Exploring Embedded Software Concepts using the

Hellfire platform in an Undergraduate Course

Alexandra Aguiar and Fabiano Hessel
alexandra.aguiar @pucrs.br, fabiano.hessel @pucrs.br
Pontificia Universidade Catolica do Rio Grande do Sul — PUCRS
Porto Alegre, Brazil

Abstract—Information Technology-related undergraduate pro-
grams, such as Computer Science and Computer Engineering,
offer courses that cover a broad spectrum of embedded systems’
topics. An embedded system is composed of hardware and
embedded software. The software that composes these systems
has become noticeable and its presence increases the number
of features offered by the embedded systems. However, it is
not always clear to undergraduate students the division and
the cooperation that must exist between hardware and software
in such systems. In this paper we report on our experience
teaching students about the structure of embedded systems and
how relevant software is in this context. More specifically, we have
used a tool named Hellfire Framework to decrease this knowledge
gap. Hellfire is a platform for developing embedded applications
with real-time constraints. The framework consists of a set of
tools that suggests a design flow to guide the development of a
complete hardware/software solution. In our course, we provide
a simplified version of one of the framework components, the
HellfireOS. This component is used for analysis and modification
of the system source code. By using the HellfireOS, students can
better understand the impact of code changes on the overall
system operation. We have been using the Hellfire framework for
over two years. Over these years we have noticed that students
have increased their comprehension of the hardware-software
interaction in embedded systems.

I. INTRODUCTION

Embedded systems have been used throughout the years in a
very wide range of applications impacting the way people live
their lives. These systems, which are adopted in entertainment
devices, medical equipment, automotive features have some
key characteristics. The most prominent characteristic is the
goal of the system, since many embedded systems are devel-
oped to perform a well-established and known task. However,
this scenario has changed. Although there are still embedded
systems with restricted features, converging entertainment
devices have motivated a new set of development possibilities.

Nevertheless, besides seeing diverging types of embedded
systems, there is another characteristic that can help us to cat-
egorize them: the presence or absence of real-time constraints.
In this case, when real-time constraints are present, the entire
development design flow must be redesigned.

Therefore, many universities address both embedded and
real-time systems’ topics in their undergraduate programs
aiming to bring the student closer to the real market. Although
it is important to better develop students’ programming skills
of embedded systems, a general concern among teachers

978-1-4673-0840-3/12/$31.00 ©2012 IEEE

remains: how to teach students real life matters without using
real systems?

In this context, we developed a lite version of the Hellfire
Framework aiming to decrease that gap. Hellfire Framework is
an academic project developed at PUCRS (Pontifcia Univer-
sidade Catlica do Rio Grande do Sul), a Brazilian university.
The framework provides its own design flow. The student who
is developing an embedded system can add applications (in C
language), run it over the Hellfire OS (which is a real-time
operating system), and simulate the developed system on an
instruction-set simulator (ISS) or prototype it in an FPGA-like
board.

Thus, Hellfire System can be used following two different
approaches. First, the class can be based in exploring the
user application aspects. Therefore, no further acknowledge
of the internals of the operating system is needed and only
the C application stays in focus. It is possible to explore, for
instance, the impact of a given system call in the performance
of the application. Still, the user can see in a very user-friendly
web-based interface, the energy consumption results of the
application and even its real-time behavior.

Second, Hellfire Lite Version allows a much more intimate
relationship with the OSs source code, since it allows the
student to download the entire OS and see how a RTOS works
in real life. In spite of not providing the total number of
features available in the full version, Hellfire Lite is a more
suitable option for real-time and embedded systems designers
whereas the full version helps application designers.

To demonstrate the use of our approach, we have applied a
questionnaire both in the beginning and in the end of each term
aiming to capture the students’ expectations before and the
perceptions after using the platform. Thus, we identified that
in those terms where the tool was not used, it was harder for
the students to understand the real behavior of embedded real-
time systems. However, since we adopted Hellfire framework
(both lite and full version), which has happened for the last two
years, we could perceive an increase of the learning quality
experience and on the content relevance. We also perceived
a stronger confidence of the students regarding designing and
developing an embedded system.

The remainder of the paper is organized as it follows. Sec-
tion II presents some details regarding the platform followed
by Section III where we present the methodology used in the
classes. Section IV discusses some results we achieved whilst

Interdisciplinary Engineering Design Education Conference

Section V concludes the paper.

II. HELLFIRE SYSTEM

The Hellfire System (HFS) is an academic project born at
the Embedded Systems Group (GSE) of the Pontifical Catholic
University (PUCRS), in Brazil. The project provides its own
design flow that comprehends different abstraction levels, from
C application development to FPGA prototyping. This design
flow is supported by several tools and modules that compose
the Hellfire Framework (HFFW).

From a single processor point of view, the designer can
develop the application C code and run it over the Hellfire
Operating System (HellfireOS), which is a highly configurable
real-time modular micro-kernel based OS. From the platform
point of view, the designer can add up to 128 processors to
the system, configure each one of them and, by using the
HellfireOS API, develop parallel embedded applications which
are able to exchange data and even able to migrate tasks.
Currently, only MIPS-based processors are allowed.

A. HellfireOS

The HellfireOS (HFOS) [1] is a real-time operating system
(RTOS) developed in order to ensure maximum flexibility in
its configuration and allow a high level platform customization.
In order to allow such feature, HFOS was implemented in a
modular way, where each module corresponds to some specific
functionality.

Figure 1 depicts the kernel modular organization. All
hardware-specific functions are defined in the first layer,
known as HAL (Hardware Abstraction Layer) and the uKernel
lies just above it. The communication, migration, memory
management and mutual exclusion drivers, as well the API are
placed over the uKernel layer. The user applications belong to
the top layer.

uKernel

HAL

Fig. 1. HellfireOS Structure

Due to its modular implementation, HellfireOS is easily
portable to other architectures, requiring only the rewrite of
hardware-dependent functions, such as the interrupt service,
its initialization routine and the context switch. In order to
decrease the kernel final size, allowing the HFOS usage even
in architectures with severe memory limitations, parameters

such as user tasks’ maximum number, stack and heap size
and drivers usage, are configurable.

The users’ applications are written using basic C program-
ming language and the HellfireOS API. In Figure 2 a user task
example that prints the CPU usage in the standard output of
the system is shown.

void cpu_usage_test(void) {

while (1) {

printf (, 0S5 GetCpuUsage());
}

Fig. 2. Task Example

Another configurable parameter is the activation bit used by
the timing register, which determines the system tick size. The
tick size corresponds to the minimum periodic timing unit of
the system. This unit varies from 0.32ms to 83.88ms. Figure 3
shows the relation between the processor clock frequency rate
and the activation bit.

Core Frequency | Activation bit | Tick time (ms) | Ticks/second
15 1.31 763.36
16 2.62 381.68
17 5.24 190.84
25 MHz 18 10.48 95.42
19 20.97 47.69
20 41.94 23.84
21 83.88 11.92
15 0.99 1010.10
16 1.98 505.05
17 3.97 251.89
33 MHz 18 7.94 125.94
19 15.88 62.97
20 31.77 31.48
21 63.55 15.74
15 0.65 1538.46
16 1.31 763.36
17 2.62 381.68
50 MHz 18 5.24 190.84
19 10.48 95.42
20 20.97 47.69
21 41.94 23.84
15 0.49 2040.82
16 0.99 1010.10
17 1.98 505.05
66 MHz 18 3.97 251.89
19 7.94 125.94
20 15.68 62.97
21 3177 31.48
15 0.32 3125.00
16 0.65 1538.46
17 1.31 763.36
100 MHz 18 2.62 381.68
19 524 150.84
20 10.48 95.42
21 20.97 47.69

Fig. 3. Tick Time x Core Frequency

B. Hellfire Framework

The Hellfire Framework (HFFW) [1] allows a complete de-
ployment and test of parallel embedded applications, defining
the HW/SW architecture to be employed by the designer. The
HFFW is divided in three modules as it follows, which are
discussed throughout this section.

o HellfireOS, discussed previously in Section II-A;
o N-MIPS MPSoC Simulator, and;
o architecture builder.

The N-MIPS MPSoC Simulator is an Instruction-Set Sim-
ulator (ISS) based on MIPS-like [2] cores. It was also written
in C and provides simulation of up to 128 processing cores.

A very important feature is the possibility to prototype
in FPGA the same resulting image file used during the
simulation, which increases the chances of prototyping success
after the simulation.

The last highlighted module, named architecture builder is
used to specify the target architecture and to configure all the
HellfireOS parameters.

The HellfireFW design flow is basically divided in three
steps: the application design, the project creation and simula-
tion/refinement, explained in the remainder of this section.

Application Design. The first step of the design flow is the
development of an application implemented in C language and
manually divided into a set of tasks. These tasks are defined as
n-uples (id;, r;, WCET;, D;, P;) and the parameters stand for
identification, release time, worst case execution time, deadline
and period of each task respectively.

HellfireFW Project Creation. After the application de-
sign, the designer must create a project in HFFW. This
step corresponds to the architecture design and configuration.
The designer must define the initial hardware architecture,
specifying the number of processors and their frequencies
and configuring the HellfireOS parameters, as presented in
Section II-A. After that, the mapping of the tasks along the
processors must be performed. This mapping is done manually
and is based on the designer’s experience.

As the output of this step, an MPSoC platform is expected,
having a given number of processors, a personalized instance
of HellfireOS on each processor and a static task mapping.

Simulation and Refinement. When the designer triggers a
simulation, the MPSoC ISS Simulator is activated. After the
simulation is completed, several reports are presented to the
designer both in textual and graphical way. The textual reports
are the following:

« standard output of each processor;

o report with all Plasma instructions used, the number of
times that each was used and an usage percentage of each
group (logical, arithmetic, etc) of instructions;

e an energy consumption summary, based on [3];

o report containing the main characteristics of the system,
such as deadlines misses and CPU load, and;

« individual report of the cycle to cycle operation of each
processors. All information contained on the system stack
is shown in this report.

III. METHODOLOGY FOR CLASS SUPPORT

The framework described in the former section presents
the solution with all possible resources. In spite of that,
during our earlier years of educational practice, without any
kind of practical tool, we observed that students had trouble
understanding the basics of an embedded real-time operating

system. Therefore, we decided to split the Hellfire project,
creating a lite version where only the most basic features were
available.

The main goal of creating Hellfire Lite was to distribute
the source code freely among the students, therefore no other
kind of graphic interface (such as the web-based framework)
was required. Initially, we present the states that a task can
assume, as shown in Figure 4.

2 TASK_RUNNING
TASK BLOCKED
ine TASK WAITING
& TASK NOT RUM

Fig. 4.

Hellfire Lite Task States

Once the students are familiar with the states a given task
can assume, we present and discuss the Task Control Block -
TCB and each one of its parameters, shown in Figure 5.

typedef struct{ [/ th
unsigned char id; it
char description[TASK DESCRIPTION SIZE]
unsigned char status;
unsigned int ticks;
unsigned int last tick time;
unsigned int memory usage;
context task context;
woid (*ptask) (woid);
void [*stack ptr) (vodd);
unsigned char *stack;
unsigned int stack size;

I teb;

Fig. 5. Hellfire Lite Task Control Block

After presenting the TCB structure, we show some impor-
tant variables to the OS, such as the task set itself, presented
in Figure 6.

tch 05_task[0S_MAX_TASKS]:
tch *05 task entry;

Fig. 6. Hellfire Lite Task Set Variable

Following, after explaining the basics of the task set we
present another crucial portion of the system, which regards
to the way these tasks are scheduled. Since the goal is to
provide the students the opportunity of putting in practice
concepts only studied theoretically, we provide only a simple
circular scheduler, with no timing constraints compliance. This
scheduler is presented in Figure 7.

static void 05 DispatchTasks(void){
it (0S_tasks > 0){
05 current task = 05 TaskBestEffortReschedulel);
05 UpdateTCB():
05_RestoreExecution(05_task entry->task_context,1);
05 Panic|{PANIC_UNKNOWN) ;
lelse{ fi hape
05 _Panic{PANIC_NO TASKS LEFT);
}
1

atatic wnsigeed char 05 TaskBestEffortAeschedule()|
static umsigned char i=o;

if (0% tash_entry->pask}(
A1 (05 task_entry-=siatus ==
return 1

TASK READY) || (05 1

Fig. 7. Hellfire Lite Built-in Scheduler

A. Planned activities - embedded systems

We developed a flow aiming to employ both Hellfire Frame-
work and Hellfire Lite version during the classes. This Teach-
ing Plan contemplates the main steps we consider mandatory
in the use of these tools in an undergraduate course. Firstly,
we highlight mandatory steps for embedded systems classes
followed by our recommendations during the adoption of our
methodology for real-time systems’ classes.

Initially, we need to present both full and lite version and
state the difference between them. After this initial contact,
we explore several embedded applications that are distributed
with Hellfire full version. This initial set of tests contemplates
only the use of such applications and it also aims to familiarize
the student with the tool and its provided feedback.

After only using and understanding the entire flow of the
system, the students are asked to develop different real-time
applications to be executed in the full version platform. Results
must be analyzed and discussed.

B. Planned activities - real-time systems

The next step contemplates the first of a series of modifica-
tions that must be performed aiming to improve the students’
knowledge about real-time scheduling. Therefore, students
are motivated to develop theoretical concepts about real-time
scheduling, such as the use of periodic tasks. When periodic
tasks are added, the students must develop the most used
scheduling policies: Rate Monotonic - RM [4], [5], [6] and
Earliest Deadline First - EDF, [7], [8]. Still, aperiodic tasks
can be exploited and their compliance based on polling server
is also a viable option.

Finally, regarding real-time tasks the teacher can explore
the use of dependent tasks and how they should be treated
using RM and EDF scheduling policies and demand students
to provide support to this feature.

IV. DISCUSSED RESULTS

In this section we briefly discuss the results we observed
throughout the adoption of Hellfire Full Framework and the
Hellfire Lite Version. Results were taken during the last
two years in classes of two different undergraduate courses:
computer science, regarding only embedded systems’ classes
and computer engineering, contemplating real-time systems’
classes.

As educators, we could observe that when no practical tool
was available to the students, the overall interest level and
learning quality was damaged. The main reason for that is
that the pedagogic structure of the class was not motivating
enough for the students, specially in our specific case where
these courses already happen to be taken when the student is
too close of graduating (that is, they already developed interest
for other specific fields of both computer and engineering
courses).

Thus, it took us two semesters to adopt the tools and better
adequate them to the existing teaching plan. We could observe
the higher interest for the field (in both cases) and how students
were more motivated to even search for embedded real-time

matters extra-class and bring them to discussion. We still asked
them to answer a questionnaire about the use of the tools (full
and lite version) and the increase of learning quality experience
could be easily perceived.

V. CONCLUSION

Embedded systems are a solid reality and the inclusion of
their basic concepts in both computer science and computer
engineering courses has become a common approach. During
years of practice, we observed the difficulty level of teaching
such an advanced topic for undergraduate students and decided
to use a well-known and structured platform during our
classes. Therefore, we used the full version of Hellfire Frame-
work especially for embedded systems lessons, aiming the use
and development of different embedded applications and the
analysis of their results with the framework’s facilities. Later,
we decided to extend the use of Hellfire in our undergraduate
courses and provided a lite version of the framework with
less resources but easier to understand. The Hellfire Lite is
more intended to include real-time scheduling concepts and,
therefore, is more indicated for real-time courses. We could
observe that higher confidence of students since they had
contact with real and practical embedded systems during their
undergraduate courses.

ACKNOWLEDGMENT

The authors acknowledge the support granted by CNPq and
FAPESP to the INCT-SEC (National Institute of Science and
Technology Embedded Critical Systems Brazil), processes
573963/2008-8 and 08/57870-9.

REFERENCES

[1] A. Aguiar, S. Filho, F. Magalhaes, T. Casagrande, and F. Hessel, “Hellfire:
A design framework for critical embedded systems’ applications,” in
Quality Electronic Design (ISQED), 2010 11th International Symposium
on, 2010, pp. 730 —737.

[2] O. Cores, “Plasma most mips
http://www.opencores.org.uk/projects.cgi/web/mips/,
September 2009, 2007.

[3] S. J. Filho, A. Aguiar, C. A. M. Marcon, and F. P. Hessel, “High-
level estimation of execution time and energy consumption for fast
homogeneous mpsocs prototyping,” in RSP ’08: Proceedings of the
2008 The 19th IEEE/IFIP International Symposium on Rapid System
Prototyping. ~ Washington, DC, USA: IEEE Computer Society, 2008,
pp. 27-33.

[4] C. L. Liu and J. Layland, “Scheduling algorithms for multiprogramming
in a hard real-time environment,” Journal of the ACM, vol. 20, no. 1, pp.
46-61, 1973.

[5] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling
algorithm: exact characterization and average case behaviour,” IEEE Real-
Time Systems Symposium, pp. 166-171, 1989.

[6] J. Y. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic, real-time tasks,” Performance Evaluation, vol. 2,
no. 4, 1982.

[71 W. H. Hesselink and R. M. Tol, “Formal feasibility conditions for earliest
deadline first scheduling,” Tech. Rep., 1994.

[8] M. Andrews, ‘“Probabilistic end-to-end delay bounds for earliest deadline
first scheduling,” in In Proceedings of the IEEE INFOCOM 2000, 2000.

i(tm) opcodes,”

Accessed,

