
NoC-based Platform for Embedded Software Design:
An Extension of the Hellfire Framework

Felipe G. Magalhães, Oliver Longhi, Sérgio J. Filho, Alexandra Aguiar, Fabiano Hessel
Faculty of Informatics – PUCRS – Av. Ipiranga 6681, Porto Alegre, Brazil
E-mail: {felipe.magalhaes, oliver.longhi, sergio.johann}@acad.pucrs.br,

{alexandra.aguiar, fabiano.hessel}@pucrs.br

Abstract— This paper presents an extension of the Hellfire
Framework (HFFW), providing an intuitive and powerful web
interface to build, test and debug a complete Multiprocessor
System-on-Chip (MPSoC). Among the new functionalities pre-
sented, it is possible to highlight: i) the architecture builder
tool, used to set up all the MPSoC architecture; ii) the possi-
bility to use a Network-on-Chip (NoC) as the communication
mean, and; iii) a new simulator, providing a fast and accurate
high level Instructions Set Simulator (ISS) with a miss ratio less
than 5%. In order to validate the new simulator accuracy several
tests were taken, first using traffic generators and then an imple-
mentation of the Secure Hash Algorithm (SHA). The achieved
results are discussed throughout the paper.

Keywords—MPSoC, NoC, Instruction Set Simulator

I. INTRODUCTION

Since MPSoC have been introduced as a common Embedded
Systems’ implementation alternative, one of the main design is-
sues concerns in the way communication between internal com-
ponents is done. As the amount of components grows, some
older approaches, like buses, tend to be less adopted, especially
because of the low scalability, resulting in the increasing design
complexity [1].

Traditional bus-based systems have the communication of the
system as a common bottleneck, affecting its overall perfor-
mance [2]. To solve this issue, one of the most popular ap-
proaches consists of using NoC-based solutions.

In this context, NoC-based systems provide better commu-
nication performance [3], as routers are responsible for the
communication management, by correctly directing packets ex-
changed over the network. Each point of the network consists
of a router and a component attached to it. For instance, proces-
sors and memories can be attached to each router of the NoC.
Still, NoCs usually have improved energy efficiency and relia-
bility [4] and high reusability levels.

Another design issue related to the embedded systems project
is that many restrictions are found, like area size, memory lim-
itation and energy consumption, yet with a development time
getting smaller and smaller due to time-to-market. Development
platforms, like Le Moigne et al [5] and Yoo et al [6] try to re-
duce the development time, providing features that speed it up,
such as simulators and debugging tools.

Thus, this paper introduces a new version of the Hellfire
Framework [7] and all modifications made in order to provide
the possibility to use a NoC as the MPSoC’s communication
mean, including a new ISS and a powerful web interface to build
and debug a complete MPSoC.

The remainder of the paper is organized as it follows. Sec-
tion 2 shows some related work. Section 3 presents the Hellfire
System, used as the base architecture in this work. Following,
a high-level model of a NoC that extends features of Hellfire is
described in Section 4. Results are presented in Section 5 and,
finally, Section 6 concludes the paper besides presenting some
future work.

II. RELATED WORK

There are many tools for simulating and debugging embedded
softwares. These tools enable designers to evaluate and verify
systems in earlier stages of software and hardware development.
In this section we present simulators that accomplish the task of
evaluating both interconnection media and processor.

MP-ARM [8] is a simulation platform for MPSoCs which is
based on SystemC to provide the simulation environment. Since
SystemC is used, hardware and software can be described in the
same language. So, a model of AMBA bus compliant communi-
cation architecture is described in SystemC, while an Instruction
Set Simulator (ISS) of ARM Processors is used to debug appli-
cations. The problem of this approach is that it requires wrap-
pers to integrate interconnection bus and processors, resulting in
the system bottleneck.

MC-Sim [9] is a heterogeneous multi-core simulator frame-
work which is capable of simulating a variety of processor,
memory, NoC configurations and application specific coproces-
sors. MC-Sim offers a cycle-accurate and functional ISS based
on SESC Simulator [10] to model processor cores. It also con-
tains a detailed structural and cycle-accurate model for the NoC
representation, beyond C-based models to simulate application
specific coprocessors. This framework supports multi-tasking
and simulate multi-threaded applications, but in order to ensure
the tractable simulation of multiple cores, a full OS is not avail-
able. Although there is a lack of intelligibility in how the NoC
is modeled, the domain of this work is similar to the proposal
that will be presented in this article.

HVP (High-level Virtual Platform) [11] is a framework that
supports developers at early MPSoC software development.
HVP simulator is built on top of SystemC and it allows de-
velopers to integrate in-house processor simulator with third
party ISSs. Until then, wrappers for ISSs generated by LISATek
processor designer were available, but as MP-ARM, it requires
wrappers to overcome the issue of executing different simulators
simultaneously. The framework also provides a native simulator
that does not require previous knowledge of the architecture and
offers speedups of more than 2x compared to ISSs, but this ap-
proach is not efficient to evaluate real-time restrictions. Another
issue of HVP is that in order to make simulator generic, de-

978-1-4673-1036-9/12/$31.00 ©2012 IEEE 97 13th Int'l Symposium on Quality Electronic Design

tails of the target platform are abstracted away and the commu-
nication of these models are performed through generic shared
memories. It means that the impact of the communication media
chosen may not be efficiently evaluated by the framework.

Schonwald et al [12] proposed a framework that enables the
integration of IP-components through different NoC architec-
tures is presented. Configurations such as NoC topology(mesh,
torus or hypercube), number of incoming and outgoing ports
for switches, routing algorithm, forwarding mechanism, packet-
and flit-size as well as size of the input and output buffers of
the switch can be made. As NoC architecture, the interface
to integrate IPs is described in XML by an IP-XACT [13] in-
terface description that is a standardized exchange format for
the interface description of IP-components. Such approach en-
ables the interconnection of application specific hardware com-
ponent modeled in SystemC as well as ISSs. Finally, a modified
SimpleScalar [14] ISS can be connected to the SystemC sim-
ulation model by using shared memory and Memory Mapped
IO. In spite of the wrapping problem, as [8] and [11], this work
contains distinct characteristics like a model to inject faults and
broken states to switches or links and also a good range of NoC
configurations to explore architectures.

In Aguiar et al [15] and Johann et al, a methodology for soft-
ware execution time and energy consumption estimations of ho-
mogeneous MPSoCs is presented. It is composed by a design
flow and a simulation tool. The simulation tool is written in
C and can form bus-based interconnections and also integrate
until 128 in-house Plasma [16] processor simulators. This pro-
posal extends the design flow of these works to simulate and
evaluate different configurations of NoC-based architectures in
earlier stages of software and hardware development.

III. HELLFIRE SYSTEM

The Hellfire System is a set of tools focused on the devel-
opment of embedded systems. It provides its own design flow
that comprehends different abstraction levels, from C applica-
tion development to FPGA prototyping. This design flow is
supported by several tools and modules that compose the Hell-
fire Framework (HFFW). From a single processor point of view,
the designer can develop the application C code and run it over
the Hellfire Operating System (HFOS), which is a highly con-
figurable real-time modular micro-kernel based OS. From the
platform point of view, the designer can add processors to the
system, configure each one of them and, by using the HFOS
API, develop parallel embedded applications which are able to
exchange data and even migrate tasks.

A. HellfireOS

The HellfireOS (HFOS) [15] is a real-time operating system
(RTOS) developed in order to ensure maximum flexibility in its
configuration thus allowing a high level platform customization.
To enable such feature, the HFOS was implemented in a modu-
lar way, where each module corresponds to some specific func-
tionality.

Figure 1 shows the kernel modular organization, where all
hardware-specific functions are defined in the first layer, named
HAL (Hardware Abstraction Layer). The uKernel lays just

above this, along with communication, migration, memory man-
agement and mutual exclusion drivers, as well the API, which
are placed over the uKernel layer. The user applications belongs
to the top layer.

Fig. 1. HellfireOS Structure

Due to its modular implementation, HellfireOS is easily
portable to others architectures, requiring only the rewrite of the
hardware-dependent functions, such as the interrupt service and
its initialization and the context switch.

In order to optimize the kernel final size, allowing the HFOS
usage even in architectures with area limitations, some param-
eters like the users tasks maximum number, the stack and heap
size and the drivers usage, are configurable.

Another configurable parameter is the activation bit used by
the timing register, which determines the system tick size. The
tick size corresponds to the minimum temporal unit of the sys-
tem and can be used in a predetermined interval, varying from
0.32 ms to 83.88 ms. Figure 2 shows the relation between the
core frequency and the activation bit.

Fig. 2. Tick Time x Core Frequency

B. N-MIPS

Gate-level simulations are useful to get accurate execution
time and energy consumption. However, even for simple sce-

narios this technique represents prohibitive time to run. This
leads designers to develop high-level simulation tools.

In Hellfire Framework, N-MIPS, an instruction set simula-
tor of the MIPS-I, was implemented [15]. It runs native object
code, executing it according to the hardware implementation of
Plasma processor. On top of that, facilities like cycle count-
ing and energy consumption measurement were implemented.
A timing and functional emulation of the UART was also im-
plemented. All these tools allow designers to evaluate energy,
performance and behavior of different algorithm implementa-
tions with N-MIPS. Additionally, several reports are generated
by simulator through output facilities of the operating system:
(a) application type, (b) energy consumption, (c) load behavior,
(d) deadline miss ratio, (e) migration monitoring and (f) com-
munication traffic. If one of the previous listed requirements is
not satisfied, the designer can come back to previous steps on
the design flow and perform refinements on application and ar-
chitecture.

Due to hardware limitations only 128 processors can be repre-
sented on a simulation. These processors communicate through
a bus that, as processors, is modeled at high-level and has its
behavior and energy consumption annotated. The high-level
model of the MPSoC is based on a custom bus architecture that
was described in VHDL, simulated and prototyped in FPGA.

Regarding the fact that N-MIPS can only represents homoge-
neous architectures no wrappers are needed to integrate bus with
processors. The whole architecture is simulated at the same pro-
cess without the need of interprocess communication techniques
on the host. It conducts to better simulation times, and it repre-
sents a faster development environment.

C. Hellfire Framework

The Hellfire Framework (HFFW) [7] allows a complete de-
ployment and test of parallel embedded applications, defining
the HW/SW architecture to be employed by the designer. The
HFFW is divided in three modules as it follows, and discussed
along the remainder of this section.

The Hellfire Framework modules are:
• HellfireOS;
• N-MIPS MPSoC Simulator, and;
• architecture builder.

Section 3-A already covered HellfireOS and its characteris-
tics, and the ISS was presented in Section 3-B.

The third module, called architecture builder, is used to spec-
ify the target architecture and to configure all the HellfireOS pa-
rameters. All system configurations can be made through a web
interface designed to favor the project development. The devisor
can easily create and test a complete MPSoC using all available
tools. Figure 3 shows the architecture builder main window, still
without any processors or communication means.

It is possible to notice that the designer can choose between
five different MIPS-like processors [17] and two communication
means, either bus or NoC. To set up all system, the only thing the
designer needs to do is to drag-and-drop the boxes representing
the desired modules.

Figure 4 illustrates an MPSoC formed by nine processors in-
terconnected by a 3x3 mesh NoC. The designer can now con-
figure each processor individually, or all of them at once. It is

Fig. 3. Architecture Builder Window

possible to configure all HellfireOS images1 as well, which is
shown on Figure 5. All OS parameters can be defined by just
checking or unchecking buttons on the web interface and the all
system is automatically built on the background.

Fig. 4. Architecture Done

Fig. 5. HellfireOS Configuration Window

It is important to highlight that all design flow presented in
[7] is still valid, only with a new communication possibility.

1in this context, image corresponds to the binary file that will be generated
after compiling the system, and will be simulated on the ISS and/or prototyped
directly on hardware

IV. HIGH-LEVEL NOC MODEL

To achieve better simulation times, a high-level of a 2D mesh
architecture was implemented. Others topologies such as torus
and hypercube can also be made with few modifications. How-
ever, other architectures are not presented on this work because
hardware characterizations of them would be necessary to proof
their efficiency.

The high-level NoC model is implemented in C and simu-
lates the behavior according to the Hermes architecture [18]. A
description of the communication infrastructure is presented in
Section 4-A. Nevertheless, to efficiently represent the network
environment, not only routers and links between them were im-
plemented. In-house Network Interfaces (NI) were also de-
scribed in VHDL and then modeled in high-level. So, a more
accurate estimation of the entire network component can be per-
formed. Details of Network Interface is described in Section
4-B.

A. NoC

The Hermes specification of NoC implements a subset of the
OSI reference model. In this architecture only Physical, Data
Link, Network and Transport layers are present. However, the
fourth layer, Transport, is implemented in IP cores connected to
the NoC. So, models of the three first layers were implemented
at high levels of abstraction.

The physical layer is fundamental to define aspects of trans-
mission and physical characteristics of a network. In the NoC
scenario, the physical layer is responsible for connecting net-
work interfaces and switches to their neighbors. At the NoC
simulation tool we used the concept of Channel to model input
and output between switches. Each bi-directional router channel
has two ports, one for input and other for output that united form
a communicating channel when attached to other router channel.
Figure 6 shows how channels are composed. The length of data
signals is parameterizable.

Fig. 6. Physical layer model

The next layer, Data Link, is responsible for creating the links
between nodes. With these links, logical connections are built
and transmissions are enabled. There, a handshake protocol is
implemented based on hardware pinouts. The entity that has
to transmit a flit signals bits in the out data signal and asserts
out request pinout. A successful transmission is recognized
when out ack is active.

The Network layer provides a logical addressing scheme
and delivering end-to-end packets. Hermes implements packet
switching, which means that this layer also realizes the task of
routing packets through the network. Figure 7 shows the log-
ical structure of a Hermes switch. There are 5 bi-directional
ports (North, South, East, West and Local), given that, each of
them is leashed to an incoming buffer with a parameterizable
depth. Four ports are used to link neighbor routers, while the
fifth (local port L) is used to link a third party processing ele-
ment. This link will is detailed in Section 4-B. With these five
ports, five simultaneous routing connections can be established.
Connections are realized by the Control Logic unit that is split
into arbitration and routing. Routing controls whether a packet
being received is addressed to router under concerned, in case
positive, it is routed to local port, in case negative, this packet
is forwarded to a neighbor router according to a routing algo-
rithm. Although Hermes implements many routing algorithm,
this work implements the XY Algorithm. As related to NoC
topologies, other routing algorithms could be used, but further
hardware specification would be necessary to proof the model’s
efficiency. Arbitration logic is used to pick a connection when
there are more than one incoming packet that need to be for-
warded by a common output port.

Fig. 7. Hermes Switches. Extracted from [18].

It is interesting to observe that each of the layers are responsi-
ble for contentions on the real world. The handshake, e.g., uses
2 cycles to perform a flit transmission, but, if destination port
does not signal the acknowledgment, then, following flits will
remain in contention. The same happens to arbitration. There
the arbitration logic in this architecture takes four clock cycles
to treat a new routing request due to the routing algorithm delay.
Another scenario of contention happens when a packet arrives
in a router and the respective output port of the packet route is
already in use. In this case, incoming buffers will help to receive
flits, but they will soon get full and then contention will happen.
This entire scenario shows how complex it is to simulate a sys-
tem like that, and how important parameterizible variables like
the buffer depth, flit length, packet size and NoC dimension are.

B. Network Interface

The network interface is a component that connects an IP to
a router. This interface does not address any of the previous

discussed layers of the communication protocol stack. Instead
it is truly useful to decouple computational components from
communication architecture and its implementation, in order to
improve IP reuse flexibility and avoid the commitment of the
whole architecture to a particular communicating infrastructure.

An in-house hardware module was developed to wrap the
NoC Hermes network and the Plasma processors. The main ob-
jective of this component is simplifying drivers implementation.
Figure 8 shows the lack of complexity of this hardware. This in-
terface has two temporary storing buffers. The incoming buffer
is used to manage packets that came from a switch connected by
the local port, while the outgoing buffer receives packets origi-
nating from a processing unit. The size of these buffers is param-
eterizable but it was projected to be the same size of the packet,
since all packets have the same size in the proposed architecture.
Other tasks of this component are to signals interruptions when
all flits of a particular packets are buffered and queue, dequeue
or forward flits when memory mapped operations (read, write
and status) are performed.

Fig. 8. Network interface representation

The complexity and accuracy of the proposed simulator lays
on the cycles annotated to spend when situations like arbitration,
hand-shake, buffers operations and routing occur. The proposed
model respects values announced on the Hermes specification
[18] and the times observed on network interface RTL simula-
tion. Section 5 shows some comparing results of the proposed
model and RTL simulations.

V. RESULTS

To accurately verify and proof the efficiency of the proposed
model, two different types of results were explored. The first
realizes the simulation in RTL of the Hermes. It uses the At-
las Environment [19] to build both the architecture and some
scenarios of traffic. Results are previously obtained with the
ModelSim Simulator. Although in-house network interface was
modeled in VHDL, it is not part of the Atlas Environment, so
the simulation of the generated traffic can’t be used to valid NI
implementation. Network Interface is validated on the second
type of simulation, where a whole system will be simulated us-
ing HellfireFW and prototyped on a FPGA. Both results are then
compared.

A. Simulating the NoC Infrastructure

The first scenario simulates a 3x3 network. The five ports of
each router have buffers with 16 positions of depth, and packets
have a fixed size of 128 flits, given that, each flit has 16 bits.
Routers where configured to operate in a frequency of 25Mhz.

Each router forwards a packet to the centered router number
4. This scenario is useful to represent an application that was
modeled using a master-slave topology. Figure 9 shows a chart
where the clock cycles needed to receive each packet are shown.
With the conformity of behavior of both TL and RTL and the
small mean average error of 1.27050%, it is possible to notice
the level of accuracy that the model provides.

Fig. 9. First scenario simulated.

The second scenario is very similar to the first one. But, in
spite of each router forwards one packet, it forwards ten. It re-
sults in contention, because eighty packets pass through the ar-
chitectures and they are all addressed to the same destiny. Fig-
ure 10 shows at which clock cycle each packet has arrived at
router 4. The interesting of this chart, is that, although the num-
ber of packets increased 10x, the mean average error is yet low,
1.41943%.

B. Simulating the entire Architecture

In order to verify not only the ISS’ communication capability
but also its Plasma’s accordance, in the last scenario a real ap-
plication was used as a test case. A version of the Secure Hash
Algorithm (SHA) was used. The SHA is a cryptographic hash
function modeled by the National Security Agency (NSA) and
an established pattern in a lot of security protocols and web-
services, like: TLS, SSL, PGP and SSH, among others.

The SHA-I implemented algorithm produces an output with
160 bits and is limited to process messages with a maximum
length of 264 bits. It can be seen as a cipher block algorithm
where the input is the previous iteration output of the algorithm
and the key is the next chunk of the message being processed.
Each computational iteration consists of eighty rounds which
are divided into four stages of twenty rounds each. All rounds
require only bitwise boolean operations with 32-bit registers
[20].

To stress the system’s communication, besides testing the
core implementation, the SHA application was divided into five
tasks, each one running on one different core. A 2x3 mesh NoC
was used, which is illustrated in Figure 11. The system works
as it follows:
1. Core0 is initialized with four strings;
2. each string is sent to one different core. In this example
Core1, Core2 Core3 and Core4 will receive a string each;
3. the SHA algorithm is applied on the received string on each
core, and;

Fig. 10. Second scenario simulated.

4. all cores respond with one ACK signal to Core0, pointing the
end of the execution.

Fig. 11. Architecture used to run the application

The same architecture was simulated using the Hellfire
Framework and after that using a hardware simulator. Table I
shows the achieved results after four independent simulations,
which proves the ISS’ effectiveness.

TABLE I
MISS RATIO - ISS X HW

Cycles HW/Cycles Miss Ratio
1 056 013 1 010 604 4.30%
1 053 643 1 011 497 4.00%
1 056 013 1 012 716 4.10%
1 053 643 1 012 551 3.90%

VI. CONCLUDING REMARKS AND FUTURE WORK

Embedded systems have tight computational requirements
that can be achieved using MPSoCs solutions. As new embed-
ded communications architectures, like NoCs, begin to share an
important piece of the market, new challenges in order to vali-
date its performance arise.

This work presented an extension of Hellfire Framework and
all modifications made in order to provide a high-level environ-
ment to create, simulate and debug an MPSoC.

Future works include the addition of a module to measure the
communication mean power consumption on-the-fly, as well as
tools to partition and map tasks to processors automatically.

ACKNOWLEDGMENT

The authors acknowledge the support granted by CNPq and
FAPESP to the INCT-SEC (National Institute of Science and
Technology - Embedded Critical Systems - Brazil), process
131954/2011-3.

REFERENCES

[1] Thuan Le and M. Khalid, “Noc prototyping on fpgas: A case study using
an image processing benchmark,” jun. 2009, pp. 441–445.

[2] C. Hilton and B. Nelson, “Pnoc: a flexible circuit-switched noc for fpga-
based systems,” Computers and Digital Techniques, IEE Proceedings -,
vol. 153, no. 3, pp. 181 – 188, May 2006.

[3] S. Tota, M.R. Casu, M.R. Roch, and M. Zamboni, “A multiprocessor
based packet-switch: performance analysis of the communication infras-
tructure,” in Signal Processing Systems Design and Implementation, 2005.
IEEE Workshop on, nov 2005, pp. 172 – 177.

[4] Luca Benini and Giovanni De Micheli, “Powering networks on chips:
energy-efficient and reliable interconnect design for socs,” in Proceedings
of the 14th international symposium on Systems synthesis, New York, NY,
USA, 2001, ISSS ’01, pp. 33–38, ACM.

[5] R. Le Moigne, O. Pasquier, and J.-P. Calvez, “A generic rtos model for
real-time systems simulation with systemc,” in Design, Automation and
Test in Europe Conference and Exhibition, 2004. Proceedings, Feb. 2004,
vol. 3, pp. 82–87 Vol.3.

[6] S. Yoo, G. Nicolescu, L. Gauthier, and A. Jerraya, “Automatic generation
of fast timed simulation models for operating systems in soc design,” in
DATE ’02: Proceedings of the conference on Design, automation and test
in Europe, Washington, DC, USA, 2002, p. 620, IEEE Computer Society.

[7] A. Aguiar, S.J. Filho, F.G. Magalhaes, T.D. Casagrande, and F. Hessel,
“Hellfire: A design framework for critical embedded systems’ applica-
tions,” in Quality Electronic Design (ISQED), 2010 11th International
Symposium on, mar. 2010, pp. 730–737.

[8] Luca Benini, Davide Bertozzi, Alessandro Bogliolo, Francesco
Menichelli, and Mauro Olivieri, “Mparm: Exploring the multi-processor
soc design space with systemc,” J. VLSI Signal Process. Syst., vol. 41, pp.
169–182, September 2005.

[9] Jason Cong, Karthik Gururaj, Guoling Han, Adam Kaplan, Mishali Naik,
and Glenn Reinman, “Mc-sim: an efficient simulation tool for mpsoc
designs,” in Proceedings of the 2008 IEEE/ACM International Conference
on Computer-Aided Design, Piscataway, NJ, USA, 2008, ICCAD ’08, pp.
364–371, IEEE Press.

[10] Jose Renau, Basilio Fraguela, James Tuck, Wei Liu, Milos Prvulovic, Luis
Ceze, Smruti Sarangi, Paul Sack, Karin Strauss, and Pablo Montesinos,
“SESC simulator,” January 2005, http://sesc.sourceforge.net.

[11] Jianjiang Ceng, Weihua Sheng, Jeronimo Castrillon, Anastasia Stulova,
Rainer Leupers, Gerd Ascheid, and Heinrich Meyr, “A high-level virtual
platform for early mpsoc software development,” in Proceedings of the
7th IEEE/ACM international conference on Hardware/software codesign
and system synthesis, New York, NY, USA, 2009, CODES+ISSS ’09, pp.
11–20, ACM.

[12] T. Schonwald, J. Zimmermann, O. Bringmann, and W. Rosenstiel,
“Network-on-chip architecture exploration framework,” in Digital System
Design, Architectures, Methods and Tools, 2009. DSD ’09. 12th Euromi-
cro Conference on, aug. 2009, pp. 375 –382.

[13] SPIRIT Consortium, “IP-XACT,” http://spiritconsortium.org.
[14] SimpleScalar LLC, “SimpleScalar Tool Suite,” http://simplescalar.com.
[15] S.J. Filho, A. Aguiar, C.A. Marcon, and F.P. Hessel, “High-level esti-

mation of execution time and energy consumption for fast homogeneous
mpsocs prototyping,” jun. 2008, pp. 27–33.

[16] Steve Rhoads, “Mips plasma,” 09 2001.
[17] Gerry Kane, MIPS RISC architecture, Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 1988.
[18] Fernando Moraes, Ney Calazans, Aline Mello, Leandro Möller, and Lu-

ciano Ost, “Hermes: an infrastructure for low area overhead packet-
switching networks on chip,” Integr. VLSI J., vol. 38, no. 1, pp. 69–93,
2004.

[19] “Atlas,” 2011, https://corfu.pucrs.br/redmine/projects/atlas. Último acesso
em 07/06/2011.

[20] C. Paar and J. Pelzl, Understanding Cryptography: A Textbook for Stu-
dents and Practitioners, Springer-Verlag New York Inc, 2010.

