
Exploiting multi-core architectures in clusters for enhancing
the performance of the parallel Bootstrap simulation algorithm

César A. F. De Rose, Paulo Fernandes, Antonio M. Lima, Afonso Sales, and Thais Webber

Pontifı́cia Universidade Católica do Rio Grande do Sul
Av. Ipiranga, 6681 – Prédio 32 – 90619-900 – Porto Alegre, Brazil

{cesar.derose, paulo.fernandes, antonio.lima, afonso.sales, thais.webber}@pucrs.br

Abstract—The solution of Markovian models is usually non-
trivial to be performed using iterative methods, so it is well-
fitted to simulation approaches and high performance imple-
mentations. The Bootstrap simulation method is a novel simula-
tion technique of Markovian models that brings a considerable
improvement in the results accuracy, notwithstanding its higher
computation cost when compared to other simulation alterna-
tives. In this paper, we present three parallel implementations
of the Bootstrap simulation algorithm, exploiting a multi-core
SMP cluster. We discuss some practical implementation issues
about processing and communication demands, as well as
present an analysis of speedup and efficiency considering dif-
ferent models’ sizes and simulation trajectory lengths. Finally,
future works point out some improvements to achieve even
better results in terms of accuracy.

Keywords-Markovian models; Discrete-event simulation; Sta-
tistical techniques; Parallel algorithms; Multi-core SMP clus-
ter; Performance evaluation;

I. INTRODUCTION

Markovian models are very useful in many domains (e.g.,
bioinformatics, economics, engineering, among others) to
describe complex system interactions using mathematical
methods for solving the linear systems of equations [1]. The
results of these models provide quantitative performance in-
dices that can be used to indicate bottlenecks/configurations
where the system will degrade or malfunction [2], [3], [4],
[5], [6].

However, due to a large amount of possible configurations
of those models, an efficient numerical solution becomes
intractable and easily dependable on the available com-
putational resources [1]. Iterative solutions (e.g., SOR [7]
or Power Method [1]) are usually bounded by memory
and computational power and, hence, simulation techniques
become an alternative to the solution of Markovian models.

In Markovian simulation contexts, an elementary goal is
to generate independent samples for latter statistical analysis,
which means to collect observed states in a chain or network
of chains, e.g., Stochastic Automata Networks (SAN) [8].

Authors receive grants from Petrobras (0050.0048664.09.9). Paulo Fer-
nandes is also funded by CNPq-Brazil (PQ 307272/2007-9). Afonso Sales
receives grants from CAPES-Brazil (PNPD 02388/09-0). The order of
authors is merely alphabetical.

The main idea is to perform a random walking given the set
of possible states that the system assumes and, from an initial
state, jump to another state, if a transition is defined. This
process defines a simulation trajectory and the user must
choose the way to compute the state probability distribution,
accumulating the number of times each state is visited
given a trajectory length. Many examples use the generation
of discrete events combining them with non-trivial data
structures that save important information regarding the
simulation execution [9], [10], [11], [12].

It is common to run the simulation for long trajecto-
ries with the purpose of accuracy improvement, since the
precision is directly related to the number of samples that
was produced. Many improvements have been introduced in
different simulation techniques, such as Monte Carlo [13],
Perfect sampling [14] and even in traditional simulation [15],
in order to achieve even more precise results. Indeed,
there are several advances concerning the parallel sampling
technique for Markovian models. Recently, the Bootstrap
simulation demonstrates remarkable results to improve ac-
curacy [16], however, its usage is impaired due to high
computational costs to produce repeated batches of samples.
A first parallel implementation of this novel technique has
been proposed [17], but there is room for improvements and
broader discussions.

Our main contribution is to introduce faster parallel
implementations of the Bootstrap simulation. In order to
exploit parallelism in a multi-core SMP cluster [18], [19],
we use pure MPI and also a hybrid programming model
with MPI and OpenMP. Moreover, we present broader dis-
cussions about performance issues of the parallel Bootstrap
implementations, focusing our attention on the simulation
results accuracy.

The remainder of this paper is presented as follows. Sec-
tion II presents the Bootstrap simulation technique applied
in the context of Markovian simulation, discussing about its
accuracy and processing time. Section III describes three
parallel implementations of the Bootstrap simulation algo-
rithm. In Section IV, we present three Markovian models
used to measure the parallel implementations’ performance
and show the results for different simulation trajectory

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.297

1441

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.297

1437

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.297

1437

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.297

1437

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.297

1437

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.297

1442

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.297

1442

lengths and model’s sizes. Finally, the conclusion points
out some parallelization issues and future works draws the
possibility of blending the Bootstrap technique with other
sophisticated simulation methods.

II. BOOTSTRAP METHOD APPLICATION

Bootstrap is a well known statistical technique [20] ap-
plied to many fields to improve accuracy when perform-
ing sample estimations for complex distributions [21]. The
method’s objective is to discover the distribution in random
samplings Λ of size n directly extracted from the population
Λ̃, i.e., Λ ⊂ Λ̃. When observing Λ, the n samples are drawn
with probability 1

n
and that is proved to represent the un-

known population as closely as possible. That concept helps
improving the methods’ accuracy since the main feature of
using Bootstrap is to work with sample replacement, i.e., the
obtained values could be repeated throughout the process.

Figure 1 presents the Bootstrap method applied to the
Markovian models simulation context. For more detail of
this new simulation technique using the Bootstrap method,
we suggest the reader to consult [16].

N
or

m
a

li
za

ti
on

Bootstrapping
process

Computing

Initial

state

s0

s1

s2

s0

s1

s2

x̄1[0] + x̄2[0] + ··· + x̄z[0]
z

x̄1[2] + x̄2[2] + ··· + x̄z[2]
z

x̄1[1] + x̄2[1] + ··· + x̄z[1]
z

π0

π1

π2

π

s0

s1

s2

s0

s1

s2

0 1 2

s0

s2

s0

States

n. . .3

Time

s0

s1s1s1

s2 s2 K1 Kz

. . .

s1 . . .

x̄1 x̄z

. . .

Figure 1. Bootstrap simulation method schema.

Algorithm 1 presents the procedure of the Bootstrap
simulation method depicted in Figure 1. In this algorithm,
variables and vectors are initialized at lines 1-4. We denote
S as the set of model states, where |S| is the cardinality
of this set, i.e., the model’s size. The random walking that
traces the simulation trajectory of length n is performed at
lines 5-15. The next-state snew on the trajectory is calculated
from state s at line 6, using a pseudorandom generator U

uniformly distributed in (0..1) by a transition function φ.
The core of the bootstrapping process, which is done by
counting repeated batches of samples in the z bootstraps’
vectors K , is performed at lines 7-13. Those vectors are
normalized at lines 16-24 and stored in x̄. At last (lines
25-30), the average probabilities of every state, which are
computed according the vectors x̄, are stored in π.

Note that z × n̄ samplings take place for every trajectory
step, comparing each pseudorandom value against an arbi-
trarily chosen constant value α between 0 and n̄− 1. If the
pseudorandom generated value is equal to α (line 9), the
state is counted in the correspondent bootstrap K (line 10).
Previous work [16] demonstrates that it is possible to only
perform n̄ trials instead of n, where n̄� n.

Algorithm 1 Bootstrap simulation method
1: α← U(0..n̄− 1) {choose a constant value α initialization}
2: π ← 0 {initialization of the probability vector π of size |S|}
3: K ← 0 {initialization of all z bootstraps K}
4: s← s0 {set state s as initial state s0}

5: for t = 1 to n do
6: snew← φ(s, U(0..1)) {computes snew from s according to U(0..1)}

7: for b = 1 to z do
8: for c = 1 to n̄ do
9: if (U(0..n̄− 1) == α) then

10: Kb[snew] ← Kb[snew] + 1 {counts a sample in the bootstrap}
11: end if
12: end for
13: end for
14: s← snew {current state s is updated to snew}

15: end for
16: for b = 1 to z do
17: ω ← 0
18: for i = 1 to |S| do
19: ω ← ω +Kb[i] {accumulates in ω the Kb values}
20: end for
21: for i = 1 to |S| do
22: x̄b[i]←

Kb[i]
ω

{normalizes the probability of i-th state}
23: end for
24: end for
25: for i = 1 to |S| do
26: for b = 1 to z do
27: π[i]← π[i] + x̄b[i]
28: end for
29: π[i]←

π[i]
z
{computes the final average probabilities}

30: end for

Figure 2 presents the simulation times (depicted by the
bars) and the obtained maximum absolute errors (plotted
by dotted lines) for three Markovian models: ASP, FAS and
RS, which are described in detail in Section IV-A. For these
models, we have performed the Bootstrap simulation method
varying the trajectory lengths from 1e+05 to 1e+09.

 1

 10

 100

 1000

 10000

 100000

1e+
05

1e+
06

1e+
07

1e+
08

1e+
09

1e+
05

1e+
06

1e+
07

1e+
08

1e+
09

1e+
05

1e+
06

1e+
07

1e+
08

1e+
09

0.00e+00

5.00e-04

1.00e-03

1.50e-03

2.00e-03

2.50e-03

3.00e-03

3.50e-03

4.00e-03

4.50e-03

T
im

e
(s

)

M
axim

um
 A

bsolute E
rror

Simulation trajectory length
RS modelFAS modelASP model

Figure 2. Simulation times vs. Maximum Absolute Errors.

1442143814381438143814431443

Observing the results presented in Figure 2, it is evident
that the simulation of long trajectories (i.e., 1e+09) using the
Bootstrap method can directly impact on the results accu-
racy, since they produce maximum absolute errors inferior
to 1e-05 . However, the execution of those long trajectories
demands a considerable simulation time.

As the bootstrap vectors can be independently computed,
one can devise parallel algorithms, focusing on parallel
resamplings to enhance the execution time of long run
trajectories. Once the samples can be generated in a fast
manner, the number of samples could also be augmented in
order to improve results accuracy.

III. PARALLEL BOOTSTRAP IMPLEMENTATIONS

Considering that previous performance analysis of the
sequential simulation process have pointed out a need of
optimization in bootstrapping process (Figure 2), we present
three parallel implementations for multi-core SMP clus-
ters in order to achieve better performance results. These
implementations differ in the workload distribution and
programming model.

We have started with a pure MPI implementation (pure-
MPI) to profit of different machines, measuring the im-
pact of communication [17]. The second approach named
Hybrid-I was implemented using a hybrid programming
model with MPI and OpenMP. Due to thread management
overheads found in the Hybrid-I implementation, we have
developed an optimized approach, named Hybrid-II.

A. Pure MPI implementation (pure-MPI)

This approach uses only MPI primitives and aims splitting
the z bootstraps among a given number C of cluster nodes.
The implementation also uses a static scheduling strategy
based on a fairly workload distribution (Figure 3).

..

.

...

...

...

Bootstrapping process
(sequential computation)

bo

ot
st

ra
ps

Node #1

..

.

...

...

...

Bootstrapping process
(sequential computation)

bo

ot
st

ra
ps

Node #2

..

.

...

...

...

Bootstrapping process
(sequential computation)

bo

ot
st

ra
ps

Node #C

Figure 3. Pure-MPI parallel approach schema.

In this approach, each node performs the bootstrapping
process for the number of bootstraps assigned until the end
of the trajectory length. At the end of the computation, the

results stored in each individual probability vector need to
be synchronized with the first node, which is responsible for
computing the final probability vector. The synchronization
process is accomplished via the MPI REDUCE routine that
performs a global update of the probability vector. Note
that we have used only one MPI process for each node,
since our application demands a high memory cost per
process. The use of more than one MPI process per node
in our application can exceed memory bounds and a hybrid
MPI/OpenMP implementation is more suitable.

B. Hybrid MPI/OpenMP implementation (Hybrid-I)

An advantage of the Bootstrap simulation method is that
the steps related to the bootstrapping process are completely
independent, so beyond a parallel approach that equally dis-
tributes the workload among nodes, one can take advantage
of the possible intra-node parallelism (Figure 4).

..

. ..
.

...

...

...

..

.

...

...

...

... ...

...

..

.

...

...

...

Bootstrapping process
(parallel computation)

th

re
ad

s

Node #1

..

. ..
.

...

...

...

..

.

...

...

...

... ...

...

..

.

...

...

...

Bootstrapping process
(parallel computation)

th

re
ad

s

Node #2

..

. ..
.

...

...

...

..

.

...

...

...

... ...

...

..

.

...

...

...

Bootstrapping process
(parallel computation)

th

re
ad

s

Node #C

Figure 4. Hybrid-I parallel approach schema.

In this approach, named Hybrid-I, the bootstrapping pro-
cess in each node is also parallelized using the combined
parallel work-sharing loop construct #pragma omp parallel
for from OpenMP [22]. This construct is used to parallelize
the loop at line 7 (Algorithm 1), following a static scheduling
strategy defined via the static schedule clause. Therefore, the
intra-node computation is distributed among a given number
of threads on each node.

C. Enhancing the Hybrid-I approach (Hybrid-II)

This approach uses the same parallel schema presented in
Figure 4, taking also advantage of the possible intra-node
parallelism. However, instead of create a parallel region at
each step in the simulation process (Hybrid-I approach),
Hybrid-II implementation creates only once the parallel
region. Therefore, a parallel region integrates the whole
simulation process (Algorithm 1, lines 5-15), minimizing
possible overheads related to the thread management. The
workload distribution is performed splitting the number of
bootstraps assigned for each node among threads.

1443143914391439143914441444

IV. PARALLEL PERFORMANCE EVALUATION

The Bootstrap simulation method presents a computa-
tional cost related to the trajectory length (n), the number of
bootstraps (z) and the number of trials (n̄) in the resampling
process. However, some Markovian models present different
characteristics (e.g., large state spaces, sparse transition
matrices, among others) that could impact on the method’s
performance, depending also on the parallel approach. In
order to verify the trade-offs of using both MPI and OpenMP
based solutions, we have executed simulations for three
classes of models [23], [9], [24], varying the models’ sizes
(i.e., very small models and considerably large models) for
a more comprehensive analysis.

Following, we present models originally described by the
Stochastic Automata Networks (SAN) formalism [8], which
is a structured Markovian formalism [25], i.e., they could
have a large underlying Markov chain depending on the
number of automata and their complex transitions.

We have performed experiments in a multi-core SMP
cluster composed of eight homogeneous machines inter-
connected via a Gigabit Ethernet network. Each machine
consists of two Intel Xeon E5520 (Nehalem) Quad-core
processors with the Intel Hyper-Threading technology (16
logical processors) and 16 GB of memory. Each processor
runs at 2.27 GHz and 8 MB L3 shared by all cores. The
software stack is a Linux O.S. with the libraries OpenMPI
1.4.2 and OpenMP 2.5.

A. The simulated Markovian models

ASP (Alternate Service Pattern) model describes an
Open Queueing Network [1] with servers that map different
service patterns. The model has four queues represented
by four automata, an additional automaton representing the
service patterns. This model has reachable state space (RSS)
given by (K + 1)4 × P states, where K is the capacity of
the queues and P the number of service patterns.
FAS (First Available Server) model indicates the avail-

ability of N servers, where every server is composed of a
two state automaton, representing the two possible server
conditions: available or busy. In the model, requests are
firstly assigned to the first server. If the server is busy, the
task must be assigned to the second server and so on, i.e., the
first available server is assigned to the request. This model
has RSS equal to 2N states.
RS (Resource Sharing) model maps R shared resources

to P processes. Each process is represented by an automaton
with two states: idle or busy. The number of available
resources is represented by a function that only grants access
to the busy state if there is less than R process in the busy
state. This model represents 2P states and, the number of
reachable states is just

∑R

i=0

(
P

i

)
, where

(
P

i

)
is the number

of i-combination of a P -sized set, i.e.:
(
P

i

)
= P !

i!(P−i)! .
The set of small models was parametrized as follows: ASP

model - every queue with capacity two (K = 2) and two

service patterns (P = 2); FAS model - with nine servers
(N = 9); and RS model - with 10 processes (P = 10)
and five resources (R = 5), giving respectively models with
reachable state space sized 162, 512 and 638 states. And for
large models: ASP model - every queue with capacity fifty
(K = 50) and four service patterns (P = 4); FAS model -
with twenty five servers (N = 25); and RS model - with 25
processes (P = 25) and fifteen resources (R = 15), giving
respectively models with reachable state space sized around,
respectively, 27, 33 and 29 million states.

B. Experimental results

We have performed a set of experiments1 to verify the
performance of the parallel implementations, running the
Bootstrap simulation for our models (Section IV-A) over 1
(sequential implementation), 2, 3, 4, 5, 6, 7, and 8 nodes. The
experiments were conducted considering 36 bootstraps (z =
36) and trajectory lengths (n) of 1e+06, 1e+07, 1e+08, and
1e+09. Previous work [16] has analyzed the impact of the
number of bootstraps on the results precision considering
the aforementioned Markovian models. We have assumed
36 bootstraps in our experiments in order to obtain a fair
workload distribution among nodes. Table I describes how
the bootstraps were distributed among the nodes.

Table I
NUMBER OF BOOTSTRAPS ASSIGNED TO EACH CONFIGURATION.

Configuration
Number of bootstraps in each node

1
st

2
nd

3
rd

4
th

5
th

6
th

7
th

8
th

1 36
2 18 18
3 12 12 12
4 9 9 9 9
5 8 7 7 7 7
6 6 6 6 6 6 6
7 6 5 5 5 5 5 5
8 5 5 5 5 4 4 4 4

Figure 5 presents, respectively, the time spent in seconds
for the simulation of large and small models. There are one
chart to each trajectory length (from 1e+06 to 1e+09), where
there are three sets of bars showing the results of each model
(ASP, FAS and RS). At each set of bars representing a given
model, there are eight bars representing the simulation times
over each configuration. Each bar is split in five colors:
• green - concerns the process of discovering the next-

state in the simulated trajectory (Algorithm 1, line 6);
• red - related to the bootstrapping process (lines 7-13);
• blue - related to the normalization of the bootstrap

vectors (lines 16-24);
• yellow - concerns the time spent in communication

among nodes;
• brown - related to the computation of the average state

probabilities (lines 25-30).

1Our results were computed considering the average of 30 trials taking
a 95% confidence intervals into account. Therefore, the time in seconds
presented in Y -axis is statistically validated.

1444144014401440144014451445

(a) Large models (b) Small models

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

T
im

e
(s

)

Configuration

n = 1e+06
Next-State

Bootstrapping
Normalization

Communication
Computing

RSFASASP

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

T
im

e
(s

)

Configuration

n = 1e+06
Next-State

Bootstrapping
Normalization

Communication
Computing

RSFASASP

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

T
im

e
(s

)

Configuration

n = 1e+07
Next-State

Bootstrapping
Normalization

Communication
Computing

RSFASASP

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

T
im

e
(s

)

Configuration

n = 1e+07
Next-State

Bootstrapping
Normalization

Communication
Computing

RSFASASP

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

T
im

e
(s

)

Configuration

n = 1e+08
Next-State

Bootstrapping
Normalization

Communication
Computing

RSFASASP

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

T
im

e
(s

)

Configuration

n = 1e+08
Next-State

Bootstrapping
Normalization

Communication
Computing

RSFASASP

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

T
im

e
(s

)

Configuration

n = 1e+09
Next-State

Bootstrapping
Normalization

Communication
Computing

RSFASASP

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

T
im

e
(s

)

Configuration

n = 1e+09
Next-State

Bootstrapping
Normalization

Communication
Computing

RSFASASP

Figure 5. Parallel simulation performance analysis (pure-MPI) for large models (a) and small models (b).

1445144114411441144114461446

Observing Figure 5 (a), we notice a deficient optimization
regarding the parallel simulation times for the pure-MPI ap-
proach considering a trajectory length equal to 1e+06. These
deficient parallel results for large models are due to the fact
that increasing the number of nodes there is an increasing
on the communication costs, where large vectors must be
updated. Remark that increasing the trajectory length to
1e+07, the bootstrapping process time augments but the
communication costs remain approximately the same. It is
important to notice that the Y -axis increases one order of
magnitude as the trajectory length augments. This observa-
tion is confirmed looking at the results for n=1e+09, where
there are gains in terms of speedup, since the communication
time is irrelevant in comparison to the bootstrapping process
time. Moreover, the maximum speedup factor is limited to
eight, since we have used only one MPI processes per node,
as described in Section III-A.

Figure 5 (b) depicts the simulation performance for the
small models. It is possible to perceive the major drives
for the parallel implementation of the Bootstrap simulation.
Small models have an irrelevant communication cost due to
the size of the vectors that must be updated (around hundred
of states for our experiments). On the contrary, large models
need to update large probability vectors (around 30 million
position).

Observing the processing time requirements for small and
large models (Figure 5), we observe that those models have
quite similar demands to the bootstrapping process. That fact
indicates that the processing demand is almost bounded only
by n, and it is independent of the model’s size.

Figure 6 shows the simulation time in seconds for the
ASP, FAS and RS models for n=1e+06, where 36 bootstraps
were distributed among 1, 2, 4 and 8 threads. Surprisingly,
the Hybrid-I results were extremely bad in comparison to
pure-MPI.

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8 1 2 4 8 1 2 4 8

T
im

e
(s

)

Number of threads in only one node

n = 1e+06
Next-State

Bootstrapping
Normalization

Communication
Computing

RSFASASP

Figure 6. Parallel simulation performance analysis (Hybrid-I).

Observing Figure 6, it is possible to notice that the sim-
ulation time increases as the number of threads augments.

For instance, the sequential time for n=1e+06 (ASP model
- K=2; P=2) using pure-MPI - Figure 5 (b) - is around 15
seconds, whereas Hybrid-I with one node and 8 threads is
about 70 seconds. The long execution time can be explained
by the thread management overhead due to the parallel
region is created and terminated n times.

Figure 7 presents the simulation time results using
Hybrid-II. At the X-axis, the number in parenthesis in
each configuration means the maximum number of threads
created in each node considering the assigned workload.
It is also evident a deficient optimization concerning the
simulation times for n=1e+06 for large models. This poor
optimization is also due to the communication costs. These
costs are less evident for n=1e+07 and even less for
n=1e+09. In this approach, the bootstrapping process times
for small and large models have also quite similar demands.
Moreover, the occurrence of the flattening behavior in the
parallel simulation times (configurations 5, 6, 7, and 8) is
due to the similar workloads distributed for each node (i.e.,
36 bootstraps fairly distributed among a given number of
nodes). This observation is confirmed by Figure 7, where the
bootstrapping process times for all three models are really
close to each other.

Table II presents the achieved speedups for the ASP,
FAS and RS models, where n varies from 1e+06 to 1e+09
using the pure-MPI approach (configuration 8) and Hybrid-
II (configurations 4, 5 and 8 with, respectively, a maximum
of 9, 8 and 5 threads per node). Remark that the speedups are
inferior to 5 times for pure-MPI for all models and different
trajectory lengths. However, Hybrid-II has significantly im-
proved the speedups to more than 24 times for small models
- Table II (a). But, configuration 4 (9) and 5 (8) have reached
about 80% efficiency, whereas configuration 8 (5) has only
reached around 50%. There is a considerable improvement
in terms of speedup between the first (pure-MPI) and the
last (Hybrid-II) parallel approach.

Similar results are obtained to large models using pure-
MPI - Table II (b) - where the speedups are also inferior to
5 times. For Hybrid-II, the speedups for n=1e+06 are not
significant either, since the communication times are evident
regarding the total simulation time. Nevertheless, for long
run trajectories (n=1e+09), besides these trajectories provide
small maximum absolute errors (i.e., inferior to 1e-05), those
experiments for configuration 5 (8) have achieved the best
speedups (around 35 times, which are really close to the
ideal in this case) and really good efficiency, nearly, 90%.

Figure 8 presents the speedups (plotted by dotted lines)
and efficiencies (depicted by the bars) for small and large
models (for long run trajectories, n =1e+09). It is more
evident the fact that the speedup between configurations 5
and 8 remains the same, however the efficiency considerably
drops. Observe that the efficiency for large models (config-
uration 3) is superior to 100% due to the Hyper-Threading
technology.

1446144214421442144214471447

(a) Large models (b) Small models

 0

 2

 4

 6

 8

 10

 12

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

T
im

e
(s

)

Configuration (Threads)

n = 1e+06
Next-State + Bootstrapping

Normalization
Communication

Computing

RSFASASP

 0

 2

 4

 6

 8

 10

 12

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

T
im

e
(s

)

Configuration (Threads)

n = 1e+06
Next-State + Bootstrapping

Normalization
Communication

Computing

RSFASASP

 0

 5

 10

 15

 20

 25

 30

 35

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

T
im

e
(s

)

Configuration (Threads)

n = 1e+07
Next-State + Bootstrapping

Normalization
Communication

Computing

RSFASASP

 0

 5

 10

 15

 20

 25

 30

 35

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

T
im

e
(s

)

Configuration (Threads)

n = 1e+07
Next-State + Bootstrapping

Normalization
Communication

Computing

RSFASASP

 0

 50

 100

 150

 200

 250

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

T
im

e
(s

)

Configuration (Threads)

n = 1e+08
Next-State + Bootstrapping

Normalization
Communication

Computing

RSFASASP

 0

 50

 100

 150

 200

 250

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

T
im

e
(s

)

Configuration (Threads)

n = 1e+08
Next-State + Bootstrapping

Normalization
Communication

Computing

RSFASASP

 0

 500

 1000

 1500

 2000

 2500

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

T
im

e
(s

)

Configuration (Threads)

n = 1e+09
Next-State + Bootstrapping

Normalization
Communication

Computing

RSFASASP

 0

 500

 1000

 1500

 2000

 2500

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

1 (16)

2 (16)

3 (12)

4 (9)

5 (8)

6 (6)

7 (6)

8 (5)

T
im

e
(s

)

Configuration (Threads)

n = 1e+09
Next-State + Bootstrapping

Normalization
Communication

Computing

RSFASASP

Figure 7. Parallel simulation performance analysis (Hybrid-II) for large models (a) and small models (b).

1447144314431443144314481448

Table II
PARALLEL SIMULATION PERFORMANCE ANALYSIS.

Model n

ASP

1e+06

1e+07

1e+08

1e+09

FAS

1e+06

1e+07

1e+08

1e+09

RS

1e+06

1e+07

1e+08

1e+09

(a) Small models

Sequential
pure-MPI Hybrid-II

configuration 8 configuration 4 (9) configuration 5 (8) configuration 8 (5)

Time (s) Speedup Effic. (%) Speedup Effic. (%) Speedup Effic. (%) Speedup Effic. (%)

15.73 4.85 7.59 24.58 76.81 30.25 75.63 30.84 48.19

157.23 4.84 7.57 24.30 75.94 32.96 82.41 31.76 49.63

1,573.43 4.84 7.56 24.23 75.72 32.91 82.28 32.54 50.85

15,727.80 4.84 7.56 24.39 76.21 32.97 82.43 32.66 51.03

15.76 4.85 7.58 23.52 73.51 31.52 78.80 31.52 49.25

157.66 4.86 7.59 24.91 77.83 31.91 79.79 31.79 49.67

1,575.08 4.86 7.59 24.75 77.36 33.18 82.95 33.63 52.54

15,768.10 4.87 7.60 22.92 71.62 33.79 84.47 33.90 52.96

15.78 4.81 7.52 22.23 69.45 23.21 58.01 20.23 31.61

157.84 4.82 7.54 23.08 72.11 30.89 77.22 31.13 48.64

1,579.74 4.83 7.55 23.27 72.73 29.14 72.85 31.15 48.67

15,788.10 4.83 7.54 23.31 72.86 31.44 78.59 31.20 48.76

(b) Large models

Sequential
pure-MPI Hybrid-II

configuration 8 configuration 4 (9) configuration 5 (8) configuration 8 (5)

Time (s) Speedup Effic. (%) Speedup Effic. (%) Speedup Effic. (%) Speedup Effic. (%)

23.86 2.57 4.02 3.22 10.05 3.41 8.52 3.67 5.74

165.70 4.34 6.78 13.34 41.69 15.22 38.04 16.33 25.51

1,585.07 4.83 7.54 25.24 78.87 23.99 59.97 33.57 52.46

15,845.82 4.95 7.73 28.01 87.54 35.50 88.76 35.51 55.49

25.78 2.40 3.74 2.85 8.91 2.96 7.40 3.11 4.86

171.52 4.31 6.74 12.28 38.37 14.12 35.29 14.66 22.91

1,628.67 4.94 7.71 25.12 78.49 32.78 81.96 33.66 52.60

16,132.05 4.99 7.80 28.18 88.07 35.30 88.25 35.44 55.38

25.80 2.62 4.09 3.05 9.53 3.40 8.51 3.66 5.73

166.89 4.30 6.72 12.85 40.15 14.80 36.99 15.54 24.28

1,595.79 4.89 7.64 25.07 78.34 32.98 82.44 33.45 52.27

15,812.67 4.90 7.65 27.94 87.30 35.13 87.83 35.70 55.78

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Sp
ee

du
p

E
fficiency (%

)

Configuration

Small models (n = 1e+09)

RSFASASP

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
 0

 20

 40

 60

 80

 100

 120

Sp
ee

du
p

E
fficiency (%

)

Configuration

Large models (n = 1e+09)

RSFASASP

Figure 8. Speedup vs. Efficiency (Hybrid-II).

Remark that the computational problem of simulating
Markovian models is mainly related to the large amount of
samples needed to obtain an accurate probability distribution
among states, i.e., long run trajectories are recommended.
Additionally, using the Bootstrap method, we have included
an overhead of computations to generate resamplings at
each step of the simulated trajectory. Regarding all per-
formed experiments, Hybrid-II have demonstrated to be a
good option to speedup the Bootstrap simulation algorithm,
maintaining results accuracy using long run trajectories.

Observing the results we identify that the challenge to
achieve best efficiency is to guarantee an adequate load
balance in a minimum communication overhead. In our
experiments we are aware that the number of bootstraps
can directly influence in the overall efficiency, which is
also dependent on the number of nodes/processors and the
correspondent distributed workload.

V. CONCLUSION

The execution of a process where independent tasks
are distributed among several processors lead us a bet-
ter performance than when the pure sequential version is
performed. Nevertheless, the Bootstrap simulation method
allows the generation of samples in an independent manner
which is trivial in terms of parallelization efforts. We have
noticed that the computational cost issues, and related open
challenges to face these classes of problems, are specifically
directed to two concerns:

• an efficient implementation of transition function φ to
compute samples in simulation trajectories;

• adapting parallel sampling techniques to mitigate the
efforts related to the simulation of structured Markovian
models.

An important contribution of this paper is to propose
an efficient parallel implementation of a novel simulation
algorithm, achieving a considerable speedup for very large
models (i.e., tens of millions states), specially when quite
long run trajectories were needed (i.e., billions of transi-
tions). The speedups were also consistent for different mod-
els, delivering a nearly 5 times speedup for the configuration
8 using the pure-MPI approach, and about 30 times for
configurations 5 and 8 using the Hybrid-II approach. In
addition, our contribution consists in the comprehension that
the computational demands of the bootstrapping process
depend only on the simulation trajectory length, while the
communication demands depend only on the model’s size.
That fact is confirmed in both parallel approaches pure-
MPI and Hybrid-II, allowing a better choice of configuration
according to the simulation to be performed.

1448144414441444144414491449

The focus of this research is on the parallel performance
analysis of the Bootstrap simulation algorithm, exploiting
different characteristics of multi-core SMP clusters. But it
is also important to notice the obtained gains related to the
simulation times needed to perform long run trajectories,
which allow us to achieve more accurate results (where the
maximum absolute errors are inferior than 1e-05).

Previous works [16] have analyzed the usage of tens
of bootstraps in the bootstrapping process over one single
node using only one processor. However, multi-core cluster
environments allow us to perform the simulation of a model
using hundred of bootstraps distributed over many nodes
with many processors. Regarding future works, a further
study may be considered about the impact of the number
of bootstraps on the simulation results accuracy.

Moreover, it is also possible to foresee improvements
in the Bootstrap simulation method itself in order to con-
sider the subsystems’ state in a global dynamic, rather
than inspecting directly the wide global state. We also
foresee to incorporate the parallel sampling process with
more sophisticated simulation approaches, such as Perfect
Simulation [26].

Nonetheless, the results already obtained by the parallel
approaches of the Bootstrap simulation algorithm allow quite
important time savings in the solution of huge Markovian
systems, which are impractical to solve with the current
numerical software tools [27], [28]. That is an important
fact that itself justifies the research effort involved in this
work.

REFERENCES

[1] W. J. Stewart, Probability, Markov Chains, Queues, and
Simulation. USA: Princeton University Press, 2009.

[2] H. Wang, D. I. Laurenson, and J. Hillston, “Evaluation
of RSVP and Mobility-Aware RSVP Using Performance
Evaluation Process Algebra,” in Proceedings of the IEEE
International Conference on Communications, 2008, pp. 192–
197.

[3] R. Marculescu and A. Nandi, “Probabilistic Application Mod-
eling for System-Level Performance Analysis,” in Design
Automation & Test in Europe (DATE), Munich, Germany,
March 2001, pp. 572–579.

[4] R. Chanin, M. Corrêa, P. Fernandes, A. Sales, R. Scheer,
and A. F. Zorzo, “Analytical Modeling for Operating System
Schedulers on NUMA Systems,” Electronic Notes in Theoret-
ical Computer Science (ENTCS), vol. 151, no. 3, pp. 131–149,
2006.

[5] C. Bertolini, L. Brenner, P. Fernandes, A. Sales, and A. F.
Zorzo, “Structured Stochastic Modeling of Fault-Tolerant
Systems,” in Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems (MASCOTS 2004). Vol-
lendam, The Netherlands: IEEE Computer Society, 2004, pp.
139–146.

[6] K. Sayre, “Improved techniques for software testing based on
Markov chain usage models,” Ph.D. dissertation, University
of Tennessee, Knoxville, USA, 1999.

[7] G. H. Golub and C. F. V. Loan, Matrix Computations. The
Johns Hopkins University Press, 1996.

[8] B. Plateau, “On the stochastic structure of parallelism and
synchronization models for distributed algorithms,” in Con-
ference on Measurements and Modeling of Computer Systems
(SIGMETRICS). Austin, Texas: ACM Press, 1985, pp. 147–
154.

[9] L. Brenner, P. Fernandes, and A. Sales, “The Need for and
the Advantages of Generalized Tensor Algebra for Kronecker
Structured Representations,” International Journal of Simula-
tion: Systems, Science & Technology (IJSIM), vol. 6, no. 3-4,
pp. 52–60, February 2005.

[10] W. H. Sanders and J. F. Meyer, “Reduced Base Model Con-
struction Methods for Stochastic Activity Networks,” IEEE
Journal on Selected Areas in Communications, vol. 9, no. 1,
pp. 25–36, 1991.

[11] J. Hillston, A compositional approach to performance mod-
elling. New York, USA: Cambridge University Press, 1996.

[12] G. Balbo, “Introduction to Stochastic Petri Nets,” in European
Educational Forum: School on Formal Methods and Perfor-
mance Analysis, Berg en Dal, The Netherlands, 2000, pp.
84–155.

[13] O. Häggström, Finite Markov Chains and Algorithmic Appli-
cations. Cambridge University Press, 2002.

[14] J. G. Propp and D. B. Wilson, “Exact Sampling with Coupled
Markov Chains and Applications to Statistical Mechanics,”
Random Structures and Algorithms, vol. 9, no. 1–2, pp. 223–
252, 1996.

[15] S. M. Ross, Simulation. Orlando, FL, USA: Academic Press,
Inc., 2002.

[16] R. M. Czekster, P. Fernandes, A. Sales, D. Taschetto, and
T. Webber, “Simulation of Markovian models using Boot-
strap method,” in Summer Computer Simulation Conference
(SCSC’10). Ottawa, Canada: ACM, July 2010, pp. 564–569.

[17] R. M. Czekster, P. Fernandes, A. Sales, and T. Webber,
“Performance Issues for Parallel Implementations of Boot-
strap Simulation Algorithm,” in International Symposium on
Computer Architecture and High Performance Computing
(SBAC-PAD’10). Petropolis, Brazil: IEEE Computer Society,
October 2010, pp. 167–174.

[18] N. Drosinos and N. Koziris, “Performance Comparison of
Pure MPI vs Hybrid MPI-OpenMP Parallelization Models
on SMP Clusters,” International Parallel and Distributed
Processing Symposium (IPDPS 2004), vol. 1, p. 15a, 2004.

[19] Y. He and C. H. Q. Ding, “MPI and OpenMP paradigms on
cluster of SMP architectures: the vacancy tracking algorithm
for multi-dimensional array transposition,” in ACM/IEEE Su-
percomputing Conference, 2002, pp. 1–14.

1449144514451445144514501450

[20] B. Efron, “Bootstrap Methods: Another Look at the Jack-
knife,” The Annals of Statistics, vol. 7, no. 1, pp. 1–26, 1979.

[21] B. F. J. Manly, Randomization, Bootstrap and Monte Carlo
Methods in Biology, 2nd ed. Chapman & Hall/CRC, 1997.

[22] B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP:
Portable Shared Memory Parallel Programming. The MIT
Press, 2007.

[23] A. Sales and B. Plateau, “Reachable State Space Generation
for Structured Models which use Functional Transitions,” in
International Conference on the Quantitative Evaluation of
Systems (QEST’09), Budapest, Hungary, 2009, pp. 269–278.

[24] L. Brenner, P. Fernandes, and A. Sales, “Why you
should care about Generalized Tensor Algebra,”
PUCRS, Porto Alegre, Tech. Rep. TR 037, 2003,
http://www3.pucrs.br/pucrs/files/uni/poa/facin/pos/relatoriostec/tr037.pdf.

[25] P. Fernandes, B. Plateau, and W. J. Stewart, “Efficient
descriptor-vector multiplication in stochastic automata net-
works,” Journal of the ACM (JACM), vol. 45, no. 3, pp. 381–
414, May 1998.

[26] P. Fernandes, J.-M. Vincent, and T. Webber, “Perfect Simula-
tion of Stochastic Automata Networks,” in International Con-
ference on Analytical and Stochastic Modelling Techniques
and Applications (ASMTA’08), ser. LNCS, vol. 5055, 2008,
pp. 249–263.

[27] R. M. Czekster, P. Fernandes, and T. Webber, “GTA express
- A Software Package to Handle Kronecker Descriptors,” in
Proceedings of the 6th International Conference on Quanti-
tative Evaluation of SysTems (QEST 2009). IEEE Computer
Society, September 2009, pp. 281–282.

[28] L. Brenner, P. Fernandes, B. Plateau, and I. Sbeity,
“PEPS2007 - Stochastic Automata Networks Software Tool,”
in International Conference on the Quantitative Evaluation
of Systems (QEST’07). Edinburgh, UK: IEEE CS, 2007, pp.
163–164.

1450144614461446144614511451

