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Abstract

High-throughput virtual screening relies on scoring
functions to evaluate binding affinity between ligand
and receptor. Although useful for identification of new
potential drugs, imperfections in these scoring functions
can lead to incorrect classification of small molecules.
In this context, non-parametric machine-learning ap-
proaches can identify implicit binding interactions that
can be hard to model explicitly. We present an approach
to distinguish between ligands and decoys using energy-
based models with siamese neural networks. Taking as
inputs 3D biochemical property grids from ligand and
receptor, it is computed the compatibility between them.
We show that this model outperforms other machine-
learning approaches in a Fully Flexible Receptor model
of InhA-NADH complex.

1 Introduction
High-throughput virtual screening can be used to identify
small molecules that effectively bind to a drug target. In
virtual screening, thousands or even millions of chemical
compounds are tested for a potential binding target using
computer programs. Computational approaches include al-
gorithms that dock small molecules into a biological target’s
binding site and score their binding affinity (Ain et al. 2015).
Molecular docking and associated scoring functions can en-
rich the pool of candidate inhibitors. However, their accu-
racy is not enough to characterize a single ligand (Durrant
and McCammon 2011).

Scoring functions evaluate the conformation of a mole-
cule as docked to the target’s binding site. These functions
are fast mathematical methods that approximate physical in-
teractions between ligand and receptor in order to predict
binding affinity. However, imperfections in these functions
can lead to a poor prediction performance (Ain et al. 2015),
causing incorrect selection of non-binding compounds over
true active ligands.

In this context, machine-learning models can exploit
available data about molecular recognition, increasing the
efficiency of ligand classification tasks. These models could
determine when and how molecular binding occurs, learning
to identify implicit binding interactions (Ain et al. 2015).
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Besides, the study of the learned parameters can clarify
some internal aspects involved in molecular recognition.

The solution presented in this work focus on learning a
ligand classification model, which can be used as a scor-
ing function. The proposed model calculates the compat-
ibility between ligand and receptor using 3D grids of bio-
chemical properties. These grids are processed by a siamese
neural network (SNN), which extract a vector of features of
each grid. Compatibility is calculated based on the norm of
the sum of these vectors. Besides, we show that the model
learned to identify important molecular interactions, like hy-
drogen bonds.

2 Related Work
In drug discovery, molecular binding affinity is estimated
based on theory-inspired energy functions, which may in-
clude parameters fitted to experimental or simulation data.
However, molecular recognition involves implicit binding
interactions, which are hard to model explicitly (Ain et al.
2015). These binding interactions could be captured by non-
parametric machine-learning techniques, improving the per-
formance of scoring functions (Ain et al. 2015).

Recently, deep learning models are achieving outstand-
ing results in different complex tasks. Deep learning is part
of a family of machine learning algorithms that attempt to
learn high-level representations from raw data by using deep
graph with multiple processing units (Schmidhuber 2015).
In recent years, different deep learning approaches were ap-
plied to drug discovery, like deep convolutional networks for
bioactivity prediction (Wallach, Dzamba, and Heifets 2015)
and target prediction (Unterthiner et al. 2014). Also, ensem-
bles of neural networks were used to predict binding affinity
(Durrant and McCammon 2011) or aqueous solubility for
drug-like molecules (Lusci, Pollastri, and Baldi 2013). Wang
(Wang et al. 2014) used a pairwise input neural network to
predict target-ligand interactions. In this architecture, ligand
and target are represented as n-dimensional vectors, which
are linearly combined and submitted to a neural network.

Our approach is different from these methods: it learns a
function that maps 3D grids of biochemical properties into
vectors in low-dimensional space and computes the compat-
ibility between input grids using these vectors. The function
that maps grids into vectors uses a Convolutional Neural
Network (CNN) to encode each 3D grid. The training of this
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model is similar to approach described in (Hadsell, Chopra,
and LeCun 2006).

3 Design and Implementation

In context of data classification, probabilistic models assign
a normalized probability to every possible configuration of
input features. Energy-based models (EBM) assign an un-
normalized energy to those configurations. According to Le-
cun (LeCun et al. 2006), learning, in these models, consists
in finding weights W that associate low energy to compat-
ible samples and high energy to incompatible ones. Using
EBMs, the estimation of normalized distributions over input
space is not necessary, which is an advantage over proba-
bilistic models (LeCun et al. 2006).

A trainable compatibility metric can be seen as an energy
function EW (X1, X2) that computes the energy of a pair
of inputs, X1 and X2. In drug discovery context, it is pos-
sible to compare a small molecule and a receptor in order
to evaluate the binding affinity between them. Due the dif-
ferences of interactions that results in high-affinity binding
and low-affinity binding, a trained machine-learning model
could learn to distinguish between high-affinity and low-
affinity molecules, given a receptor.

GW (X)GW (X)

EW (Xr, Xm)

W

Xr Xm

Compatibility

GW (Xr) GW (Xm)

Figure 1: Diagram of the SNN to calculate E(Xr, Xm)

In this context, our approach builds a trainable system
that maps 3D grids of biochemical properties to vectors in
low-dimensional space, where compatibility between small
molecule and receptor can be easily calculated. The learn-
ing consists in training two identical CNNs that share the
same parametrization W - a Siamese Architecture (Hadsell,
Chopra, and LeCun 2006). This architecture is shown in
Figure 1, where Xr and Xm refers to grids of biochemi-
cal properties of receptor and small molecule, respectively.
GW (X) refers to function that translate Xr and Xm into
low-dimensional vectors. Using these vectors, the merge
layer computes EW (Xr, Xm), the function that calculate
the compatibility between Xr and Xm, i.e., the output of
the proposed model.

Convolutional Neural Networks
As shown in Figure 1, the siamese architecture uses two
identical CNNs that shares the same parameterization W .
CNNs are trainable models specialized in identification of
raw-data local correlations, and they can learn low-level fea-
tures and combine them to create high-level representations.
In the proposed model, CNNs are used to convert 3D raw
grids into low-dimensional vectors.

In context of molecular recognition, interactions between
atoms are predominantly local (Bissantz, Kuhn, and Stahl
2010). Once convolutional layers of CNNs can exploit local
correlations due to its locally connectivity pattern between
layers, these layers can be used to detect important interac-
tions between atoms. Due to this behavior, the application of
CNNs is appropriated (Wallach, Dzamba, and Heifets 2015).

Merge Layer
The merge layer is responsible for computing the output
of the model, i.e., the compatibility between Xr and Xm.
Once Xr and Xm must match complementary biochemical
properties to achieve high affinity binding (Hildebrandt et
al. 2007), the sum of representation vectors, GW (Xr) and
GW (Xm), must be as close to 0 as possible. So, the cal-
culus of compatibility can be designed as the sum of two
vectors, which must be close to 0 if Xr and Xm are compat-
ible, and +∞, otherwise. In the proposed model, the energy
EW is defined as the norm of the sum of vectors GW (Xr)
and GW (Xm), as shown in Equation 1.

EW (Xr, Xm) = ‖GW (Xr) +GW (Xm)‖ (1)

Loss function
In order to learn the optimal parameterization W , we use
the loss function described in (Hadsell, Chopra, and LeCun
2006), shown in Equation 2. The y refers to label assignment
of pair (y = 0 if pair is compatible, y = 1, otherwise) and
the constant m is the margin, which defines a radius around
GW (Xr) where dissimilar pairs contribute to loss functions.
The loss function is composed by a sum of two terms: the
first term is the partial loss function for compatible pairs and
the second, for incompatible pairs. The minimization of this
function decreases the energy of compatible pairs and in-
creases the energy of incompatible ones.

L(W,Y,Xr, Xm) =(1− Y )
1

2
(EW )2+

Y
1

2
{max(0,m− EW )}

(2)

4 Experiments
The experiments presented in this section show the results
obtained by our model, compared to a deep convolutional
neural network model (DCNN), similar to approach de-
scribed in (Wallach, Dzamba, and Heifets 2015).

Dataset and Data encoding
We demonstrate the application of the SNN on a Fully Flex-
ible Receptor (FFR) model containing 19.5 nanoseconds of
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molecular dynamics simulation of InhA-NADH complex of
Mycobacterium tuberculosis (PDB ID: 1ENY) (Gargano,
Costa, and de Souza 2007). In this model, there is one con-
formation for each 20 picoseconds.

To generate compatible pairs, we docked inhibitors from
19 crystallographic structures of InhA, obtained from RCSB
PDB (Berman et al. 2000), to every conformation in FFR
model, using Autodock 4.2 (Morris et al. 2009). Similarly,
to create incompatible pairs, we selected 19 most similar de-
coys in InhA subset of DUD-E (Mysinger et al. 2012), which
were also docked in FFR model. DUD-E is a benchmark of
virtual screening studies and contains ligands and decoys for
biological drug targets. Decoys are selected based on simi-
lar physical properties but different chemical structures from
ligands.

After docking, we split this data set into training set and
testing set. The training set consists of docked conforma-
tions of 30 small molecules (15 inhibitors and 15 most sim-
ilar decoys), each conformation paired with its own FFR
snapshot. The docked conformations of 8 remaining small
molecules (4 inhibitors and 4 decoys) were used in testing
set.

Once electrostatic interactions plays an important role in
molecular recognition (Hildebrandt et al. 2007), we chose
electrostatic potential as the biochemical property to 3D
grids used as model input. Electrostatic potential grids were
generated by APBS (Automatic Poisson Boltzmann Solver)
(Baker et al. 2001), using Poisson Boltzmann Equation. All
grids were adjusted to fit inside a 25

◦
A ×25

◦
A ×25

◦
A cube,

centered at the center of mass, in case of small molecule
grids, and covering the binding site, in case of protein grids.

SNN architecture
A series of experiments, using the dataset, were executed
to determine the best sub-net architecture. In this work, we
only describe the best-performing architecture. Cx denotes
convolutional layers with ReLU activation and Fx refers to
fully connected layer using linear activation, where x is the
layer index.

C1 Filters: 7; Kernel Size: 5× 5× 5; Parameters: 882;
C2 Filters: 7; Kernel Size: 5× 5× 5; Parameters: 6132;
C3 Filters: 7; Kernel Size: 5× 5× 5; Parameters: 6132;
C4 Filters: 7; Kernel Size: 3× 3× 3; Parameters: 1330;
F5 Number of units: 32; Parameters: 28032;
F6 Number of units: 16; Parameters: 528;
F7 Number of units: 2; Parameters: 34;

Results
In order to evaluate the performance of the proposed SNN,
we compare it with a DCNN similar to approach described
in (Wallach, Dzamba, and Heifets 2015). To avoid the need
of positioning each small molecule inside binding site to use
both models, the input of DCNN is a single 3D electrostatic
potential grid of ligand, and the same grid is used in the input
pairs of SNN. The best performing architecture of DCNN
consists of 3 convolutional layers followed by 2 hidden lay-
ers with 256 and 128 units, respectively, and 2-way softmax.

Table 1: Statistics of performance

Accuracy Precision Sensitivity AUC
SNN 85.01% 0.85 0.81 0.92

DCNN 72.71% 0.70 0.76 0.81
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Figure 2: Receiver operating characteristic curves of both
tested models.

To allow direct comparison between SNN and DCNN
performance, we employed the logistic function to normal-
ize the output of SNN. The output of DCNN varies be-
tween (0, 1). However, the calculated compatibility of SNN
varies between (0,+∞). To address this difference, we set
a threshold of compatibility which is the decision bound-
ary of proposed model. In this case, we define the decision
boundary at m/2, where m is the margin in equation 2. The
probability of classification as active (pactive) is calculated
according equation 3, where EW refers to energy calculated
by SNN. Using this equation, if EW is lesser than m/2, the
small molecule is classified as active ligand. Otherwise, this
ligand is classified as decoy.

pactive =
1

1 + e(EW−m
2 )

(3)

In our tests, the area under receiver operating character-
istic curve (AUC) of our model was 0.92, outstanding the
DCNN, which achieves 0.81 AUC. Besides, the precision
and sensitivity of our model were both higher, which de-
notes that our model is better on ranking ligands. The results
are summarized in table 1. Figure 2 presents detailed AUC
curves for SNN and DCNN.

Understanding what model learned
In a siamese architecture, the model learns to map input data
to a low-dimensional space, where comparison between ele-
ments is simple. However, it is necessary to understand how
the model combines input features to calculate the compat-
ibility between pairs.

To achieve better understanding about GW (X), firstly,
we identified important interactions involved in molecu-
lar recognition between a docked conformation of inhibitor
8PC (8PC400 from PDB ID: 3FNE) and a snapshot of FFR
model. Using Ligplot+ (Laskowski and Swindells 2011), we
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observed two hydrogen bonds between atom O22 of 8PC
and residues ALA197 and ILE201, as shown in Figure 3.

Figure 3: Representation of interactions between small mol-
ecule 8PC (PDB ID: 3FNE) and binding site of InhA-NADH
complex (PDB ID: 1ENY).

In order to calculate the influence of this interaction in
compatibility calculated by SNN, we altered the electrostatic
potential grid of 8PC, replacing the negative electrostatic po-
tential at region of atom O22 by positive electrostatic poten-
tial. The compatibility between this altered grid and the grid
of the snapshot of FFR model is 16.75, while the output of
SNN feed with original pair was 1.04. This behavior leads to
a conclusion that the two hydrogen bonds are very important
to compatibility between 8PC and InhA-NADH complex.

5 Conclusion
This work describes a method to calculate compatibility be-
tween ligand and receptor using siamese architecture. This
unsupervised compatibility metric is directly related to affin-
ity binding, where high compatibility (low output energy)
means high affinity binding and vice-versa. This metric can
be used as scoring function and can be applied to guide a
search algorithm in molecular docking techniques. In addi-
tion, the learned filters permit to figure out important chemi-
cal interactions useful to domain experts. Our tests shown
outstanding results on tested dataset achieving 0.92 AUC
and outperforming the DCNN model.
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