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Abstract—The rise of Internet of Things sensors, social
networking and mobile devices has led to an explosion of
available data. Gaining insights into this data has led to the
area of Big Data analytics. The MapReduce framework, as
implemented in Hadoop, is one of the most popular frameworks
for Big Data analysis. To handle the ever-increasing data
size, Hadoop is a scalable framework that allows dedicated,
seemingly unbound numbers of servers to participate in the
analytics process. Response time of an analytics request is an
important factor for time to value/insights. While the compute
and disk I/O requirements can be scaled with the number of
servers, scaling the system leads to increased network traffic.
Arguably, the communication-heavy phase of MapReduce con-
tributes significantly to the overall response time; the problem
is further aggravated, if communication patterns are heavily
skewed, as is not uncommon in many MapReduce workloads.
In this paper we present a system that reduces the skew impact
by transparently predicting data communication volume at
runtime and mapping the many end-to-end flows among the
various processes to the underlying network, using emerging
software-defined networking technologies to avoid hotspots in
the network. Dependent on the network oversubscription ratio
, we demonstrate reduction in job completion time between 3%
and 46% for popular MapReduce benchmarks like Sort and
Nutch.

Keywords-Distributed computing; Data communication;
Data processing;

I. INTRODUCTION

Driven by the tremendous adoption of electronic devices

and the high penetration of broadband connectivity globally,

the generation of electronic data grows at an unprecedented

rate. In fact, this rate is expected to steadily grow due

to increasing adoption of trending data-heavy technologies,

arguably Internet of Things, social networking and mobile

computing. The knowledge that can be extracted by pro-

cessing this vast amount of data has sparked interest in

building scalable, commodity-hardware based and easy to

program systems, resulting today in a significant number

of purpose-built data-intensive analytics frameworks (e.g.,

MapReduce [1], Dryad [2] and IBM Infosphere Streams [3]),

often captured by the market-coined term “Big Data” ana-

lytics.
The data-heavy nature of workloads run by Big Data

analytics systems, in conjunction with the need to scale-out

to hundreds or even thousands of compute nodes for capac-

ity (speedup) or capability (immense input/scratch storage

of the workload requiring proportionally high number of

nodes) reasons, incurs high data-movement activity in the

datacenter, where such analytics systems are deployed. For

instance, a recent analysis of MapReduce (MR) traces from

Facebook revealed that 33% of the execution time of a large

number of jobs is spent at the MapReduce phase that shuffles

data between the various data-crunching nodes [4]. This

creates an obvious incentive to optimize the communication-

intensive part of such applications via appropriate dynamic

network control.
Until recently, the toolset for application-induced net-

work control was limited to a small set of protocols

(e.g., Quality of Service protocols) that were embedded

into network devices at manufacturing time, unable to be

dynamically changed to keep up with application needs.

Software-Defined Networks (SDN) break this inflexibility,

offering fine-grained programmability of the network and

high modularity to allow for directly interfacing application

orchestration systems with the network. Leveraging from

this evolution in networking technology, this paper presents

Pythia1, a system that employs real-time communication

intent prediction for Hadoop [5] and uses this predictive

knowledge to optimize the datacenter network at runtime,

aiming at Hadoop MapReduce acceleration.
More specifically, Pythia sports an instrumentation mid-

dleware that tracks - transparently to applications and the

Hadoop framework itself - Hadoop map task processes at

runtime and mines intermediate output data that will even-

tually be transferred to remote nodes for further processing

during the reduction phase. Prediction intelligence is col-

lected at a central controller and in turn ingested by a chain

of network control algorithms (routing, flow scheduling) that

optimize network resource allocation against faster Hadoop

MapReduce shuffle phase completion and thus accelerate

MapReduce job completion.
We prototyped the proposed scheme in a high-end cluster

1According to Greek Mythology, Pythia was an ancient Greek priestess
at the Oracle in Delphi, widely credited for her prophecies inspired by
Apollo.
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and evaluated the performance improvement it brings to

various HiBench [6] benchmarks. Our results manifest that

Pythia achieves consistent acceleration of MapReduce work-

loads, with speedup ranging from 3% to 46%, depending

on the network blocking ratio and the workload. We also

present results confirming that our communication intent

prediction approach and implementation is able to accurately

(in terms of shuffle flow size) and timely (within several

seconds prior to actual flow occurrence in the network)

forecast MapReduce intermediate data movement.

The direct value driven by this work is in the performance

improvement brought to Hadoop MapReduce by optimizing

its communication-intensive phase via application-specific

instrumentation and specialized network control. Beyond

this immediate contribution, a more far-reaching anticipated

impact of the present work lies in forming a concrete

and tangible materialization of the value that the software-

defined concept can bring to the end-user by enabling

tighter and constant application/workload affinity to the IT

infrastructure.

The rest of this paper is structured as follows. We review

and put our work in the context of related work in the

Section VI. Section II builds up on background concepts and

technologies used in this paper and also drives the motivation

for this work by uncovering open problems and discussing

value potential. Sections III and IV present the Hadoop-

specific and network-related technical specification of our

system. We present a quantitative evaluation of the benefit

of our system to Hadoop MapReduce workloads in Section

V and conclude with summary and elevation of the findings

in Section VII.

II. BACKGROUND AND MOTIVATION

Hadoop MapReduce [5] is the open-source realization of

Google’s MapReduce [1] distributed data-processing frame-

work. It is gaining increasing traction and deployment base

in various domains requiring batch-processing large-scale

analytics, primarily due to linear system scalability, support

for both structured and unstructured data sources, a fairly

straightforward programming model and transparent to the

user runtime parallelism. A remarkably versatile set of

applications can be implemented by using the two primitive

functions of the MR model, namely map and reduce. The

map function ingests input data records (values) and maps

them to an application-specific key-space. In turn, the output

(“intermediate map output” in Hadoop terminology) of the

map function is sorted and fed to an application-specific

reduce function (e.g., summation of numeric values). From

an implementation perspective, Hadoop job execution is

orchestrated by a two-level hierarchy of control entities:

the “jobtracker”, which runs on the Hadoop cluster’s master

node and is the job-level control entity, and one or more

“tasktrackers”, each running on every Hadoop compute node

(termed “slave”).

Among others, a tasktracker’s role is to initiate/control

map/reduce task processes that implement the application-

provided map/reduce function. Specifically, a tasktracker

starts a map task with a discrete chunk of data (typically

a distributed file system data block) as input; the sorted

intermediate output of the map task is in turn hashed to

the set of reducers (which are also started by tasktrackers

across the Hadoop cluster), making sure that no two reducers

process <key,value> pairs with the same key. Following

coordination steps taken between the tasktrackers and the

jobtracker, the tasktracker that a sample reducer is controlled

by fetches from each finished map task’s tasktracker the set

of <key,value> pairs that hash to the specific reducer-ID.

Seen from the map task’s tasktracker server, the communi-

cation pattern corresponds to a “shuffling” of intermediate

output data from the mapper server to the job’s reducer

servers, thereby being termed as the “shuffle” phase. After

a reducer task has fetched all data produced by the entire

set of map tasks, it proceeds to the final reduce phase

and then writes back the reduction result to a file stored

in the distributed file system. Given the increasingly high

volumes of data that typical analytics applications ingest, it

is straightforward that the volume of data that need to be

shuffled during a Hadoop job is in many cases relatively

high, thereby calling for solutions to shorten the duration of

the shuffle phase. In the rest of this section, we motivate this

through a MapReduce job execution example.

Figure 1a depicts the sequence diagram of the execution

of a toy-sized sort job in a 1Gbps non-blocking network,

obtained by a custom visualization tool we have developed.

The job uses three map tasks (slots) and two reducers,

whereby the three distinct phases of interest in this paper are

clearly annotated (distributed file system phases are omitted

for brevity). It can be clearly observed that the network-

heavy shuffle phase takes up a substantial fraction of job

execution time, motivating thus further work to optimize the

network against the network-throughput intensive phase of

MapReduce. An additional observation that also motivates

the type of work presented in this paper is the disproportion-

ality of the intermediate output data sizes fetched by the two

reducers; specifically, reducer-0 receives 5x times more data

compared to reducer-1. This is not an uncommon problem

in MapReduce executions (”job skew” effect [7]) caused

by non-uniform data distribution in the key space. While

this problem can be addressed at multiple levels (e.g., by

dynamically adapting the partitioning function that governs

the volume of data assigned to each reducer), our work

intends to address it at the system/network level. Intuitively,

if reducer-0 receives five times more data, then it is straight-

forward that also the flows terminated at reducer-0 should

get five times more network capacity (bandwidth) than

reducer-1. It is this end goal that motivates the application-

aware, flow-level network control materialized in this paper.

Until recently, the network in commodity deployments
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(a) Hadoop sort job sequence diagram

(b) Adversarial shuffle flow allocation to the network

Figure 1: Motivational Hadoop job analysis and implications of conventional network control

was from a control/management point operated as a black-

box, offering very low capability of application-induced,

fine-grained control (e.g., controlling network policy at the

granularity of a single flow). Software-defined networks

(SDN) materialize the long-awaited decoupling between

the control and data forwarding logic of network elements

(switches/routers), moving the control-plane off the network

elements and on to a centralized network controller, where

virtually any logic controlling network elements in any

desired ways can be implemented in software. In the context

of Big Data applications, software-defined networks provide

for the ability to program the network at runtime in a

manner, such that data movement is optimized against faster,

service-aware and more resilient application execution.

Still, the transition to an application-controlled software-

defined infrastructure is not straightforward. We make the

case for this in Figure 1b, where we depict a candidate

execution of the job shown in Figure 1a on two racks within

a wider datacenter. In this example, the network has two

alternative paths between the two racks (Path-1 and Path-

2 in Figure 1b) and employs Equal Cost Multi-Pathing

(ECMP [8]) for flow allocation to multiple paths. ECMP

has been proposed as a solution in such environments [9],

mainly due to its simplicity and efficient implementation on

network hardware. Figure 1b shows also utilization (buffer

occupancy) at switch ports facing the datacenter network.

Given that ECMP employs random local hashing of flow

packets to output ports at every network switch, a possible

allocation of two shuffle flows - namely reducer-0 fetching

<key,value> pairs from mapper-0 (flow-1) and reducer-1

fetching <key,value> pairs from mapper-1 (flow-2) - is

shown. Due to the load-unawareness of ECMP-like flow

allocation, this candidate allocation leads to the adversarial

effect of assigning a relatively large flow (159MB) to a

highly-loaded path (95% load, Path-1), even if there is

available network capacity to complete the shuffle transfer

faster. Note that this effect is not a side-effect of nominal

network capacity, i.e., bad flow packing can lead to sub-

optimal network utilization even in non-blocking networks

[10]. Replacing ECMP with a load-aware flow scheduling

scheme (e.g., Hedera [10]) would to some extent avoid such

adversarial flow allocations, however still not manage to

unleash the entire optimization potential. For instance, in the

example presented in Figure 1, schemes like Hedera would

fail to recognize the criticality of flow-1 to MapReduce job

progress and as such, even if both flows are recognized and

served as elephant flows, the proportionality in the allocation

of network resources in relation with application semantics

and application state will be far from optimal. A primary

objective of this work is to address this gap and through

that drive the value of software-defined architectures to data-

intensive distributed applications.

III. PYTHIA ARCHITECTURE

At the highest level of abstraction, Pythia is a distributed

system software with two primary cooperating components,

corresponding to the sensor/actuator paradigm: a) a Hadoop

instrumentation middleware that runs on every Hadoop

“slave” server (or Virtual Machine) and whose role is to

predict future shuffle transfers at the level of mapper/reducer

server (or Virtual Machine) pair during MR runtime and b)

an orchestration entity that ingests - on a per job basis -

future shuffle communication intent events and optimizes

the network during runtime, aiming at reducing total job

completion time. In the rest of this paper, we assume a bare-

metal Hadoop deployment for the sake of space and thus

use the term “slave server” to refer to the operating-system
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Figure 2: Pythia Architecture (right-hand side) and Control Software Block Diagram (left-hand side)

level entity that hosts a distinct Hadoop tasktracker. Still,

it is important to note that our solution is fully compatible

with Hadoop deployments in virtualized cloud environments

too.

The right-hand side of Figure 2 depicts the architecture of

the system within a reference cluster/datacenter infrastruc-

ture, comprising a set of server racks. The Hadoop cluster is

typically deployed in a subset of this server pool. Intra-rack

data communication (e.g., shuffling or HDFS block move-

ment) occurs via one (or more) edge switches (Top of Rack

- ToR switches) that all in-rack servers connect to, whereas

the data communication network provides for inter-rack

data communication. Pythia leverages the programmability

offered by software-defined networks (SDN) to achieve fine-

grained, timely and efficient allocation of network resources

to shuffle transfers. Currently, Pythia supports a datacenter

network compatible with the standard protocol realization of

the SDN concept, namely OpenFlow [11].

Figure 2 shows also an additional management network

that is physically distinct and typically of much lower

bisection (and cost) to the data network, interconnecting

all devices (servers, switches). This network is typically

used for management/administration/provisioning purposes,

for out-of-band control-/management-plane communication

between OpenFlow switches and the network controller and

- although not a prerequisite due to low network overhead

incurred by our system (cf. Section V-C) - is also the

physical network used to carry all control/monitoring traffic

incurred by Pythia to minimize disruption to application data

traffic.

At startup time Pythia initiates an instrumentation process

at every server hosting a Hadoop tasktracker. As conveyed

by the respective block diagram on the left-hand side of Fig-

ure 2, the instrumentation middleware constantly monitors

its local tasktracker for job/task progress activity, while also

providing for mapping of mapper/reducer identification from

Hadoop namespace to network location (i.e., resolution of

IP address per map/reduce task ID). Since Hadoop normally

starts to schedule reducers only after a few mappers have

been completed (by default 5%), it is expected that some

flow intention detections will have unknown destinations.

To remedy this, a collector’s thread monitors for reducer

initialization events and fills these incomplete shuffle inten-

tion entries with reducer destination information, as soon as

the latter becomes available.

More importantly, each instrumentation process tracks its

local tasktracker for newly spawned map tasks. At the event

of a new map task creation, the instrumentation process

locates the local file system path, where intermediate map

task output will be spilled to, and subscribes to the local

file system service for receiving asynchronous notifications,

whenever new files are created under this path. Per Hadoop

workings [12], intermediate output files are written to disk

at map task completion time. Whenever the notification of

such an incident is received by the instrumentation process

(i.e., after a mapper has finished), it decodes the file(s)

containing the intermediate map output and calculates the

size of <key,value> pairs that correspond (and will be

shuffled) to each one of the job’s reducers. Last, it serializes

the per-reducer predicted shuffle size in a message, together
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with the ID of the respective map task, and transmits it to

the Pythia collector server entity. It is important to note

that the Pythia prediction instrumentation middleware is

transparent, both to the Hadoop implementation, as well as

to applications running on top, and thus can be seamlessly

deployed on any existing Hadoop cluster.

The optimization and network programming part of Pythia

is shown on the top, left-hand side block diagram of Figure

2, logically comprising a prediction notification collector,

multi-path flow routing algorithm logic and a targeted flow

allocation (or scheduling) block. As it will be extensively

elaborated on in the next section, all these modules work

in tandem to respond to shuffle prediction notifications and

optimize flow scheduling in a manner that leads to faster

shuffle phase completion time and thus to job acceleration.

Currently, all of the SDN network control logic of Pythia is

implemented in the form of modular components within an

alliance OpenFlow controller project, namely OpenDaylight

[13].

IV. NETWORK SCHEDULING

In this section we describe the functionality and imple-

mentation of the Pythia network scheduling module. Es-

sentially, the module ingests information about the physical

network topology, the current link-level network utilization

and the application communication intention and computes

an optimized allocation of flows to network paths, such that

shuffle transfer times are reduced; as a last step, it maps the

logical flow allocation to the physical topology and installs

the proper sequence of forwarding rules on the switches

comprising the data network. The network scheduling mod-

ule is implemented as a plugin module within OpenDaylight,

a community-led, industry-supported open source OpenFlow

controller framework. Internally, the network scheduling

module consists of a Hadoop MapReduce runtime collector

and a flow allocation module.

The Hadoop Runtime collector is responsible for receiving

and aggregating the application-level information collected

by each server’s monitor (cf. Section III). In addition,

the collector aggregates all flows that emanate from a

distinct server (mapper) and are terminated to a distinct

(reducer) server into a single flow entry that sums up the

flow sizes of its constituents flows. Ideally, one would

prefer to use the classical five-tuple definition of an ap-

plication flow (<source-address,destination-address,source-

port,destination-port,protocol-type>) to create OpenFlow

forwarding entries during network programming. However,

a Hadoop shuffle flow’s TCP destination port number cannot

be determined in advance (during prediction time), since

it is only assigned by the sourcing server as soon as the

flow starts (i.e., socket bind). Therefore, flow aggregation

proves necessary. The hypothetical limitation of this is that it

cancels the ability to apply differentiated network scheduling

for reducer tasks running on the same server. In practice

and throughout our experimentation, we have not identified

the criticality of supporting such a feature as a performance

booster. On the positive side, having a module supporting

flow aggregation adds future flexibility to the Pythia system,

particularly with regard to forwarding state conservation in

softwared-defined networks (SDN). Given the high cost and

thus limited size of the memory part of network devices

storing so called “wildcard” rules (as is the case with four-

or five-tuple rules) [14], large-scale future SDN network

setups may force routing at the level of server aggregations

(e.g., racks or sets of racks-PODs). Pythia can easily respond

to such a requirement by populating the flow aggregation

module with server location-awareness and an appropriate

aggregation policy that maps flows to rack- or POD-pairs.

The flow allocation module implements both routing and

flow allocation algorithms. During startup, it ingests topol-

ogy events from OpenDaylight and generates a routing graph

that represents the underlying multi-path network topology.

Also during initialization, it computes the k-shortest paths

among all server pairs in the network graph, where leaf

vertices, intermediate vertices and edges represent servers,

network switches and network links, respectively. The k-

shortest path implementation uses hop-count as the distance

metric. This module relies on the OpenDaylight topology

update service to recompute the routing graph only when a

change occurs in the physical network topology. By doing so

and given that the k-shortest-path implementation that uses

successive calls to the Dijkstra shortest-path algorithm is

O(N3) for small k, we are able to keep the routing compu-

tation overhead off the data path. Moreover, it provides fault

tolerance, since the routing graph is updated at the event of

link or switch failure.

The problem of optimally distributing flows among the

available paths in a multi-path network to satisfy traffic

demands is normally referred to as Multi-Commodity Flow

problem, which is known to be NP-complete for inte-

ger/unsplittable flows [15]. However, there are a number

of practical heuristics for simultaneous flow routing that

can be applied to typical datacenter network topologies. In

this work, we used a first-fit bin-packing heuristic to jointly

allocate sets of predicted shuffle transfer flows to available

paths. Our heuristic combines the link utilization information

provided by the OpenDaylight link load update service with

the communication intention information collected by our

Pythia monitor to distribute the flows among the available

paths. It also employs the knowledge of the application-level

transfers to differentiate the portion of the network load that

is due to shuffle transfers from background traffic (due to

over-subscription). As such, it is possible to determine the

amount of available bandwidth along a given path. Finally,

the aggregated flows are assigned to the path that has the

highest available bandwidth. We note that our design is mod-

ular enough to support further flow scheduling algorithms;

the latter forms also part of our on-going work in this space.
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The Pythia flow module handles only flows that are part

of communication prediction for applications subscribed

to the Pythia collector module. The rest of the datacen-

ter traffic is handled through default datacenter network

control processes. In this paper, we assume that flows

- other than those handled by Pythia - are allocated to

the available k-shortest paths via an ECMP-like (Equal-

Cost Multi-Path) scheme. According to ECMP, all pack-

ets belonging to a distinct flow are hashed to the same

output port (and thus path) at every intermediate network

device, thus resembling a random, load-unaware flow al-

location scheme. Our current ECMP implementation uses

the five-tuple (<source-address,destination-address,source-

port,destination-port,protocol-type>) to compute a flow hash

and assigns a path to a flow based on a modulus computation

on the flow hash value and the number of available paths in

the routing graph.

V. EVALUATION RESULTS

A. Experimental Setup

Our experimental setup consists of 10 identical servers,

each equipped with 12 x86 64 cores, 128 GB of RAM and a

single SATA disk. The servers are organized in two racks (5

servers per rack) interconnected by two OpenFlow enabled

Top-of-Rack (ToR) switches (IBM G8264 RackSwitch) with

two links between them. A distinct server runs an instance

of the OpenDaylight network controller and is directly con-

nected to each of the ToR switches through a management

network (as described in Section III). In terms of software,

all servers run Hadoop 1.1.2 installed on top of Red Hat

Enterprise Linux 6.2 operating system.

Since our setup has only a single HDD disk per server

(with measured serial read rate of 130MBytes/sec) and mul-

tiple cores accessing it in parallel, we decided to configure

Hadoop to store its intermediate data in memory. Otherwise,

Hadoop would operate in a host-bound range (i.e., disk

I/O rate would be the bottleneck), thus resulting in the

setup being indifferent to any improvement brought to the

network by Pythia. Having a balance between CPU, memory,

I/O and network throughput is common in production-grade

Hadoop clusters and therefore following the above practice

is justified in the absence of Hadoop servers with arrays of

multiple disks.

B. Job Speedup

As described in Section II, a reducer task does not

start its processing phase until all data produced by the

entire set of map tasks have been successfully fetched.

Therefore, the shuffle phase represents an implicit barrier

that depends directly on the performance of individual

flows. Thus, even a single flow being forwarded through

a congested path during the shuffle phase may delay the

overall job completion time. In order to demonstrate the

ability of Pythia to choose good paths to shuffle transfer

Figure 3: Nutch job completion times using Pythia (resp.

ECMP) and relative speedup

flows and accelerate MapReduce applications, we conducted

a number of experiments evaluating job completion times

under different network over-subscription ratios. We used

ECMP as baseline, since it has been used as the de facto flow

allocation algorithm in multi-path datacenter networks. The

various over-subscription ratios we experimented with are

simulated by populating the network links with background

traffic, specifically using the iperf tool to generate constant

bit rate UDP streams.

We chose two benchmarks from the HiBench benchmark

suite [6] that are known to be network-intensive: sort and

Nutch indexing. The sort application is one of the examples

that are provided by the Hadoop distribution. It is widely

used as baseline to Hadoop performance evaluations and is

representative of a large subset of real-world MapReduce

applications (e.g., data transformation). We configured sort

to use an input data size of 240GB. The Nutch indexing

application is part of Apache Nutch [16], a popular open

source web crawling/indexing software project, and is rep-

resentative of one of the most significant uses of MapReduce

(large-scale search indexing systems). We configured Nutch

to index 5M pages, amounting to a total input data size of

≈ 8GB.

Figure 3 depicts Nutch job completion times using Pythia

and ECMP respectively and the relative speedup. Times are

reported in seconds and represent the average of multiple ex-

ecutions. As can be observed, Pythia outperforms ECMP for

different over-subscriptions ratios. The maximum speedup

was obtained for the 1:20 over-subscription ratio case, where

Pythia improved job performance by 46%. It is worth noting

that job completion times for Nutch using Pythia do not

significantly increase by handing more network capacity to

Hadoop and are comparable to the respective job completion

time measured in a network without over-subscription (242

seconds in our setup). This indicates that the Pythia flow al-

location algorithm, coupled with early flow size knowledge,

manages to almost optimally assign the maximum capacity

that Hadoop MapReduce needs.
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Figure 4: Sort job completion times using Pythia (resp.

ECMP) and relative speedup

Figure 4 shows the results for the sort application. Un-

like Nutch, sort jobs running over Pythia are not able to

maintain similar job completion times over different over-

subscriptions ratios. We believe this is due to the individual

shuffle flow characteristics, particularly because the smaller

flows created by Nutch increase the opportunity for opti-

mization. However, Pythia is still able to outperform ECMP

for different over-subscription ratios with a improvement of

up to 43%.

C. Prediction Efficacy and Overhead

Given the value of the communication intent prediction

middleware as a standalone component that could also be

used in multiple other runtime optimizations of the Hadoop

infrastructure beyond network scheduling (e.g., storage or

early skew prediction), we elaborate here on the timeliness

and flow size accuracy of the prediction middleware. To

evaluate these metrics for the prediction middleware, we

deployed NetFlow network monitoring probes across all

servers comprising our testbed prototype, together with a

NetFlow collector at a server that was connected to all

servers comprising the Pythia prototype. Clocks on all

servers in this setup were synchronized to 100ms accuracy.

We then run multiple runs using various benchmarks, cap-

turing both a) cumulative traffic volume over time that each

Hadoop server sourced towards other Hadoop server nodes,

as predicted by Pythia and b) all shuffle flow traffic (port

50060) exchanged between pairs of Hadoop servers in our

setup using the NetFlow monitoring system. In addition,

we post-processed the NetFlow traces to obtain cumulative,

per-server sourced shuffle flow volume, compatible with the

measurements we obtained from the Pythia predictor.

Figure 5 plots the outcome of this analysis for a single

server sourcing shuffle traffic to the various reducers (Server-

4). We observe that there is a substantial distance between

the predicted and the measured traffic curves (approximately

9sec at minimum), which effectively translates to Pythia be-

ing able to predict the traffic volume that will exit a Hadoop

server well in advance of the time that the actual traffic will

Figure 5: Prediction promptness/accuracy over time for

traffic emanating from a single Hadoop tasktracker server

(60GB integer sort job)

start entering the network. This finding was consistent across

all servers and throughout our experimentation with other

workloads. Generally, the timeliness of Pythia prediction

was found to be operating in a safe margin, relative to the

time budget that contemporary networking hardware allows

for programming the network at runtime (typically in the

order of 3-5ms/flow installed). Intuitively, the timeliness of

prediction depends on the time gap between a map task

finish event and the event of a reducer task starting to fetch

data from the finished mapper. Given that Hadoop limits the

number of parallel transfers that each reducer can initiate at

every instance of time (especially in larger-scale setups), we

expect the above time gap affecting prediction timeliness not

to be sensitive to Hadoop configuration parameter setup. We

are currently working on modeling the problem using rele-

vant Hadoop parameters as input and designing experiments

to confirm this insensitivity, as part of our on-going work.

Pertaining to accuracy in predicting traffic volume, Pythia

was always able to never lag the actual traffic measurement

trace in terms of cumulative traffic volume sourced. As seen

in Figure 5, Pythia is over-estimating traffic volume by a

factor of 3%-7% for a single server. While we don’t expect

this churn to be detrimental or lead to measurable over-

commitment of network resources, we believe that it has its

source in the accuracy of how Pythia computes the protocol

overhead that it adds to the shuffle flow prediction volumes

collected from Hadoop servers (the instrumentation process

works at the application-layer and therefore the protocol

overhead that needs to be added to predict the flow volume

as it will be seen ”on the wire” is computed based on known

protocol header sizes).

Last, we report on the overhead induced by the instru-

mentation middleware. Based on preliminary measurements,

per Hadoop server average CPU and I/O overhead ranged

from 2% to 5%, while memory occupancy overhead was
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insignificant given our (commodity) server configuration.

Intuitively, overhead comprises a constant (”dc”) factor

stemming from continuous monitoring of MapReduce task

progress and a spike factor stemming from index file anal-

ysis at the event of a map task finish. Recognizing that

the instrumentation overhead characterization merits further

study, we plan to address it in our follow-up work, together

with characterizing the network overhead incurred by Pythia

prediction notification messages.

VI. RELATED WORK

Due to the inherent nature of data-intensive distributed

analytics frameworks to move large volumes of data between

application server nodes, recent research work in the area has

started focusing on optimizing against network bottlenecks

(e.g., TCP Incast [17]) that may impede optimal performance

of such workloads. Camdoop [18] manages to reduce the

volume of data shuffled in MapReduce jobs by employing

in-network combiners. Similarly, Yu et al. [19] move parts

of the merge phase into the network, thus de-serializing the

map from the reduce phase and bringing substantial im-

provement due to increased parallelism in phase execution.

Both approaches can act complementary to our work and -

even more - benefit from the advance knowledge of future

shuffle flows that Pythia provides for.

Big data applications are among the obvious ”benefi-

ciaries” of the fine degree of programmability that the

software-defined infrastructure movement brings along. Fo-

cusing on the data-movement part, Wang et al. [20] identify

various opportunities for runtime network optimization to

accelerate MapReduce jobs, potentially using an appropriate

abstraction framework to interface applications with the

infrastructure, such as Coflow [21] or MROrchestrator [22].

Orchestra [4] is a versatile framework showcasing the value

of network-awareness (e.g., network-state aware scheduling

of sets of interdependent flows) and/or network-optimized

execution (e.g., by dynamically manipulating flow rates) to

big data movement patterns (shuffle, broadcast). However,

Orchestra requires explicit support from the big data frame-

work it optimizes (e.g., Hadoop) and thus - unlike Pythia -

cannot be used without reworking the design and implemen-

tation of the application framework. Still, should Hadoop

reach a level that it interfaces with dynamic infrastructure

orchestration frameworks like Orchestra, the integration of

our system as a sub-component of such frameworks is rather

straightforward.

Among all related work in the field, FlowComb [23] is a

framework with significant overlap with our system: it em-

ploys shuffle-phase communication intention to apply intelli-

gent, ahead-of-flow-occurence network optimization towards

MapReduce performance improvement. In fact, the first

public communication on FlowComb occured while we were

already in the process of developing our prototype. Next

though to the similarities, there are also subtle differences:

network optimization (flow scheduling) in FlowComb does

not leverage application intelligence (except from predicted

flow volumes), even if the use-case driving the work grants

access to such information. Instead, Pythia draws from past

manifestations [4] about the value in taking flow criticality

into consideration, therefore incorporating flow priority as a

criterion in network optimization, in addition to flow sizes

and network topology/state. At the engineering level, our

implementation of predicting flows based on deep Hadoop

index/sequence file analysis results in more timely prediction

compared to the results communicated by FlowComb. Last,

while recognizing that [23] reports on on-going work, the

testbed used for the evaluation of FlowComb used only a

single network over-subscription ratio (1:10 for 1Gbps server

NICs) and was likely to exhibit high-latency due to using

software switches. In this setting, it is hard to assess how

FlowComb will perform in higher-capacity, production grade

datacenter networks. Nevertheless, there is great value in the

FlowComb work and its recent appearance strengthens the

argument for the timeliness and relevance of the research

reported in this paper.

VII. CONCLUSIONS

This paper proposed Pythia, a system that improves the

performance of Hadoop MapReduce jobs through runtime

communication intent prediction and fine-grained control

of the underlying datacenter network. After motivating the

relevance and need for the work presented herein through

analysis of exemplary executions of Hadoop jobs and treat-

ment of the incurred flows thereof by the network, we

outlined the architecture of our system and elaborated in the

functionality and algorithms embedded into its constituent

components.

A good portion of the work has been invested in de-

veloping a system prototype within a downsized datacenter

located in our lab. We presented quantitative results of our

Pythia prototype, obtained in a 2-rack testbed setup and

using hardware OpenFlow switches and various MapReduce

workloads as input. Our evaluation manifests that Pythia

achieves significant acceleration of the Hadoop workloads

under test (up to 46%), bringing an improvement that

varies depending on network capacity available to Hadoop

and the specificities of the workload. Given the value of

our prediction middleware as a standalone component, we

also presented evaluation results manifesting its superior

ability to timely predict flows well in advance prior to their

occurrence in the network, together with its ability to predict

flow sizes fairly accurately.

The contribution of the present work to faster Big Data

analytics and thus reduced time-to-insight through acceler-

ation of the Hadoop analytics framework is profound. And

while most of the system work on Hadoop has focused on

improving other parts of the framework (e.g., job scheduling,

partitioning) or the underlying infrastructure (e.g., compute
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resource allocation), we show through this work that there

is great potential and value in optimizing large-scale an-

alytics runtimes against the underlying network. From a

more elevated perspective, we rate the present work as

a tangible value case supporting the realization of large-

scale distributed computing as a programmable stack, in

accordance with the software-defined argument.
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