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Abstract—This paper presents HF-RISC, a 32-bit RISC pro-
cessor, along with its associated programming toolchain. The
instruction set architecture of the processor is based on MIPS
I and its hardware organization comprises three pipeline stages.
The processor was synthesized in four different technology
nodes for maximum frequency and simulated using CoreMark,
an industry-standard performance evaluation benchmark. Using
data obtained from synthesis and benchmarking we analyze the
processor performance and compare it to similar commercial
products. Obtained results indicate that HF-RISC is a good
option for embedded design, as it presents performance figures
similar to state-of-the-art ARM processors. Furthermore, its par-
tially reconfigurable hardware organization allows the designer
to explore performance and area trade offs.

Index Terms—RISC; MIPS; FD-SOI; Design Space Explo-
ration; Embedded systems;

I. INTRODUCTION
Current embedded solutions require a relatively high pro-

cessing power combined to low energy consumption. Yet,
trends such as the Internet-of-Things (IoT) demand even
greater levels of integration, as devices are connected to
other systems and efficiency becomes a major concern. In
such applications, several architecture characteristics have to
be evaluated and processors must be designed for specific
situations. Due to the the need for integration of IoT devices
with other computer systems through network protocols such
as IPv6 [1], 32-bit processor cores end up providing better
performance and energy trade-offs, compared to 8 or 16-
bit devices [2]. Embedded designs often have to trade raw
performance improvements against power consumption. Thus,
performance/power and similar ratios are more relevant than
the traditional area, speed and power measurements isolated.
Deep pipelines often incur in contentions among stages, which
reduces the average number of executed instructions per clock
(IPC) to less than 1. Keeping the number of pipeline stages
low can take IPC closer to 1, simplifies the design [3] and
reduces energy consumption [4].

In the processor proposed here this greatly simplifies the
instruction set architecture (ISA) implementation (as no in-
terlocks or forwarding units are needed to fix hazards). This
approach is useful in lower clock frequency applications,
where energy/MHz trade-offs need to be explored, rather than
increasing clock frequency to a maximum. Industry currently
employs the same principle, using 32-bit processors like the
ARM Cortex-M family [5], with only 2 or 3 pipeline stages
[2], in place of 8- and 16-bit microcontrollers. Such design
choices aim to improve both performance and energy effi-
ciency. We propose a 32-bit 3-stage pipeline processor based
on the MIPS I instruction set architecture (ISA). The paper
starts describing HF-RISC and its toolchain, exploring opti-
mizations available at the hardware (HW) organization level.
Next, it compares these optimizations, assessing the improve-

ments offered in terms of performance, and compare these to
state-of-the-art devices designed for embedded applications.
The obtained results indicate a processing performance similar
to that achievable with state-of-the-art solutions, but with
a more efficient architecture in terms of silicon area. The
results evidence that using HF-RISC can entail improvements
in embedded design space exploration, as its different HW
organization flavors allow trading off performance and area,
which can in turn translate into power efficiency.

II. THE HF-RISC PROCESSOR
A. The HF-RISC Architecture

The architecture proposed here, HF-RISC, derives from the
MIPS I ISA introduced in [6]. More specifically, the HF-RISC
ISA is a small subset of the MIPS I ISA (with target on
compatibility with existing tools and optimizing compilers),
and the core has a specific organization, using few pipeline
stages, along with a compact organization of the architecture
components. The most relevant differences between the HF-
RISC organization and a classic 5-stage MIPS are:

• Short, 3-stage pipeline, to simplify core design and to
reduce chip area and energy consumption;

• No hazard or forward units, due to the short pipeline;
• Shared instruction and data memories, i.e. a von Neu-

mann organization. Data accesses take 3 cycles;
• Fully synchronous, single clock edge design: registered

memories are interfaced directly;
• 3-cycle branch delay when taken, with 2 branch delay

slots;
• No unaligned loads/stores; no MMU; no exceptions;
• No co-processor, only memory-mapped peripherals (EPC,

MASK, STATUS, VECTOR, and CAUSE registers);
• Configurable HW multiply unit, no HW division unit;
• A set of MCU-like peripherals: an optional UART, an

interrupt controller, a running counter, two programmable
counters, compare registers and a debug interface.

In terms of throughput, most HF-RISC instructions take
just one clock cycle, but load and store instructions take
three cycles each, due to the memory bus multiplexing and
pipeline refill. Also, multiply instructions take several cycles,
depending on the chosen hardware configuration. When a
parallel multiplier is used, multiply instructions take 4 clock
cycles and when a serial multiplier is used the latency is
between 11 and 35 cycles. A side effect of the simple pipeline
is the absence of explicit load delay slots of conventional MIPS
organizations. Two branch delay slots arise due to pipeline
design - the outcome of branches is discovered on the third
pipeline stage, so the ALU can be reused. The compiler can
schedule instructions in the first branch slot, reducing branch
penalty to 2 cycles.
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TABLE I
THE HF-RISC COMPLETE INSTRUCTION SET. (∗ ARE OPTIONAL)

Arith Logic Shift Comp Mem Branch Jump Mult∗

addiu and sll slt lui beq j mthi
addu andi sra sltu lb bne jal mfhi
subu nor srl slti lbu bgez jr mtlo

or sllv sltiu lh bgezal jalr mflo
ori srav lhu bgtz mult
xor srlv lw blez multu
xori sb bltzal

sh bltz
sw

Table I presents the instruction set of HF-RISC. Only a
minimal set of instructions were implemented (47 total, or
just 41 if no HW multiply is used), such that the architecture
performance is still acceptable for most applications and
hardware complexity is reduced. Integer division and floating
point operations execute through compiler-generated library
calls.

B. The HF-RISC Organization
Figure 1 depict the stages of the HF-RISC pipeline and the

tasks executed in each of these. In the fetch stage, memory is
accessed and an instruction becomes available in one cycle.
In this same cycle the PC is updated. In the decode stage an
instruction is fed into the decoding and control logic, so values
are registered for the next stage. Pipeline bubble insertion is
performed in this stage for memory and branch operations. In
the execute stage the register file is accessed and the ALU
calculates the result of the operation. Address and data are
put on the data bus (on store operations) or data are copied
to the register file (on load operations). On logic/arithmetic
operations, the ALU result is written to the register file. Branch
outcomes are computed in this stage. Multiply operations write
the result to HI and LO registers.

The register file is accessed only in the execute stage
because the architecture is greatly simplified using this choice.
Also, there is no need to implement forwarding logic on the
pipeline, and less state information needs to be kept between
stages. Another simplification concerns the behavior of load
operations on data hazards. If the register file was accessed
earlier, another pipeline stall would have to be used, along
with additional logic surrounding the register file.

C. The HF-RISC Software Toolchain
To evaluate the performance of the architecture and build

an adequate programming environment for measurements, we
created a hardware abstraction layer (HAL), small C and
runtime libraries, and used the GNU tools based on GCC
4.9.3 and Binutils 2.24. The compiler backend was modified
to support all different processor configurations, including
the absence of multiply and divide instructions and other
microarchitecture features.

III. EXPERIMENTS AND DISCUSSION
A. Experimental Setup

In order to evaluate the different configurations of HF-RISC,
we developed an automated flow that collects performance and
area metrics. This paper does not consider power analysis due
to space limitations. Figure 2 shows the devised flow, which

Fig. 1. The HF-RISC 3-stage pipeline and the stage tasks.
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Fig. 2. Flow to extracting metrics for different HF-RISC configurations.

is divided in two major task sets: (i) ISA Analysis; and (ii)
ASIC Design and Analysis.

For the ISA analysis, we configure the RTL of the core
using a set of “generic mapping” commands in VHDL. Using
this RTL we relied on Xilinx ISE to generate a bitstream for
prototyping the core in an FPGA. Note that to do so, one
must also specify the target platform configuration to ISE,
for setting the target FPGA, and to the RTL, for setting the
right memory modules. The target board for all prototyping
experiments in this paper was the Xilinx Spartan3 Starter
Kit, which has a xc3s200 FPGA along with 1MB of SRAM.
Once the core is prototyped in FPGA, a toolchain is used
to compile the CoreMark benchmark targeting a specific HF-
RISC configuration. The inputs to the toolchain are a set of
runtime libraries, the source code of Coremark and a set of
configurations for the toolchain. The latter defines the flags
to be used and the target HF-RISC configuration. With these
inputs, the toolchain generates a binary code that can be
executed on the selected HF-RISC configuration. Note that
this toolchain is an in-house design, which uses a modified
version of the backend of GCC 4.9.3 compiler for MIPS and
a set of scripts to automate the compilation, linking and binary
generation processes. At this stage, the generated binary code
can execute on the prototyped HF-RISC. After execution, the
software outputs the performance of the processor in terms
of Coremarks/MHz [7] through a serial interface. Note that
we choose to prototype the design in order to obtain perfor-
mance metrics because executing Coremark in the prototyped
design is orders of magnitude faster than simulating its RTL
description.

For the hardware design analysis, we synthesize different
configurations of HF-RISC targeting a specific technology. To
do so we rely on the Cadence RTL Compiler. The inputs to
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this part of the flow are: (i) the same RTL generated for the
ISA analysis; (ii) a definition of a target technology; (iii) an IP
library containing standard-cells to be used during synthesis;
and (iv) a set of constraints that will guide the tool through
the synthesis process, mainly defining clock constraints. Using
these inputs, RTL Compiler synthesizes the design and outputs
timing and area reports. The former reports if the tool was able
to achieve timing closure considering the specified constraints
for the target technology and IP library. The latter allows us
to analyse the total cell area of the design.

B. Experimental Results
Using this experimental setup we evaluated three versions of

HF-RISC: (i) one with a fast (parallel) multiplier (FM); (ii) one
with a serial multiplier (SM); and (iii) one with no HW support
for multiplication operations, where these operations must be
done in software (SWM). For the ISA analysis, the three
different versions received different application binary codes
(HW for FM and SM and software multiply for SWM). We
varied the compiler flags to exploit three different optimization
levels: (i) -Os; (ii) -O2, and (iii) -O3. The basic compiler flags
used are -mips2 -mno-branch-likely -mpatfree -mfix-r4000 -
mno-check-zero-division -msoft-float -fshort-double -nostdinc
-fno-builtin -fomit-frame-pointer -G 8 -nohwdiv. For the best
optimization level (O3extreme) includes -funroll-all-loops -
fgcse-sm -finline-limit=500 -fno-schedule-insns flags. On the
SWM configuration, additional flags are -mnohwmult -ffixed-lo
-ffixed-hi. Flags -mpatfree, -mnohwmult and -nohwdiv disable
the generation of unaligned memory accesses, HW multiply
and divide instructions, respectively. Such flags were included
in the modified compiler (GCC 4.9.3) backend, while all other
flags are present in the original compiler.

Table II presents the performance of different software and
hardware configurations. In the case of agressive compiler
optimizations (-O3), along with a parallel multiplier, the HF-
RISC has a score of 2.01 CoreMark/MHz. This is compa-
rable to similar class embedded processors (32-bit, in-order,
short pipeline, HW multiply, von-Neumann organization) [7].
Furthermore, a score close to 3.0 CoreMark/MHz is expected
if code and data memories are separated (Harvard machine).
Note that, as Table II shows, the improvements provided by the
agressive compiler optimizations come with a 3x cost in code
size. In this way there is a clear trade off between performance
and code size, which translates to memory requirements.
We employ the best case Coremarks/MHz results as our
baseline for comparisons, because using best case compiler
configurations is standard in processors specifications.

The next set of experiments consists in evaluating the
hardware design. To do so, we rely on six different technology
flavors, which provide a broad perspective of the performance
of the evaluated processor versions and enable a fair com-
parison with other processors. The employed technologies are
STMicroelectronics FDSOI 28nm and Bulk 65nm, IBM Bulk
130nm and TSMC Bulk 180nm. For the first two technologies
we employ flavors based on two types of transistors, low and
standard threshold (LVT and SVT). For the other technologies
we employ standard threshold transistors only. For STMicro-
electronics technologies we use the IP libraries provided by the
foundry and for IBM and TSMC we use the libraries provided

TABLE II
COREMARKS PER MHZ AND CODE SIZE FOR EACH CORE CONFIGURATION

WITH THREE DIFFERENT TOOLCHAIN CONFIGURATIONS.

Toolchain Config. FM SM SWM

Os Coremarks/MHz 1.42 1.22 0.68
Code size (B) 11068 11068 11708

O2 Coremarks/MHz 1.68 1.43 0.96
Code size (B) 11756 11756 12364

O3extreme Coremarks/MHz 2.01 1.61 0.84
Code size (B) 33500 33500 33420

(a)

(b)

Fig. 3. (a) Maximum frequency in MHz for each core configuration for six
different target technologies and (b) respective cell area in mm².

by ARM. For each technology flavor we iterated the hardware
analysis flow showed in Figure 2 until we reached maximum
performance. We define maximum performance as the highest
frequency achievable before the timing reports yield a negative
slack, i.e. when the tool fails to meet clock requirements.

Figure 3(a) summarizes the obtained results for maximum
frequency for each version of the processor and each technol-
ogy flavor. Figure 3(b) shows the respective cell area for each
of the designs. As the charts show, the designs achieved similar
maximum frequencies regardless of having hardware support
for multiplication or not. This is mainly because the pipeline
of this design is unbalanced. However, the area overheads are
clear and the FM design presents an overhead of 65% in the
worst case. Regarding maximum frequency, in the best case,
using LVT transistors in the FDSOI 28nm technology, the
designs managed to operate at 1.8 GHz. In the worst case,
using a bulk 180nm technology, the maximum frequency of
the designs was 290 MHz.
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TABLE III
MAXIMUM COREMARKS ACHIEVABLE AND NORMALIZED MAXIMUM
COREMARKS PER MM² FOR EACH CORE CONFIGURATION FOR THE SIX

TARGET TECHNOLOGY FLAVORS.

Max. Coremarks Normalized Max.
Coremarks per mm²

Technology FM SM SWM FM SM SWM
STM28 LVT 3636 2909 1745 0.94 1.00 0.67
STM28 SVT 2667 2000 1280 1.00 0.97 0.72
STM65 LVT 2667 2000 1280 0.99 1.00 0.72
STM65 SVT 2000 1600 1011 0.90 1.00 0.65
IBM130 755 593 356 0.87 1.00 0.68
TSMC180 580 457 274 0.91 1.00 0.68

Table III provides another perspective on these benchmark
results. The Table shows the values in absolute maximum
Coremarks and normalized maximum Coremarks per mm².
The former is defined as Coremarks/MHz multiplied by the
maximum frequency in MHz and the latter as maximum
Coremarks divided by cell area and normalized to the best
case across different processor configurations. As expected,
the results show the improvements in maximum Coremarks
allowed by technology scaling, a consequence of maximum
frequency scaling. More interestingly, though, are the results
for normalized maximum Coremarks per mm². As the Table
shows, the FM and the SM designs presented similar scores,
specially in more recent technology nodes. Thus, albeit the
FM is more area hungry, the overhead pays off in terms of
maximum Coremarks. In fact, this design presented at least
25% better maximum Coremarks when compared to the SM
and at least 100% better than the SWM.

IV. DISCUSSION AND CONCLUSIONS
Table IV presents a survey of state-of-the-art devices used

on several embedded applications, together with some HF-
RISC results. All information in the Table was extracted from
the Coremark website [7]. Note the selected devices present
similar characteristics regarding architecture features (specifi-
cally: all cores are 32-bit, in order, scalar pipelines) and thus
can be considered devices from a same class. Exceptions are
the devices based on the ARM11 (superscalar ARM1176JZ-
S, Broadcom BCM2835) architecture, included because they
offer a similar performance in terms of Coremark/MHz.

As the Table shows, the FM version of HF-RISC is superior
to most of the available devices in terms of Coremarks/MHz
and is comparable to ARM processors like the ARM1176JZ-
S and the Cortex-M0 employed in the STM32F051C8 device.
The SM version, on the other hand provides more modest
performance figures, being comparable to Xilinx MicroBlaze
processors. It is harder to present a fair assessment of the
absolute performance of these devices and put the HF-RISC in
context. This is because information regarding the fabrication
technology for the evaluated devices is scarce. Having that
said, ARM provides information of maximum frequency for
some of its processors and the respective fabrication technolo-
gies available. For the ARM1176JZ-S, for example, they report
a maximum frequency of 772MHz in a bulk 65nm technology
using standard threshold devices, which yields a score of
1605 maximum Coremarks. Note that, as Table III shows, the
HF-RISC FM version in a similar technology yields 2,000
maximum Coremarks in its maximum operating frequency.

Another interesting comparison is with the STM32F051C8,

TABLE IV
COREMARKS/MHZ FOR STATE-OF-THE-ART DEVICES USED ON

EMBEDDED APPLICATIONS.

Processor Compiler Coremarks/MHz
Microchip PIC24FJ64GA004 gcc-4.0.3 0.93
Analog Devices BF536 gcc-4.3.3 1.12
Xilinx MicroBlaze, 3-stage gcc-4.1.1 1.48
HF-RISC v3.0 (SM) gcc-4.9.3 1.61
Xilinx MicroBlaze, 5-stage gcc-4.1.1 1.66
Broadcom BCM63281 gcc-4.2.3 1.68
NXP LPC1768 armcc 4.0 1.75
NXP LPC1768 Keil ARMCC 1.76
STMicro STM32F103RB gcc-4.4.1 1.80
Marvell Kirkwood 88F6281 gcc-4.4.5 1.85
Broadcom BCM2835 gcc-4.6.3 1.86
Altera NIOS II/f gcc-4.9.2 1.87
Marvell 88AP510 Armada 510 gcc-4.4.3 1.91
TI Stellaris LM3S9B96 Keil ARMCC 1.92
HF-RISC v3.0 (FM) gcc-4.9.3 2.01
ARM ARM1176JZ-S gcc-4.3.3 2.08
STM32F051C8 IAR 6.60 2.20

the top device in terms of Coremarks/MHz. The Cortex-M0
employed in this device has a maximum frequency of 50 MHz
in a bulk 180 nm technology, which yields a maximum
Coremarks of 110. This is substantially smaller than the results
for the FM version of HF-RISC and the ARM1176JZ-S. The
reason is that the STM device is designed for low area and
low power. In fact, when we compare the processor area
for the same technology, it is only 0.109 mm². Comparing
to the 0.273 mm² of the HF-RISC FM version in a similar
technology, this is a reduction of 2.5x. Obviously, the price
paid is the reduction of 5.3x in maximum Coremarks. If
we compare the Cortex-M0 to the SM version of HF-RISC,
though, our design presents an area overhead of 89% only with
an improvement in performance of 4.2x in terms of maximum
Coremarks. In this way, there is a clear opportunity to explore
the design space for embedded computing using the different
versions of HF-RISC for different performance requirements.

As future work we will include a power analysis in our
experimental setup to provide a broader comparison against
state-of-the-art devices. This will allow exploring opportunities
for contemporary applications like the IoT. As said before, this
analysis was not included here due to the space limitations.
Furthermore, we prototyped the SWM version of HF-RISC
in a bulk 180nm technology and validated it on silicon. The
next step is to prototype the other versions of the core in the
same technology to explore their trade offs with precise on-
chip measurements.
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