
Context-Aware System for Information Services
Provision in the Internet of Things

Everton de Matos1, Leonardo A. Amaral1, Ramão Tiburski1, Willian Lunardi1, Fabiano Hessel2, Sabrina Marczak2

Pontifı́cia Universidade Católica do Rio Grande do Sul (PUCRS)
Porto Alegre, Brazil

1{everton.matos.001, leonardo.amaral, ramao.tiburski, willian.lunardi}@acad.pucrs.br
2{fabiano.hessel, sabrina.marczak}@pucrs.br

Abstract—In the last years a new computing paradigm called
Internet of Things (IoT) has been gaining more attention. This
paradigm has become popular by embedding mobile network and
processing capability into a wide range of physical computing
devices used in everyday life of many people. An important part
that composes the IoT is the middleware, which is a system
that abstracts the management of physical devices and provides
services based on the information of these devices. Context-aware
is an important feature of IoT middleware systems. This feature
allows to discover, understand, and store relevant information
related to devices and their respective events. In this sense,
this work aims to present an ongoing system that has been
developed to provide services of contextualized information about
IoT devices in heterogeneous environments.

I. INTRODUCTION

During the past few years, a novel computing paradigm
named Internet of Things (IoT) has gained increasingly at-
tention in academy and industry in pervasive and ubiquitous
computing areas. IoT has been adding new dimensions to the
world of information and communication technology through
the mobile networking and information processing capability
embedded into a wide array of gadgets and everyday com-
puting devices. Thus, IoT has been enabling new forms of
communication between people and things, and between things
themselves [1].

In IoT, when large numbers of sensor and actuator devices
are deployed and start generating data, the traditional device-
oriented application approach (e.g. connect sensors directly to
applications individually and manually) becomes infeasible. In
order to mitigate this problem, some IoT middleware solutions
have been introduced by researchers [2]. In this way, there
are many researches towards building up middleware systems
addressing not only interoperability of devices, but also adap-
tation, context awareness, device discovery and management,
scalability, management of large data volumes, privacy, and
security aspects of IoT environments [1].

As we are moving towards the maturity of the IoT, there is a
common sense that these sensors will generate a lot of data [3],
and they will only be useful if we can analyze, interpret and
understand these data. More sensors will be available, and
when properly used, will add more value to industry automa-
tion. In this sense, context-aware computing has played an
important role in tackling this challenge in previous paradigms,
such as mobile and pervasive computing [2], which lead us

to believe that it would continue to be successful in the IoT
paradigm as well. Context-aware computing approaches allow
us to discover and store context information linked to devices
data, thus, the interpretation of the device data can be done
easily and more meaningfully.

In this paper we present a Context-Aware System that has
been developed to provide contextualized information services
to applications by understanding the environment in which the
system is inserted. This is a work-in-progress and our intention
is to show the current development state of our system. We also
present the next steps and future directions.

The remainder of this paper is organized as follows:
Section II provides a theoretical background and a brief
description of the reference platform used as the basis for this
work. Section III provides an overview of some related work.
Section IV presents the proposed system. In Section V we
present a use case description to exemplify the usability of the
system. Finally, Section VI presents the conclusions and the
next steps toward the maturity of this work.

II. BACKGROUND AND REFERENCE PLATFORM

A. Internet of Things

Internet of Things (IoT) is a novel computing paradigm
that is rapidly gaining space in scenarios of modern commu-
nication technologies. The idea of the IoT is the pervasive
presence of a variety of things or objects (e.g. RFID tags,
sensors, smart phones, smart devices), that are able to interact
with each other and cooperate with their neighbors to reach
common goals through unique addressing schemes and reliable
communication media over the Internet [4] [5].

In the last years, people have proposed and analyzed the ad-
vantages of using middleware systems in the existing solutions
for IoT. One of the main roles of an IoT middleware is to pro-
vide continuous communications among different devices and
using communication channels characterized by heterogeneous
technologies. Furthermore, in some cases the connectivity
could be intermittent due to mobility or interferences. In this
sense, middleware systems are used to ensure interoperability
among several different devices and applications, for example:
medical instruments, body and environmental sensors, logic
applications, graphic interfaces, etc [6].

B. COMPaaS

The COMPaaS (Cooperative Middleware Platform as a
Service) is an IoT middleware developed by GSE/PUCRS [7].978-1-4673-7929-8/15$31.00 c©2015 IEEE

Fig. 1. COMPaaS architecture overview.

COMPaaS is a software system that provides to users a simple
and well-defined infrastructure of services. Behind the services
provided by the middleware, there is a set of system layers that
deal with the users and applications requirements, for example,
request and notification of data, discovery and management of
physical devices, communication issues, and data management.
COMPaaS is the reference platform for the work proposed
in this paper and will be extended to support the proposed
context-aware services.

COMPaaS architecture is based on a Service Oriented
Architecture (SOA) defined by [4]. It is composed of three
main systems: API, Middleware Core and Logical Device. API
is the system that has the methods to be used by applications
that want to use COMPaaS services. Middleware Core is the
system responsible for abstracting the interactions between
applications and devices and also for hiding all the complexity
involved in these activities. Logical Device is the system
responsible for hiding all the complexity of physical devices
and abstracts the functionalities of these devices to the upper
layer. Figure 1 shows the COMPaaS architecture.

The goals of the COMPaaS can be summarized as follow:
(i) Abstract the integration and interoperability with physical
devices. (ii) Abstract the collection and management of the
data provided by physical devices. (iii) Provide high-level
services to facilitate the development and integration of IoT
applications. (iv) Provide well-defined software architecture
based on IoT/M2M and WoT (Web of Things) standards.

Although COMPaaS has many features in its architecture,
it is not able to work according to the context in which it is
inserted. An IoT middleware must be context-aware in order to
work with smart environments, which is considered a challenge
for these systems [1]. In this way, we intend to address this
important challenge providing context-aware features in our
system.

C. Context of Things

Context is considered any information that can be used
to characterize the situation of an entity. Entity is a person,
place, or computing device (also called thing) that is relevant
to the interaction between a user and an application, including
the user and the application themselves. A system is context-
aware if it uses context to provide relevant information and/or
services to the user, where relevancy depends on the users

task [8]. In this way, an IoT ecosystem requires a context-
aware mechanism to be aware of the environment situation in
order to help the user in the best way. In this sense, industrial
automation area needs to be context-aware for execute tasks
automatically as soon as necessary.

A set of methods is mandatory in order to obtain the context
of an entity. Furthermore, there is a set of actions, organized in
phases, that characterizes the context life-cycle of an informa-
tion. Perera et al. [2] proposed a life-cycle and explained how
acquisition, modelling, reasoning, and distribution of context
should occur.

In acquisition process, context needs to be acquired from
various information sources. These sources can be physical
or virtual devices. Context modelling is organized in two
steps [9]. First, new context information needs to be defined
in terms of attributes, characteristics, and relationships with
previously specified context. In the second step, the outcome
of the first step needs to be validated and the new context
information needs to be merged and added to the existing
context information repository. Finally, the new context in-
formation is made available to be used when needed. The
most popular context modelling techniques are surveyed in [2]
and [9]. Context reasoning can be defined as a method of
deducing new knowledge based on the available information.
It can also be explained as a process of achieving high-
level context deductions from a set of contexts [9]. Finally,
context distribution is a fairly straightforward task. It provides
methods to deliver context to the consumers. The context can
be distributed in two ways [2]: (1) by querying or (2) by using a
publishing/subscribing pattern in which the consumer informs
the context mechanism of its interest and receives updates with
new information.

III. RELATED WORK

Some middleware systems provide context-aware functions
to IoT environments. This section presents some examples of
IoT middleware systems and a brief review about their context-
aware features.

Hydra [10] is an IoT middleware that comprises a Con-
text Aware Framework (CAF). CAF consists of two main
components: Data Acquisition Component (DAqC) and the
Context Manager (CM). DAqC is responsible for connecting
and retrieving data from sensors. CM is responsible for context
management, context awareness, and context interpretation.
A rule engine called Drools [11] has been employed as the
core context reasoning mechanism. Another example is COS-
MOS [12], a middleware that enables the processing of context
information in ubiquitous environments. COSMOS consists
of three layers: context collector, context processing, and
context adaptation. Therefore, COSMOS follows a distributed
architecture which increases the middleware scalability.

Octopus [13] is an open-source and dynamically extensible
system that supports data management and fusion for IoT
applications. Octopus develops middleware abstractions and
programming models for the IoT. It enables non-specialized
developers to deploy sensors and applications without detailed
knowledge of the underlying technologies and network.

The presented systems have well-defined functions to ob-
tain context. However, they may differ in terms of architecture.

For example, Octopus is related to end users applications,
while Hydra and COSMOS provide internal context to a
middleware system. Moreover, response time is crucial in IoT
systems and COMPaaS need a real-time processing of context.
None of the studied solutions address this functionality, which
is considered a gap in the area [2].

IV. CONTEXT-AWARE SYSTEM

This work proposes a Context-Aware System to be attached
to the COMPaaS middleware. This system will interact with
the infrastructure provided by the middleware, including the
devices connected to it. Moreover, several middleware may be
connected to Context System, and each one will be responsible
for dealing with a specific domain (e.g. health, industrial, smart
city). Each domain should have a specific set of rules that must
be registered in the system.

The proposed system aims to provide to user/application
a set of services of contextualized information, both on-line
(through real-time contextualized data) and off-line (through
historical contextualized data). The services must be used
independent of the knowledge of the environment. In other
words, a user can request the services without knowing exactly
which devices will be used in the process.

An API was developed to allow application users to interact
with the system. Users are able to use methods of the API to
send their requests to the system. The communication between
the API and the Context System is made through REST web
service. In this sense, users must send an XML file containing
information regarding their requests. In addition to the API, the
Context System provides an architecture composed of three
main layers (see Figure 2): Communication Layer, Storage
Layer and Processing Layer. Each layer has specific goals that
will be presented in the next topics.

A. Communication Layer

The process of receive and interpret the user’s request
is made in the Communication Layer. This layer is also
responsible for context distribution process related to context
life cycle (send results to users).

The Communication layer is composed by three modules:
Query, Publish/Subscribe, and Request Interpreter. The Re-
quest Interpreter is responsible for understanding the user’s
request and also for start the response process. For example,
if a user wants to subscribe a service (on-line mode), this
module communicates the Publish/Subscribe module with the
user contact information. On the other hand, if a user wants to
query some information without subscription (off-line mode),
the Query module is communicated. Both Query and Pub-
lish/Subscribe modules are responsible for maintaining user
contact information and also for sending the request result.

B. Storage Layer

This layer is responsible for storing content of all modules
present in the Context System. The Storage layer is composed
of four modules: Knowledge Base, Specifications, Devices
Information and Events Information. In addition, the Informa-
tion Service module belongs to both Storage and Processing
Layers. It is shared with the Processing Layer because it has

Fig. 2. Context-Aware System layers and modules overview.

context reasoning functions. The context modeling process can
be identified in the Storage Layer.

The Knowledge Base module is responsible for the storage
of the context information. Besides, it is also responsible
for interpreting the Drools rules [11], as well as for storing
the key parts of each rule. For each new access to the
middleware, an XML file is generated. These files are stored in
the Specifications module. The characteristics of each device
connected to the middleware are stored in Devices Information
module. Finally, the Events Information module stores contents
of each event (e.g. change of state, data generation) that
happens related to any device.

C. Processing Layer

This layer is very important in the context generation since
it is responsible for the context reasoning process. The pro-
cessing layer has six specific modules: Spec Creator, Primary
Context, Secondary Context, Reasoning, Event Interpreter and
Device Interpreter.

The main component of the Processing layer is the Rea-
soning module, that contains the Drools rules [11]. The
purpose of these rules is trigger an event if a certain con-
dition happens. These rules are responsible for the context
reasoning process and can be from different domains. User

can register/modify/remove rules depending of his needs. The
Spec Creator module is responsible for creating specifica-
tions to allow the communication with the middleware. The
Primary and Secondary Context modules receive from the
Request Interpreter module the information about the devices
that should be used to access data through the middleware.
The difference between them is that the Secondary Context
module also has fusion methods. Event Interpreter module is
responsible for receiving the events of the middleware. Device
Interpreter module has functions that collect information from
devices connected to the middleware. The Reasoning module
is responsible for giving meaning to the information collected
by Event and Device Interpreter modules.

V. USABILITY OF THE CONTEXT-AWARE SYSTEM

There are two different ways to use the Context System.
The first is when a user sends a request to the system and
receives an answer immediately (off-line mode). The second
way includes a subscription (on-line mode). In this case a user
sends a request to the system informing which services he
wants to subscribe. The system monitors these services and
notifies the subscriber when the services status change or suffer
an update.

Let’s consider a scenario where a user wants to subscribe
the services of the Context System. The first step is to create
an XML file specifying that a user wants to subscribe in one
or more services. After that, the XML file must be sent to
Context System through its API. From this moment the user
stops the interaction with the system and only waits the return
of your request. The Context System receives this request and
interprets it through the Request Interpreter module. After that,
the system understands the user needs and communicates with
the Information Service in order to find out if the information
that user requested is stored and updated. However, if the
information is not stored or updated, the information capturing
process starts, and the Primary and Secondary Context modules
creates the specification necessary to collect the data in real-
time. This creation is made through the Spec Creator. The
Knowledge module contains the necessary information to
know what devices are needed. After that, the specification
is sent to the Middleware Core in order to get the data.

The Event Interpreter module collects the generated data.
This module also has functions to interpret these data and,
along with the Reasoning module, do the real-time processing
in order to give context to the event. Thus, through the Drools
rules it is possible to know if the event interests the user,
and the notification to the user is done by the Communication
Layer. Moreover, if the data requested by the user is part of the
knowledge of the Context System but the system has no rules
to treat it, the system has the ability to adapt to this request
by creating real-time rules through a preset template.

VI. CONCLUSION AND FUTURE WORK

IoT middleware has an important role in IoT scenarios
facilitating the inter-operation with heterogeneous devices, and
managing the big quantity of data generated by these devices.
However, unless the middleware can analyze, interpret, and
understand these data, the data will keep useless and without
meaning for users and applications. A context-aware feature is
required to address this challenge.

In this paper we presented a Context-Aware System that
aims to provide services of contextualized information. This
system has been attached to COMPaaS IoT middleware, en-
abling it to provide context-aware features. Preliminary tests
already conducted in order to analyze the functionality of the
system were satisfactory. Events related to acquisition and
modeling of the context were tested in order to validate some
techniques.

Future work are related to improve the proposed Context
System. We intend to improve the adaptability of the system.
Modules will be enhanced with more functions in order to
have a more complete system and able to solve all requests
that are made to it.

Some functional tests of the system were already per-
formed. However, it requires more tests that will be performed
according to the system development evolution. In this sense,
we will be able to have a better system validation and also
perform a systematic analysis of the techniques used.

REFERENCES

[1] D. Bandyopadhyay and J. Sen, “Internet of things: Applications
and challenges in technology and standardization,” Wireless Personal
Communications, vol. 58, no. 1, pp. 49–69, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s11277-011-0288-5

[2] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
aware computing for the internet of things: A survey,” Communications
Surveys Tutorials, IEEE, vol. 16, no. 1, pp. 414–454, First 2014.

[3] A. Zaslavsky, C. Perera, and D. Georgakopoulos, “Sensing as a service
and big data,” arXiv preprint arXiv:1301.0159, 2013.

[4] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787 – 2805, 2010.

[5] D. Giusto, A. Iera, and G. Morabito, The Internet of Things. Springer,
September 2010.

[6] M. Bazzani, D. Conzon, A. Scalera, M. A. Spirito, and C. I. Trainito,
“Enabling the iot paradigm in e-health solutions through the virtus
middleware,” in Trust, Security and Privacy in Computing and Com-
munications (TrustCom), 2012 IEEE 11th International Conference on.
IEEE, 2012, pp. 1954–1959.

[7] L. Amaral, R. Tiburski, E. Matos, and F. Hessel, “Cooperative
middleware platform as a service for internet of things applications,”
in Proceedings of the 30th Annual ACM Symposium on Applied
Computing (to be published), ser. SAC ’15. ACM, 2015. [Online].
Available: http://dx.doi.org/10.1145/2695664.2695799

[8] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, “Towards a better understanding of context and context-
awareness,” in Proceedings of the 1st International Symposium on
Handheld and Ubiquitous Computing. Springer, 1999, pp. 304–307.
[Online]. Available: http://dl.acm.org/citation.cfm?id=647985.743843

[9] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ran-
ganathan, and D. Riboni, “A survey of context modelling and reasoning
techniques,” Pervasive and Mobile Computing, vol. 6, no. 2, pp. 161–
180, 2010.

[10] A. Badii, M. Crouch, and C. Lallah, “A context-awareness framework
for intelligent networked embedded systems,” in Advances in Human-
Oriented and Personalized Mechanisms, Technologies and Services
(CENTRIC), 2010 Third International Conference on. IEEE, 2010,
pp. 105–110.

[11] jboss.org, “Drools - the business logic integration platformn,”
http://www.jboss.org/drools, accessed: 2015-05-15.

[12] D. Conan, R. Rouvoy, and L. Seinturier, “Scalable processing of
context information with cosmos,” in Distributed Applications and
Interoperable Systems. Springer, 2007, pp. 210–224.

[13] B. Firner, R. S. Moore, R. Howard, R. P. Martin, and Y. Zhang,
“Poster: Smart buildings, sensor networks, and the internet of things,”
in Proceedings of the 9th ACM Conference on Embedded Networked
Sensor Systems. ACM, 2011, pp. 337–338.

