
On the Randori Training Dynamics

Bernardo Estácio
Pontífica Universidade

Católica do Rio Grande do Sul
Faculdade de Informática

Porto Alegre, Brazil
bernardo.estacio@pucrs.br

Franz Zieris
Freie Universität Berlin
Institut für Informatik

Berlin, Germany
zieris@inf.fu-berlin.de

Lutz Prechelt
Freie Universität Berlin
Institut für Informatik

Berlin, Germany
prechelt@inf.fu-berlin.de

Rafael Prikladnicki
Pontífica Universidade

Católica do Rio Grande do Sul
Faculdade de Informática

Porto Alegre, Brazil
rafaelp@pucrs.br

ABSTRACT
Background: Coding Dojo Randori is a collaborative prac-
tice of joint training (with discussion). Objective: Evalu-
ate Randori training behaviors. Method: Qualitative data
analysis of recordings of Randori sessions. Results: (1) The
training may involve different levels of collaboration, from a
task level to a concept level. (2) Randori can help novices
via the interaction with more experienced developers. Con-
clusion: Suitable behavior and interactions of the developers
in a Randori session can help to create an environment with
valuable discussion on a specific software topic.

CCS Concepts
•General and reference→Empirical studies; •Software
and its engineering → Programming teams; Agile soft-
ware development;

Keywords
Randori, Training, Agile Software Development

1. INTRODUCTION
In a Coding Dojo session, a group of developers collab-

orates to train and learn about some technology concept
(programming language, framework) or an agile practice,
e.g. Test-Driven Development [7]. There are several vari-
ants of Coding Dojo [7] and one of them is called Randori:
Free-style joint practice. Rooksby et al. [6] say “The coding
dojo is by no means the only available approach for profes-
sional developers to continuous learning [...], But the coding
dojo format (specifically the Randori format) is widely prac-
ticed and worthy of serious attention”. We agree. This paper

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHASE’16, May 16 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4155-4/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897586.2897603

will analyze the Randori format empirically.
There are few empirical studies that explore Randori but

the initial results from survey studies are promising. Heino-
nen et al. [4] and Da Luz et al. [5] present positive results
for learning agile practices such as Test-Driven Development
(TDD) [1]. Those studies show that Randori is basically
effective, but we still need to understand how to do it well.
Our research uses qualitative methods to analyze Randori

session recordings. With those rich data, we analyzed the
collaborative learning behavior or training dynamic, moti-
vation between the developers and also communication pat-
terns. We decided to pick the training dynamic of Randori
as the topic of this study: How do participants interact in
order to practice a specific concept or technology (in our
case TDD1). We conjecture that suitable interaction is key
to make a Randori valuable.
The effectiveness of a Randori session is not measured by

the amount of software tasks finished [7]. Rather, it is re-
lated to the discussions, in particular those aligned with the
goal, such as understanding and learning the TDD practice.
Our observations involve a few interventions based on what
we observed in previous sessions and feedback from partic-
ipants: We varied the number of proposed tasks and the
number of participants. A long-term goal of our research is
to provide a set of variables and strategies that can support
the training performance of Randori sessions.
We ask the following research question: What mechanisms

influence the training dynamic during a Randori session and
what is their impact on training effectiveness?
Section 2 will describe some related work. Section 3 will

show the research method, presenting the settings of our
empirical study. Sections 4.1 to 4.6 shortly present results:
collaboration levels, roles, master intervention, newcomer
participation, audience participation, and participants’ per-
ceptions. Section 5 discusses limitations of our work and
Section 6 concludes.

2. RELATED WORK
Coding Dojo, in the Kata or the Randori format [4], is

1We will assume the reader is familiar with at least the basic
idea of TDD: Always write and run a test before you imple-
ment functionality and do so in very fine-grained iterations.

2016 9th International Workshop on Cooperative and Human Aspects of Software Engineering

 44

2016 9th International Workshop on Cooperative and Human Aspects of Software Engineering

 44

often described in the context of learning or training cer-
tain agile practices, in particular TDD (Test-Driven Devel-
opment) and refactoring [5, 7]. In a Randori session, a group
of participants practices in the following manner [5]: (i) one
participant acts as the driver (writing the code), (ii) another
one as the navigator (or “observer”, supporting the driver),
and (iii) the remaining participants act as the audience that
can participate in discussions.

The positions (driver and navigator) of individuals are
changed in rounds. Sato et al. [7] recommend that each
round should last from 5 to 7 minutes. At the end of a
round, the driver joins the audience, the navigator becomes
the new driver and someone from the audience becomes the
new navigator [7]. Every participant acts at least once as
driver and once as navigator.

There are only few studies in the literature empirically
assessing Randori. As a first attempt, Sato et al. [7] present
the dynamics of the practice and some lessons learned about
the organization of the session. More recently, Da Luz et
al. [5] reported a Randori experiment that aimed at inves-
tigating the learning of TDD. Their subjects perceived the
session as helping them to learn TDD.

Heinonen et al. [4] conducted Randori sessions when teach-
ing agile methodologies as part of an undergraduate software
engineering course, with similar findings. In addition, most
of their students reported perceiving the sessions as a relax-
ing and non-competitive environment.

Rooksby et al. [6] report a lack of studies of Randori learn-
ing effectiveness and analyze two sessions from the perspec-
tive of reflective practice [9] – a learning theory that states
that the subjects learn by their actions during the practice.
They conclude that this theory offers a good way to under-
stand the cooperative learning in Randori.

In previous studies, we evaluated Randori combined with
Pair Programming [2, 3], analyzing mainly the perceptions
of the subjects. To the best of our knowledge, the study
reported in this article addresses the gap of evaluating Ran-
dori training perspective empirically beyond survey mode.
We are now interested to analyze sessions recordings qual-
itatively, akin to Schenk et al.’s [8] and Zieris et al.’s pair
programming [11] work.

3. METHOD
We base our analysis on three recordings of Randori ses-

sions with students from Freie Universität Berlin. The par-
ticipants’ goal in the sessions was to practice Test-Driven
Development (TDD). The participants volunteered to par-
ticipate in the sessions and all of them agreed to be recorded
for research purposes. For the benefit of the first author, the
participants talked in English although none of them is a na-
tive English speaker.

3.1 Subjects and Sessions Context
All participants are students from the Bachelor and Mas-

ter courses in Computer Science at Freie Universität Berlin.
We used a specific room and time frame for the sessions.
The schedule of the sessions involved a short presentation
of Randori by the first author (ca. 10 minutes), solving the
tasks (intended to be 75 minutes long), and a retrospective
about the session (intended to be 15 minutes).

The First Session (S1, 1:50 hours) was executed with three
developers (three male), two master and one bachelor. The
members knew each other well. All three had previous some

experience with TDD in open source projects, but they did
not consider themselves experienced with the practice. We
used three tasks during the session: FizzBuzz, Fibonacci,
and Game of Life (in this order, which is one of increasing
difficulty). Those tasks are classic Katas.2

The Second Session (S2, 1:45 hours) also had three devel-
opers, again one master and two bachelor (one female and
two male). Again, the members knew each other well. One
member did not have any previous experience with TDD,
and the others considered their knowledge level low. This
time, we used only two tasks: Roman Numerals3 and Mars
Rover.4

The Third Session (S3, 2:10 hours) had six developers
(one female and five male), five bachelor and one master.
The members did not know each other well. Three members
did not have previous experience with TDD, the others had
“low” knowledge. We used two tasks: FizzBuzz and Flat-
land.5 In relation to FizzBuzz, we took also an improved
version of the problem since one of participants had also
attended S1.

We used Camtasia Studio to record the screen along with
a web cam view from the corner of the room (to capture all
participants). We used two audio channels: a dictaphone
for the audience and the integrated microphone of the web
cam for driver and navigator. The first author observed the
live session passively.

3.2 Data Analysis Method
Our data analysis is based on some elements of Grounded

Theory Methodology (GTM, [10]): open coding [10, Section
II.5], constant comparison [10, Section II.1], and theoretical
sensitivity [10, Section I.3].

3.3 Notation
Our results are primarily concepts, for which we adopt a

specific notation: We typeset their names in small caps and
discriminate levels of elaborateness as follows. “V” (Some
Concept

V), for “vague”, represents informal concepts that
appeal to intuition and for which there is hardly more de-
scription than their name. “S” (Some Concept

S) marks
semi-complete concepts for which a concrete definition is
available but where we expect that definition to be incom-
plete and/or unstable (from the point of view of more de-
tailed further research on the topic). We have not yet reached
the third level, fully circumscribed GTM concepts, for any
of the concepts described in the present article.

4. RESULTS

4.1 Collaboration Levels
The training dynamic of a Randori session involves dif-

ferent collaboration levels. The desirable concept-Level
S

occurs when the collaboration (discussion and questions) be-
tween the participants concerns the main goal of the session,
in our context the practicing of TDD. Task-LevelS interac-
tion concerns the programming task as such. Programming-
Level

S interaction, the least helpful mode, occurs when

2http://codingdojo.org/cgi-bin/index.pl?KataCatalogue
3http://codingdojo.org/cgi-bin/index.pl?
KataRomanNumerals
4https://marsroverexercise.codeplex.com/
5https://icpcarchive.ecs.baylor.edu/external/25/2550.pdf

4545

participates dive down into basics, typically programming
language questions.

4.2 Roles
We found there are more roles taken by participants in

a Randori session than the known ones of driver, naviga-
tor, and audience [4, 7]. We describe two we have already
understood well enough.

4.2.1 Master
AMaster

S acts like a tutor for the others. In our sessions,
the most experienced participant naturally and implicitly as-
sumed this role. The Master

S was be most active in partic-
ular during Concept-Level

S collaboration, reminding the
other participants of the fundamentals of TDD. In Task-

Level
S phases, s/he would help solve blocker questions.

4.2.2 Newcomer
A Newcomer

S has the dual role. Where the Master
S

supplies knowledge, the Newcomer
S will ask for it, again

particularly intensively during Concept-Level
S collabora-

tion. Not everybody inexperienced with TDD acted in the
Newcomer

S role.
In our sessions, all Newcomer

Ss were inexperienced, but
Newcomer

Ss with some prior skill are conceivable. The
Newcomer

S appears to be valuable to increase learning in-
tensity in a Randori, and is most obvious and active when
acting as driver. In our sessions, the Newcomer

Ss remained
mostly silent as navigators.

4.3 Master Intervention
A Master

S will not only supply knowledge upon request,
s/he will also actively intervene in the session.
The following scene occurred when the Master

S saw that
driver and navigator were creating a test case that became
larger and larger:

Master: So, TDD would be to implement [a test] before
the implementation. For every test or no?

Navigator: Yes, You should do one single assert for one
single case that you want and then write the code.
Driver: Or we can make multiple (asserts) for huge cases.
Master: Hum, er, but the idea of TDD is take one small

case, test, implement it, and then take the next.
At a different time, driver and navigator were both inex-

perienced and did not have a good idea where to start:
Navigator: I think that we can start to test.
Driver: We can test already many numbers like 0, 2, 4, 9,

33 and then compare.
Master: First, write the test for number 0 for instance

and then you will see the next approach.
Driver/Newcomer: What do you mean?
Navigator: He said that first we need to implement one

test only and then we will see how we can develop for the
others numbers.
Driver: OK.

4.4 Newcomer Participation
Obviously, a Newcomer

S can contribute through a New-

comer Participation
S, mainly at the Concept-Level

S.
Driver/Newcomer: So, what type of assert should I use

here?
Navigator: AssertEquals
Driver/Newcomer: Er, OK, but how we will test it if we

do not have anything implemented and no output?
Navigator: Don’t worry, let’s write the test first for 3 and

then we will write an if in the code to pass it later, OK?
The Newcomer’s first question was at the Programming-

Level
S; she commenced with a Concept-Level

S question.

4.5 Audience Participation
In the large group (S3), the audience did not participate

a lot in the development process; we mostly observed some
Parallel Conversation

V and also some Distraction
V

with unrelated topics.
In the small groups (S1, S2), we observed a nearly con-

tinuous Audience Participation
V from the single member

of the audience. However, the Parallel Conversation
V

o‘ccasionally proved helpful for driver and navigator, espe-
cially at the Programming-Level

S:
Audience participant 1: Hmm, but it is a little bit strange

because we instantiated s1 as 1 and afterwards we did not
get 1. Just strange for me!
Audience participant 2: I can’t understand [the logic],

maybe we can change the name of the variables.
Driver: Indeed, it is not so fine.

4.6 Perception of Subjects
During the retrospective at the end of each session, we

discussed positive and negative points and improvements.
From the three sessions, the main positive points suggested
were: collaboration (different ideas for a solution), fun (a
different way to train), group commitment (the group with
the same purpose), and learning (especially for a first contact
of TDD).
As negative points, the S1 participants pointed out the

strict times for round-switching were not helpful (which we
then relaxed for S2 and S3 with good success). They also
found a group of three a bit small (which we increased in
S3, after failing to find more than three members for S2). In
S2, they found the task too difficult. The S3 participants
commented about too-slow decision-making (e.g. for the
strategy to solve a task) in their large six-person group.
As another improvement, groups S1 and S3 suggested to

provide a pre-created project with an empty method and a
first test case. We will consider that for the further sessions.

5. LIMITATIONS
GTM results aim at adequately explaining a set of obser-

vations, but never claim complete generalizability, let alone
quantification. If the GTM practices are used correctly, the
resulting conceptualizations will always be correct, but they
can be unhelpful; this our readers can judge themselves. The
list of phenomena we report is likely incomplete, in partic-
ular with respect to the behavior of participants with much
higher general programming skills.

6. CONCLUSION AND FURTHER WORK
Our study has two important findings, which shed some

light on Randori aspects that were not covered before in the
literature. First, our observations suggest that one should
discriminate three different levels of discussion going on in a
Randori session: Concept-level discussion about the practice
to be trained, task-level discussion about the task used for
the training, and programming-level discussion about basic
knowledge needed to complete the task. Concept-level dis-

4646

cussion is where the learning happens explicitly and what is
presumably the most valuable part of a session.
Second, there are two sets of behaviors that presumably

increase the value of a Randori session: actively supply-
ing knowledge when it appears to be lacking in driver or
navigator (“master” behavior) and actively asking for such
knowledge when identifying gaps in one’s own (“newcomer”
behavior).
As next steps, we will keep using GTM to understand the

training dynamic in Randori, along with small interventions
to broaden the set of observations and to improve the train-
ing performance (GTM theoretical sampling).
We will refine our understanding of what specific new-

comer and master behaviors or behaviors of others help
the session and whether further roles should be recognized.
Alongside this, we will accumulate more evidence about use-
ful group sizes, gender effects, group compositions, and other
session arrangements.

7. ACKNOWLEDGMENTS
The authors acknowledge financial support in this research

from CNPq (process 206752/2014-8/SWE) and the research
agreement between PUCRS and ThoughtWorks.

8. REFERENCES
[1] K. Beck. Test Driven Development: By Example.

Addison-Wesley Professional, 2002.

[2] B. Estacio, R. Oliveira, S. Marczak, M. Kalinowski,
A. Garcia, R. Prikladnicki, and C. Lucena. Evaluating
collaborative practices in acquiring programming
skills: Findings of a controlled experiment. In Proc.
2015 29th Brazilian Symposium on Software
Engineering, SBES ’15, pages 150–159, Washington,
DC, USA, 2015. IEEE Computer Society.

[3] B. Estacio, N. Valentim, L. Rivero, T. Conte, and
R. Prikladnicki. Evaluating the use of pair
programming and coding dojo in teaching mockups
development: An empirical study.

In Proc. 2015 48th Hawaii Int’l. Conf. on System
Sciences, HICSS ’15, pages 5084–5093, Washington,
DC, USA, 2015. IEEE Computer Society.

[4] K. Heinonen, K. Hirvikoski, M. Luukkainen, and
A. Vihavainen. Learning agile software engineering
practices using coding dojo. In Proc. 14th Annual
ACM SIGITE Conf. on Information Technology
Education, SIGITE ’13, pages 97–102, New York, NY,
USA, 2013. ACM.

[5] R. B. d. Luz, A. G. S. S. Neto, and R. V. Noronha.
Teaching TDD, the Coding Dojo Style. In Proc. 2013
IEEE 13th Int’l. Conf. on Advanced Learning
Technologies, ICALT ’13, pages 371–375, 2013.

[6] J. Rooksby, J. Hunt, and X. Wang. Agile processes in
software engineering and extreme programming.
chapter The Theory and Practice of Randori Coding
Dojos, pages 251–259. Springer-Verlag, Berlin,
Heidelberg, 2014.

[7] D. Sato, H. Corbucci, and M. Bravo. Coding dojo: An
environment for learning and sharing agile practices.
In Proc. Agile 2008, AGILE ’08, pages 459–464, 2008.

[8] J. Schenk, L. Prechelt, and S. Salinger.
Distributed-pair programming can work well and is
not just distributed pair-programming. In Companion
Proc. 36th Int’l. Conf. on Software Engineering, ICSE
Companion 2014, pages 74–83, New York, NY, USA,
2014. ACM.

[9] D. A. Schön. Educating the Reflective Practitioner:
Toward a New Design for Teaching and Learning in
the Professions. Jossey-Bass, 1990.

[10] A. Strauss and J. Corbin. Basics of Qualitative
Research: Grounded Theory Procedures and
Techniques. SAGE, London, 1990.

[11] F. Zieris and L. Prechelt. On knowledge transfer skill
in pair programming. In Proc. 8th ACM/IEEE Int’l.
Symposium on Empirical Software Engineering and
Measurement, ESEM ’14, pages 11:1–11:10, New York,
NY, USA, 2014. ACM.

4747

