
Understanding and Minimizing Disk Contention
Effects for Data-Intensive Processing in Virtualized

Systems

Kassiano J. Matteussi, Claudio Fernando Resin Geyer
Institute of Informatics

Federal University of Rio Grande do Sul
Porto Alegre, Brazil 91509–900

Email: {kjmatteussi, geyer}@inf.ufrgs.br

Miguel G. Xavier, Cesar A. F. De Rose
School of Computer Science

Pontifical Catholic University of Rio Grande do Sul
Porto Alegre, Brazil 90619–900

Email: miguel.xavier@acad.pucrs.br
and cesar.derose@pucrs.br

Abstract—Distributed computing systems (e.g., clouds) have
been widely employed to support an expanding range of
applications. As the scale of data generation grows in regards
to volume, velocity and variety (3Vs of big data), data-intensive
processing became essential to extract valuable information
from complex datasets. In this scenario, the infrastructure
needs to meet the scaling demand of applications and must
use resource management techniques to avoid interference
problems. Literature review mainly focuses on CPU and
memory solutions to handle resource contention problems
in data-intensive processing. Complementarily, this paper
further analyses and proposes techniques to minimizes disk
contention effects in order to improve application performance in
virtualized systems - technology that drives the cloud computing
environment. For this objective, we present a general-purpose
resource management strategy that adjusts dynamically disk
I/O utilization rates. Results showed that the proposed approach
improves application’s performance by up to 26%.

Keywords— Big Data, data-intensive processing, virtualization,
resource contention, interference, disk contention.

I. INTRODUCTION

The technological advancements (e.g., health care, scientific

sensors, user-generated data, Internet, financial companies, and

supply chain systems) over the past two decades have shaped

the term ”Big Data” [1]. This abundance of information has

attracted a great deal of attention in recent years and led

organizations to find out ways to handle this explosion of data

sets in an efficient, reliable and cost-effective way.

As the popularity of large-scale data analysis increases, the

emergence of data-processing frameworks and programming

models beyond MapReduce (MR) grows as well. Initially, MR

was a very popular programming model that composed the

Hadoop MapReduce (HMR) being its most popular and widely

deployed implementation. Subsequently, we can cite other

popular alternatives like Storm, Spark and Flink consolidated

a new ecosystem of data-processing frameworks.

Distributed computing systems such as private and public

clouds are frequently employed to support an expanding

range of applications in which resources are provisioned as

Virtual Machines (VMs). VMs offer excellent containment

and isolation properties while attending issues relating to sim-

plifying software dependencies, and can be scaled elastically

as demand fluctuates [1]. In the case of MR processing,

applications are generally heterogeneous and require flexible

solutions to support the intensive resource variations - different

usage characteristics (e.g., data requests over the network, disk

I/O, CPU and memory). Although cloud scenarios offer proper

support, the task of obtaining application and infrastructure

requirements is complex and sometimes incurs in higher costs

than expected, mainly due to overestimated or underestimated

resource planning.

In this context, our previous work shows that uncontrolled

disk resource usage can generate difficulties for the Op-

erational System (OS) I/O scheduler [2] [3]. This effects

are even worse for MR applications, because they perform

buffered I/O requests (random data access). This characteristic

determines I/O speed and throughput for Hard Disk Drivers

(HDD) - providing more throughput for sequential requests

than random ones [4].

Moreover, if there are MR jobs that need more processing

time (long jobs) or jobs that finish quickly (small jobs), there

is a higher probability of interleaving phases, with map and

reduce requesting I/O resources at the same time. This could

lead to disk throughput beyond bandwidth limit, resulting

in disk contention (resource interference problem). Even OS

I/O schedulers such as cfq, noop and deadline, that maintain

I/O utilization balanced, may not be sufficient or adequate to

supply overall I/O operations for data-intensive processing.

The disk contention problem incurs in several anomalies

such as inter-VM resource interference, unexpected comple-

tion time of applications, throughput variations andperfor-

mance degradation in applications and frameworks [5] [6].

In addition, MapReduce-based frameworks and resource man-

agement systems like YARN and Mesos only performs CPU

and memory orchestration, assigning to the OS I/O scheduler

the responsibility to manage disk resources. Addressing this

scenario, several researches can be found in the literature, but

they lack solutions to handle disk management in virtualized

systems [6] [5] [4] [7].

Otherwise, resource allocation and management in clouds

is an ongoing research concern [1] [8] [5] [9] [10]. In fact, it

901

2018 International Conference on High Performance Computing & Simulation

978-1-5386-7879-4/18/$31.00 ©2018 IEEE
DOI 10.1109/HPCS.2018.00144

is well known that improving resource allocation strategies

results in optimization in performance and efficiency [1].

Although there is a large amount of research into resource

allocation exists, most of the strategies do not consider disk

and network problems. Complementarily, our previously re-

search efforts [2] [3] indicate that is feasible to use container-

based clouds for data-intensive processing. It is because tra-

ditional virtualized system models (full-virtualization, par-

avirtualization, for instance) became inefficient to support

high-performance computing environments. As consequence,

several well-solved efforts in resource management remains

opened for container-based virtualization.
This article proposes techniques to minimize disk contention

effects in order to improve applications’ performance in vir-

tualized systems. Thus, through a general-purpose resource

management strategy, each VM will have the disk resource

dynamically adjusted in order to control application I/O uti-

lization rates. To demonstrate this in practice, our approach

was coupled with a set of big data applications and we observe

an overall performance improvement up to 26%.
This paper is structured as follows. Section II shows an

overview of the MapReduce model, its implementations and

virtualization models. A relative study of disk I/O character-

ization of Big Data applications is presented in Section III.

Section IV presents a resource contention overview and the

disk resource allocation challenges faced in this work. In

Section V, we present the proposed strategy to control I/O

utilization rates and also present the preliminary evaluation.

The related work is presented in Section VI. Conclusions and

future work are presented in Section VII.

II. BACKGROUND

This section provides an overview of the MR model and its

implementations. Although there are several big data imple-

mentations currently available (e.g., Storm, Spark and Flink),

this work will focus on Hadoop - the most popular open-source

implementation for Big Data analysis.

A. The MapReduce Model and Implementations
The MapReduce programming model is based on the map

and reduce primitives, both provided by the programmer. First,

the map function takes a single instance of data as input and

produces a set of intermediate key-value pairs. Secondly, the

intermediate data sets are automatically grouped over the keys.

Then, the reduce function takes as input a single key and a

list of all values generated by the map function for that key.

Finally, this list of values is merged or combined to produce

a set of typically smaller output data, also represented as key-

value pairs.
Moreover, Hadoop MapReduce is an open-source version of

the MapReduce model and the Hadoop Distributed File Sys-

tem (HDFS), a distributed file system that provides resilient,

high-throughput access to application data [11]. Furthermore,

there are currently two different versions of Hadoop (1.x and

2.x):

• In classic Hadoop, the jobs are assigned in map and

reduce tasks to be processed in multiple waves, and af-

terwards the data is consolidated in the disk. In this case,

the Resource Manager (RM) keeps track of available

resources (CPU, memory and data location) on each node

of the cluster.

• Hadoop YARN (Yet Another Resource Negotiator) di-

vides resources into logical partitions (called ”slots” and

”containers” respectively) which are assigned to exe-

cuting tasks [1]. Besides, YARN decomposes into fine-

grained, loosely coupled parallel tasks, scheduling on

task-level rather than on job-level, improving fairness and

utilization of resources. YARN mainly focuses on data lo-

cality, CPU and memory requirements and schedules the

job to run on the most optimum nodes in the cluster [12].

Nowadays, Hadoop implementations and frameworks ne-

glect disk management. This overloads OS I/O schedulers

and leads to performance degradation during data-intensive

processing.
Especially in multi-tenant environments. It is common to

face Hadoop resource management challenges. For instance,

multiple Hadoop jobs can be scheduled and performed on the

same shared clusters [13]. In this case, disk and network will

be served by arrival order - First In, First Out (FIFO). Thus,

if there are any jobs with strict Service Level Agreements

(SLAs), they can sometimes suffer slowdown due to low

priority jobs. Another common problem seen in multi-tenant

Hadoop clusters is overestimated or underestimated resource

planning. The former results in low resource utilization and

the latter in delays because jobs cannot be scheduled due to

resource starvation.

B. Virtualized Systems
Resource virtualization consists of using an intermediate

software layer on top of an underlying system to provide

abstractions of multiple virtual resources. In general, the

virtualized resources are called virtual instances and can be

seen as isolated execution contexts. The hypervisor-based

virtualization, in its most common form (hosted virtualization),

consists of a virtual machine monitor (hypervisor) on top of a

host operating system (Dom0) that provides a full abstraction

to virtual instances.
A lightweight alternative to the hypervisors is container-

based virtualization, also known as OS-Level virtualization.

This model partitions the physical resources of machines,

creating multiple isolated user space instances on the same

OS. Despite this, users in these instances have the illusion

that they are working on their own independent subsystem of

network, memory, and file system.
LXC [14] is today’s most notable system based on contain-

ers for Linux. It has gained space because of its inclusion in

the Linux kernel upstream (mainline source code) and has

increasingly been used in a variety of platforms that high

scalability with low-performance overheads. The system is a

Linux application tool that allows users to create containers

containing groups of processes that might access its isolated

instance of the global resource. To support containers, the

Linux kernel provides the capacity of resource isolation per

process or group of processes. This feature is referred to as

Kernel namespace.

902

Virtualization based on containers has been experienced by

large-scale computing platforms such as clouds, HPC clusters,

and IT-related clusters. Regarding HPC clusters, Hadoop has

recently undergone changes in its built-in components to

support containers with the emergence of YARN. We have

also witnessed several advances in IT infrastructures aiming

at deploying IT servers upon clusters of containers at a large

scale with high resilience.

Next, we present a study about resource characterization

of big data applications. The study can help users to avoid

high expenditures in resource planning by reducing resource

contention and interference in their applications.

III. DISK I/O CHARACTERIZATION OF MAPREDUCE

APPLICATIONS

Data-intensive processing is the key for big data analysis.

In this scenario, the big data applications exhibit high demand

for resources like memory, CPU and I/O [15] as well as they

require efficient management to support large datasets.

This section aims to understand how MR applications

manage the data processing flow internally. For this case,

we observed some I/O characteristics such as data generation

process, disk read/write bandwidth, data access patterns and

application completion time. Complementarily, we generated

resource usage profiles for CPU, memory, disk and network.

Finally, we present some insights about disk-related problems.

In order to obtain these insights, we performed several

experiments. Our hardware is comprised of a real cluster

consisting of 4 identical servers, each equipped with 8 x86 64

cores at 2.27 GHz and 16GB of RAM. The servers were

interconnected by an Ethernet switch with 1 Gbps links.

In terms of software, all servers ran the data processing

framework (e.g., Hadoop 1.1.2 for now, but we are going to use

YARN shortly) installed on top of an Ubuntu Linux 14.04 LTS

operating system. For Hadoop 1.x, each node was configured

with 8 map task slots and 8 reduce task slots.

For our experiments, we used HiBench [16], a realistic

and comprehensive benchmark suite based on the MapReduce

programming model [17]. HiBench includes both synthetic

micro-benchmarks, and real world applications such as Sort,

Terasort, WordCount, Nutch, PageRank, Bayes, K-means and

Hive. These models of applications are widely used for per-

formance analysis, e-commerce, Web search engines, classi-

fication, clustering, image processing, textual recognition as

well as they are popular in the current big data era. The

applications are presented in Table I. Next, we will pinpoint

some observations about obtained results.

1) Data generation process: At the first stage of application

processing, HiBench utilizes specific data generation tools to

create static data sets. These datasets are defined by the user

and fully processed posteriorly by the applications, ensuring a

real scenario for experimental labs. We present this behavior in

Figure 1. Each application presents this stage at the beginning

of the trace. The stage is a part of job a sequence and is called

number 1. The resource utilization traces of Nuth Indexing and

Page Rank were suppressed because they present memory and

TABLE I
WORKLOAD CHARACTERISTICS

Application Load in Load out Time (s)

Sort 15,9Gb 15,1Gb 2225
Terasort 37,2Gb 37,2Gb 1265
WordCount 11,4Gb 1Mb 2286
Nutch 509Mb 208,4Mb 266
Pagerank 1,3Gb 476Mb 160
K-means 46,4Gb 57Gb 3038
Bayes 352Mb 1Mb 401
Hive 5Gb 1,7Gb 788

CPU-bound characteristics, both of which are not evaluated in

this work.

2) Data access pattern: The set of analyzed applications

present in Figure 1 maintain the data-intensive I/O in HDFS

continuously. In MR, the disk intensive operations occur on

maps (multiples inputs and outputs), reducers (multiples inputs

and outputs) and shuffle phases (multiples transfers and sort

operations).

The number of map tasks within a MR job is driven by

the number of data blocks in the input files. For example,

considering a data block size of 128 MB, a MR job with an

input of 10 TB will have 82K map tasks. Therefore, there

are potentially more map tasks than task slots in a given

cluster, which forces tasks to run in waves [18] [19] incurring

high resource utilization rates. Moreover, some MR jobs

demand more processing time creating an overlap between the

execution of map tasks. This situation can lead to performance

degradation due to resource contention, where multiple tasks

require resources at the same time.

Furthermore, the amount of data generated by reducers can

vary from application to application. Normally, reducers tend

to generate significantly smaller outputs than the input data.

However, as reported in work, MR workloads also perform

data expansion (output data size � input data size) or data

transformation (output data size ≈ input data size). Finally,

the output data of MR jobs are written to HDFS following the

pipelined write procedure. The main difference, in this case,

is that there are R reducers simultaneously writing to HDFS,

instead of a single client application.

3) Resource utilization analysis: Figure 1 presents the

resource utilization variations from multiple applications. Al-

though, the presence of data access patterns in MR clusters is

a well-documented phenomenon [20] [21], this work focuses

in analyzing feasible solutions to group applications based on

their disk resource patterns.

For instance, Sort 1(a) application performs more write

operations and is more disk intensive in map phases than K-

means 1(d). Next, K-means 1(d) is more disk intensive in the

reduce phase. Then, imagine these applications running to-

gether into a cloud, their resource utilization matches, avoiding

cluster underestimate scenario due to the well-used resource

pool.

This approach can combine applications side-by-side until

resource pooling guarantees isolation between them. Further-

more, it is possible to group applications by memory, CPU,

903

(a) Sort application, jobs: (1) random text
writer, (2) sorter Sort

(b) Terasort application, jobs: (1) teraGen, (2)
terasort

(c) Wordcount application, jobs: (1) random
text writer, (2) word count, ()

(d) K-means application, jobs: (1) datatools,
(2-6) cluster iterations, (7) cluster classifica-
tion

te aso t

(e) Bayes applications, Jobs: (1) create bayes
data, (2) document tokenizer, (3) generate
collocations, (4) compute NGrams, (5) dictio-
nary vectorizer, (6,9) partial vector merger, (7)
vector TfIdf, (8) make partial vectors, (10,11)
train index mapper-reducer

(f) Hive application, jobs: (1) create rankings,
(2) create uservisits, (3) Job INSERT uservis-
its, (4-6) Job INSERT ranking stages

Fig. 1. Workload Characterization of MapReduce Applications): Sort, b) Terasort, c) Wordcount, d) K-means, e) Bayes, f) Hive. The heterogeneity of
applications incurs multiple IO Utilization Patterns. Thus, the application traces analysis allows us a set of opportunities for optimization. For instance, we
can observe several underestimated resource points in such a way that it is possible to adjust the resources in order to avoid underestimated resource planning
and infrastructure expenditures.

network, disk or all resources. However, in this work, we focus

only in disk I/O that incurs bottlenecks during data-intensive

processing. Further, we characterize these applications. The

metrics chosen for this are application completion time and

resource utilization rates from CPU, memory, disk and net-

work. Table II summarizes the classification.

Accordingly, the characterization motivated the possibility

of improving disk resource distribution between big data

applications. Meanwhile, the next section emphasizes disk

isolation and resource allocation in order to make the general-

TABLE II
WORKLOAD CHARACTERISTICS

App Name Figure Type
Sort 1(a) disk-intensive

Terasort 1(b) disk-intensive
Wordcount 1(c) disk-intensive

Hive 1(d) disk/memory-intensive
Bayes 1(e) CPU/memory-intensive

Kmeans 1(f) CPU/memory-intensive

purpose resource management strategy feasible, which adjusts

904

the disk I/O utilization rates statically.

IV. DISK I/O CONTENTION AND RESOURCE ALLOCATION

Uncontrolled access to shared resources can cause perfor-

mance variations that lead applications to fail or run unsteadily.

The friction generated by the competition to access RAM, disk

storage, cache or internal busses is called resource contention.

Many efforts have been made to alleviate the contention in the

operating system level that range from better scheduling tech-

niques in multi-core architecture [22] to dynamic addressing

mapping to minimize memory contention. The steady growth

of big data applications brought a concern about I/O contention

and its impact in environments in which performance is crucial

and SLA cannot be violated, such as clouds. I/O contention

occurs when multiple virtual instances compete for a disk

bandwidth portion in a scenario where the demand is higher

than the available resource. To illustrate, the dispersion in

Figure 2 presents a disturbed scenario in which two disk-

intensive applications write to/read from a single disk while the

bandwidth is not enough to supply the applications demands,

making the performance fluctuate.

Fig. 2. Performance interference between two co-located applications due to
disk contention

Operating system level I/O schedulers, such as CFQ, dead-

line and noop, detect resource utilization bottlenecks and

attempt to divide block devices by reordering/prioritizing tasks

in a fairly-balanced manner. As a result, the overhead is

distributed equally across the consolidated instances, but it

does not prevent their performance from varying unpredictably

since the schedulers are unable to predict and make decisions

based on workload characteristics.

On the other hand, performance interference may also be

sourced from isolation issues in the virtualization layer, which

occur when an application exceeds the amount of allocated

resources. Even though a virtual instance receives a limited

portion of resources, it does not prevent the resource utilization

from leakage due to isolation flaws [23]. Hence, performance

interference may be sourced from either resource contention

or performance isolation issues. Data center administrators

exaggerate the amount of allocated resources to sidestep

performance interference, leading the cluster to low utilization

and making it no longer resource efficient.

A. I/O Allocation in Container-based Systems
Container-based systems have become a tendency under

HPC environments [3]. Promises of high performance and

scalability have made such systems quite popular nowadays.

A container consists of a group of processes that cannot

communicate outside the box and have the impression that

they are working in their own isolated system. Namespace

is the kernel feature that implements the isolation layer and

prevents multiple consolidated containers from seeing each

other in the resource substrate (network, file-system, IPC, etc).

From the resource restriction standpoint, containers leverage

Cgroup subsystems to ensure resource guarantees and prevent

resource utilization leakage.

The Cgroup subsystem ”blkio” implements the block I/O

controller, which is responsible for throttling per-process I/O

bandwidth or disk policy based on the division of proportional

weight time. In both cases, blkio works exclusively for un-

buffered direct writes/reads and it does not restrict the I/O

resource for MR applications at the current state. For this

purpose, we patched the kernel to allow I/O throttling not

just for direct writes, but also for buffered writes such as

those carried out by MR-centric applications. In Figure 3,

we illustrate the bandwidth consumption before and after the

feature was installed.

Fig. 3. I/O bandwidth restriction of buffered writes in patched and unpatched
kernel

The evaluation of the Cgroup block controller reveals that,

even with the feature, the I/O resource restriction does not

always works properly and subjects to performance leakage.

The performance isolation issue is clearly observed over all

assessed limits.

905

V. TOWARDS A DYNAMIC DISK RESOURCE ALLOCATION

In this section, we present a general-purpose resource man-

agement strategy to dynamically adjust the disk I/O utilization

rates. The proposed strategy aims to improve disk resource

allocation in order to minimize contention levels. We believe

that an adequate I/O coordination of throughput based on disk

bandwidth ensures the VM isolation. Thus, if interference is

avoided, the application can run without noise in a shared

cloud, for instance.

Fig. 4. Resource management comparison between a) current system level
I/O schedulers like cfq, noop and deadline and, b) the proposed strategy

In figure 4, a) the scheduler reorders/prioritizes the disk

resources (bandwidth) of each application in a fairly balanced

manner. This approach does not ensure performance for the

applications, but tries to alleviate starvation and interference

problems. However, data-intensive workloads process large

data sets and it leads the OS scheduler to incur bottleneck. It

occurs because the resources consumption fluctuates depend-

ing on the processed workload and application type. In Figure

4, b) we present our strategy based on the Shortest Job First

(SJF) algorithm [24]. This is a greedy-based algorithm that

selects the process with the shortest execution time. Although

SJF generates the starvation problem (well-documented prob-

lem), it is avoided in this work because we guarantee resources

for all applications and always resize resources in real-time

when one application finishes.

Our SJF version is a quite similar strategy; in this case, we

always prioritize the disk resources for the lowest workload (in

terms of size) - not taking into account the application type.

Thus, we divided the disk resources between all applications,

the highest slice of resources goes to the application i (the

resource allocation is maintained until the application finishes)

with the lowest workload and, the rest of resources goes to

the subsequent applications i+ 1 to n. The main idea of this

approach is to use the largest slice of resources to maximize

the throughput and number of process per a period of time

to the application i, leading it to higher performance gains.

When the application i finishes, another i is chosen and the

flow is again repeated.

In addition, the proposed strategy is designed to behave

in a general-purpose manner in order to support multiple

virtualization models. The throughput rates are instrumented

dynamically using Cgroup block (blkio) for each VM in the

host. As a result, we believe that the strategy minimizes the

completion time of the application and guarantees small levels

of interference in a shared environment, see Figure 4 a) e b).

In the next section, we present our preliminary results.

A. Evaluation
This section presents the test scenario in which we apply the

strategy proposed in this work, its evaluations and discussions.

For all experiments, we compared the Linux I/O Schedulers

(CFQ, noop, deadline) to demonstrate that by prioritizing

applications dynamically it is possible to minimize disk con-

tention and accelerate all co-located applications independent

of the scheduler. The metric observed was makespan (MS),

which represents the application completion time considering

the beginning and end of a sequence of jobs or tasks. Mea-

surements have a confidence interval of at least 95%.

B. Experimental Setup

Our hardware setup comprised two identical Dell Pow-

erEdge M610 machines, with two Xeon Six-Core E5645

2.4GHz processors (totalizing 24 cores per node with Hyper-

threading), 24GB of RAM and one 300GB 10K RPM SAS

disk. The machines software stack was composed by Ubuntu

Server 14.04.1 LTS, patched with a custom Kernel (version

3.3) to support buffered I/O writes performed by Hadoop1. We

compiled the current kernels and discovered that until version

3.x buffered writes are not supported.

On top of OS, we employed the container-based virtual-

ization (LXC). We also used MRv1 Hadoop stack (HDFS,

MapReduce, etc.), replication factor three and 128MB block

size. Map and reduce tasks were configured to 6 and 1

respectively. To monitor disk I/O resource utilization we used

an instrumented version of IOtop2. For workloads, applications

and data sets came from HiBench [16].

C. Preliminary Experiment
This experiment uses two identical nodes; each one has

three containers with equivalent amounts of resources for

CPU and memory. In addition, each container hosts just one

MR Teragen application (provided by HiBench) with varied

workloads (10, 20 and 30GB). Teragen was chosen due to

disk-intensive behavior (read and write operations).

According to our strategy, disk write operations were dy-

namically limited in order to maintain the biggest resource

slice to the container that comprises the lowest workload.

In this case, the disk resource allocation were the following:

Teragen 10GB receives 70%, Teragen 20GB 20% and Teragen

30GB 10%, where the presented rating values are fixed arbi-

trarily to help us to understand how the strategy works. This

experiment allows us to observe that by concentrating disk

resources in one application at a time, following the shortest

job strategy, interference is minimized and helps to reduce

the global makespan. In this scenario, when Teragen 10GB

finishes, its disk resources are allocated to the container that

hosts the application with the next lowest workload, and so

on. The result can be observed in Figure 5 (bottom graphs

labeled with restriction).

1Custom Kernel: git://git.kernel.org/pub/scm/linux/kernel/git/wfg/linux.git
buffered-write-io-controller

2Custom Iotop: https://github.com/mvneves/iotop-cgroups

906

Fig. 5. Per-scheduler disk throughput analysis with and without the proposed strategy. The completion time of applications was affected by interference
sourced from disk contention and isolation weaknesses

We can observe in Figure 5 that the proposed strategies

ensure the isolation and reduce the application completion

time for all OS schedulers. The improvement happens be-

cause the interference between applications is minimized,

ensuring disk isolation. Sometimes the isolation fails (it can

be observed clearly in Figure 5 at time 50’ in CFQ and

noop experiments - with restriction) and OS schedulers try

to equalize the resources, reducing the throughput. In this

scenario, the performance can be degraded and the interference

can lead to contention because of OS schedulers difficulties

to cope with concurrent disk operations that are intensive.

A summarization of the improvements in makespan for each

scheduler is presented in Table III.
TABLE III

MAKESPAN IMPROVEMENT BY SCHEDULER

State CFQ deadline noop

w/o restriction (sec) 382 395 422

restriction (sec) 307 297 293

performance improvement (%) 19,6 24,8 30,56

The literature consideres noop the simplest OS scheduler. It

does not perform sorting or any other optimization to minimize

disk latency. The disk requests are just inserted into a queue to

be processed later on, reducing the latency for disk intensive

applications that perform random-access (buffered writes) in

detriment of others. The Deadline I/O scheduler attempts to

provide a guaranteed latency for all requests to avoid I/O

starvation. However, in contention scenario, especially for

data-intensive processing, this behavior can incur some inter-

ference, leading to low application performance. CFQ provides

a fair resource sharing to coordinate I/O bandwidth for all the

processes that request an I/O operation. Still, CFQ maintains

the process which requests I/O (synchronous) in a queue.

For asynchronous requests, the processes are batched together

according to their process I/O priority. In this scenario, data-

intensive processing suffers from excessive control, flooding

the scheduler with multiple processes.

D. Real World Scenario
This experiment uses the same strategy as section V, in

which disk write operations were dynamically limited in order

to maintain the biggest resource slice to the container that

executes the lowest workload. The applications and workloads

were changed to represent a more realistic scenario. The set of

chosen applications were Terasort (20GB), Sort (1.1GB) and

K-means (3GB). The resource allocations were as follow 90%

to the application i and 10% to the subsequent applications

i+ 1 to n. The results are presented in Table IV.

We can see in Table V that the applications with mixed

workloads respond well to the proposed disk allocation strat-

egy. Although still significant, makespan gains are not as

good as in our preliminary experiment. This is expected

because in this experiment we use applications that have

different workload patterns, which reduces disk interference,

and consequently the potential benefits of our strategy.

TABLE IV
REAL WORLD SCENARIO: MAKESPAN IMPROVEMENT BY SCHEDULERS

State CFQ deadline noop

w/o restriction (sec) 1614 1381 1525

restriction (sec) 1448 1131 1123

performance improvement (%) 10 18 26

Table V presents the detailed performance analysis by

application. We can observe that Terasort has an increase in its

execution time in all cases, which is expected in some cases

since we are optimizing global makespan. This is the same

effect that may happen with resource greedy applications in

operating system scheduling. Moreover, in combination with

our strategy, the obtained results indicated noop as the best

scheduler for data-intensive processing.

VI. RELATED WORK

Many researches [8] [6] [5] [4] [7] [25] investigate perfor-

mance interference and resource contention. These solutions

perform adjustments in processing frameworks; use linear

regression based on trace files to control the execution of

running applications; propose new I/O schedulers; profile

the applications’ performance; throttle and coordinate slowest

tasks and try to use slices of resources to manage only

read requests - due to the kernel restrictions (solved in our

approach); and test link aggregation and SDN strategies to

improve communication channels. The researches presented

907

TABLE V
DETAILED PERFORMANCE ANALYSIS PER APPLICATION

Schedulers CFQ Noop Deadline

Applications K-means Sort Terasort K-means Sort Terasort K-means Sort Terasort

w/o restriction (sec) 877 1252 2713 1417 1158 2000 1287 987 1546
Restriction (sec) 737 859 2749 676 564 2131 699 522 1871

Gain (%) 15,9 31,3 -1,6 52,2 51,2 -6 45,6 47,1 -20

the importance and the concern of investigating interference

in virtualized environments.

However, these researches propose improvements that are

tightly coupled with the target virtualization models, what

restricts their applicability. Our work in the other hand,

presents a general-purpose resource management strategy to

minimize interference and optimize global makespan, which

can be applied with any virtualization layer.

VII. CONCLUSION AND FUTURE WORK

In our effort to better understand and minimize disk con-

tention effects for data-intensive processing in virtualized

systems, we claim that a general-purpose resource manage-

ment strategy to dynamically adjust disk I/O utilization rates

is feasible and effective for this scenario. As presented in

our preliminary evaluation, the strategy improves application

performance by up to 26%. As future work, we intend to create

a fine-grained dynamic model to resize resources on-demand.

Furthermore, we intend to test the new features provided by

kernel 4 and also measure the impact of Solid-State Drive

(SSD) usage for data-intensive processing.

VIII. ACKNOWLEDGMENT

The authors would like to thank Dell Inc and the fol-

lowing Brazilian Agencies: FAPERGS Projects ”GREEN-

CLOUD - Computação em Cloud com Computação Sus-

tentável” (#16/2551-0000 488-9) and ”SmartSent” (#17/2551-

0001 195-3), CAPES, CNPq and PROPESQ-UFRGS-Brasil

for supporting this work.

REFERENCES

[1] T. Ryan and Y. C. Lee, “Multi-tier resource allocation for data-intensive
computing,” Journal of Big Data Research, vol. 2, no. 3, pp. 110–116,
2015.

[2] M. Xavier, I. De Oliveira, F. Rossi, R. Dos Passos, K. Matteussi, and
C. De Rose, “A performance isolation analysis of disk-intensive work-
loads on container-based clouds,” in Proceedings of the 23rd Euromicro
International Conference on Parallel, Distributed and Network-Based
Processing (PDP), March 2015, pp. 253–260.

[3] M. G. Xavier, K. J. Matteussi, F. Lorenzo, and C. A. De Rose, “Under-
standing performance interference in multi-tenant cloud databases and
web applications,” in Proceedings of the IEEE International Conference
on Big Data (Big Data), Dec. 2016, pp. 2847–2852.

[4] K. R. Krish, B. Wadhwa, M. S. Iqbal, M. M. Rafique, and A. R.
Butt, “On efficient hierarchical storage for big data processing,” in
Proceedings of the 16th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), May 2016, pp. 403–408.

[5] M. Malensek, S. L. Pallickara, and S. Pallickara, “Alleviation of disk
I/O contention in virtualized settings for data-intensive computing,” in
Proceedings of the 2nd IEEE/ACM International Symposium on Big
Data Computing (BDC), Dec 2015, pp. 1–10.

[6] M. Siyuan, X.-H. Sun, and I. Raicu, “I/O throttling and coordination for
mapreduce,” Illinois Institute of Technology, Tech. Rep., 2012.

[7] P. Mishra, M. Mishra, and A. K. Somani, “Bulk I/O storage management
for big data applications,” in Proceedings of the 24th IEEE International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), Sept 2016, pp. 412–417.

[8] F. D. Rossi, G. D. C. Rodrigues, R. N. Calheiros, and M. D. S. Conterato,
“Dynamic network bandwidth resizing for big data applications,” in
Proceedings of the 13th IEEE International Conference on e-Science
(e-Science), Oct 2017, pp. 423–431.

[9] B. Hou, F. Chen, Z. Ou, R. Wang, and M. Mesnier, “Understanding I/O
performance behaviors of cloud storage from a client’s perspective,”
Journal of ACM Transactions on Storage (TOS), vol. 13, no. 2, pp.
16:1–16:36, June 2017.

[10] S. Amri, H. Hamdi, and Z. Brahmi, “Inter-VM interference in cloud
environments: A survey,” in Proceedings of the 14th IEEE/ACS Inter-
national Conference on Computer Systems and Applications (AICCSA),
Oct. 2017, pp. 154–159.

[11] D. Borthakur, “The hadoop distributed file system: Architecture and
design,” Jan 2007. [Online]. Available: https://svn.apache.org/repos/asf/
hadoop/common/branches/branch-0.17/docs/hdfs design.pdf

[12] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache hadoop
YARN: Yet another resource negotiator,” in Proceedings of the 4th
Annual Symposium on Cloud Computing (SOCC), Oct. 2013, pp. 5:1–
5:16.

[13] M. Pastorelli, A. Barbuzzi, D. Carra, M. Dell’Amico, and P. Michiardi,
“Practical size-based scheduling for mapreduce workloads,” CoRR,
May 2013. [Online]. Available: https://arxiv.org/abs/1302.2749

[14] “Linux Containers,” 2018. [Online]. Available: https://linuxcontainers.
org/

[15] F. Pan, Y. Yue, J. Xiong, and D. Hao, “I/O characterization of big
data workloads in data centers,” in Journal of Big Data Benchmarks,
Performance Optimization, and Emerging Hardware (BPOE), 2014, pp.
85–97.

[16] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The HiBench
Benchmark Suite: Characterization of The MapReduce-Based Data
Analysis,” in Proceedings of the 26th IEEE International Conference
on Data Engineering Workshops (ICDEW), March 2010, pp. 41–51.

[17] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[18] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environments,”
in Proceedings of 8th the USENIX Conference on Operating systems
design and Implementation (OSDI), Dec. 2008, pp. 29–42.

[19] M. V. Neves, “Application-aware software-defined networking to accel-
erate mapreduce applications,” Ph.D. dissertation, Pontifı́cia Universi-
dade Católica do Rio Grande do Sul, 2015.

[20] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica,
D. Harlan, and E. Harris, “Scarlett: Coping with skewed content popu-
larity in mapreduce clusters,” in Proceedings of the 6th Conference on
Computer Systems (EuroSys), Apr. 2011, pp. 287–300.

[21] C. L. Abad, Y. Lu, and R. H. Campbell, “DARE: Adaptive data replica-
tion for efficient cluster scheduling,” in IEEE International Conference
on Cluster Computing (CLUSTER), Sept. 2011, pp. 159–168.

[22] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared
resource contention in multicore processors via scheduling,” in Proceed-
ings of the 15th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), vol. 38,
no. 1, 2010, pp. 129–142.

[23] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and
C. A. De Rose, “Performance evaluation of container-based virtualiza-
tion for high performance computing environments,” in Proceedings of
the 21st Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), March 2013, pp. 233–240.

[24] E. W. Davis and J. H. Patterson, “A comparison of heuristic and opti-
mum solutions in resource-constrained project scheduling,” Management
Science, vol. 21, no. 8, pp. 944–955, 1975.

[25] C. Rista, D. Griebler, C. A. F. Maron, and L. G. Fernandes, “Improving
the network performance of a container-based cloud environment for
hadoop systems,” in Proceedings of the International Conference on
High Performance Computing & Simulation (HPCS), July 2017, pp.
619–626.

908

