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Abstract

The impact of random choices is important to many en-
semble classifiers algorithms, and the Random Forests
is particularly sensible to pseudo-random number gen-
eration decisions. This paper proposes an extension to
the classical Random Forests method that aims to re-
duce its sensibility to randomness. The benefits brought
by such extension are illustrated by a large number of
experiments over 32 different public data sets.

The effectiveness of ensemble classifiers for classifica-
tion tasks in the machine learning area is a known fact.
Classical methods as Bagging (Breiman 1996) and Ran-
dom Forests (Breiman 2001) are widely spread in both re-
searchers and practitioners communities. However, all en-
semble classifiers rely on pseudo-random choices to gener-
ate randomly altered versions of the original data sets (Ban-
field et al. 2007), and those choices may have a non-
negligible impact on accuracy, as was demonstrated for Bag-
ging and Boosting (Fernandes, Lopes, and Ruiz 2010).

The data mining research area is rich in propositions to
enhance well establish methods by means of efficient al-
gorithms to implement classical methods, or by proposing
extensions to the methods themselves. Examples of effi-
cient algorithm efforts are the works of Kulkarni (2012), as
well as all the implementations within the WEKA software
tool (Hall et al. 2009).

Different approaches are related to extend existing meth-
ods by empirical changes. Guo and Fan (2011) present an
extension to ensemble classifiers methods that is based on
selection of classifiers according to Ensemble Pruning via
Based-Classifier Replacement (EPR). Their technique aims
to reduce ensemble size (less classifiers) while increase ac-
curacy. DeBarr and Wechsler (2012) work is an applied ef-
fort that uses some popular ensemble classifiers to spam de-
tection, but it also proposes an extension, called Random
Boost, that adds to the traditional Random Forests some
Logit Boost techniques (e.g., weighting on classifiers).
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In such context, the our paper objective is to analyze
the Random Forests classifier in respect to its vulnerabil-
ity to random choices. In such case, the effectiveness of the
method, or its ineffectiveness, may be a consequence of a
lucky, or unlucky, choice of seed.

Established the impact of randomness, we propose an
extension to cope with this vulnerability without having a
negative impact on its accuracy. In order to do so, we pro-
pose an extension called Stochastic Aware Random Forests
(SARF). This extension effectiveness is empirically illus-
trated through the application of the classical Random
Forests and the novel SARF to 32 public data sets.

This paper is organized as follows: the second section de-
scribes the data sets used in this paper, and it shows the im-
pact of random choices on classical Random Forests com-
pared to the impact on Bagging method; The proposed ex-
tension, called SARF, is detailed presented in the third sec-
tion, and different options of SARF are experimented over
the 32 data sets; Finally, the conclusion summarizes this pa-
per contribution and proposes future works.

The impact of randomness in Random Forests
The motivation to propose our extension to Random Forests
is its vulnerability to decisions affected by pseudo-random
number generation within the implementation. Therefore,
this section goal is to illustrate such motivation showing
that Random Forests implementation is more vulnerable to
random choices, than other methods. To do so, we apply
the Bagging and Random Forests implementations found in
WEKA version 3.4.19 (Hall et al. 2009) to 32 different data
sets, using 100 different random seeds.

The experiments of this paper were conducted over 32
data sets that came from public repositories (Table 1) from
areas like medical information, software development, wine
recognition, biology, chemistry and physical phenomena.
The first column of this table indicates the data base name
and its original repository: 4 for University of California
Irvine (Asuncion and Newman 2007); and ∇ for University
of West Virginia (Boetticher, Menzies, and Ostrand 2007).
The second column states information about the data: the
number of attributes excluding the class attribute (nba), the
number of instances (nbi), and the percentile of missing val-
ues (miss.) over the total data (nba × nbi).
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Table 1: Data bases characteristics.
Data Bases Information Data Class Data

id nba nbi miss. nbc u
Abalone4 B01 8 4,177 0.00% 28 0.071
Arrythmia4 B02 279 452 0.32% 13 0.268
Audiology4 B03 69 226 2.03% 24 0.103
Balance4 B04 4 625 0.00% 3 0.146
Breast cancer4 B05 9 286 0.39% 2 0.165
Car Evaluation4 B06 6 1,728 0.00% 4 0.390
CM1 software defect∇ B07 21 498 0.00% 2 0.645
Datatrieve∇ B08 8 130 0.00% 2 0.690
Desharnais∇ B09 11 81 0.00% 3 0.150
Ecoli4 B10 8 336 0.00% 8 0.168
Echo cardiogram4 B11 11 132 5.10% 3 0.054
Glass4 B12 10 214 0.00% 6 0.116
Heart(Cleveland)4 B13 13 303 0.38% 2 0.008
Heart statlog4 B14 13 270 0.00% 2 0.012
Hepatitis4 B15 19 155 5.70% 2 0.345
JM1 software defect∇ B16 21 10,885 0.00% 2 0.376
Kr-vs-kp4 B17 36 3,196 0.00% 2 0.002
MW1 software defect∇ B18 37 403 0.00% 2 0.716
Pima-diabetes4 B19 8 768 0.00% 2 0.091
Post-operative4 B20 8 90 0.42% 3 0.366
Primary-tumor4 B21 17 339 3.92% 21 0.066
Reuse∇ B22 27 24 0.93% 2 0.063
Solar Flare4 B23 12 1,389 0.00% 8 0.682
Tic-Tac-Toe Endgame4 B24 9 958 0.00% 2 0.094
Thyroid(Allhyper)4 B25 29 2,800 5.61% 4 0.928
Thyroid(Hypothyroid)4 B26 29 3,772 5.54% 4 0.807
Thyroid(Sick euthyroid)4 B27 25 3,163 6.74% 2 0.664
Wbdc4 B28 30 569 0.00% 2 0.065
Wisconsin breast cancer4 B29 9 699 0.25% 2 0.096
Wine recognition4 B30 13 178 0.00% 3 0.013
Yeast4 B31 9 1,484 0.00% 10 0.137
Zoo4 B32 17 101 0.00% 7 0.114

The last column contains the information about class dis-
tribution of each data base: the number of different classes
(nbc) and a rate indicating how unbalanced these classes
are (u). This rate was proposed by Fernandes et. al. (2010)
and it is computed as the ratio between the standard de-
viation of the number of instances in each class (std) by
a completely balanced distribution of instances among the
classes (nbi/nbc), divided by the square root of the number
of classes. Therefore, the index u varies from 0 (completely
balanced) asymptotically towards 1 (as unbalanced as possi-
ble). Its numerical value is computed by:

u =

(
std

nbi/nbc

)
/
√

nbc

Every ensemble classifier method1 needs random choices
to produce different data sets in order to generate distinct
classifiers, that are as uncorrelated as possible. It is a known
fact that these random choices have an non-negligible im-
pact on the precision of Bagging (Fernandes, Lopes, and
Ruiz 2010).

1According to WEKA menus to choose classifier methods,
Random Forests is not an ensemble method, but a tree method.
However, following Breiman (2001) definition: “Random forests
are a combination of tree predictors such that each tree depends
on the values of a random vector sampled independently and with
the same distribution for all trees in the forest” and, therefore we
assume it to be an ensemble classifier.

Ignoring other details of Bagging method, we notice that
the random choices to take are restricted to the sampling pro-
cedure over the instances of the original training set. Observ-
ing the Random Forests method (Breiman 2001), we notice
additional random choice points. Not only an instance sam-
pling with repetition is made (just like Bagging), but random
choices are also responsible to chose k attributes among the
total nba attributes of the data set. In WEKA implementa-
tion, this second kind of random choice is encapsulated in-
side the tree builder procedure called RandomTree.

As stated by Breiman (Breiman 2001), it is true that Ran-
dom Forests is much lighter than Bagging, since it has sim-
pler tree classifiers to build2. However, it has more random
choices to make, so the impact of the random choices in Ran-
dom Forests is likely to be greater than in Bagging.

To confirm that, we have ran in WEKA 3.4.19 a set of
experiments for Bagging and Random Forests (Hall et al.
2009). For Bagging we use J48 as tree builder and we
generate 30 classifiers. For Random Forests we use Ran-
domTree (Dietterich 2000) to build 30 trees, and the number
of features was the recommended k = (log2 nba) + 1. We
have ran these experiments for the 32 data sets presented in
Table 1, and we have observed the accuracy achieved with a
ten-fold cross-validation.

However, for both methods, instead of using a default ran-
dom seed, we did 100 different experiments to each data set
and method using a different random seed each time (we use
seeds 0, 1, 2, . . . , 99). Then, we discarded the 5 lowest accu-
racy values, as well as the 5 highest ones. For the remaining
90 results we have computed average (avg.) and standard
deviation (st.dv.) among these 90 values.

The first two double columns of Table 2 present these
results. There it can be noticed that Bagging and Random
Forests are somewhat balanced concerning the more accu-
rate method, since on 21 data sets Bagging was more accu-
rate, while Random Forests was better on 11 data sets.

On the contrary, concerning the impact of randomness,
Random Forests is undoubtedly more vulnerable than Bag-
ging, since it delivers larger standard deviation values for 28
out of 32 data sets. To facilitate this observation the highest
accuracy average values, and the lowest standard deviations
were boldfaced in the first two double columns of Table 2.

SARF - Stochastic Aware Random Forests
It is a fact that Random Forests is more vulnerable to ran-
dom choices than, for instance, Bagging, but, it is not obvi-
ous why this happens. According to Breiman (2001), the use
of a small number of attributes and randomly selected them
guarantees correlation free ensemble of trees. However, if
we dare to be so bold, we believe this is only true if you
have theoretical random choices, which is never the case for
a computer implementation.

2It is worthy mention that some important characteristics of
Bagging and Random Forests methods, e.g., “out-of-the-bag” clas-
sifier drop out, or classifier voting, are not detailed here, since they
are deterministic steps. The reader is invited to consult the refer-
ences for detailed information.
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Table 2: Accuracy results applied with 100 different seeds for Bagging, Random Forests and SARF variations.
Data Bagging Random Forests SARF 2 SARF 6 SARF 10 SARF 15 SARF 30
Sets avg. st.dv. avg. st.dv. avg. st.dv. avg. st.dv. avg. st.dv. avg. st.dv. avg. st.dv.
B01 23.79% 0.309 23.69% 0.335 23.40% 0.33 23.51% 0.304 23.53% 0.354 23.63% 0.271 23.58% 0.219
B02 73.97% 0.500 67.91% 0.656 68.08% 0.749 68.22% 0.667 68.17% 0.619 67.94% 0.655 67.95% 0.69
B03 80.86% 0.628 79.46% 0.81 79.49% 0.876 79.57% 0.993 79.45% 1.096 79.61% 1.141 79.43% 0.591
B04 19.08% 0.677 5.03% 0.278 5.12% 0.299 5.08% 0.274 5.03% 0.322 4.93% 0.206 4.77% 0.301
B05 74.58% 0.553 67.93% 0.845 68.32% 1.043 68.53% 0.948 68.68% 0.844 68.89% 0.725 68.93% 0.628
B06 93.66% 0.176 94.36% 0.266 94.39% 0.254 94.30% 0.264 94.30% 0.222 94.31% 0.219 94.41% 0.179
B07 88.67% 0.3 88.59% 0.292 88.69% 0.32 88.51% 0.211 88.45% 0.275 88.44% 0.301 88.12% 0.297
B08 90.27% 0.565 89.42% 0.631 89.49% 0.669 89.17% 0.681 89.16% 0.645 89.47% 0.558 89.74% 0.525
B09 70.92% 1.563 73.98% 1.777 73.59% 1.558 74.17% 2.035 74.09% 2.11 73.87% 1.833 73.61% 1.6
B10 85.15% 0.466 66.00% 1.265 65.25% 1.107 65.69% 1.229 65.98% 1.109 65.80% 1.245 66.36% 1.215
B11 60.39% 1.439 58.75% 1.96 58.41% 1.907 58.70% 1.725 59.02% 1.723 59.60% 1.923 59.90% 1.697
B12 97.10% 0.308 98.54% 0.354 98.39% 0.424 98.48% 0.396 98.60% 0.334 98.57% 0.333 98.53% 0.311
B13 79.83% 0.745 81.44% 0.777 81.38% 0.884 81.68% 0.873 81.69% 0.919 81.60% 0.730 81.02% 1.133
B14 81.20% 0.761 81.31% 0.861 81.25% 0.788 80.98% 0.694 80.74% 0.697 81.31% 0.814 81.74% 1.169
B15 82.72% 0.731 84.47% 1.005 84.16% 1.08 84.12% 0.831 84.09% 0.99 84.45% 0.887 84.46% 0.803
B16 81.90% 0.096 81.35% 0.101 81.33% 0.127 81.27% 0.108 81.28% 0.126 81.34% 0.108 81.33% 0.088
B17 99.46% 0.034 99.20% 0.074 99.19% 0.072 99.19% 0.069 99.18% 0.064 99.18% 0.062 99.20% 0.052
B18 91.93% 0.402 90.39% 0.418 90.27% 0.392 90.27% 0.45 90.39% 0.405 90.41% 0.355 90.38% 0.288
B19 75.50% 0.537 75.09% 0.548 75.15% 0.578 75.08% 0.508 75.15% 0.59 75.27% 0.528 75.15% 0.406
B20 69.64% 0.934 62.28% 1.512 62.41% 1.456 62.38% 1.321 62.62% 1.667 62.88% 1.17 63.16% 1.170
B21 43.90% 0.691 42.72% 0.709 42.63% 0.645 42.62% 0.635 42.76% 0.596 42.83% 0.59 42.62% 0.494
B22 95.83% 0.000 89.95% 3.773 90.69% 2.850 90.65% 2.867 89.86% 3.23 90.37% 2.753 91.62% 2.88
B23 84.31% 0.000 81.16% 0.202 81.13% 0.212 81.20% 0.192 81.15% 0.166 81.11% 0.199 81.17% 0.132
B24 94.12% 0.318 95.34% 0.469 95.33% 0.442 95.35% 0.404 95.52% 0.348 95.42% 0.361 95.66% 0.585
B25 99.62% 0.026 99.37% 0.066 99.35% 0.061 99.37% 0.055 99.38% 0.062 99.40% 0.072 99.37% 0.064
B26 98.65% 0.048 98.47% 0.07 98.49% 0.077 98.46% 0.065 98.47% 0.059 98.47% 0.056 98.44% 0.050
B27 97.91% 0.039 97.86% 0.068 97.84% 0.074 97.84% 0.067 97.83% 0.074 97.84% 0.082 97.82% 0.07
B28 95.67% 0.351 96.41% 0.317 96.52% 0.31 96.46% 0.291 96.46% 0.269 96.42% 0.224 96.32% 0.272
B29 95.86% 0.233 96.21% 0.252 96.11% 0.226 96.15% 0.217 96.12% 0.225 96.11% 0.255 96.12% 0.308
B30 95.86% 0.493 97.82% 0.406 97.62% 0.459 97.77% 0.422 97.73% 0.513 97.76% 0.513 97.94% 0.324
B31 52.11% 0.224 48.20% 1.467 48.34% 1.194 48.15% 1.326 48.28% 1.345 48.98% 1.445 48.49% 1.323
B32 92.64% 0.609 93.71% 1.004 93.64% 1.022 93.69% 1.325 93.67% 1.276 93.31% 1.298 93.71% 0.914
avg. 80.22% 0.461 78.32% 0.737 78.30% 0.703 78.33% 0.701 78.34% 0.727 78.42% 0.685 78.47% 0.649

All computer languages provide a pseudo-random num-
ber generator (Park and Miller 1988), which is the basic tool
to implement random decisions in algorithms. The prob-
lem with pseudo-random decisions is that, unlike theoreti-
cal random decisions, there is always some kind of corre-
lation between successive decisions (Boyar 1989). Specifi-
cally in java, the language in which WEKA is implemented,
the pseudo-random generation is made through a linear con-
gruence algorithm, which is one of the best approximations
to the properties of random generation.

Among these properties, the one that is particularly im-
portant to Random Forests is to provide uncorrelated sam-
ples, i.e., “a random vector sampled independently” (see
Footnote 1). One of the options to enhance this indepen-
dency is to alter the pseudo-random generation procedure.
This is the idea of the method extension proposed, which is,
therefore, called Stochastic Aware Random Forests (SARF).

The classical Random Forests method, while generating
each tree, has two points of random choices: in the first one,
k attributes are sampled, and in the second one, nbi instances
are sampled with repetition. Therefore, to each tree genera-
tion there is a need to perform k+nbi pseudo-random num-
ber generations, and consequently, the whole execution with
T trees demands T × (k + nbi) samplings.

The WEKA implementation of Random Forests takes
one random seed at the beginning of the algorithm, and all
T×(k+nbi) samplings are made as the result of a determin-
istic (pseudo-random) number sequence. Our proposal is to
break such sequence by introducing additional points of ran-
dom seeds input. In such way, the SARF implementation is
essentially the same as the classical Random Forests, except
for the inclusion of random seeds input points.

Such inclusion of random seeds input points could be
made before each tree generation, which would produce T
pseudo-random sequences. However, it could be done more
sparsely, for instance, at each two tree building, producing
T/2 pseudo-random sequences. It could go further until hav-
ing just one additional random seed input point, producing 2
pseudo-random sequences.

These options result in different versions of SARF, ac-
cording to the number of pseudo-random seeds input points.
We will call each of these versions “SARF s”, when SARF
is implemented including s − 1 seed assignment points,
i.e., generating s pseudo-random sequences. For instance,
“SARF 3” with 30 tree generations (T = 30), would gener-
ate 10 trees with the first random seed, another 10 trees with
the second random seed, and the last 10 trees with the third
random seed. In this point of view, classical Random Forests
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could be seem as a particular case of SARF, the “SARF 1”,
i.e., with just one random seed input made at the beginning
of the algorithm.

The empirical observation of SARF effectiveness is made
through the application of five different versions of SARF
with 30 trees (T = 30) for the 32 data sets presented previ-
ously. As the experiments conducted previously for Bagging
and Random Forests, we verify the accuracy achieved using
ten-fold cross-validation and 100 different sets of random
seeds, discarding the 5 worst and the 5 best accuracy results.

Note that, unlike the experiments for Bagging and Ran-
dom Forests, just one random seed is no longer enough. For
example, for “SARF 3” and T = 30, three random seeds are
needed, one to each pack of ten tree buildings. Hence, in this
example, the random seeds for the first run are (0, 100, 200),
for the second run seeds are (1, 101, 201), and so on until
the hundredth run that have seeds (99, 199, 299).

Table 2 presents the average accuracy and standard de-
viation of the 90 middle results for classical Bagging and
Random Forests, as well as the following SARF versions:
SARF 2, SARF 6, SARF 10, SARF 15 and SARF 30.

The first interesting observation from Table 2 is that the
use of SARF extension reduces the impact of randomness
(it delivers a smaller standard deviation) in about 63% of
the runs (80 out of 128) in comparison with the classical
Random Forests. Examining a little closer the results, we
notice that at least one version of SARF is always better than
classical Random Forests.

We can also notice that the best standard deviation occurs
much more often for SARF 30 version (18 out of 32 data
sets). These results indicate that SARF, specially in its ver-
sion with the largest number of random seeds (SARF 30),
has effectively reduced the randomness impact.

Observing the accuracy changes due to SARF 30, we no-
tice a negligible impact (less than 1%) for all 32 data sets.
Additionally, comparing it with classical Random Forests,
we notice that 14 data sets had an accuracy increase, 15 had
accuracy decrease, and 3 data sets did not change the ac-
curacy by using SARF 30. Therefore, we assume that SARF
extension does not hinders the accuracy for Random Forests.

Conclusion
This paper proposed an extension to the Random Forests
method, called Stochastic Aware Random Forests (SARF),
to reduce the variability of accuracy due to random choices.
The proposed extension is valid since classical Random
Forests is more vulnerable than other ensemble classifier
methods, e.g., Bagging.

The average standard deviation for the accuracy achieved
with Bagging was 0.461, while classical Random Forests
had 0.737. SARF dropped this average standard deviation
to 0.649 for the version with a different random seed to each
classifier (SARF 30). Hence, it is our opinion that SARF was
effective in its goal to reduce the vulnerability to random-
ness, without reducing the accuracy. The average accuracy
for all data sets actually increase a little bit (from 78.32% to
78.47%) with SARF 30 instead of classical Random Forests.

From a practical point of view, we foresee new experi-
ments with SARF changing the random generators them-

selves, instead of assigning random seeds before each tree
building. In our experiments so far, we have inserted random
seeds inputs, but instead of this, we could imagine a deeper,
and hopefully more effective, change of random generators.
For instance, we could change the parameters of linear con-
gruence generators (Viega 2003) before each tree building.
It is our belief that it could be even more effective to assure
the independence of each random sequence, and, therefore,
serve better the Random Forests assumption of uncorrelated
samplings among each tree building.
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