Programming and Coding Dojo in the development of
front-end programming tasks, we planned and
conducted an empirical study in a Software
Development Analysis and Design course. Our goal
with this study was to evaluate the learning, motivation
and user experience of Pair Programming and Coding
Dojo in the development of mockups. In software
development, mockups represent a prototype of a
software feature that enables the testing of its design.
Mockups are important since they can be used to gain
feedback of the users regarding the system’s usability
[15].

Our study offers the following main contributions:
• An empirical comparative analysis between

Pair Programming and Coding Dojo in the
context of higher education regarding learning,
motivation and user experience of the use of
mockups for software development;

• Empirical evidence about the practice of Pair
Programming and Coding Dojo in the
development of front-end programming tasks,
such as the development of mockups.

The paper is organized as follow: in Section 2 we
present the background for this research. In Section 3,
we describe our research methodology, presenting the
settings of the conducted empirical study. Then, in
Section 4, we present the results of the study, while
Section 5 shows its threats to validity. In Section 6, we
discuss the study results. Finally, in Section 7 we draw
the conclusions and the next steps of this research.

2. Background

2.1. Pair Programming

As the name suggests, Pair Programming (PP) is a
practice that involves two developers working at the
same computer collaboratively [4]. In a PP session, a
developer acts as driver and develops the code,
controlling the keyboard and mouse. Another
developer acts as the navigator and is responsible for
reviewing the code, preventing and identifying logical
and syntactical errors in the code. During a PP session
the pairs can switch the roles [4]. PP is often related
with agile practices, because it has gained popularity as
a primary practice from Extreme Programming [3].

Several previous controlled experiments aimed to
explore the efficiency of pair programming. In that

context, PP presented many benefits over solo
programming such as the quality of the developed
software (less defects) [4], knowledge transfer,
productivity [17, 18] and also enjoyment (motivation
and satisfaction) among the developers [5].

 Specifically, in the context of higher education,
pair programming consolidates the benefits in the
learning process, promoting the confidence and social
interaction between the students [8]. Nagappan et al.
[16] reported that students who adopted pair
programming were more self-sufficient, generally
perform well on projects and exams and were more
likely to complete the course than the students who
practiced solo programming.

2.2. Coding Dojo

Coding Dojo is a session where a group of
participants gather to practice programming together
[11]. The main goal of Coding Dojo is to promote a
safe learning environment: collaborative and with no
competition [10]. In the literature, Coding Dojo is also
related to the learning of agile practices such as Test-
Driven Development (TDD), refactoring and pair
programming [10].

 There are several types of Coding Dojo, and one of
the variants is called Randori, in which Pair
Programming is the main mechanism that enables
participation in the group [11]. In a Randori session,
one participant acts as a driver and the other one as a
navigator. The remaining acts as an audience that pays
attention to the pairs. The audience is able to
participate only with the agreement of the pairs in a
coordinated way. Each round, the driver moves to the
audience, the navigator turns into the driver and
someone of the audience start to act as a navigator.
Every participant acts at least one time as a driver and
as a navigator.

Few studies explore empirical evidence about
Coding Dojo. Sato et al. [10] reported that Coding
Dojo impacts in the learning process and also present a
set of lessons learned related to the environment and
different variants of Coding Dojo in a computer
science education setting. Da Luz et al. [12] reported a
Randori experience that aimed at investigating the
learning of TDD through Coding Dojo. Their results
showed that the session helped learning TDD and that
pair programming supported the leveling of the group.

Heinonen et al. [11] conducted Coding Dojo
sessions into the agile part of an undergraduate
software engineering course. The survey filled by the
participants presented good results in the learning of
TDD. Most of the students saw the sessions as a
relaxing and non-competitive environment. A

5085

drawback reported by the students was that the 5
minutes time box of the sessions was too short.

3. Research Design

In this section, we described the design of our
empirical study. Our planning was inspired by the
suggestions proposed by Wohlin et al. [19] for
conducting empirical studies. The authors recommend,
for example, the randomization of the sampling and the
balancing of each group of subjects.

3.1. Goal

The main goal of this study is to investigate the use
of Pair Programming and Coding Dojo in the teaching
of mockups development in a computer science course.
The detailed goal is structured as follows:

Analyze: Coding dojo and Pair programming in
teaching of mockups development;
For the purpose of: Characterize;
With respect to: motivation, user experience and
learning and speed comparing with pair programming;
From the point of view: of the researchers and the
students;
In the context of the development of mockups by
undergraduate students;

3.2. Subjects

The empirical study was conducted in the first

semester of 2014 in an Analysis and Design class
within a computer science course. This is a 3rd year
class of the course and has as prerequisite classes of
Introduction to Software Engineering and Introduction

to Programming Language. Seventeen (17) students
participated in the empirical study.

In order to participate in the study, all the students
signed a consent form and filled out a characterization
form with objective questions to inform us about their
expertise in the topics related to the study: (a) their
experience in programming; (b) their expertise in Qt
(Qt is a multiplatform development framework which
is gaining popularity, and was applied during the
development of the mockups); (c) their expertise with
Pair Programming; and (d) their expertise with Coding
Dojo.

We collected the data characterization form from
each student and ranked them into having: none (N),
low (L), medium (M) and high (H) experience for the
respectively expertise identified. For instance,
regarding programming and Qt expertise, the subject
was characterized as having: (a) No experience, if
he/she have never had contact with the framework nor
practiced it; (b) Low experience, if he/she had had
contact with programming only in the classes or
reading a support material; (c) Medium background if
he/she had contact with programming in an academic
project; or (d) High if he/she had experience in the
industry. Similarly, the expertise for Pair Programming
and Coding Dojo was assigned according to the
number of sessions in which the subject had worked in
such activities: (a) No experience; (b) Low: 1 session;
(c) Medium: more than 1 to less than 4 sessions; and
(d) High: more than 4 sessions.

After ranking the participants’ experience, we
divided them into two balanced groups (Pair
Programming and Coding Dojo). By balancing, we
mean that we avoided that one team had more
experienced students than the other in order to avoid
biased results of a team performing better in the
assigned tasks. Table 1 shows each of the groups
defined and their expertise and the expertise of each of
its members.

Table 1. Expertise per participant in each group

Pair Programming Group
 Pair 1 Pair 2 Pair 3 Pair 4

Subject ID P1 P3 P2 P4 P5 P8 P6 P7
Programming H N L N L N M N

Qt L N N N L N N N
Pair Programming N N M N M M N N

Coding Dojo N N N N N N N N
Coding Dojo Group

Subject ID CD1 CD2 CD3 CD4 CD5 CD6 CD7 CD8 CD9
Programming N L N L N L N L M

Qt N N N N N N N N L
Pair Programming H M N M N L N N N

Coding Dojo N N N N N N N N N

5086

Beside the students, two researchers acted as
instructors and observers, supporting each group in
their respective rooms. Also, two other researchers
acted as monitors helping in preparing the materials
and locations in which the study would take place.

3.3. Procedures and materials

 All subjects had training in the Qt framework,
specifically on how to develop mockups and the
transitions among them. This was undertaken since
they would be able to develop the necessary code for
implementing functional mockups, which could be
used for showing the interaction of the software’s
graphical user interface.

 In the day of the study, the students were equally
distributed into the teams based on the results of the
characterization form delivered previously. Each group
went to a different room in order to avoid the bias of
communication among the students from each group.
Each instructor gave a 10-minute talk in each room
about the respective practice (either Coding Dojo or
Pair Programming). From the 17 subjects, 9 students
were assigned to the Coding Dojo group and 8 to the
Pair Programming Group. We took this decision based
on the number of subjects needed to form the pairs for
the Pair Programming group.

The objects of study were the mockups from a real
mobile Web application called Dona Know
(http://donaknow.aondefui.com/). Dona Know
provides a list of events (e.g. concerts, shows, social
events, others) for public consultation. Since Dona
Know is currently under development, a set of real
mockups was made available for this research. The
development team at Dona Know wanted to have the
graphical user interface developed, so they would be
able to perform tests with end users and verify if their
user interface proposal met the users’ needs.

All subjects received pictures of five of the
mockups from the Dona Know application and a model
of the interaction flow that they should develop. This
subset of five mockups was chosen by the Dona Know
development team since, according to them, it was
critical for showing the application’s functionalities.
Each group had a time box of 10 minutes to switch the
pairs. The pairs in the Pair Programming group had
been defined based on the balancing of the group (see
Table 1). Thus, an experienced student along with a
less experienced student formed a pair, in order to
increase learning. In the Coding Dojo group, the
sequence of the pairs was made by convenience (at the
students’ choice). However, the audience was also able
to participate in a coordinated way, if the pairs that had
the control at the time of the session agreed to the
intervention.

The study lasted approximately two hours for each
group simultaneously in different rooms. The Pair
Programming group carried out 10 sessions and the
Coding Dojo group carried out 11 sessions.

At the end of study, each student answered a
questionnaire and sent the code implementing the
mockups to the instructors. All students collaborated in
this process with the study and no data were discarded.

 The post-study questionnaire and the evaluation
were adapted from Wangenheim et al. [20]. The study
of Wangenheim et al. [20] has been executed in the
context of agile serious games. We have selected this
study, because it has a specific framework to assess the
sub-components of: the learning process, user
experience and motivation.

The post-study questionnaire consist of 12 fixed
items divided into 3 three sub-component (Motivation,
User Experience and Learning) and 8 dimensions on a
Likert scale with response alternatives ranging from
strongly disagree (�2) to strongly agree (2).

As our study has the focus in agile practices and not
in agile games, we have kept or adapted the arguments
and removed some dimensions or arguments from
dimensions that we were not the focus of our study.
The dimensions and respective arguments that we have
adapted and kept were listed in Table 2.

Table 2. Arguments adapted/kept from

Wangenheim et al. [20]

Motivation
Attention

There was something interesting of
the practice that got my attention.

Adapted

Relevance The way of the practice works suits
my way of learning.

Adapted

Confidence

As I worked on the practice, I felt
confident that I was learning.

Adapted

It was easy to understand practice
and start using it.

Adapted

User Experience
Competence I had positive feelings of efficiency

during his practice.
Adapted

Fun

I had fun with the practice. Adapted
I would recommend this practice to
my colleagues.

Adapted

I would like to play this practice
again.

Adapted

Challenge This practice is properly challenging
for me, the tasks are not too easy nor
too difficult.

Adapted

Social
Interaction

I had fun with the group. Kept
The practice promotes moments of
cooperation between the players.

Adapted

Learning
Long-term
learning

The experience with the practice will
improve my performance in future
working life

Adapted

5087

In relation to the learning, questions have been
added to elicit the perceived knowledge level before

and after the practice in respect of the concepts
taught: Mockups, Interaction of Mockups and Qt,
based on Bloom’s taxonomy [21]. In this question the
students give a grade ranging 1 to 5 to each question
based on t perception of their evolution of learning in
the concepts taught before and after the practice.

We also customized the post-study questionnaire,
adding two open questions in order that students could
explain benefits and disadvantages about Pair
Programming and Coding Dojo.

We have collected all the data from the post-study
questionnaire and execute a thematic analyze in
relation to each category with the information
collected. We have used spreadsheets to organize the
quantitative information, generating automatized
graphics.

4. Results

We have gathered data from the likert questions in

the post-study questionnaire and qualitative data from
the open questions and additional comments. Figures 1
and 2 present the results of the Pair Programming and
Coding Dojo groups regarding motivation and user
experience. Figure 3 shows the results of the long-term
learning Figures 4 e 5 present the grades of the
learning dimension based on Bloom’s [21].

4.1. Motivation

Overall, students perceived a positive contribution

of the Pair Programming (see top of Figure 1) and
Coding Dojo (see bottom of Figure 1) practices for
engaging them into learning about the development of
mockups. Regarding the attention dimension, both
practices presented positive results, motivating
students. The main aspect that got the attention of the
students in both practices was the interaction between
the students.

Regarding the relevance dimension (pertinent to be
adopted, used), Pair Programming presented positive
results with most of the students in relation to
acceptance of the practice, but Coding Dojo was not
widely accepted, five students reported that the
practice did not suit with their way of learning. In
Coding Dojo, the subject 1 said: “Coding Dojo is not
suitable to my way of learning due to many different
ideas”.

Concerning the confidence dimension, the items
related to understanding and ease of use of the practice,
both Pair Programming and Coding Dojo presented
positive results. Pair Programming presented most
positive results about the student’s impression of

confidence in learning. On the other hand, in the
Coding Dojo group most of the students reported a
decrease in the confidence of learning.

Figure 1. Frequency diagrams about the
Motivation dimension in Pair Programming

and Coding Dojo group

4.2. User Experience

The user experience (the perception or reaction of

the student in relation to the adoption of the practice)
from the students presented positive results in Pair
Programming (see top of Figure 2). Coding Dojo (see
bottom of Figure 2) had diverse results in some items
of each dimension.

Regarding the competence (the ability to be
efficiency with the practice), most of the students
expressed positively their belief that the Pair
Programming has been an efficient way to learn.

In the Coding Dojo group, the feedback was more
diverse. Regarding “fun”, in the Pair Programming
group all the students reported that they want to use the
practice again and most of them said that they had fun
and would recommend the practice to a colleague. On
the other hand, the results of the Coding Dojo group
were not positive at all, specifically in the
recommendation and use the practice again.

5088

Figure 2. Frequency diagrams about the

User Experience dimension in Pair
Programming and Coding Dojo group

Concerning the challenge of the use of Pair

Programming and Coding Dojo, both practices showed
not to be difficult for each group. The social interaction

received the highest rated dimension for both practices.
All subjects had fun with the pair or group and
reported that the practice promoted cooperation
between the students.

4.3. Learning

 The majority of the students also expressed that

they believe that both practices contributed positively
to their long-term learning (Figure 3, see the left side
for Pair Programming and right side for Coding Dojo),
indicating that the experience with practice could be
useful in development mockups in working life. The
main aspect cited by the students was to know how to
work in a team, subject 1 from Pair Programming
group said: “Pair Programming helps to learn to work
as a team to get better performance.” Subject 3 from
the Coding Dojo group reported that the practice will
help in the future use of pair programming: “With
Coding Dojo I will know better how to behave in case
of a pair programming.”

The learning was also confirmed by the student’s
responses with respect to the perceived impact on the
knowledge levels in accordance to Bloom’s taxonomy
[21]. In this taxonomy, the students reported in a range
varying from 1-5 their perceived knowledge in the
concepts before and after the use of the practice. The
students from both groups (Figure 4 for Pair
Programming and Figure 5 for Coding Dojo) perceived
a significant increase of knowledge with respect to all
three concepts taught: mockups, interaction between
mockups and Qt syntax by the practice on all three
knowledge levels.

Figure 3. Frequency diagram about the item about long-term learning in both groups

5089

Figure 4. Grades of the Learning dimension with Bloom’s taxonomy in Pair Group [21]

Figure 5. Grades of the Learning dimension with Bloom’s taxonomy in Coding Dojo Group [21]

4.4. Benefits

The open-ended questions helped us to identify the
following benefits.

4.4.1. Pair Programming. The students that used pair
programming reaffirmed the social interaction and
knowledge transfer of the practice. Subject 1 reported:
“The interaction with the pair is crucial to practice to
be successfully developed, which increases learning.”
Subject 4 reinforce this, saying: “The interaction with
the pair facilitates learning.”

Another benefit of Pair Programming reported by
the students is about the creation of a programming
style. According to the students, Pair Programming
helps the team to create a solution that could be
common to the both students. Subject 6 reported: "The
practice leads us to create patterns to be understood by
both students."

4.4.2. Coding Dojo. Regarding the benefits of Coding
Dojo, the students reported the detection of defects.
Subject 3 said: "Other people can find the defect
quickly who programmed.”

Learning was also reported as benefit, as Subject 3
said: "In Coding Dojo, there is more chance to learn
programming techniques.”

The students reinforce the fun in Coding Dojo.
Subject 2 reported: “Coding Dojo promotes a greater
non-competitive among the participants, making the
programming practice a little more fun. ”

4.5. Disadvantage

The open-ended questions helped us to also identify
the following disadvantages.

4.5.1. Pair Programming. The lack of consensus was
the highest cited disadvantage of Pair Programing, as
perceived by the students. Subject 1 reported: “If the
pair does not agree on how to do, may have a delayed
delivery time and also affect the quality of the
product.”

The infrastructure was reported as essential to the
practice. Subject 4 said: “Very quiet environment, the
practice requires a greater communication”. The
students reported other negative points such as the
difference of knowledge between the pairs. Subject 8
said: “If one of the pair does not have sufficient
knowledge of the content of the session, may contribute
less. “.

The time of the study and also the moment of
switching roles were cited as drawbacks in the group of
Pair Programing. Subject 1 said: "When there is an
interruption to switch the pairs, our concentration can
be lost sometimes, which prejudice the programming.”

4.5.2. Coding Dojo. Regarding Coding Dojo, the main
disadvantage cited by the students was the goal conflict
between the pairs, and the lack of consensus. Subject 1
said: “Pair Programming is not difficult to understand
or practice, but it's difficult to accept the ideas of the
group at all.”

5090

Subject 2 said: “In several moments, I tried to
convince other people to do as I do because I judged to
be better, even without seeing the result of what was
being done.”

The students also cited the short duration of time
box, the dispersion of students between the audience
and the infrastructure (due a bad visualization of the
code for all the audience).

4.6. Mockups

We have distributed five mockups to be developed
by the students. However, no one has finished all of
them. In the Pair Programming group, only one of the
four pairs developed two mockups, the other three
pairs finished the first and started to develop the
second mockup. In addition, only two pairs running the
mockups in Qt, the other two pairs presented mockups
with compilation error.

In the Coding Dojo group, the students developed
only one mockup. During seven sessions the students
tried to fix an error, and only in the last 3 sessions they
finally achieved the solution.

5. Threats to Validity

One of the key issues in empirical studies is

evaluating the validity of the results. In this section we
discuss the potential threats that are relevant for our
study and how they are addressed.

5.1. Construct Validity

According to Wohlin et al. [19] the construct

validity is concerned with the relationship between the
theory and the observation. In this study to evaluate the
learning, motivation and user experience, we have
followed the construct proposed by Wangenheim et al.
[20].

5.2. Internal Validity

Threats to internal validity have influence in the
conclusions about a possible causal relationship
between the treatment and the outcome of a study. In
this study we considered four main threats to the
internal validity: (a) training effects, (b) subjects'
programming and Qt expertise, (c) pair programming
and coding dojo expertise, and (d) type of the tasks.

In relation of the training effect, there could be a
risk if the quality of the training had been different in
from one group to the other. However, we controlled
this threat by giving a similar training for both groups.

Furthermore, in order to mitigate the threat of the

subject's programming knowledge, we divided them
into balanced groups according to their experience.
This measure avoided that the subjects' experience
affected the overall results of the practices. Another
problem could have been the expertise in pair
programming and coding dojo, we also tried to balance
the group, merging this skill with programming
experience.

Regarding the type of tasks, we controlled this
threat in both practice, using the same set of mockups
to develop. Both group also receive the same Qt
settings and material.

5.3. External Validity

External validity describes the study
representativeness and the ability to generalize the
results outside the scope of the study [19] Each
University has different approaches to teach
developments mockups in different levels and periods
of a graduate course. The language or tool to develop a
mockup may vary. In addition, we cannot generalize
the results in environments outside the academy, such
as in industry training, for instance. In

5.4. Conclusion Validity

The conclusion validity is concerned with the

relationship between the treatment and the results [19].
In this study, the biggest problem is the small number
of subjects and it was only possible to create one
Coding Dojo group. Other threat identified is that all
the students in the study came from the same
University. For this reason, the data extracted from this
study presents important results related to motivation,
user experience and learning, but can not be
generalized at this time. More studies and replications
are needed in the future.

6. Discussion

Pair Programming and Coding Dojo represents an
attempt to teach front-end programming tasks such as
the development of mockups, providing an
environment with motivation among all the students
involved, a great user experience and learning.

The feedback obtained provides evidence that the
two practices could be effective in the learning of
mockups development. As collaborative practices, both
Pair Programming and Coding Dojo showed the need
of a specific infrastructure that allows the students to
use the practice effectively. For instance, in Pair
Programming a room to support open communication
is necessary, while in Coding Dojo it is necessary a
good visualization of the code by the audience.

5091

Both practices presented challenges related to
creating a consensus between the students. We believe
that a deep investigation in the personality types of the
students could explain this context, as Salleh et al. [8]
pointed out, but we did not collect enough data to
support this claim. On the other hand, Pair
Programming and Coding Dojo presented positive
results related to social interactions, cooperation and
knowledge transfer. In Coding Dojo, as the mockups
were developed within a group, the consensus was
more difficult in each time box.

The mockups developed by the two pairs in the Pair
Programming group had more requirements quality
than the mockup developed by the Coding Dojo group.
On the other hand, the code delivered by the Coding
Dojo group presented a better code quality.

Additionally, in the Pair Programming group, two
pairs delivered mockups with errors (without executing
in the Qt tool). However, in the Coding Dojo group we
noticed the need of more time to develop a solution by
the students. In the Pair Programming group, the
students seemed to be more focused in developing the
solution, but there was a lack of care in the code and in
the development (only two pairs delivered mockups
without errors).

The students were more interested by Pair
Programming than Coding Dojo. This can be explained
by the dispersion level between the pairs when
compared with the group in Coding Dojo. However,
more investigation is need in this topic. The literature,
for example, cites Pair Programming as an established
practice with an impact in long-term learning [8].

7. Conclusions and Future work

In this paper, we present an empirical study where
we investigated the use of Pair Programming and
Coding Dojo in the development of mockups. This
study was planned and executed within an Analysis
and Design course and the main goal was to improve
the learning process of the students. Overall, Pair
Programming and Coding Dojo presented positive
results in the learning process, but Pair Programming
had better results than Coding Dojo, specifically in
terms of learning and user experience. Both practices
are easy to understand and use, having positive results
in relation to fun and user experience. Coding Dojo
showed to be more challenging in respect to a
consensus about the session goal.

Future steps in this work involve the planning and
execution of new empirical studies in order to evaluate
Pair Programming and Coding Dojo in other types of
tasks. We expect that our findings could be useful for
higher education professors and students, providing an

overview of the use of both practices in the teaching of
mockup development. We also hope that this work
could help practitioners in the teaching of these
subjects in the context of the software industry.

8. Acknowledgements

This research is partially funded by the National

Science Foundation (grant 1242257, Pan American
Software Quality Institute). We would also like to
thank CNPq (309000/2012-2), FAPERGS, FAPEAM
(062.00146/2012; 062.00600/2014; 062.00578/2014;
and 01135/2011), and the research agreement between
PUCRS and ThoughtWorks.

9. References

[1] T. Inoue, “Relation between Behavior and Result in Pair
Programming: Talk and Work Leads to Success,” In:
Proceedings of the 21st International Conference on
Computers in Education. Indonesia: Asia-Pacific Society for
Computers in Education (Nara, Japan), pp. 275-280, 2013.

[2] R. Arora and S. Goel., "Learning to Write Programs with
Others: Collaborative Quadruple Programming," IEEE 25th
Conference on Software Engineering Education and Training
(CSEE&T), (Nanjing, China), pp.32-41, IEEE, 2012.

[3] K. Beck and C. Andres, “Extreme Programming
Explained: Embrace Change”. Addison-Wesley Professional
, 2 .ed, 224p, 2004.

[4] C. Mcdowell, L. Werner, H. Bulock and J. Fernald, “The
effects of pair-programming on performance in an
introductory programming course,” SIGCSE technical
Symposium on Computer Science Education, (Cincinnati,
USA), pp. 38–42, ACM, 2002.

[5] N. Ramli and S. Fauzi, “The effects of pair programming
in programming language subject,” International Symposium
on Information Technology, (Kuala Lumpu, Malaysia), pp.1-
4, IEEE, 2008.

[6] E. Wiebe, L. Williams, J. Petlick, S. Balik, C. Miller and
M. Ferzli, “Pair programming in introductory programming
labs,” American Society for Engineering Education Annual
Conference & Exposition, (Nashville, USA), 12p., 2005.

[7] B. Simon and B. Hanks, “First-year students’ impressions
of pair programming in CS1”.J. Educ. Resour. Comput., vol.
7-4, pp. 1-20, ACM, 2008.

[8] N. Salleh, E. Mendes and J. Grundy, “Empirical studies
of pair programming for CS/SE teaching in higher education:
A systematic literature review,” IEEE Transactions on
Software Engineering, vol.37-4, pp. 509–525, 2011.

5092

[9] A. Cockburn and L. Williams, “The costs and benefits of
pair programming,” Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, pp. 223-243, 2001.

[10] D.T Sato, H. Corbucci and M.V Bravo, “Coding Dojo:
An Environment for Learning and Sharing Agile Practices,”
Agile Conference, (Toronto, Canada), pp.459-464, IEEE,
2008.

[11] K. Heinonen, K. Hirvikoski, Matti Luukkainen, and
Arto Vihavainen, “Learning agile software engineering
practices using coding dojo,” Proceedings of the 14th annual
Conference on Information Technology Education (SIGITE
'13), (New York, USA), pp. 97-102, 2013.

[12] R.B. Da Luz, A.G Neto and R. Noronha, “Teaching
TDD, the Coding Dojo Style,” International Conference
Advanced Learning Technologies (ICALT), (Beijing, China),
pp.371-375, IEEE, 2013.

[13] G. Canfora, A. Cimitile, F. Garcia and M. Piattini, C.A.
Visaggio, “Performances of pair designing on software
evolution: a controlled experiment,” European Conference on
Software Maintenance and Reengineering, (Bari, Italy) ,pp.8,
IEEE, 2006.

[14] K. Lui, K.C.C Chan and J.T. Nosek, “The Effect of Pairs
in Program Design Tasks,” IEEE Transactions on Software
Engineering, vol.34, no.2, pp.197-211, 2008.

[15] E.R. Luna, J. I. Panach, J. Grigera, G. Rossi and O.
Pastor, “Incorporating usability requirements in a test/model-

driven web engineering approach,” Journal of Web
Engineering, vol. 9 , pp.132-156, IEEE, 2010.

[16] N. Nagappan, L. Williams, M. Ferzli, E. Wiebe, K.
Miller and S. Balik, “Improving the CS1 experience with pair
programming,” SIGCSE technical Symposium on Computer
Science Education , (Reno, USA), pp. 359-362, ACM, 2003.

[17] J. Vanhanen, C. Lassenius, and M.V. Mantyla, “Issues
and Tactics when Adopting Pair Programming: A
Longitudinal Case Study,” Software Engineering Advances,
(Cap Esterel , France), pp. 25-31, IEEE, 2007.

[18] M. Müller, “Do programmer pairs make different
mistakes than solo programmers?,”. Journal of Systems and
Software, vol.80-9, pp.1460–1471, 2007.

[19] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B.
Regnell, and A. Wessl, “Experimentation in software
engineering: an introduction, Kluwer Academic Publishers,
2000.

[20] C. Wangenheim, R. Savi, R. Borgatto, “SCRUMIA- An
educational game for teaching SCRUM in computing
courses,” Journal of Systems and Software, vol. 86 - 10, pp.
2675-2687, 2013.

[21] B.S. Bloom, “Taxonomy of Educational Objectives: The
Classification of Educational Goals,”: Handbook I. Cognitive
Domain, Longmans, 1956.

5093

