
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/229019508

Virtual Machines Networking for Distributed Systems Emulation

Article · May 2012

CITATIONS

0
READS

210

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Dell Virtualization View project

Mauro Storch

Pontifícia Universidade Católica do Rio Grande do Sul

13 PUBLICATIONS   12 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Cesar A. F. De Rose on 04 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/229019508_Virtual_Machines_Networking_for_Distributed_Systems_Emulation?enrichId=rgreq-17d86569ef62c8006f953c6dcd66eb75-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAxOTUwODtBUzoxMDQ0NzY0NDI2MjgxMDNAMTQwMTkyMDUzMzQyOQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/229019508_Virtual_Machines_Networking_for_Distributed_Systems_Emulation?enrichId=rgreq-17d86569ef62c8006f953c6dcd66eb75-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAxOTUwODtBUzoxMDQ0NzY0NDI2MjgxMDNAMTQwMTkyMDUzMzQyOQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Dell-Virtualization?enrichId=rgreq-17d86569ef62c8006f953c6dcd66eb75-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAxOTUwODtBUzoxMDQ0NzY0NDI2MjgxMDNAMTQwMTkyMDUzMzQyOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-17d86569ef62c8006f953c6dcd66eb75-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAxOTUwODtBUzoxMDQ0NzY0NDI2MjgxMDNAMTQwMTkyMDUzMzQyOQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mauro_Storch?enrichId=rgreq-17d86569ef62c8006f953c6dcd66eb75-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAxOTUwODtBUzoxMDQ0NzY0NDI2MjgxMDNAMTQwMTkyMDUzMzQyOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mauro_Storch?enrichId=rgreq-17d86569ef62c8006f953c6dcd66eb75-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAxOTUwODtBUzoxMDQ0NzY0NDI2MjgxMDNAMTQwMTkyMDUzMzQyOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Pontificia_Universidade_Catolica_do_Rio_Grande_do_Sul?enrichId=rgreq-17d86569ef62c8006f953c6dcd66eb75-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAxOTUwODtBUzoxMDQ0NzY0NDI2MjgxMDNAMTQwMTkyMDUzMzQyOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mauro_Storch?enrichId=rgreq-17d86569ef62c8006f953c6dcd66eb75-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAxOTUwODtBUzoxMDQ0NzY0NDI2MjgxMDNAMTQwMTkyMDUzMzQyOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cesar_De_Rose?enrichId=rgreq-17d86569ef62c8006f953c6dcd66eb75-XXX&enrichSource=Y292ZXJQYWdlOzIyOTAxOTUwODtBUzoxMDQ0NzY0NDI2MjgxMDNAMTQwMTkyMDUzMzQyOQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Virtual Machines Networking for

Distributed Systems Emulation

Mauro Storch1, Rodrigo N. Calheiros2, César A. F. De Rose3

1Instituto de Pesquisas Eldorado

Porto Alegre, Brazil

Email: mauro.storch@eldorado.org.br

2Department of Computer Science and Software Engineering

The University of Melbourne, Australia

Email: rnc@unimelb.edu.au

3Pontifical Catholic University of Rio Grande do Sul

Porto Alegre, Brazil

Email: cesar.derose@pucrs.br

Abstract. Distributed systems are the dominant platform for any application,

both in academic and industry. However, testing of applications in such a plat-

form is hard, due to the complexity of the elements that compose these systems.

Emulation is an alternative way to improve software quality for distributed ap-

plications, allowing analysis of the application behavior in a given environment

before its deployment. To emulate distributed systems, virtualization can be

applied, as it allows creation of a large-scale controlled environment with few

physical resources. Such an approach, however, requires application of network

management of virtual machines. This paper presents approaches for network

virtualization and a description of how it can be used to create a network of

virtual machines for emulation of different distributed systems configurations.

This work is part of a system designed for creating a virtual environment, based

on virtualization technology, to evaluate distributed applications.

1. Introduction

Virtualization is an outstanding technology which allows rich control of physical re-

sources, enabling full exploitation of machines capacity at a negligible overhead cost.

Current virtual machine monitors [Devine et al. 1998, Barham et al. 2003] offer a high

degree of control over the sharing of physical resources, such as CPU and memory. It is

easy, using such tools, to deploy several isolated virtual machines (VMs) in a single host,

possibly running different operating systems.

The next step on application of virtualization technology is the control of network

connectivity of virtual machines. Some projects [Smith and Nair 2005,Keahey et al. 2004,

Emeneker et al. 2006]apply virtualization to create a virtual local area network containing

resources that are physically far from each other, belonging to different administrative

domains.

It is also possible, by using virtualization, to achieve the opposite approach,

namely creation of a large-scale controlled environment with few local physical resources.

IX Workshop em Clouds, Grids e Aplicações 29



In this case, network management techniques might be applied to configure not only the

virtual environment itself but also real network characteristics.

A set of virtual machines can be configured to compose subnets communicating

with each other through controlled routes and links. In this work, SNMP agents are used

to configure network components, and TBF/NetEm [Evans and Filsfils 2007,Hemminger

2007] is used to supply bandwidth control. In order to improve network management

of the virtual environment, a module is responsible for the reception of both the real en-

vironment description and the desired virtual network configuration, described in XML

language. The module applies the desired configuration in a running set of virtual ma-

chines. At the end of the process, the nodes belonging to the virtual environment are

ready to communicate according to the specified rules.

Experiments were conducted in order to evaluate the efficiency of our approach in

setting virtual network parameters as well as to check the communication configuration

made in the virtual machines that compose the virtual environment. This work com-

plements previous results [Calheiros et al. 2010, Calheiros et al. 2008], where tests were

executed in a broader context with the use of network management mechanisms described

in this paper.

This paper is organized as follows. Section 2 presents basic virtualization con-

cepts. Section 3 presents the motivation for this work and the context where it is placed.

Section 4 presents development of the virtual network manager. Section 5 presents the

evaluation of the network manager and Section 6 concludes the paper.

2. System Virtualization

System virtualization is applied not only in many production systems, but also in research

from several computer science areas. Nevertheless, it is not a new concept: the first vir-

tual machines were developed in the sixties in order to improve efficient in the usage of

computers available by that time [Creasy 1981]. This technology allows simultaneous

access to the virtualized hardware by several users, which does not realize that the phys-

ical machine is not exclusively available for their use. In this context, virtualization can

be understood as a technology that abstracts the hardware, allowing execution of several

instances of an operating system in the same physical machine [Smith and Nair 2005].

Virtual machine is a software layer that duplicates a real machine, acting between

the hardware and the operating system. It is worth noting that every virtual machine

located on a certain real machine is isolated from the others. Thus, the processes executing

in a specific virtual machine are independent from the others, and cannot interfere in the

processes running on other virtual machines. This characteristic allows for increasing the

computer system reliability.

Control and creation of virtual machines are performed by the software known as

Virtual Machine Monitor (VMM) or hypervisor. The VMM purpose is to make a specific

interface available to each virtual machine, providing a virtual environment similar to a

real machine.

Paravirtualization is a technique where the VMM does not completely virtualize

the underneath hardware. Thus, the operating systems running on virtual machines have to

be adapted, in order to become aware of the presence of the hypervisor. On the other hand,

30 Anais



hardware virtualization is common in many hardware components allowing a controlled

direct access to the hardware by VM’s operating systems [Neiger et al. 2006, van Doorn

2006]. An example of a paravirtualizator is the Xen Virtual Machine Monitor [Barham

et al. 2003], which is used in this work, and is presented in the following section.

2.1. Xen VMM

Xen VMM is an open source project developed by researchers of University of Cam-

bridge. Xen supports x86 platform, making use of the paravirtualization concept.

Following the model of the x86 platform protection levels, Xen has direct access

to the hardware and executes in the mode of higher privilege. In the level below, the

monitor executes a virtual machine (VM) called dom0. This special machine is in charge

of starting and closing the other virtual machines, called domU. It must be highlighted

that the domU virtual machines have no privileges accessing or using system components,

such as I/O devices, memory, and CPU time.

2.2. Xen Network Architecture

Xen network architecture presents a set of real and virtual components. Xen dom0 is re-

sponsible not only for managing these components but also for supporting network com-

munication among VMs. Virtual switches are used to interconnect both real and virtual

interfaces. A virtual machine can have one or more virtual interfaces interconnected by

one or more virtual switches. They are managed by the firewall software that intercepts

network packages and handles it. These virtual switches can run in one of three modes:

bridge, router, or NAT [Xen Source Inc 2007].

Bridged mode is used in this work. In this mode, iptables [Welte 2006] rules are

used to redirect network packages between real and virtual interfaces. These components

can be managed through the dom0 on each Xen host. This machine natively supports

execution of all management softwares.

Management tools such as iptables and xm (for management of Xen virtual ma-

chines) support creation of network environments using virtual machines on a easier way.

From this standpoint we can see that VMs can be used as normal hosts in order to, for

example, emulate distributed systems. Next section presents a proposal of a virtual envi-

ronment, based on virtualization techniques, to emulate distributed systems.

3. Automated Emulation Framework

This work is part of a project aimed at implementing a virtualization-based emulation

framework (Automated Emulation Framework—AEF) on which a user performs experi-

ments in a virtual distributed system [Calheiros et al. 2010, Calheiros et al. 2008]. The

system organization is presented in Figure 1.

In the bottom level of the architecture there is a cluster of computers running a

Virtual Machine Monitor. Cluster machines run the emulator software, which uses VMM

capacities to build the emulated distributed system that runs user’s experiments.

The system input is an XML description of system resources (both virtual and

physical) and the distributed experiment (e.g., a grid experiment, a P2P protocol test, an

enterprise application, among others). Description of the virtual system includes one or

IX Workshop em Clouds, Grids e Aplicações 31



Figure 1. AEF architecture.

more networks, hosts belonging to each network, its configuration, and network charac-

teristics. Description of physical system includes information about the real environment:

network, specification of each machine, version of the virtualization software in use, as

well as amount of physical resources in use by the VMM on each machine.

Once the required environment is specified, AEF performs a mapping of the virtual

resources to real ones, deploys the equivalent virtual system, and configures the network

environment in order to supply user demands. Afterward, the user application is automat-

ically triggered in the virtual system and managed by the testbed. Application output is

stored according to the user specification.

In this paper, we focus on the aspects related to network management of AEF. In

the next section, a description of the network manager implementation is presented, and

the experiments and achieved results are presented in Section 5.

4. Virtual Machines Networking

This section presents issues related to network management and configuration used by

AEF, as presented in Section 3. Firstly, information about network components of our

virtual environment and how they can be managed will be presented. Following, network

management aspects applied in this work are presented. Afterward, a software module

structure for network management and how this module performs configuration over net-

work components to create a desired virtual distributed environment will be discussed.

32 Anais



Figure 2. Network of Virtual Machines.

4.1. Network issues

System virtualization technology supports VM network communication by a set of real

components and a set of virtual components. As presented in Section 2, each VM has

one or more virtual network interfaces (vifs). These vifs are connect in a virtual switch

hosted in a privileged virtual machine (in Xen, this VM is called dom0). This virtual

switch is managed by firewall software that rules all network traffic in the same way that

in non-virtualized systems. On this virtual switch, real interfaces are also connected,

allowing remote communication. Xen’s dom0 uses iptables [Welte 2006] to manage net-

work connections among local and remote VMs. In this work all network rules act on

OSI’s network layer [Day and Zimmerman 1983]. Bandwidth control is made by a Token

Bucket Filter (TBF) [Evans and Filsfils 2007] and latency configuration is performed with

the NetEm [Hemminger 2007]. Another bandwidth control algorithms like CBQ [Floyd

and Jacobson 1995] and HTB [aka devik ] were evaluated, but TBF was used because it

provides all the tools required by this work.

At VM start up, IP address and default network routes are set to each vif. Such a

definition enables network communication among VMs. However, other network param-

eters such as bandwidth and latency are set in the firewall software running in dom0 after

VMs start up. The virtual switch transmits all network packages on demand to VMs lo-

cated at the same host, using token ring algorithm and memory reallocation [Xen Source

Inc 2007]. Package transmission between VMs placed in different hosts is done by a real

network interface in the same way that in non-virtualized network communications. Fig-

ure 2 illustrates network components architecture in a virtualized environment with more

than one host.

Almost all network configuration parameters, such as vif’s IP address and routes,

traffics rules, and bandwidth control can be changed on the fly. A good way to config-

ure a large-scale environment based on these technologies is through a network manager

approach. In this work, Simple Network Manager Protocol (SNMP) is used for manage

both real and virtual network components. It is presented in the next section.

IX Workshop em Clouds, Grids e Aplicações 33



4.2. Network Management

Network management is used in different systems to configure different kind of resources.

SNMP (Simple Network Management Protocol) was originally developed for network

management. However, due to its flexibility, it is also used for others management types,

such as software management. The structure of this protocol is based on managers and

agents, where the agents are spread on the resources and the management operations are

performed through direct solicitation from managers to agents. The objects that can be

managed are described in the MIB (Management Information Base) [Stallings 1999].

In this work, we apply this approach to configure a environment based on virtual

machines. Once manageable components are defined, the environment configuration is

performed by a SNMP manager. Network configuration in this work consists basically

in making changes on virtual machines network configuration, defining traffic rules on

dom0 (responsible for VMs communication), and setting both bandwidth and latency to

any network link among virtual machines. Both bandwidth and latency configurations are

essential to create a virtual communication environment as close as possible of network

connections in real worlds. Common agents are used to configure network components

like network traffic rules, bandwidth, and latency. On the other hand, specific agents to

make changes on virtual machine network components were developed to support basics

configurations. These agents were described in a previous work [da Cunha Rodrigues

2008].

As presented in Section 3, the proposed Virtual Environment is created in an au-

tomatic way. Thus, the network management needs to be automatized to allow easy en-

vironment creation. To improve the network management, a module was defined using

features presented in this section. This module configures the network communication

among VMs and it is described below.

4.3. Network Manager Module

The Network Manager Module was contextualized in Section 3 and it will be described

in this section. It was developed as an independent module, and can be used out of the

presented context, e.g., configuring network issues of a set of virtual machines described

on the input XML files. The Network Manager Module is an object-oriented program

developed to manage network components through the SNMP protocol. It is used to

perform configuration in an environment based in virtualization technology.

Figure 3 illustrates the Network Manager Module. It receives two XML files as

input. One of them describes the real network which contains description of routers, phys-

ical network links, on-line virtual machines, and network information of real machines.

The second XML file describes the desired virtual environment and contains information

regarding subnetworks of virtual machines, bandwidth and latency among VMs, network

routes and rules, and so on. It is worth noting that this information is a subset of the

information supplied by the user of AEF.

The files are mapped in an object-oriented structure by the Network Manager

Module. Real network description file is the first file loaded by the Network Manager

Module. After all information is read, the module loads the virtual environment file de-

scription. All information is used to perform objects creation. To each kind of component

34 Anais



Figure 3. The Network manager module.

loaded from the file, a related object is created with the information needed to perform

future configurations in the environment.

The module has a method called apply that, when invoked, reads the objects con-

figuration and apply it to the real component which corresponds to the given object. These

configurations are made through SNMP protocol as pointed before. The Network Man-

ager Module can run in any machine at the same network of Xen host machines. Each

machine needs to run SNMP agents and support remote access to allow module manage-

ment.

SNMP agents are installed on each Xen host, allowing both configuration and

monitoring of VMs using Xen API. These agents are invoked by the Network Manager

Module to configure the environment based on the merge between the real and the desired

environment description. SNMP agents are responsible for configuring networking of

VMs and making changes in dom0 firewall software where configuration in bandwidth,

latency, and traffic rules is made, as shown in Section 2.

After configuration file loading, the module makes changes on vifs of each VM

and configures the virtual switches where configuration like network isolation, bandwidth

limitation, and other traffics rules are defined.

At the same time, agents offer monitoring capabilities through SNMP get com-

mand. Agents, located on all Xen hosts, collect information that can be read by a SNMP

manager. Network status, bandwidth, and latency are some of information that can be

monitored.

Network management using SNMP was considered a good way to manage virtual

network components because SNMP is a consolidated and well-accepted management

protocol.

5. Evaluation

In order to investigate the capabilities of our approach for VM networking, an experi-

mental testbed using Xen VMM [Barham et al. 2003] was built. In such an experiment,

IX Workshop em Clouds, Grids e Aplicações 35



a grid infrastructure encompassing 3 isolated sites was set and emulated in a cluster of

workstations, as described below. The tests presented in this section are qualitative and

used to demonstrate network management capabilities of our proposed Network Manager

Module.

5.1. Physical environment

The physical infrastructure hosting the virtual environment is a cluster composed of 4

machines. Each machine is a Pentium 4 2.8GHz with 1MB of cache and 2.5GB of RAM

memory. The machines in the cluster are connected by a dedicated switch and a Fast

Ethernet network. Machines have Xen VMM 3.1, and the Xen’s Dom0 uses 328 MB of

the available RAM memory. The VM images are stored in the hard disks of each host.

Each physical machine hosts more 8 VMs, each one using 256MB of RAM memory

and sharing the same amount of CPU time. Only the network traffic generated by this

experiment was present in the physical environment during the tests.

5.2. Virtual environment

The virtual environment built to our tests is composed of three subnetworks (sites), each

one containing a proxy which is connected to the other proxies. Each subnetwork has

a different number of hosts. Physically, the VMs that belong to these subnetworks are

distributed among the 4 real machines, as shown in Table 1. In such a table, each line

represents a physical machine, and each column represents a site. Thus, a given name in

a table cell means that the hosts belongs to the site related to its column and is physically

located in the host represented by its line.

Figure 4. Virtual grid environment built for the tests.

36 Anais



Table 1. Distribution of virtual machines among physical hosts and virtual sites.

virtual site 1 virtual site 2 virtual site 3 total

host 1
vmgrid108,

vmgrid109

vmgrid201-

vmgrid205,

vmgridpeer2

8

host 2
vmgrid206-

vmgrid212
vmgrid308 8

host 3

vmgrid101-

vmgrid107,

vmgridpeer1

8

host 4

vmgrid301-

vmgrid307,

vmgridpeer3

8

total 10 13 9 32

Table 2. Time in milliseconds for task file transmit.
Bandwidth scenario Sending Receiving

1Mbit/s 136346 113167

100Mbit/s 5197 3463

As shown in Table 1, each machine hosts 8 VMs, belonging to one or more virtual

sites. Even though, no direct access was possible among VMs hosted in the same machine

but belonging to different sites, because Xen offer isolated virtual machines [Barham et al.

2003] and no routes are set among different subnets. This configuration shows that it is

possible to build isolated virtual domains using Xen.

The machines labeled vmgridpeerX on each virtual site acts as proxies, having

access to the other proxies through the network routes table. Each VM belonging to a

site has access to the other VMs belonging to the same site, even though being located

at different physical hosts. Figure 4 shows the virtual Grid environment and presents site

isolation and proxies communication.

5.3. Network validation

The Grid jobs that ran in our evaluation copies one 1MB file to a grid node twenty times.

To evaluate and show network traffic control effectiveness, two bandwidth scenarios were

considered: limited in 1Mbit/s among grid proxies and unlimited (using all network capa-

bility, 100Mbit/s). Table 2 shows times needed by the grid scheduler to send and receive

the file from the grid resource.

Each job has twenty tasks and each task copies the file to the node, runs instruc-

tions, and copies the file back. The job was initialized in the user machines, shown in

Figure 4, and configured to execute on nodes in remote sites. In this environment only

communication among grid schedulers was limited. Although an analysis of the transfers

shows a disparity between the two bandwidth scenarios, it is important to consider ef-

fects of Ethernet collisions caused by communication between the grid scheduler and the

grid resources. Furthermore, in a virtualized environment there is an overhead to transmit

IX Workshop em Clouds, Grids e Aplicações 37



Figure 5. Limited network bandwidth between local and remote VMs.

network packages among distributed virtual machines.

In order to evaluate the effectiveness of our network bandwidth control, a sequence

of tests were made. In these tests, we considered both communication between VMs

hosted at the same host and communication between remote VMs (i.e., VMs hosted in

different machines).

Bandwidth control was made by the TBF (Token Bucket Filter) using tc (Traffic

Control Linux tool). The configuration was performed in the virtual interface (on Xen

dom0) related to each VM network interface.

In our tests 300MB file was transmitted in each case (local and remote VMs),

and the bandwidth between sender and receiver varied on each test. Secure Copy Proto-

col [Barrett and Silverman 2001] was used to transmit the file among the nodes.

Figure 5 shows the result of these tests. The straight line represents configured

values for the bandwidth, while the dotted lines represent the values obtained in the mea-

surements. The proportionality between the configured value and the measured value

increases as the desired bandwidth increases, both in local and remote communication. In

a distributed environment, low values of bandwidth are more common than high values,

so in the most experiments this approach for bandwidth control will produce satisfactory

results.

In order to evaluate the effectiveness of latency control we also varied the latency

between sender and receiver in a different test.

Latency control was made by the NetEm (Network Emulation) using tc (Traffic

Control Linux tool). The configuration was performed in the virtual interface (on Xen

dom0) related to each VM’s network interface.

ICMP echo/request packages were transferred between both local and remote

VMs. Figure 6 shows the configured latency (straight line) and the obtained latency

(dotted lines). It is possible to see that obtained low latency values have a higher de-

viation from the configured value, and the proportionality decreases as the latency value

increases. In distributed environments, high values of latency are more common than low

values, so in most cases this approach also produces satisfactory results.

38 Anais



Figure 6. Limited network latency between local and remote VMs.

In virtualized emulation environment, control of bandwidth and latency is an im-

portant element to enable simulation of distributed systems. Thus, results obtained in the

experiments show that the use of common network tools combined with paravirtualization

technology allows a reliable emulation of a distributed system, including network links

among nodes.

6. Conclusion and Future Work

Among many possible applications for system virtualization which emerged in the last

few years, emulation of distributed environments is a topic that can be further investigated

by researchers. When using virtualization in this context, network management is the

most important issue to be considered.

In this work, we investigated the use of virtualization to support reliable network

configuration of a virtual controlled environment based on virtualization technology. To

automate such a process, characteristics of the components were studied and a network

management module was implemented. This module receives descriptions of the real

environment and the desired virtual network. By using available network tools, such

as TBF/NetEm and iptables, combined with VM management tools such as xm, it was

possible to create isolated subnetworks with controlled bandwidth and latency between

their links.

To validate our approach, quantitative tests were performed and resulted in simi-

lar results between configured and obtained values in two cases: communication among

nodes in the same host and communication among nodes in remote hosts. Therefore, we

believe that the use of virtualization technology is an interesting alternative for distributed

systems emulation, allowing easy configuration of a controlled environment at low cost

using few machines to emulate a large distributed system.

In future work, we expect to increase accuracy and reliability of the emulation

environment by applying newer versions not only from the Xen VMM itself but also from

other deployed tools. We are also investigating network control in other virtual machine

monitors, such as VMware [Devine et al. 1998] and KVM [Harper et al. 2007].

IX Workshop em Clouds, Grids e Aplicações 39



References

aka devik, M. D. Hierachical token bucket. http://luxik.cdi.cz/˜devik/

qos/htb/.

Barham, P. et al. (2003). Xen and the art of virtualization. In Proceedings of the ACM

Symposium on Operating Systems Principles.

Barrett, D. J. and Silverman, R. (2001). SSH, The Secure Shell: The Definitive Guide.

O’Reilly & Associates, Inc.

Calheiros, R. N., Buyya, R., and De Rose, C. A. F. (2010). Building an automated and

self-configurable emulation testbed for grid applications. Softw. Pract. Exper., 40:405–

429.

Calheiros, R. N., Storch, M., Alexandre, E., Rose, C. A. F. D., and Breda, M. (2008). Ap-

plying virtualization and system management in a cluster to implement an automated

emulation testbed for grid applications. In Proceedings of the 2008 20th International

Symposium on Computer Architecture and High Performance Computing, pages 97–

104, Washington, DC, USA. IEEE Computer Society.

Creasy, R. J. (1981). The origin of the VM/370 time-sharing system. IBM Journal of

Research and Development, 25(5):483–490.

da Cunha Rodrigues, G. (2008). vMIB : uma MIB genérica para gerenciamento de recur-

sos virtuais. Master’s thesis, PUCRS, Fac. de Informática.

Day, J. D. and Zimmerman, H. (1983). The OSI Reference Model. In Proceedings of the

IEEE, volume 71, pages 1334–1340.

Devine, S., Bugnion, E., and Rosenblum, M. (1998). Virtualization system including a

virtual machine monitor for a computer with a segmented architecture. US Patent.

Emeneker, W., Jackson, D., Butikofer, J., and Stanzione, D. (2006). Dynamic virtual

clustering with Xen and Moab. In Frontiers of High Performance Computing and Net-

working – ISPA 2006 Workshops, volume 4331 of Lecture Notes in Computer Science,

pages 440–451, Sorrento. Springer.

Evans, J. W. and Filsfils, C. (2007). Deploying IP and MPLS QoS for Multiservice Net-

works: Theory & Practice. Morgan Kaufmann.

Floyd, S. and Jacobson, V. (1995). Link-sharing and resource management models for

packet networks. IEEE/ACM Transactions on Networking, 3(4):365–386.

Harper, R. A., Day, M. D., and Liguori, A. N. (2007). Using KVM to run Xen guests

without Xen. In Proceedings of the Linux Symposium, pages 179–188, Ottawa. Linux

Symposium Inc.

Hemminger, S. (2007). NetEm. http://linux-net.osdl.org/index.php/Netem.

Keahey, K., Doering, K., and Foster, I. (2004). From sandbox to playground: Dynamic

virtual environments in the grid. In Proceedings of the 5th IEEE/ACM International

Workshop on Grid Computing, pages 34–42, Pittsburgh. IEEE Computer Society.

Neiger, G., Santoni, A., Leung, F., Rodgers, D., and Uhlig, R. (2006). Intel Virtualization

Technology: Hardware support for efficient processor virtualization. j-INTEL-TECH-

J, 10(3):167–177.

40 Anais



Smith, J. E. and Nair, R. (2005). Virtual Machines: Versatile platforms for systems and

processes. Morgan Kauffmann, San Francisco.

Stallings, W. (1999). SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. Addison Wesley,

Reading, 3 edition.

van Doorn, L. (2006). Hardware virtualization trends. In VEE 2006: proceedings of the

Second International Conference on Virtual Execution Environments, pages 45–45.

Welte, H. (2006). What is netfilter/iptables? http://www.netfilter.org.

Xen Source Inc (2007). Xen interface manual. http://www.cl.cam.ac.uk/

research/srg/netos/xen/readmes/interface/interface.html.

IX Workshop em Clouds, Grids e Aplicações 41

View publication statsView publication stats

https://www.researchgate.net/publication/229019508

