
Adding Virtualization Support in MIPS 4Kc-based MPSoCs

Alexandra Aguiar, Carlos Moratelli, Marcos Sartori, Fabiano Hessel
Faculty of Informatics - PUCRS - Av. Ipiranga 6681, Porto Alegre, Brazil

Email: {alexandra.aguiar, carlos.moratelli}@pucrs.br, marcos.sartori@acad.pucrs.br, fabiano.hessel@pucrs.br

Abstract—Virtualization has emerged as a feasible technique
for Embedded Systems, providing safer platforms, improving
design quality and reducing manufacturing costs. However,
its inherit overhead still prevent its wide adoption. Most of
the current attempts use the para-virtualization technique that
imposes the cost of performing comprehensive changes in the
guest OS. We propose the adoption of full-virtualization for
MPSoCs, where no guest OS changes are required and, in
order to reduce known virtualization overheads, we propose
some hardware modifications to a MIPS-based architecture.
We conducted experiments that demonstrate our proposal by
comparing its processing and communication overheads against
a non-virtualized solution.

I. INTRODUCTION

Embedded Systems (ES) count each more on powerful
platforms to provide an increasing number of functionalities
required by consumers. However, common ESs constraints,
such as silicon area, memory size, and design complexity still
remain. In this context, virtualization has arisen as a possible
solution for embedded applications, since it can (i) reduce
manufacturing costs; (ii) offer greater security levels; (iii)
enable more efficient processor usage, and; (iv) provide better
software design quality, since legacy systems can be reused as
a virtual machine that coexists with newer projects [1].

Much effort has been spent in order to demonstrate that
virtualization is feasible for embedded systems [2], [3],
[4], [5], [6]. Most of these focus on providing para-
virtualization, aiming to decrease implicit virtualization over-
heads at the cost of requiring the GuestOS to be changed.
Yet, Heiser [7], [8] highlights the need to run unmodified guest
OS and applications, besides providing strong spatial isolation
to improve security. Armand [9] states that low overhead
components are fundamental.

From this conflict of interest between the need to run un-
modified guest OSes and the need for low execution overhead,
raises the possibility of using hardware assisted virtualization.
This approach provides several advantages, such as lower
overhead, a simpler hypervisor implementation (allowing it
to be safer) and more design flexibility, since there is no need
to change the guest OS’s source code.

Thus, this paper investigates the combination of hardware-
assisted virtualization and full-virtualization techniques in a
multiprocessed embedded platform. We adopted MIPS-based
processors as MIPS is a widely adopted architecture being
present in video-games, e-readers, routers, DVD recorders,
set-top boxes, among others. Our main contribution is to

provide a platform that benefits from known virtualization
characteristics, such as increased security and reduced area
occupation. Experiments demonstrate the overhead of the
proposed virtualization platform, since we use a trap-and-
emulate technique for both CPU and I/O bounded applications,
compared to a non-virtualized solution. We also evaluate the
impact on the overall system performance caused by the
amount of virtual and physical CPUs.

The remainder of the paper is organized as follows. Sec-
tion II discusses some related work. Section III presents
the virtualization model and Section IV its implementation
concerns. Section V presents the results while Section VI
concludes the paper with final remarks and future work.

II. RELATED WORK

A. Academic Hypervisors

Main [10] highlights the possibilities of creating guest-
to-guest protocols, aimed for inter-OS communication and
signalling through shared-memory and hypervisor’s watch.
Lin and colleagues [11] propose the SPUMONE architecture,
suitable for multi-core virtualization design. In their work, the
authors use local memories, such as scratchpads, in order to
provide safer domains by physically separating their place-
ment. Their main goal is to prevent a failure in an SMP guest
OS from affecting more than one domain. Nakajima et al. [12]
extend the SPUMONE architecture to provide temporal and
spacial isolation in virtualization of information appliances.
These authors use the para-virtualization technique. They
achieve temporal isolation with virtual core migration aiming
to decrease the dispatch latency of a guest OS application.
Finally, [13] introduces real-time resource management into
the SPUMONE architecture using a fixed priority preemptive
scheduling.

B. Hardware Support

The addition of CPU hardware assists for system virtualiza-
tion has been key to the practical application of hypervisors
in enterprise computing. Intel VT was first released in 2005
and it has been a key factor in the growing adoption of
full-virtualization in the enterprise-computing world. Recently,
this trend could also be observed in embedded systems [14].
Power.org released in 2009 a specification for the addition
of virtualization into the version 2.06 of its ISA. Still, in
2010, ARM also announced the addition of hardware vir-
tualization extensions to its architecture. Finally, MIPS has

978-1-4799-3946-6/14/$31.00 ©2014 IEEE 84 15th Int'l Symposium on Quality Electronic Design

also announced extensions to its ISA that allow hardware
virtualization support in the end of 2012 although at the
present time no commercial processor is using such facility.

C. Analysis

With the growing hardware support for virtualization in
embedded architectures, the use of full-virtualization must be
better investigated. Currently, related works focus mainly in
para-virtualization approaches (changes in the guest OS are
required). However, full-virtualization is desired in embedded
devices as long as it has proper hardware support [15]. Thus,
the main contribution of our work consists in investigating
the behavior of a hardware-assisted fully-virtualized system
aiming MIPS-based MPSoCs that require a strong memory
separation among virtual machines. In this context, our mech-
anism allows a secure and transparent environment for guest
OSs to cooperate in a multiprocessed environment.

III. VIRTUALIZATION MODEL

Our virtualization model assumes a bus-based homogeneous
MPSoC with a shared memory, so all physical processors
share a common address space. Above the CPUs we run the
hypervisor, responsible for the creation and management of
each virtual machine that we call Application Domain Unit
(ADU). Into an ADU, applications can be mapped onto Virtual
CPUs (VCPUs) according to their needs. Still, each ADU can
count on multiple VCPUs allowing a guest OS with proper
multiprocessor support to work1.

Figure 1 shows the possible flexible mapping and partition-
ing model we propose. Each ADU contains a guest OS with
applications represented as a task-set to be associated with the
VCPUs required by this ADU. From a VCPU point of view,
a single subset of the entire ADU’s task-set is available and
is scheduled and managed by the guest OS. It is important
to highlight that a single ADU may contain more than one
VCPU. However, whenever this occurs, the guest OS becomes
responsible for managing these multiple virtual cores.

From the overall system point of view, many VCPUs per
ADU can be disposed as if in a matrix arrangement. Each
matrix element is independently mapped onto the CPUs. Since
we are providing a bus-based virtualization system, CPUs can
be seen as an array of available physical processors. Thus, the
separation provided by our virtualization model can ease the
dynamic mapping of tasks among VCPUs (if supported by the
guest OS) and VCPUs among CPUs.

IV. IMPLEMENTATION DESCRIPTION

For the implementation of our proposal we use the OVP [16]
platform, which is an instruction-accurate simulator written
in C language able to simulate an entire platform, with a
given processor core (or many of them) and some peripherals.
OVP offers a large open-source database with platform models
that support several processor families (such as MIPS, ARM

1For a single guest OS of a given Application Domain to manage multiple
VCPUs at the same time, there is no model imposed restriction. However,
this guest OS must be implemented to support SMP architectures.

Fig. 1. Proposed virtualized mapping model

and PowerPC) and many peripherals. The implementation
presented in this section is based in one of these models with
modifications to the core description in order to support the
proposed platform. Hence, we describe some of the original
core’s characteristics and the main modifications we performed
to provide virtualization.

A. Hardware aspects

Our platform is based on a typical MIPS 4Kc core [17],
which we modified in order to provide virtualization facilities.
Hereafter, we refer to this modified version of MIPS 4Kc
as MIPS 4Kc-VT. We use this core in a multiprocessed
arrangement, as each processor has a local scratchpad memory
and accesses a shared memory, where the guest OSes are
located. Both memories are connected to the processors by
a 32-bit wide bus. Still, a slave 32-bit wide bus is dedicated
for peripherals, which, for now, are limited to a UART for
communication and debug purposes, and a timer for cycle
accurate measurements.

Memory Management. Originally, the MMU of the
MIPS4Kc processor core is conceived to perform virtual to
physical translation for any address before sending requests
either to the cache controllers, for tag comparison purposes, or
to the bus interface unit, due to an external memory reference.
In the 4Kc processor core, the MMU is based in a TLB
that consists of three address-translation buffers: (i) a 16
dual-entry fully associative Joint TLB (JTLB); (ii) a 3-entry
instruction micro TLB (ITLB), and; (iii) a 3-entry data micro
TLB (DTLB). When an address needs to be translated, the
appropriate micro TLB (ITLB or DTLB) is accessed first. In
cases where the translation is not found in the micro TLB,
an access to the JTLB is then performed. Therefore, if a miss
occurs in the JTLB, an exception is risen.

The address translation performed by the MMU depends
on the processor’s execution mode2. Part A of Figure 2 shows
the memory segments that can be accessed on each active
execution mode [17]. For instance, kernel mode has several

2Supported modes are: User mode, mostly used for application programs;
Kernel mode, handling exceptions and privileged operating system functions;
Debug mode, used for software debugging.

segments available (from kseg0 to kseg3, including the kuseg),
while user mode only accesses useg (with virtual addresses
equivalent to the kuseg segment).

Fig. 2. MIPS 4K memory management for User and Kernel modes of
operation

Virtual Memory Segments. Initially, the core enters into
the kernel mode during reset, and whenever an exception is
raised. In a non-virtualized platform, the virtual memory seg-
ments scheme helps the OS to keep user applications isolated
from the kernel by running them in different segments. Still,
the OS can have privileged access in certain memory areas.
Although the segments scheme is strongly recommended to
non-virtualized systems, it brings undesirable restrictions to a
virtualized platform. In the MIPS4K core only the first 2GB of
the virtual memory are available to the virtual machines. Thus,
a guest OS running in User mode would not be able to address
virtual memory above 2GB. Besides, the fixed-mapping of
kuseg0 and kuseg1 segments would become a problem for
virtualization purposes, since the hypervisor needs to register
its exception routine under the Exception Vector address (at
0x8000 0000) and then take control of the execution of
guest OSes’ privileged instructions. It has also to take control
over the hardware interrupts, TLB misses, and other system
exceptions.

Yet, in the original implementation of MIPS 4K, a guest
OS tries to register its own exception handler routine, causing
a conflict with the hypervisor’s implementation (and possibly
with other guest OSes’). Since the Exception Vector is located
at a fixed-mapped address, the hypervisor is not able to
move the virtual address 0x8000 0000 to a different physical
address attending the guest OSes’ needs. The same scenario
description can be applied to the kseg1 segment, whenever
the hypervisor tries to virtualize a given device. Therefore, to
support full-virtualization on a MIPS 4Kc core, we propose
two main modifications: (i) removing all virtual memory

segments, specially the fixed-address segments (kseg0 and
kseg1), and; (ii) disabling the TLB-Translation when kernel
mode is active.

The removal of all virtual memory segments implies that
virtual memory addresses are only mapped to physical mem-
ory when the TLB has a valid entry. However, after enabling
TLB translations and executing the TLB flush routine, there
is no way to disable the TLB. Thus, a valid entry needs to be
kept in the TLB so the hypervisor can map that area into the
physical memory. Such scheme is not transparent for a guest
OS trying to configure its own TLB entries. In this context,
to avoid further conflicts, we have modified the MIPS 4Kc
core so the TLB is disabled whenever kernel mode becomes
active. In this condition, the modified core MIPS 4Kc-VT
translates each single virtual address directly to the matching
physical address, giving full visibility of the memory only to
the hypervisor.

Finally, we extended the visibility of the virtual memory in
user mode to 4GB allowing the guest OS to require addresses
above 0x7FFF FFFF. This is needed whenever the guest OS
tries to access either the Exception Vector or a memory-
mapped device. The new memory map for both user and kernel
modes are depicted in Part B of Figure 2.

B. Software aspects

Figure 3 depicts a general view of our hypervisor composed
of the following modules: (i) Hardware Abstraction Layer
(HAL), used to isolate layers, such as domain and scheduler,
from specific hardware details. It merges drivers interface,
along with device drivers implementation, besides handling
the VCPUs abstraction; (ii) Memory-Mapped I/O (MMIO),
which manages the memory-mapped devices; (iii) Application
Domain Unit (ADU) described in Section III; (iv) Scheduler,
responsible for scheduling VCPUs into the CPUs in a round-
robin fashion, and; (v) Dispatcher, responsible for dispatching
the chosen VCPU to the physical CPU.

Fig. 3. Hypervisor block diagram

Exception Vector. Originally, MIPS 4K contains a fixed
location designated for the Exception Vector starting at
0x8000 0000 (except when the processor is in debug mode).
This causes an address conflict between the hypervisor and the
guest OSes because both will try to register their exception
routine at the same address. To cope with that, we created

a virtual mapping for the guest OSes, where the physical
address 0x8000 0000 is mapped to a virtual address. So, the
hypervisor can register its exception routine at 0x8000 0000
while the guest OSes use a virtual address, which is handled
by the hypervisor.

Exception Return. Guest OSes run in user mode and the
MIPS 4K core generates an exception whenever a privileged
instruction is executed outside of its intended privilege level,
enabling the hypervisor to intercept such instructions and
emulate them. Then, after the software emulation of the
privileged instruction occurs, the hypervisor must return the
control to the guest OS. In this context, the ERET instruction
(MIPS R4000) is used to return from an exception and its
return address is programmed at the EPC (Exception Program
Counter). The EPC register at CP0 ($14) has the virtual
address of the instruction that was the direct cause of the
exception. The hypervisor accesses the address contained in
the EPC register to find which instruction should be emulated.
After this, the EPC register is incremented to the address of
the next instruction and an ERET instruction is executed.

Memory-mapped peripherals. Direct mapping: the hyper-
visor maps the peripheral directly to a guest OS and any
requests from other guest OSes are simply denied. In such
way, no overhead is added when a guest OS accesses its
directly-mapped peripherals. Thus, the implementation of this
technique consists in mapping the memory region where the
peripheral is located to its guest OS owner, by using the TLB.
This guarantees that accesses to a peripheral by its guest OS
owner do not trap to the hypervisor, whereas unwished guest
OS accesses do trap to the hypervisor, generating an exception
to be treated accordingly. Shared peripheral: desirable for
peripherals that are needed by more than one guest OS. For
instance, serial ports or ethernet controllers can be considered
as shared peripherals because they allow connectivity to the
external world and can be used by several guest OSes. This
approach requires a more complex treatment from the hyper-
visor point of view. A shared peripheral does not have its
memory area mapped for any guest OS specifically, that is, the
peripheral memory area is unmapped in user mode. A guest
OS that accesses this area causes a trap to the hypervisor that
identifies where the origin of the request is, and emulates the
peripheral. This means that the hypervisor needs to implement
a device driver specifically for each shared peripheral.

C. Multiprocessor concerns

Synchronization Primitive. MIPS II provides two instruc-
tions for synchronization purposes: Load Linked (LL) and
Store Conditional (SC). However, in the MIPS 4K core,
these instructions are originally intended for single processor
architectures. Therefore, to provide synchronization among the
many processors intended by our architecture, we developed
a lock-based system using a memory-mapped peripheral that
guarantees atomicity for the following software layers of the
system.

Inter-domain communication. Our proposal is flexible
enough to work on monoprocessed and multiprocessed ar-

chitectures. Either way, we need to provide a communication
mechanism between Application Domain Units. The hyper-
visor is responsible for this support basically performing a
copy from the sender domain’s memory area into the receiver’s
domain memory area. For this to work, the guest OS must have
a proper driver that understands our communication protocol,
implemented to take advantages of the proposed architecture,
reducing possible overheads.

D. Guest OS concerns

Our virtualization approach is based especially in some
memory-mapping modification, what caused a compatibility
break between the original MIPS 4Kc and the modified core
(MIPS 4Kc-VT), meaning that a guest OS intended for the
platform must be firstly ported to this modified core. Although
it can be considered as a disadvantage of our approach, it is
important to highlight that once the guest OS is running on
this modified core (without hypervisor interference), virtualize
it is straightforward due to our full-virtualization approach.
Since the modifications for the MIPS 4Kc-VT follow the MIPS
R3000 Application Binary Interface (ABI) specifications, the
OS modifications also follow this specification.

Case-study: porting HellfireOS to MIPS 4Kc-VT. As a
proof-of-concept, we used an academic OS that was not orig-
inally compatible with MIPS R3000 specification to illustrate
the port to MIPS 4Kc-VT. HellfireOS (HFOS) [18] is a highly
customizable operating system, suitable to run on low memory
constrained architectures, like some embedded systems. It was
primarily designed to run on a Plasma MIPS core. Basically,
some modifications were required on the exception handler
routine, as we use the ERET instruction to return from
exceptions in MIPS 4Kc-VT. HFOS was originally designed to
run on MMU-less processors and, since the MMU is managed
exclusively by the hypervisor, there’s no need for HFOS to
be aware of the MMU. On the HFOS implementation level,
modifications concerned exclusively its Hardware Abstraction
Layer (HAL). Finally, these modifications did not impact
significantly neither HFOS’s code size nor its data memory
usage.

V. RESULTS AND DISCUSSION

A. Evaluation methodology

To perform our evaluation we’ve implemented a peripheral
responsible only for measuring time in microseconds. This
peripheral is placed in the shared bus and each virtual machine
accesses it through emulation, with a 600-instruction overhead.
This induces some extra timing to each access that is not
significant when compared to the algorithm’s results. We use
HellfireOS as a guest OS, described in Section IV-D. Other
configuration details are described at each case study, as
needed.

B. Processing Overhead Measurement

This test demonstrates the processing overhead of our pro-
posal by comparing it to a non-virtualized solution. We have
implemented a CPU-bounded application that implements the

classic Hanoi Tower problem [19] resolution. Results were
measured from the average execution time of one hundred
iterations using a 16-piece configuration. Figure 4 shows
the virtualization overhead compared to the non-virtualized
platform. We varied the amount of physical cores (CPUs),
even in the native execution. Then, for the virtualized platform,
besides varying the amount of CPUs we varied the amount
virtual cores (VCPUs) per physical core.

Fig. 4. Virtualization execution overhead for the Hanoi algorithm

Best-case scenario can be considered when we have one
VCPU per CPU. In this case, the average overhead is not
significant (around 0.32%). However, in the worst case com-
parison, when we have a single CPU and 8 VCPUs, the
overhead grows dramatically to more than 700% since we need
to share a single physical resource between a bigger amount
of VCPUs. Still, there are cases when the total amount of
VCPUs is inferior to the amount of CPUs. In these cases the
average overhead is around 0.33%, meaning that there is no
significant interference of the scheduling scheme in the overall
system performance. The compromise of the VCPU per CPU
ratio must be carefully analysed by the designer in order to
balance the benefits and the cost induced by the platform.

We also analysed the execution and emulation of shared
peripherals. To stimulate such problem, we analysed the re-
lationship between the virtualization overhead growth and the
amount of UART accesses (per 100000 instructions), depicted
in Figure 5. It is possible to see that the more UART accesses
a program performs, the more its execution overhead grows.
However, we believe that depending on the application’s be-
havior our virtualization overhead can still be acceptable. It is
also important to highlight that, if a given virtual machine uses
extensively a given peripheral, it could be considered to use
the direct-mapping strategy, which eliminates the emulation
overhead.

C. Communication Overhead Measurement

Figure 6 shows the results of two communication-bounded
application. Firstly, the Ping Test application is responsible
only for performing message exchanges. Secondly, the Bit-
count application contains a master processor that is responsi-
ble for counting the amount of set bits in a given array of

Fig. 5. Virtualization overhead at UART accesses

bits using a given number of slaves to help complete the
task. Both applications are executed in virtualized and non-
virtualized (native) scenarios. Since these are communicating
applications, native execution requires at least two physical
cores, varying from 2, 4 and 8 CPUs. In the virtualized
environment, we’ve performed an analysis based in the VCPU
per CPU ratio (VCPU:CPU), varying from 1:1, 2:1, 3:1
and 4:1. Still, for the ping test we varied the size of each
message, since the larger the message size, the more packets
are needed to send it through the network. Results were taken
as an average of execution time needed to send one thousand
messages for each test set. For the Bitcount test we use an
array size of 4096 and each VCPU as a slave and one thousand
executions for the average results. Since this test involves a

Fig. 6. Communication Test with Synthetic Application (Ping Test)

lot of privileged instructions to perform the communication,
we observed that the overhead is equally high. Even in the
best cases, when the VCPU per CPU ratio was set in 1:1,
the communication overhead was in average 800%, due to the
trap-and-emulate strategy we use. This occurs mainly due to
our trap-and-emulate strategy. We believe that some refinement
in the way full virtualization is provided, such as adding
different execution modes (as similar to what Intel, AMD,
and ARM have done) would definitively decrease the overall

execution overhead.

D. Mixed Scenario Measurement

Finally, the third scenario mixes the processing and com-
munication bounded applications to allow an analysis of the
interference they cause in each other. We use the Hanoi as
the CPU-bounded application and the Bitcount communicating
algorithm. Figure 7 depicts the execution times in two cases:
in the graph on the right side of the figure, we present the
Bitcount execution times. On the left side of the figure, we
present the Hanoi execution times. For both tests, each VCPU
contains one test (1 Hanoi or 1 Bitcount) as we varied the
amount of Hanois and Bitcounts per test, also varying the
amount of CPUs. Native scenario only explores one CPU per
Hanoi or Bitcount employed.

It is possible to see that the Bitcount execution suffers more
interference from the amount of CPUs employed, with a single
CPU being the worst case scenario and eight CPUs being the
best-case scenario. The Hanoi execution time is also clearly
affected by the increase of Bitcounts in the system, although
the processing time itself is affected by the amount of Hanois
in the system (more VCPUs per CPU ratio) and by the time
spent by the hypervisor treating the privileged communication.

E. Discussion

These results were taken aiming to investigate the behavior
of the proposed platform. We use a hardware-assisted virtu-
alization based in the trap-and-emulate technique. Therefore,
we were able to achieve low execution overheads depending
on the VCPU per CPU ratio. Obviously, if we are using a
single CPU to execute two vCPUs, we’d expect the execution
time of the application running on the vCPU to double, at
least. However, the virtualized approach would need half the
area occupied by the non-virtualized approach, and that’s a
tradeoff that needs to be analysed. Also, if we are talking about
applications that could share a physical CPU (non-prohibitive
overhead) but could not coexist due to security reasons, the
strong separation between Application Domains could be a
solution.

Our platform allows inter-domain communication both in
mono- and multi-processed environments. For that, each Ap-
plication Domain uses a network peripheral, which accesses
need to be treated by the hypervisor. It is the hypervisor the
module responsible for performing the actual communication,
by accessing the memory and copying the desired data.
Therefore, tests with communication present higher overhead.
We believe that adding extra hardware support, such as extra
execution modes (like virtualization mode, proposed by Intel),
duplicating certain structures (such as the register bank, to
decrease context-switch overhead), and an improving lock
system (to provide synchronization) can dramatically decrease
these overheads.

Finally, by analysing these results we believe our platform
is suitable for monoprocessed and small multiprocessed en-
vironments with less than 8 CPUs (due to the shared mem-
ory strategy), where applications with high idle time coexist

with medium-intensive processing applications. This scenario
would benefit from the consolidation offered by virtualization
with acceptable penalty due to the low amount of emulations.

VI. FINAL REMARKS AND FUTURE WORK

In this paper we presented a virtualization model intended
for multiprocessed embedded systems where no change in the
guest OS is desired and hardware support for virtualization
is possible as we suggest some modification to the MIPS
4Kc core in order to provide full-virtualization. The main
advantages of our approach are: (i) no guest OS change
required (as opposed to para-virtualization approaches); (ii)
the strong secure separation between virtual machines, and;
(iii) an environment with low execution overhead in some
cases when compared to a non-virtualized system. Results
were taken aiming to measure the overhead of our approach,
since we adopt a classic trap and emulate technique for full-
virtualization. Future work includes the support of real-time
applications into the platform and other hardware modifica-
tions in order to reduce the overhead of privileged instructions’
execution.

REFERENCES

[1] G. J. Popek and R. P. Goldberg, “Formal requirements
for virtualizable third generation architectures,” Commun. ACM,
vol. 17, no. 7, pp. 412–421, Jul. 1974. [Online]. Available:
http://doi.acm.org/10.1145/361011.361073

[2] M. Ito and S. Oikawa, “Mesovirtualization: lightweight virtualization
technique for embedded systems,” in Proceedings of the 5th
IFIP WG 10.2 international conference on Software technologies
for embedded and ubiquitous systems, ser. SEUS’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 496–505. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1778978.1779039

[3] J. Brakensiek, A. Drge, M. Botteck, H. Hrtig, and A. Lackorzynski,
“Virtualization as an enabler for security in mobile devices,” vol. ILES
08, 2008, pp. 17–22.

[4] D. Su, W. Chen, W. Huang, H. Shan, and Y. Jiang, “Smartvisor:
towards an efficient and compatible virtualization platform for
embedded system,” in Proceedings of the Second Workshop on
Isolation and Integration in Embedded Systems, ser. IIES ’09.
New York, NY, USA: ACM, 2009, pp. 37–41. [Online]. Available:
http://doi.acm.org/10.1145/1519130.1519137

[5] A. Cohen and E. Rohou, “Processor virtualization and split compilation
for heterogeneous multicore embedded systems,” in Proceedings
of the 47th Design Automation Conference, ser. DAC ’10. New
York, NY, USA: ACM, 2010, pp. 102–107. [Online]. Available:
http://doi.acm.org/10.1145/1837274.1837303

[6] M. Åsberg, N. Forsberg, T. Nolte, and S. Kato, “Towards
real-time scheduling of virtual machines without kernel
modifications,” in 16th IEEE International Conference on
Emerging Technology and Factory Automation (ETFA’11), Work-
in-Progress (WiP) session, September 2011. [Online]. Available:
http://www.ipr.mdh.se/index.php?choice=publications&id=2556

[7] G. Heiser, “The role of virtualization in embedded systems,”
in Proceedings of the 1st workshop on Isolation and
integration in embedded systems, ser. IIES ’08. New York,
NY, USA: ACM, 2008, pp. 11–16. [Online]. Available:
http://doi.acm.org/10.1145/1435458.1435461

[8] ——, “Virtualizing embedded systems: why bother?” in Proceedings
of the 48th Design Automation Conference, ser. DAC ’11. New
York, NY, USA: ACM, 2011, pp. 901–905. [Online]. Available:
http://doi.acm.org/10.1145/2024724.2024925

[9] F. Armand and M. Gien, “A Practical Look at Micro-Kernels and Virtual
Machine Monitors,” in Consumer Communications and Networking
Conference, 2009. CCNC 2009. 6th IEEE. IEEE, Jan. 2009, pp. 1–7.
[Online]. Available: http://dx.doi.org/10.1109/CCNC.2009.4784874

Fig. 7. Mixed Scenario With Bitcount and Hanoi application’s interference in each other’s execution time

[10] C. Main, “Virtualization on multicore for industrial real-time operating
systems [from mind to market],” Industrial Electronics Magazine, IEEE,
vol. 4, no. 3, pp. 4 –6, sept. 2010.

[11] T.-H. Lin, Y. Kinebuchi, A. Courbot, H. Shimada, T. Morita,
H. Mitake, C.-Y. Lee, and T. Nakajima, “Hardware-assisted reliability
enhancement for embedded multi-core virtualization design.” in ISORC.
IEEE Computer Society, 2011, pp. 241–249. [Online]. Available:
http://dblp.uni-trier.de/db/conf/isorc/isorc2011.html#LinKCSMMLN11

[12] T. Nakajima, Y. Kinebuchi, H. Shimada, A. Courbot, and T.-H. Lin,
“Temporal and spatial isolation in a virtualization layer for multi-core
processor based information appliances,” in Proceedings of the 16th
Asia and South Pacific Design Automation Conference, ser. ASPDAC
’11. Piscataway, NJ, USA: IEEE Press, 2011, pp. 645–652. [Online].
Available: http://dl.acm.org/citation.cfm?id=1950815.1950942

[13] N. Li, Y. Kinebuchi, H. Mitake, H. Shimada, T.-H. Lin, and
T. Nakajima, “A light-weighted virtualization layer for multicore
processor-based rich functional embedded systems.” in ISORC, C. Hu,
G. Karsai, J. Xu, A. Polze, J. Wang, and A. J. Wellings,
Eds. IEEE, 2012, pp. 144–153. [Online]. Available: http://dblp.uni-
trier.de/db/conf/isorc/isorc2012.html#LiKMSLN12

[14] D. Kleidermacher and M. Kleidermacher, Embedded Systems Security:
Practical Methods for Safe and Secure Software and Systems Develop-
ment. Elsevier Science, 2012.

[15] C. Bertin, C. Guillon, and K. De Bosschere, “Compilation
and virtualization in the hipeac vision,” in Proceedings of
the 47th Design Automation Conference, ser. DAC ’10. New
York, NY, USA: ACM, 2010, pp. 96–101. [Online]. Available:
http://doi.acm.org/10.1145/1837274.1837302

[16] OVP, “Open virtual platforms,” http://www.ovpworld.org/, Accessed,
November 2012, 2012.

[17] MIPS, “MIPS 32 4K - Processor Core Family Software User’s Manual,”
http://www.usrmodem.ru/files/adsl/mips.pdf, Accessed, November 2012,
2012.

[18] A. Aguiar, S. J. Filho, F. G. Magalhaes, T. D. Casagrande, and F. Hessel,
in ISQED. IEEE, pp. 730–737.

[19] P. Hayes, “A note on the towers of hanoi problem,” The Computer
Journal, vol. 20, pp. 282–285, 1977.

