
A Sensing-as-a-Service Context-Aware System
for Internet of Things Environments

Everton de Matos, Leonardo Albernaz Amaral, Ramão Tiago Tiburski,
Matheus Crespi Schenfeld, Dario F. G. de Azevedo, Fabiano Hessel

Pontifı́cia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre - RS - Brazil
(everton.matos.001, leonardo.amaral, ramao.tiburski, matheus.schenfeld)@acad.pucrs.br, (dario, fabiano.hessel)@pucrs.br

Abstract—The Internet of Things (IoT) will connect billions of
devices deployed around the world in a near future by embedding
mobile network and processing power capabilities into a wide
range of physical computing devices used in everyday life of many
people. Recent studies concerning IoT have addressed not only
the interoperability of devices, but also the context awareness
feature which makes easy to discover, understand, and store
relevant information related to IoT devices. This work aims to
present a Context-Aware System called CONASYS, a system able
to sense the environment and to provide contextualized services
to the users, meeting the users needs without specific knowledge
of the environment, and improving the Quality of Experience
(QoE). We present in details the architecture of CONASYS, the
technical issues related to the implementation of the system, and
evaluation tests.

I. INTRODUCTION

Internet of Things (IoT) is a novel computing paradigm that
is rapidly gaining space in scenarios of modern communication
technologies. The idea of the IoT is the pervasive presence
of a variety of things or devices (e.g., RFID tags, sensors,
smart phones, smart devices, etc), that are able to interact
with each other and cooperate with their neighbors to reach
common goals through unique addressing schemes and reliable
communication media over the Internet [1]. Connect large
numbers of devices directly to applications becomes infeasible
and can bring scalability problems. In order to mitigate this
inefficiency, middleware solutions have been introduced to
address not only interoperability, but also many other functions
as data management, security, and context-awareness.

The devices deployed around the world are generating a
large amount of data, and, unless we can analyse, interpret,
and understand these data, it will keep useless and with
no meaning [2]. Context-aware computing has played an
important role in tackling this challenge in previous paradigms,
such as pervasive computing, which lead us to believe that
it would continue to be successful in the IoT paradigm as
well [3]. Context is considered any information that can be
used to characterize the situation of an entity (e.g., a person,
place, or computing device) that is relevant to the interaction
between a user and an application, including the user and the
application themselves. A context-aware system uses context
to provide relevant information/services to the user, where
relevancy depends on the user’s task [3]. In this sense, an
IoT environment requires a context-aware system in order to
help the user in the most useful way.

In this work, we present the Context-Aware System
(CONASYS), a system able to provide context-aware infor-
mation in order to give semantic meaning (context) to entities
and their data in IoT environments. The main intention is to
avoid the manual user intervention in the interpretation of the
data and also facilitates the systems/entities interactions.

The remainder of this paper is organized as follows: Sec-
tion II presents some related work. Section III presents the
details of our system. Section IV presents the evaluation and
discussion. Finally, Section V presents the conclusions.

II. RELATED WORK

Some systems provide context-aware functions to IoT en-
vironments. This section presents some examples of these
systems and a brief review about their context-aware features.

Hydra [4] is an IoT middleware that comprises a Con-
text Aware Framework that is responsible for connecting
and retrieving data from sensors, context management and
context interpretation. Feel@Home [5] is a context manage-
ment framework that supports interaction between different
domains. C-Cast [6] is a middleware that integrates WSN into
context-aware systems. CA4IOT [7] is an architecture to help
users by automating the task of selecting the sensors according
to the problems/tasks at hand.

A set of methods is mandatory in order to obtain the
context of an entity. Perera et al. [3] proposed a context life-
cycle and explained how acquisition, modelling, reasoning,
and distribution should occur.

Hydra, Feel@Home, C-Cast, and CA4IOT perform the
acquisition process collecting information directly from the
sensors. In CONASYS, PUSH and PULL methods are used
in order to meet the heterogeneity of the devices. For context
modeling, Hydra uses three techniques: Key-Value, ontology-
based, and object oriented. C-Cast modeling through Markup
Schemes technique. Feel@Home uses ontology-based tech-
nique. In CONASYS, both Key-Value and Markup Scheme
techniques are used. These techniques are simple to use and
facilitate the organization and storage of the context.

C-Cast, and Hydra work with rules for context reason-
ing. Hydra also makes use of ontology-based technique.
CA4IOT uses semantic and statistical reasoning techniques.
Feel@Home uses only ontology-based technique. Rules sup-
plies the CONASYS necessities as it has a good cost-benefit
compared to other technologies. For context distribution there

2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC)

978-1-5090-6196-9/17/$31.00 ©2017 IEEE 724

Fig. 1. Phases of the Processing Cycle (PC).

are two popular techniques: query and publish/subscribe. C-
Cast, Feel@Home, CA4IOT, and CONASYS make the dis-
tribution through these two techniques. Hydra uses the query
technique.

This study was made in order to elucidate how systems
generate context. Moreover, only few systems provided details
of their architecture and none of the studied systems have
addressed real-time processing of the context, which has been
considered a gap in the area [3].

III. CONASYS: CONTEXT-AWARE SYSTEM

The Context-Aware System (CONASYS) aims to provide
to user/application a set of services of contextualized infor-
mation, both on-line (i.e., through newest contextualized data)
and off-line (i.e., through historical contextualized data). A
user can request the services without knowing exactly which
devices will be used in the process. CONASYS interconnects
with COMPaaS (Cooperative Middleware Platform as a Ser-
vice) to have access to the infrastructure of devices. COMPaaS
is an IoT middleware [8] that lacks context-aware features in
its architecture. However, we can use any middleware able to
provide its devices as services. CONASYS can deal with any
domain (e.g., smart home, smart office, healthcare, etc), since
that each domain must have a specific set of rules registered
in CONASYS.

A. Architectural Overview

An API was developed to allow users to interact with
CONASYS. In addition to the API, CONASYS provides an
architecture composed of three main layers: Communication
Layer, Storage Layer and Processing Layer. The process of
receiving and interpreting the user’s request is made by the
Communication Layer, that is also responsible for send results
to users. The Storage Layer is responsible for storing content
of all modules present in CONASYS. The Processing Layer
is responsible for the context reasoning process. CONASYS

uses Drools1 rules for reasoning. As this work is focused in
technical overview and platform evaluation, more architectural
details can be seen in our previous work [9].

B. Technical Overview

CONASYS must recognize the environment that it is in-
serted. CONASYS is strictly connected to an IoT middleware.
With a thread that receives all the updates of events that
occur in the middleware, it is possible to sense (i.e., a kind
of understanding) the environment. Every time that a device
connects/disconnects/updates, it sends an XML file to the
middleware. CONASYS gets this file, understands it, and
stores the information. The key information acquired from the
XML is the individual URI, that is the device identity.

Another important CONASYS background step is the rules
interpretation. The rules are directly linked to the context
reasoning process. The interpretation function has directives to
decompose the rule in parts and store it. This process happens
in order to provide the available services to user, since that
every rule is linked to one or more services. The CONASYS
set of rules must be defined and inserted in deployment phase.
Rules is the simplest and most straightforward method of
reasoning and are usually structure in an IF-THEN-ELSE
format.

CONASYS implements the “Observer” pattern, so beyond
the query, the user can also uses CONASYS by subscription.
CONASYS receives the user request, by a specific communi-
cation API (through SOAP web service), understands it and
creates the Processing Cycle (PC) (see Figure 1). First, PC
verifies the request type (query or subscription), and extracts
the services name from received request. PC also adds the
address of the user in a list for future notifications. With the
possession of the services name, PC consults the CONASYS

1http://www.drools.org/

2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC)

725

Fig. 2. Example of a smart city domain Drools rule.

Knowledge Base in order to be aware of which rule must be
applied to each service.

At this point, PC query CONASYS database looking for
events (i.e., device data). If there is a corresponding event in
the database and the data is updated (i.e., depends of the device
data generation time) and the user request is a query, the real-
time processing (RTP) occurs and PC gets these data. With the
RTP, PC goes to the context reasoning and distribution process.
If there is no possibility of RTP, the no real-time flow (nRTP)
continues. The RTP is like a shortcut of the PC. When nRTP
occurs, the PC needs to get the data from middleware. When
PC receives the middleware data, it verifies if user request type
is query. If it is, PC goes to the context reasoning distribution
process. If it is a subscription, PC verifies the time parameters
of the request in order to end it or keep receiving middleware
data.

After both RTP or nRTP, the PC starts the context reasoning
and distribution process. The first thing of these processes is
put the data in the working memory (reasoning process). After
that, the rules are fired, which means that the data passes by
the set of the CONASYS rules. The rules are in an IF-THEN-
ELSE structure. In this sense, if any data reach the conditions
of the rule, the actions of the rule are fired. This act can made
data contextualization in many levels.

Context distribution process occurs when PC notifies its
subscribers with these contextualized information. Moreover,
there are different ways to send data to the user: Web Service,
WebSocket and HTTP. In this way, CONASYS API can

TABLE I
EXECUTION TIME (MS) AND STANDARD DEVIATION FOR EACH RESULT OF

MODELLING THE KNOWLEDGE BASE TEST SCENARIO.

Rules/Conditions 5 50 100
10 133,3 (8,8) 135,2 (6,6) 138,6 (7,3)
50 583,6 (19,1) 598,9 (20,8) 616,7 (21,5)
100 1164,9 (28,0) 1185,9 (29,3) 1197,1 (26,5)
200 2419,2 (49,4) 2426,2 (49,9) 2624,8 (51,9)
500 6269,1 (95,3) 6348,2 (107,7) 6520,5 (97,1)

Legend: Execution time (standard deviation).

be used to change the method of communication. The user
receives data through its update method and can interpret and
use these data in countless ways.

IV. EVALUATION AND DISCUSSION

The goal of the tests is to evaluate CONASYS in terms of
performance. All the tests were performed in three computers.
First hosting CONASYS, second hosting the middleware and
devices, and third hosting the application/user. All computers
are equal with Ubuntu 14.04 LTS (64-bit), Intel Core i5-
3230M 2.60GHz and 8GB RAM. The use of three computers
in this evaluation is feasible since we are analyzing only
CONASYS performance. The CONASYS was developed with
Java programming language and PostgreSQL database.

A. Modelling the Knowledge Base

The main objective of this test is to measure the time taken
by CONASYS to modelling a set of rules. The modelling of
the Knowledge Base happens in two steps: (i) cutting each
rule in parts (i.e., interpretation) and (ii) store it in CONASYS
database. We create a synthetic Drools rule file with specific
domain rules. For the tests, we modified the file in order to
increment the number of rules. Moreover, the conditions of
each rule also increased. These conditions are the field when of
a rule. For example, the rule of Figure 2 only acts on 3 devices
as we can see in the when field. In the most extreme tested
scenario we have a Drools file with 500 rules and each rule
with 100 conditions (i.e., when field). With this scenario we
can reach, in an ideal setting, a total of 50000 (fifty thousand)
devices (i.e., 500 rules · 100 conditions).

All the times collected were an average of 10 executions.
The scenarios vary in two terms: number of rules in the file
and number of conditions in each rule of the file. The tests
results can be seen in the Table I. The first column of the table
shows the number of rules in the file for each test. The first
row of the table shows the number of conditions on each rule
of the file.

Considering the test scenario with 100 rules in the file, the
time taken by the system to interpret, model and store the rules
was 1164,9 ms for 5 conditions in each rule. This scenario
covers a total of 500 (five hundred) devices. If we increase
the conditions of this scenario to 100, the scenario will cover
a total of 10000 (ten thousand) devices. This conditions raising
represents a 20 times (1900%) increase in the number of
devices (five hundred to ten thousand), and the time taken

2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC)

726

TABLE II
EXECUTION TIME (MS) AND STANDARD DEVIATION OF THE PROCESSING
CYCLE (PC) WITH REAL-TIME (RTP) AND NO REAL-TIME FLOW (NRTP).

PC 10 20 50 70
RT 343,7(19,7) 504,9(27,2) 1243,3(39,1) 2232,7(58,2)
nRT 3442,1(75,8) 4531,8(83,4) 7560,9(102,1) 10605,4(131,8)

Legend: Execution time (standard deviation).

for the function process it suffers a increase of less than 3%
(1164,9 ms to 1197,1 ms). For the critic tested scenario the
time taking by the function was 6520,5 ms. Bearing in mind
that this function only was triggered with the CONASYS
deploy, it is an acceptable time. In most of the results, the
standard deviation (SD) follows a stable line. This happens
because independent of the rule file size, the process to model
it stills with the same complex procedures (e.g., database
access), while what changes is the simplest procedures (e.g.,
code interpretation) that do not have a big effect in the results.

B. Processing Cycle

In this test scenario, we collected the time taken by all the
steps of the PC (see Figure 1), from start (i.e., receives the
request interpreted) to end (i.e., contextualize and notify ob-
servers). We tested four case scenarios with different numbers
of users requests fired simultaneously: from 10 to 70. The time
was collected in two executions of each case scenario: (i) when
the real-time processing occurs (RT) (i.e., device information
updated in the database) and (ii) when no real-time flow occurs
(nRT). We made ten executions of each test scenario in order
to have an average execution time.

The first column of Table II shows the PC type that was
performed: RT or nRT. The first row shows how many users
requests were fired simultaneously, creating multiple PCs. As
can be seen, the execution time of RT and nRT are very
different. In the first test scenario, with 10 parallel executions
and RT the obtained time was 343,7 ms, that is almost an
instantaneous function. For the others tests, the time taken
by RT increases linearly. When nRT occurs, is mandatory to
have a connection with the middleware, which increases the
time (i.e., communication delay). In the RT, standard deviation
(SD) followed a pattern staying near to the recommended
by [10] (i.e., the mean being approximately the square of
the SD). For the nRT, the SD results do not followed this
pattern. This happens because in the RT, CONASYS consults
its own database. On the other hand, communication delay on
a middleware query occurs in the nRT.

According to [11], real-time processing solutions are fo-
cused on processing faster than traditional methods, which
allows stream data processing. In CONASYS, the RT shows
up as a better alternative than nRT, since it meets the IoT needs
providing the user response with a very small delay time. The
RT acts as a shortcut, reduces the processing effort of the cycle
and eliminates the need of a middleware connection, what
could add a communication delay caused by the network.

A context-aware system that provides real-time information
services and having a well-defined structure that is able to

handle with different context situations is not yet defined and
is necessary in IoT environments. IoT mobile ecosystems are
in constant change, so the feature of providing contextualized
information services in a real-time way becomes an important
characteristic of our system. In addition, as the IoT can be
applied to different situations, the possibility of working with
multiple domains is also a strong characteristic of CONASYS.
By having this features, CONASYS stands out comparing with
other systems.

V. CONCLUSIONS AND FUTURE WORK

With context, we can give a semantic meaning to the
“Things” data. A context-aware system uses context to pro-
vide services to the users (i.e., requester). We presented
CONASYS, a system that give the context-aware capability to
IoT middleware solutions and enables to build a sensing-as-
a-service platform. Tests were performed in order to validate
the CONASYS capabilities. We also show that CONASYS
standing out by the real-time processing feature. In the future,
we plan to make some improvements in order to refine the
Quality of Experience (QoE) by enabling the rules update in
runtime. In this sense, the user will be able to change the rules
scope dynamically.

ACKNOWLEDGMENT

Our thanks to CAPES/CNPq for the funding within the
scope of the PNPD project.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787 – 2805, 2010.

[2] A. B. Zaslavsky, C. Perera, and D. Georgakopoulos, “Sensing as a
service and big data,” CoRR, vol. abs/1301.0159, 2013.

[3] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
aware computing for the internet of things: A survey,” Communications
Surveys Tutorials, IEEE, vol. 16, no. 1, pp. 414–454, First 2014.

[4] A. Badii, M. Crouch, and C. Lallah, “A context-awareness framework
for intelligent networked embedded systems,” in Advances in Human-
Oriented and Personalized Mechanisms, Technologies and Services
(CENTRIC), Aug 2010, pp. 105–110.

[5] B. Guo, L. Sun, and D. Zhang, “The architecture design of a cross-
domain context management system,” in 2010 8th IEEE International
Conference on Pervasive Computing and Communications Workshops
(PERCOM Workshops), March 2010, pp. 499–504.

[6] E. S. Reetz, R. Tonjes, and N. Baker, “Towards global smart spaces:
Merge wireless sensor networks into context-aware systems,” in 2010
5th IEEE International Symposium on Wireless Pervasive Computing
(ISWPC). IEEE, 2010, pp. 337–342.

[7] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Ca4iot:
Context awareness for internet of things,” in Green Computing and
Communications (GreenCom), 2012 IEEE International Conference on,
Nov 2012, pp. 775–782.

[8] L. A. Amaral, R. a. T. Tiburski, E. de Matos, and F. Hessel, “Cooperative
middleware platform as a service for internet of things applications,” in
Proceedings of the 30th Annual ACM Symposium on Applied Computing,
ser. SAC ’15. New York, NY, USA: ACM, 2015, pp. 488–493.

[9] E. d. Matos, L. A. Amaral, R. Tiburski, W. Lunardi, F. Hessel, and
S. Marczak, “Context-aware system for information services provision
in the internet of things,” in 2015 IEEE 20th Conference on Emerging
Technologies Factory Automation (ETFA), Sept 2015, pp. 1–4.

[10] A. Hald, “Statistical theory with engineering applications,” in Statistical
theory with engineering applications. John Wiley & Sons, 1952.

[11] O. Kwon, Y. S. Song, J. H. Kim, and K. J. Li, “Sconstream: A spatial
context stream processing system,” in 2010 International Conference on
Computational Science and Its Applications (ICCSA), March 2010, pp.
165–170.

2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC)

727

