2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC)

Evaluating the Use of TLS and DTLS Protocols in
IoT Middleware Systems Applied to E-health

Ramdo Tiago Tiburski, Leonardo Albernaz Amaral, Everton de Matos, Dario F. G. de Azevedo, Fabiano Hessel
Pontifical Catholic University of Rio Grande do Sul (PUCRS) - Porto Alegre - RS - Brazil
(ramao.tiburski, leonardo.amaral, everton.matos.001)@acad.pucrs.br, (dario, fabiano.hessel) @pucrs.br

Abstract—The evolution of the Internet of Things (IoT) has
brought new security requirements in terms of communication
services with respect to data transmitted in mobile networks.
Although IoT middleware systems have been used to cope
with the most relevant requirements demanded by different
IoT applications, security is a special topic that is not mature
enough in this kind of technology. E-health is an example of
environment that exposes sensitive data. The security challenges
regarding e-health applications are concentrated mainly on issues
surrounding the communication layer, specially those cases where
data are transmitted over insecure networks. TLS and DTLS
protocols have been chosen by most of the existing IoT systems
in order to protect such communications. However, none of them
was designed to be used in IoT situations. In addition, none of
the existing works analyzes their suitability to the IoT regarding
the usage of mobile networks, which are common in real-world
scenarios of e-health. In this paper, we analyze the use of TLS
and DTLS protocols in IoT middleware systems applied to the e-
health environment regarding performance (i.e., response time),
overhead, network latency and packet loss when operating in
mobile networks. We evaluated both protocols through a specific
e-health scenario. Tests revealed the usage of mobile networks
increases response time and overhead of both protocols, on
average, when compared to traditional networks.

I. INTRODUCTION

The Internet of Things (IoT) is a computing paradigm that
aims to interconnect our everyday life devices or objects using
the Internet as the communication medium [1]. IoT ecosystem
is based on a layered architecture style and uses this represen-
tation to abstract and automate the integration of objects, and
also to provide smart services solutions to applications [2].
In IoT, high-level system layers, as the application layer, are
composed of IoT applications and middleware system which
is an entity that simplifies the development of applications by
supporting services to cope with the interoperability require-
ment of heterogeneous devices [3].

An important application field for IoT middleware is the
e-health environment [1]. Many applications for e-health have
been created in scenarios like Emergency Medical Services
(EMS), in which an ambulance-to-hospital based e-health
system is an appropriated example of how IoT technology can
help save lives. In this case, by providing patient information
to the hospital via mobile networks, this e-health system can
enable remote diagnoses and primary care, reducing rescue
response time.

Middleware systems technology can be used to abstract
the devices integration in an ambulance, and also to allow
the proper interaction with hospital systems by the use of

978-1-5090-6196-9/17/$31.00 ©2017 |IEEE

mobile networks. In e-health, it is mandatory to have a mobile
network able to ensure fast response times between sending
and interpreting data to guarantee that all decisions of a
physician are based on the current health condition of a patient.

However, IoT environments usually have security issues.
Moreover, the deployment of a new security layer may gener-
ate an additional overhead and, depending on the constraints of
the environmental resources, these costs cannot be allowed [2].
Without security, data transmitted can be targets of attacks that
seek to spy or change them. In an EMS scenario, for example,
there is a lack for ensuring data confidentiality and integrity
as a means of enabling a reliable understanding of a patient’s
current life state.

Providing solutions able to mitigate the security problems
found in IoT middleware architectures is a needful task [4].
In addition, it is important to understand the communication
challenges imposed by the IoT when we try to provide
security to systems that operate in mobile networks. Basically,
challenges are related to performance (i.e., response time),
overhead, latency and packet loss. Although most of existing
work provide relevant solutions regarding these challenges,
the evaluation of TLS and DTLS protocols when operating in
mobile networks remains an unreached task [5] [6] [7].

In this paper, we present experiments with TLS and DTLS
protocols. Compared with the related work, the main contri-
bution of this work are twofold: (1) evaluate the applicability
of TLS and DTLS in IoT middleware applied to a specific e-
health scenario; and (2) analyze the performance, overhead,
network latency and packet loss of both protocols when
operating in mobile networks. We also present related work
and a discussion regarding both protocols.

The remainder of this paper is organized as follows: Section
IT gives an overview of security in IoT middleware. Section
IIT presents the related work. Section IV presents the security
protocols and Section V presents the evaluation. Section VI
discusses both protocols and related issues. Finally, Section
VII concludes the paper.

II. SECURITY IN IOT MIDDLEWARE

IoT middleware is a software layer or a set of sub-layers
interposed between IoT technological (perception and trans-
portation layers) and application layers [1]. [oT middleware
has received much attention in the last years due to its
significant role in simplify the development of applications
and the integration of devices.

480

2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC)

Applications

API

Communication Channel

Middleware Core

Security

Communication Channel

1oT Middleware

Logical Device

Devices

Fig. 1. IoT middleware architecture.

The use of IoT middleware is required due to some rea-
sons: 1) middleware naturally acts as a bond joining IoT
heterogeneous components together as a pool of resources to
help the development of applications; 2) middleware provides
important services for applications allowing an effective man-
agement of data; and 3) middleware provides abstraction for
physical layer communications and services to applications,
hiding all the details of diversity.

An IoT middleware architecture is presented in Fig. 1.
According to [4], Applications allow end users to request
information services and to interact with the Middleware Core
system. The Logical Device system must abstract Devices
functions to the Middleware Core. It can be composed of any
IoT device, which can connect to the Middleware Core in order
to provide services based on its features. Each service provided
by the Middleware Core is composed of one or more functions
from Devices. The Applications should use an API from the
Middleware Core in order to consume the provided services.
All the processing activity is generated in the Middleware
Core. Finally, Security layer must ensure the protection of all
stored/exchanged data. In addition, it must provide security
in a non-intrusive manner, ensuring the delivery of data for
applications in an acceptable response time.

A secure [oT middleware system should ensure the pro-
tection of sensitive data against a lot of attacks. According
to [8], systems that use wireless communications are more
accessible and exposed than hardwired systems. The main
security challenges are related to understand what are the
attacks that may happen and also to choose the appropriated
security requirements for each attack. We present the most
common attacks in the following items [9]:

e Man-in-the-Middle: Attacker intercepts the path of com-
munications between two legitimate parties, thereby ob-
taining authentication credentials and data.

o Message Modification: Attacker actively alters a le-
gitimate message by deleting, adding to, changing, or
reordering it.

o Eavesdropping: Attacker passively monitors the commu-
nications network for capturing communicating data and
authentication credentials.

e Denial-of-Service (DoS): It happens when an attacker
can continuously send requests to be processed by spe-
cific things and therefore exhaust their resources.

In order to mitigate such attacks in IoT middleware chan-
nels, we have to deal with some important security require-
ments. We give a brief description of them as follows [4]:

e Authentication: It includes some features such as creden-
tials and trust management, and the guarantee of correct
identity of applications, middleware and devices.

o Confidentiality: It ensures the inaccessibility of infor-
mation for unauthorized users. In addition, confidential
messages resist revealing their content to eavesdroppers.

o Integrity: 1Tt ensures that received data are not altered in
transit by an adversary. In addition, the integrity of stored
data and content should not be compromised.

III. RELATED WORK

Once security support is essential for IoT middleware sys-
tems, we investigate what security requirements have been
provided by them. In addition, we analyze what have been
proposed regarding the use of TLS and DTLS protocols and
how the existing work evaluate their approaches.

The security of IoT middleware systems is the main fo-
cus of some relevant works [2] [3] [4]. Most of the mid-
dleware systems are focused on protecting transmitted data
since they implement authentication, confidentiality, and in-
tegrity [10] [11] [12] [13], which are strongly related to
information protection. TLS is chosen as the security com-
munication protocol by VIRTUS [10] and SIRENA [11]. On
the other hand, SOCRADES [12] and Hydra [13] use WS-
Security, which is a standard to protect SOAP web services.

According to [4], WS-Security is focuses on the use of XML
Signature and XML Encryption to provide end-to-end security.
However, WS-Security is very heavyweight and has issues
with key distribution, federated identity and access control.
In end-to-end situations, authentication, confidentiality, and
integrity can also be enforced on Web services through the use
of TLS. In addition, applying TLS can significantly reduce the
overhead involved by removing the need to encode keys and
message signatures into XML before sending.

In this sense, the work in [2] calls for the needed of non-
intrusive security solutions for IoT systems such as key man-
agement, confidentiality, integrity, and authentication, which
are crucial to have an efficient solution.

Performance and applicability of DTLS to constrained envi-
ronments have been a discussed issue in IoT research commu-
nities. According to [14], many authors studied DTLS in this
context and proposed different optimization techniques. Raza
et al. [7] focused on reducing the per-datagram overhead and
proposed a 6LoWPAN DTLS compression scheme. Another
proposal by Raza et al. aims to reduce the communication
overhead of the DTLS headers for CoAP through compres-
sion [15]. Kumar et al. [16] summarized DTLS memory
requirements, high level communication overhead (in terms
of number of messages), code size for different DTLS and
cryptographic functions.

However, there is a lack in IoT regarding analysis of TLS
and DTLS protocols when used with mobile networks. Most of
the existing work evaluate the use of TLS/DTLS in the IoT in

481

2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC)

Applications
h

g
=
= -
b Data g
g ﬁ g8
H TLS Server £ 2
2 TS) o2
=] w0
= Q‘hannal g
E F

Auth Data ﬁ
@ —
o]
2 2
8 i &t
[=] TLS Client 25
® y (3]
8 Data n®
g F
=

Devices

|

Fig. 2. Schematic overview of the TLS protocol.

different ways: performance, overhead, memory, and energy
consumption [5] [6] [7]. However, none of them analyzes
these challenges when operating in mobile networks, which
are mandatory in most of IoT environments.

IV. SECURITY PROTOCOLS

We implemented both protocols in order to evaluate their
applicability in IoT middleware applied to e-health. Although
they were designed for traditional networks, both protocols
have been used in IoT environments as an alternative to protect
communications, mainly the DTLS. The following subsections
describe each implemented protocol.

A. TLS

In order to implement the TLS (Transport Layer Secu-
rity) protocol we have used Java Secure Socket Extension
(JSSE) [17], a Java package that enables secure Internet
communications using TLS. We used TLS version 1.2 with
public-key encryption to ensure the privacy of messages sent
over the Internet. Both Middleware Core and Logical Device
(see Fig. 1) must have a pair of keys, one public and one pri-
vate. However, before they can exchange messages, they must
generate and store these keys. For the loading of keys we used
the Java keytool, which is a key and certificate management
tool that manages a keystore (database) of cryptographic keys,
X.509 certificate chains, and trusted certificates.

Fig. 2 provides a schematic overview of the TLS protocol
that was implemented. It is composed of three main classes:
TLSServer, TLSClient and TLSChannel. TLSServer listens for
incoming connections on a specified port. Each time a connec-
tion comes in, TLSServer creates a new TLSChannel instance
to process the connection. Processing a connection means
receiving text messages from TLSClient and sending them to
the upper layers of the Middleware Core. When TLSClient
starts up, it initiates a handshake with TLSServer. TLSClient
keeps this connection open throughout the middleware-device
session. Each message sent during this connection is protected.

For both authentication, encryption and de-
cryption, the TLS wuses a cipher suite to know
what algorithms should be employed. We wused

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHAZ256,

Applications

o

5] =i

o g

o Data c .
g ()]
= DTLS Server &2
: "3
3 (DTLS Connector)]

= =

= K [=]

Auth Data @

8 2

> (DTLS Connector) e

]]
o 3 sa
= DTLS Client 0=
%] no
2 A

o =
3 o

Data
Devices

Fig. 3. Schematic overview of the DTLS protocol.

which implements Elliptic-curve Diffie-Hellman Ephemeral
(ECDHE) key exchange using the Elliptic-curve Digital
Signature Algorithm (ECDSA), with AES-128 as the block
cipher, GCM for authenticated encryption and SHA-256
HMAC for the authentication hash.

B. DTLS

In order to implement the DTLS (Datagram Transport Layer
Security) protocol we have used Scandium (Sc) [9], a part of
the Californium Eclipse Project (Java-based implementation
of CoAP) that provides security for CoAP [18]. The DTLS
version used was 1.2. We chose to implement DTLS protocol
based on Scandium because it is able to provide confidentiality,
integrity and reliability of transmitted data. In addition, it is
similar to JSSE used to implement TLS, once JSSE does not
provide support for DTLS.

Although UDP does not provide reliability features as a
standard of its protocol, Scandium library provides reliable
communications through some adaptions to the DTLS pro-
tocol. It provides a DTLS package able to ensure similar
characteristics of TCP such as the delivery and ordering of
messages [19]. The reliability requirement is extremely im-
portant since some IoT environments such as e-health require
trust communications between systems in order to provide a
reliable result for applications.

In order to achieve authentication, both Middleware Core
and Logical Device exchange messages according to the full
DTLS handshake protocol [19]. It specifies messages like
the Certificate, which contains a certificate chain of X.509
certificates where the first certificate in the chain contains the
entity’s public key. The loading in entities is done with the
Java keytool. In this case, there are two keystore files: the
keystore containing a private key and a certificate chain with
the first certificate having the corresponding public key, and
the truststore that contains all trusted certificates.

Fig. 3 provides a schematic overview of the DTLS protocol
that was implemented. It is composed of three main classes:
DTLSServer, DTLSClient, and DTLSConnector, that is shared
by both sides (i.e., Middleware Core and Logical Device).
DTLSServer and DTLSClient open their channels and provide
a DatagramSocket to be used during the communication.

482

2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC)

DTLSClient is responsible for starting the handshake. On the
other hand, DTLSConnector is responsible for all the process-
ing (encrypting, decrypting), key and messages exchange, etc.,
in both sides. After the handshake, all messages are exchanged
in a protected way.

For the DTLS protocol we used
TLS_ECDHE_ECDSA_WITH_AES_128_CCM_S8, which
implements ECDHE key exchange using ECDSA, with
AES-128 as the block cipher and CCM for authenticated
encryption that uses eight octets (64 bits) for authentication
resulting in a ciphertext, which is eight octets longer than the
corresponding plaintext.

V. EVALUATION
A. E-health Scenario

In order to evaluate both security protocols we implemented
them on COMPaaS [20], a SOA-based IoT middleware system
that strictly follows the architecture describe in Section II (see
Fig. 1). We simulated the deployment of COMPaaS in an
EMS scenario, which is a type of emergency service dedicated
to provide out-of-hospital acute medical care and uses IoT
middleware and mobile networks to transmit data.

To perform the tests, we consider the scenario illustrated
in Fig. 4. It allows examining the use of both protocols
between Logical Device and Middleware Core. This is the
reason why the protocols were implemented only in the lower
middleware layers. In addition, this scenario takes us to deal
with an essential requirement: to ensure an acceptable response
time for applications during data transmission. This scenario
highlights the importance of non-intrusive security approaches
in IoT environments when there are patients’ data involved.

Let’s consider an ambulance answers an emergency call in
a street. Middleware Core system already knows about the
existence of the ambulance (i.e., the ambulance is already
registered) and waits for a connection request. The ambulance
arrives at the scene and uses a mobile/wireless network infras-
tructure to establish a connection and authenticate itself with
the Middleware Core. Since Logical Device system is already
configured in the ambulance, some paramedic has only to start
the system when it arrives at the scene. Thus, after the patient
is connected to medical devices, they start generating data.

The Logical Device system is connected to three medical
devices (i.e., an electrocardiogram machine, a pulse oximeter,
and a blood pressure monitor) through their APIs, that com-
pose an IoT gateway. Logical Device receives the devices’
data of a patient every 1.5 seconds (i.e., standard generation
time of each device) and sends it to the Middleware Core
through a mobile/wireless network. The Middleware Core,
which is located at the hospital, receives the data through
a wired connection and then processes, stores, and sends
these data to the corresponding application. The emergency
room physicians receive the data and can analyze the current
life condition of the patient and also can prepare themselves
adequately to receive the patient in an adequate way.

In this scenario, we assume that Application and Middle-
ware Core are communicating through an already protected

Need for Protection

Medical Devices ‘ ;
I
.

Electrocardiogram / ADSL | EDGE/ —
HSPA+ I LTE Application
q: | | | \ -
Pulse Oximeter
/ Logical Middleware
d@ EEED SO Hospital Information
System
Blood Pressure R
Ambulance Hospital

Fig. 4. IoT middleware applied in an EMS scenario.

internal network of the hospital. In this sense, we have
to protect only the channel between Middleware Core and
Logical Device.

B. Environment Setup

We analyzed performance, overhead, network latency, and
packet loss of both protocols when applied to four distinct
networks that were divided into 2 groups. Mobile networks:
EDGE (Enhanced Data Rates for GSM Evolution): pre-3G ra-
dio technology; HSPA+ (Evolved High Speed Packet Access):
HSPA evolution that is noun as 3.5G; and LTE (Long-Term
Evolution): standard for high-speed wireless communication
for mobile phones and data terminals. And a traditional
network (for comparison reasons): ADSL (Asymmetric Digital
Subscriber Line), that enables faster data transmission over
telephone lines.

To perform the tests we have used an infrastructure com-
posed of three computers with the same software and hard-
ware. Both were configured with Ubuntu 14.04 LTS (64-
bit), Intel Core 2 Duo @ 2.20GHz and 4GB of RAM. They
were responsible for hosting Application and API, Middleware
Core, and Logical Device and Devices, respectively. We used a
cell phone to rotate the traffic and send the data from Logical
Device through the Internet. The cell phone was configured
with Android 4.4, processor Quad Core 1.2 Ghz, 1GB of
RAM. Each Logical Device was connected to three medical
devices and each message sent had about 1 KB. The goal
of each Logical Device was to represent an ambulance in a
city infrastructure. According to estimations reported by the
World Health Organization (WHO), the optimal amount of
ambulances for each city is one unit for every 150 thousand
inhabitants. In this sense, the simulation of one ambulance
(i.e., Logical Device) is a good approach.

The use of computers in this evaluation is feasible since
we are analyzing security protocols in IoT middleware when
operating in different networks. Once we are not looking for
processing capacity, memory and CPU of the device side,
we believe the use of computers is an acceptable way of
simulating such scenario. However, we are aware that in a real
application this scenario could suffer mobile signal oscillations
and intend to evolve our research in future works.

C. Experiments and Results

The security protocols were compared against their re-
spective non-secure approaches in order to verify how much

483

2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC)

1400
1200
= 1000
£ sw
8
S 600
g a0
]
o
= il i
0
ADSL EDGE HSPA+ LTE
Networks

NoSecTCP B TLS © NoSecUDP B DTLS

Fig. 5. Performance in different networks (ms).

overhead they create in a transmission. We did not consider
the time spent during the handshake between the parts, only
the time spent between sending and receiving messages after
the handshakes.

We measured the elapsed time for four implemented ap-
proaches: NoSecTCP (open channel, only sockets over TCP),
TLS (protected channel, TLS over TCP), NoSecUDP (open
channel, only datagram sockets over UDP), and DTLS (pro-
tected channel, DTLS over UDP). To get comparable results,
the process of generation and transmission of data was per-
formed for 10 minutes for each network in each approach.

TABLE I
NETWORKS RESULTS.

Feature/Network ADSL EDGE HSPA+ LTE
Packet Loss (%) 3 7 4 2
Latency (ms) 21.4 959.1 207.3 88.2

Before we start the evaluation, we made some tests with all
the networks in order to analyze their behavior in the tested
environment. In this way, we can observe the obstacle imposed
by each network. Table I presents the behavior of each network
related to packet loss and latency. We observed that the latency
of the mobile networks is bigger than other networks. Also,
packet loss was more frequent in mobile networks. Networks
with different percentages of packet loss are good approaches
to analyze TLS and DTLS since it impacts in the way they
should manage the transmission of messages. In addition,
packet loss is common in mobile communications, so this is
a relevant way of evaluating.

We also evaluated if TLS and DTLS are able to provide
security in a non-intrusive way. It means that Middleware
Core and Logical Device should interact with each other in an
acceptable time regarding the constrained requirements of the
application, which is related to the data generating time of the
devices (i.e., in this case, must be lower than 1.5 seconds). We
tested the entire flow of information into the IoT middleware
system (i.e., before data leaving from Logical Device until
they reach the Application.) for different networks.

Fig. 5 presents the performance (i.e., response time for
applications) for each approach tested in different networks

(in milliseconds). It was observed that the performance of
both protocols occurred in accordance with the packet loss
rates presented in each network. DTLS was faster than TLS
in ADSL, HSPA+ and LTE networks, which had the lowest
packet loss and latency results. On the other hand, DTLS was
slower than TLS in EDGE network. This happens by the high
DTLS packet fragmentation rate existing in Scandium library.
Since there are more packets to be sent and the network is
slower (as in EDGE network).

We consider the results obtained for performance were
acceptable, mainly because the time interval of sending data
was 1.5 seconds, and the slower results (observed in EDGE
network) are smaller than 1.5s. It means that a generated
data is being delivered before a new one is generated, which
is extremely important in e-health scenarios as EMS, where
patient data need to get as fast as possible to the hospital to
be analyzed by physicians.

Table II presents the overhead added by the security ap-
proaches (%). Regarding the traditional network (ADSL), TLS
increased the response time in 9.2% while DTLS increased
in 11.1%. Regarding mobile networks, TLS increased the
response time in 6.5%, on average, when compared to No-
SecTCP. On the other hand, DTLS increased the response
time in 11%, on average, when compared to NoSecUDP.
DTLS obtained the best performances, on average, when
compared to TLS. However, the overhead obtained by DTLS
over NoSecUDP was higher than the overhead obtained by
TLS over NoSecTCP, on average.

TABLE I
OVERHEAD ADDED BY THE SECURITY PROTOCOLS (%).

Approach/Network ADSL EDGE HSPA+ LTE
TLS over NoSecTCP 9.2 3.8 10.3 10.7
DTLS over NoSecUDP 11.1 11.5 154 9.2

The overhead add by TLS and DTLS is not only related
to the security layer, but also with the traffic management
(delivering and ordering of messages). Regarding the higher
overhead from DTLS, it is related to its fragmentation and
reliability functions, which had to deal with packet loss in
these tests. Although DTLS does not guarantee reliability as
a standard as TLS does, it was able to provide data reliability
in the same way that Scandium library provides for CoAP. It
uses a “sequence number” field to verify if the messages were
coming in an orderly way. Regarding the delivery of data, it
uses standard messages as “ACK messages” in order to warn
that a message was received. However, this approach spends
more time than TLS, which controlled packet loss according
to TCP standards.

VI. DISCUSSION

TLS and DTLS have been used as alternative protocols for
communications protection in IoT environments. A consider-
able fact is that TLS is widely more used than DTLS, and
the main reason is: TLS is a well-defined standard protocol
used to protect TCP communications, which are, in fact,

484

2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC)

more common than UDP communications. On the other hand,
DTLS emerged based on the need for the protection in UDP
connections and inherited the status of “a standard secure
protocol for IoT communications”. For this reason, the number
of existing work focused on optimize TLS are just a few if
compared to others which are focused on DTLS optimizations.
TLS is widely used in traditional communications. However,
although there are some challenges to overcome, it is not seen
with a perspective of future in IoT environments.

DTLS performed better when applied to mobile networks
with low rates of latency and packet loss. On the other hand,
TLS showed stable in relation to performance and overhead,
since TCP is the responsible for managing delivery and order
packet, and not the security layer, as in DTLS. Even so,
the tests demonstrated that both implemented protocols were
able to provide security for IoT middleware channels without
jeopardizing the system performance when operating in mobile
networks.

Regarding the attacks in Section II, TLS and DTLS might
contain attacks such as man-in-the-middle, message modifica-
tion, and eavesdropping. Related to man-in-the-middle, only
completely anonymous sessions are inherently vulnerable to
such attacks, but we do not negotiate cipher suites that support
anonymous sessions. If the server is authenticated using a
public key infrastructure, an attacker has no possibility to forge
the server’s ServerKeyExchange message which is signed with
the appropriate private key. Regarding DoS attack, DTLS in-
troduces a stateless cookie in the server’s HelloVerifyRequest
message that prevents DoS amplification attacks, and therefore
protects constrained nodes. However, the server still remains
a vulnerable target.

Regarding the used networks, we chose EDGE, HSPA+,
and LTE since they are commonly used in real scenarios of
IoT. Tests demonstrated that TLS and DTLS protocols had
to deal with a considerable latency and packet loss in these
networks. However, we understand that it is not a consequence
of the security feature since the obtained results point for low
percentages when we look for overhead. In this way, although
DTLS had to deal with the reliability feature in a specific way,
tests demonstrated that the mere addition of the security layer
did not mean a significant impact on the performance results.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we evaluated the use of TLS and DTLS
protocols in IoT middleware systems applied to a specific e-
health scenario when operating in mobile networks (EDGE,
HSPA+, and LTE). We analyzed both protocols through tests
on COMPaaS middleware, that shown an increase of 6.5% for
TLS and 11% for DTLS, on average, regarding the overhead
of the security layer when operating in mobile networks. We
conclude that the use of TLS and DTLS protocols is suitable
for IoT middleware systems applied to e-health scenarios since
both protocols protected data and respected the response time
requirement of the applications.

In the future, we intend to improve our evaluation analyzing
other important IoT issues, such as hardware with limited
processing capacity, energy consumption, battery lifetime, etc.

ACKNOWLEDGMENT

Our thanks to CAPES/CNPq for the funding within the
scope of the PNPD project.

REFERENCES

[11 L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787 — 2805, 2010.

[2] Q. Jing, A. Vasilakos, J. Wan, J. Lu, and D. Qiu, “Security of the Internet
of Things: perspectives and challenges,” Wireless Networks, vol. 20,
no. 8, pp. 2481-2501, 2014.

[3] P. Fremantle and P. Scott, “A security survey of middleware for the
Internet of Things,” PeerJ PrePrints, vol. 3, p. e1521, 2015.

[4] R. Tiburski, L. Amaral, E. Matos, and F. Hessel, “The importance of
a standard security architecture for SOA-based IoT middleware,” IEEE
Communications Magazine, vol. 53, no. 12, pp. 20-26, Dec 2015.

[5] S. L. Keoh, S. Kumar, and H. Tschofenig, “Securing the Internet
of Things: A standardization perspective,” Internet of Things Journal,
IEEE, vol. 1, no. 3, pp. 265-275, June 2014.

[6] T. Kothmayr, C. Schmitt, W. Hu, M. Brunig, and G. Carle, “A DTLS
based end-to-end security architecture for the Internet of Things with
two-way authentication,” in 37th Conference on Local Computer Net-
works Workshops, 2012, pp. 956-963.

[7] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt, “Lithe:
Lightweight secure CoAP for the Internet of Things,” Sensors Journal,
IEEE, vol. 13, no. 10, pp. 3711-3720, Oct 2013.

[8] D. Lake, R. Milito, M. Morrow, and R. Vangheese, “Internet of things:
Architectural framework for ehealth security,” Journal of ICT, vol. 3,
pp- 301-330, 2014.

[9] S. Jucker, “Securing the constrained application protocol,” Ph.D. disser-

tation, Master’s thesis, Department of Computer Science, ETH Zurich,

Switzerland, 2012.

D. Conzon, T. Bolognesi, P. Brizzi, A. Lotito, R. Tomasi, and M. Spirito,

“The VIRTUS middleware: An XMPP based architecture for secure

IoT communications,” in 217st International Conference on Computer

Communications and Networks, July 2012, pp. 1-6.

H. Bohn, A. Bobek, and F. Golatowski, “SIRENA - service infrastructure

for real-time embedded networked devices: A service-oriented frame-

work for different domains,” in International Conference on Networking,

April 2006, pp. 43-43.

P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baecker, L. Souza,

and V. Trifa, “SOA-based integration of the Internet of Things in

enterprise services,” in IEEE International Conference on Web Services,

July 2009, pp. 968-975.

A. Badii, J. Khan, M. Crouch, and S. Zickau, “Hydra: Networked

embedded system middleware for heterogeneous physical devices in

a distributed architecture,” in Final External Developers Workshops

Teaching Materials, April 2010, p. 4.

M. Vucinic, B. Tourancheau, T. Watteyne, F. Rousseau, A. Duda,

R. Guizzetti, and L. Damon, “DTLS performance in duty-cycled net-

works,” in 26th International Symposium on Personal, Indoor, and

Mobile Radio Communications. IEEE, 2015, pp. 1333-1338.

S. Raza, D. Trabalza, and T. Voigt, “6LoWPAN compressed DTLS for

CoAP,” in 8th International Conference on Distributed Computing in

Sensor Systems. 1EEE, 2012, pp. 287-289.

S. Kumar, S. Keoh, and H. Tschofenig, “A Hitchhiker’s Guide to the

(Datagram) Transport Layer Security Protocol for Smart Objects and

Constrained Node Networks,” 2013.

Oracle, “Java Secure Socket Extension (JSSE) Reference Guide,” 2016.

Z. Shelby, K. Hartke, and C. Bormann, “The constrained application

protocol (CoAP),” 2014.

E. Rescorla and N. Modadugu, “Datagram transport layer security ver-

sion 1.2,” 2012. [Online]. Available: https://tools.ietf.org/html/rfc6347

L. A. Amaral, R. T. Tiburski, E. de Matos, and F. Hessel, “Cooperative

middleware platform as a service for Internet of Things applications,”

in 30th Symposium on Applied Computing. ACM, 2015, pp. 488—493.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]
[19]

[20]

485

