
BaBaNoC: An Asynchronous Network-on-Chip
Described in Balsa

Matheus T. Moreira, Felipe G. Magalhães, Matheus Gibiluka, Fabiano P. Hessel, Ney L. V. Calazans
Faculty of Computer Science - Pontifical Catholic University of Rio Grande do Sul – PUCRS - Porto Alegre, Brazil

{matheus.moreira, felipe.magalhaes, matheus.gibiluka}@acad.pucrs.br, {fabiano.hessel, ney.calazans}@pucrs.br

Abstract—The downscaling of silicon technology and the
possibility of building MPSoCs, make intrachip
communication a mainstream research topic. NoCs are an
elegant solution to provide communication scalability and
modularity. NoCs are already common in MPSoC design.
Moreover, new technology challenges point to a growth in the
use of non-synchronous NoCs. However, the design of
asynchronous infrastructures with current EDA tools is
challenging. That is due to the fact that most of these tools are
oriented towards synchronous design. This work proposes and
evaluates a fully asynchronous NoC router based on the Balsa
language and framework. The design is validates through
FPGA synthesis.

Keywords-component; Asynchronous circuits, network-on-
chip, semi-custom

I. INTRODUCTION
Current technologies allow the implementation of multi-

processor systems-on-chip (MPSoCs), large amount of
intellectual property cores (IP cores) interconnected through
some communication architecture. The limitations of classic
bus infrastructures led to the development of networks-on-
chip (NoCs). These present higher levels of scalability and
communication parallelism than buses. In fact, the use of
NoCs is already a well established concept for creating
effective intrachip communication architectures. Modern
MPSoCs rely heavily on IP reuse, where IPs may employ
particular standards and/or protocols and present varying
design constraints. Often, IPs’ requirements determine the
use of specific communication protocols and/or operating
frequencies. This renders the design of MPSoCs with
multiple frequency domains far more natural than fully
synchronous ones [1].

Systems with multiple frequency domains that
communicate with each other through some synchronization
mechanism are classified as globally-asynchronous locally-
synchronous (GALS) [2]. In such systems, synchronization
interfaces must be used at specific points, to allow distinct
clock domains to communicate. Clearly, NoCs are natural
candidates to include such synchronization interfaces, and
this is an active research area [3]. These NoCs can
themselves be fully synchronous, GALS or fully
asynchronous, depending on their router design and on the
router-to-router and router-to-IP interfaces design. The
present work addresses the class of fully asynchronous
NoCs.

The drawback is that the automation provided for the
design of asynchronous circuits is still in early stages of

development, because most commercial tools focus
exclusively on the synchronous design paradigm.
Consequently, all classes of asynchronous circuits have
limited electronic design automation (EDA) support. Also,
designing asynchronous circuits requires specific
components, which are typically absent from standard cell
libraries. In short, the design of non-synchronous circuits is
often classified as a difficult task.

This work describes the design of an asynchronous
router, called Balsa Based Router (abbreviated to
BaBaRouter) to support the design of GALS SoCs. The
Balsa language [4] allowed the straightforward description
of this fully asynchronous NoC router. The circuit is an
asynchronous version of the well-known Hermes NoC
router [5]. Itsdesign was validating through its synthesis for
different Xilinx FPGAs, supported by the Balsa Framework.

II. CONCEPTS

A. Asynchronous Circuits
Asynchronous circuits can be classified according to

several criteria. One of the most employed criterion is based
on the delays of wires and gates [6]. Accordingly, the most
robust and restrictive delay model is the delay insensitive
(DI) model [7] [8], which operates correctly regardless of
gate and wire delay values. Unfortunately, this class is too
restrictive. The addition of an assumption on wire delays in
some carefully selected forks enables to define the quasi-
delay-insensitive (QDI) circuit class. Here, signal transitions
occur at the same time only at each end point of the
mentioned forks, which are called isochronic forks. In fact,
many works report QDI as the most suited class for practical
asynchronous circuits, such as [9].

In order to implement QDI circuits, DI codes [7] [8] are
required. These guarantee robustness to wire delay
variations, because the request signal is embedded within
the data signal. An example is the class of m-of-n codes.
Given n and m, with m<n, an m-of-n code consists in the
set of all n-bit code words with Hamming weight (i.e. the
number of bits in 1 in the code word) equal to m. For
example, the well-known one-hot code is an example of 1-
of-n code. The use of m-of-n codes coupled to a protocol
that establishes how valid codes succeed one another in a
data flow allows obtaining communication with absolute
insensitivity to delay variations in individual wires.
Handshake protocols can be either 2-phase or 4-phase [6]
both illustrated in Figure 1for a 1-of-2 code. Usually, 2-

978-1-4799-2409-7/13$31.00 c©2013 IEEE

37

phase protocols operate faster, but require more hardware
than 4-phase protocols.

One of the most used approaches to achieve delay
insensitivity consists in representing each data bit in a
circuit by a pair of wires, in what is called dual-rail (DR)
encoding (where each bit is represented using a 1-of-2
code). Let d.t (data true or 1) and d.f (data false or 0) be the
names of two wires representing a single data bit. One
example of 2-phase handshake using a 1-bit DR code
appears in Figure 1(a). Here, a transition in wire d.f signals
a logical 0 value, which is recognized by a transition in the
signal acknowledge (ack). A transition in d.t signals a
logical 1 value, which is again acknowledged by a transition
in ack.

Figure 1 –Handshake protocols types: (a) 2-phase (b) 4-phase.

Figure 1(b) shows an example 4-phase protocol using
DR code. Logical levels in wires uniquely identify data bit
values. Again, let d.t and d.f be the names of two wires
representing one bit of some DR code. Valid bit values are
always valid code words of the 1-of-2 code (“01” for bit 0
and “10” for 1). However, after a value is acknowledged, all
wires must return to a predefined value, here the all-0s
spacer. The spacer itself is an invalid DR code word. This
protocol is accordingly denominated return to zero or RTZ.
In Figure 1(b), the first communicated data value is a logical
0, encoded by d.t=0 and d.f=1. After the value is
acknowledged by a low-to-high transition in the ack signal,
a spacer is issued, in this case d.t=0 and d.f=0. Next, the
ack signal switches to 0, signaling reception of the spacer,
and a new transmission may occur. Any 4-phase protocol
requires spacers when using m-of-n codes.

B. Balsa
With the growing interest for asynchronous circuits,

different research tools have been proposed to automate the
process of designing them. Among these, Balsa stands as a
comprehensive, open source environment [6]. The tool was
designed and is maintained by the Advanced Processor
Technologies Group from the University of Manchester [4].
In fact, Balsa is both a language to describe asynchronous
circuits and a framework to simulate and synthesize them.
The compilation of a Balsa description is transparent, since
language constructs are directly mapped into handshake
components. In this way, it is relatively easy for the
designer to visualize the circuit-level architecture of a Balsa
description. Moreover, modifications in a Balsa description
reflect in predictable changes in the resulting circuit, which
means that the designer has a clear control of the generated
hardware.

Balsa requires the designer to furnishthe order of
handshake events through Balsa language operators. These
events imply the communication between handshake

components (data exchange or control only) and can be
specified as occurring sequentially or concurrently.
Moreover, handshake components are transparent and are
derived from higher abstraction language constructs, such as
if/else, case, select and arbitrate. The two latter are very
important for asynchronous circuits; they allow the designer
to control and arbitrate events without a discrete notion of
time. Therefore, one of the main advantages of using Balsa
to describe and implement asynchronous circuits is that
specific communication control signals between handshake
components are abstracted.

After translating Balsa descriptions into a network of
handshake components, different asynchronous templates
can be assumed to map this to a target technology. For
standard-cell implementations, a library with specific
components is required, for FPGAs implementations, only
the basic libraries are required. After the mapping, the
netlists can be imported into back-end commercial tools for
physical implementation and optimization, power and
timing analysis.

III. RELATED WORK
As far as the authors could verify, six other fully

asynchronous NoC routers are described in the literature:
Asynchronous MANGO [10], ASPIN [11], QNoC [12], A-
NoC [13], and Hermes-A/Hermes-AA [14] [15]. The latter
derived from the work of the research group of the authors.

MANGO, asynchronous QNoC and A-NoC claim
support to quality of service through the use of virtual
channels and/or special circuits. A-NoC is the most
developed of the proposals and presents the best overall
performance. It has been successfully used to build at least
two complete integrated circuits. Since Hermes-A and
Hermes-AA are very similar, we restrict attention to the
latter. Hermes-AA presents adaptive routing schemes to
deal with unpredictable application dynamic behaviors,
allowing packets to take different paths through the network
every time congestion is detected.

The development of HermesA and Hermes-AA
demonstrated that adapting typical tools and standard cell
libraries to design asynchronous circuits is challenging.
Hermes-AA functional description took months to be
implemented and validated. Its logic synthesis used lots of
manual labor to generate a functional netlist. The difficulties
faced during the development of Hermes-AA were a
motivation for the research this paper describes.
Accordingly, the BaBaRouter first functional version was
described and validated in the Balsa Framework during one
week. Balsa automatically produced functional netlists for
physical synthesis input.

All asynchronous NoCs reviewed in the literature report
the use of synchronous design flows and tools for
implementing asynchronous routers. This generates more
workload, where the focus of the work becomes the
adaptation of the circuit, to guarantee the asynchronous
circuit works. Besides, asynchronous modules are
handcrafted. This means that manual design is omnipresent
to implement handshake elements, asynchronous control

38

logic and even basic components. Also, the BaBaRouter
design employs a fully QDI asynchronous template. The
only reviewed works that pledge the same approach are A-
NoC and Hermes-A/Hermes-AA. The use of a QDI
template, even if it increases design complexity somehow, is
justified by the fact that it enables overall delay
insensitivity, leading to designs that are robust to process,
voltage and temperature variations.

In short, the main two differences between the work
presented herein and the others discussed above are: (i) the
use of a high level language and framework for design entry
and synthesis and (ii) an automated connection between the
high level framework and the physical synthesis framework.
These enable facilitated design space exploration for
asynchronous circuits, a feature absent in previous works.

IV. THE BABAROUTER ARCHITECTURE
The BaBaRouter was described using the Balsa

language. The router can be implemented for different
asynchronous templates, due to the fact that a Balsa
descriptionabstracts data encoding methods, as well as
communication protocols. Thus, specific design template
decisions are made during synthesis and mapping to a
specific technology, not during design capture. Moreover, as
the Hermes router, BaBaRouter is parameterizable. In fact,
the latter has exactly the same functionality and block
structure as the Hermes router. Figure 2 displays the block
diagram of the BaBaRouter.

A
D
D
RE

SS

Figure 2 – BaBaRouter implementation block diagram. Communication
and synchronization takes place through handshake channels. Control
signals are implicit in the figure. The flit size is denoted by n, which is

used to specify the adopted internal channel widths.

Four fundamental block types form the BaBaRouter: (i)
the input FIFO buffers and (ii) the input control (IN CTRL),
which together are equivalent to a Hermes input buffer, (iii)
the switch control and (iv) the crossbar. All blocks are built
with handshake components and each block is itself a
handshake component. Consequently, blocks use handshake
channels to communicate and synchronize. All channels in
Figure 2 abstract existing request and acknowledge control
signals. Also, at most five input and five output ports

compose the router: East (0), West (1), North (2), South (3)
and Local (4), each with input and output interfaces. Again,
ports 0-3 interconnect routers and port 4 interconnect router
and IP.

A. The Input FIFO and IN CTRL Modules
Sequentially connected registers form the input FIFO.

Width and depth of the FIFOs are parameterizable by the
designer. Neighbor registers handshake to each other as data
flows through the FIFO. The width of router data channels
is the same as the router flit width. Without loss of
generality, this work assumes the use of 8-bit flits and 8-flit
deep FIFOs.

The IN CTRL block treats packet control information. A
packet in BaBaRouter has a variable size and follows the
Hermes format, as Figure 3 shows.

Figure 3 – BaBaRouter packet structure.

The first flit has the packet destination address in its
lower half, followed by the packet payload size in the
second flit, trailed by the payload in itself, i.e. all following
flits. When the IN CTRL of a given port detects a new
communication, it sends the address to the switch control
through a (n/2)-bit channel, where n is the flit width. Then,
it sends the whole address flit, together with an inactive end
of package (EOP) signal (value ‘0’), to the crossbar, through
an (n+1)-bit channel. Upon receiving the next flit (the
payload size) IN CTRL sets an internal register to the value
contained in this flit, resets its internal counter and
propagates the flit to the crossbar, again with the ‘0’ EOP
value. Next, IN CTRL increments its counter for each new
flit received and propagates the flit to the crossbar with
EOP=‘0’. When it detects the last flit, by comparing its
counter to the internal register that keeps the packet size, it
signals EOP=‘1’ when sending the last flit of the packet.
Note that empty payloads are allowed.

B. The Switch Control Module
The switch control is responsible for computing a router

output port for a packet, using the address received from IN
CTRL and the internal router address. All input ports share
the switch control module to route packets. Therefore,
requests from these ports to the switch must be arbitrated.
For instance, if two ports receive a new package at the same
time and the delays of each path to the switch control are
equivalent, two requests to use the switch control block
arrive at the same time. Choosing what packet to route first,
the switch control arbitrates requests through the Arbitration
block. This can be achieved at high level using the arbitrate
Balsa construct.

The arbitration choice comprises the selected destination
address (n/2 bits) and the port identifier that requested it (3

39

bits). This output is input to the Routing block, which
computes the path the packet will follow. Currently, packets
are routed using the XY algorithm. Other routing algorithms
can be easily adapted, due to the modularity inherent to
asynchronous circuits and in particular to Balsa descriptions
and the BaBaRouter architecture. The Routing module
produces a 3-bit code for choosing one of the five output
ports. The switch control has five 3-bit, 4-position output
FIFOs, one for each router output port. The FIFO queue
requests to a specific output port. For instance, consider that
a router with address “11” receives a new packet in the East
port with destination “11”. The switch control will compute
that the packet must follow to the Local output port. Then, it
will write in the local output FIFO the value of the East
router input (0). In other words, it will inform that the Local
output port needs to be reserved for the East input port.
Each new request to the Local output port will be queued in
the output FIFO. The FIFO will be full when all input ports,
but the Local, request the local output port. Note that it is
impossible that any routing request is pending to enter a full
FIFO, because at any moment at most four input ports may
request a same output port. This justifies the fixed size of
the FIFOs and guarantees that the switch control alone will
never cause communication to stall.

FIFOs in the switch control outputs are useful to avoid
starvation while ensuring fair service to all ports, when
multiple inputs request the same output port. A same input
port is not allowed to request the same output port twice
consecutively. This approach is indeed fairer than the Round
Robin arbiter of Hermes. Besides this approach costs little
hardware. Implementing the original Hermes round robin in
an asynchronous style would be a more area-consuming and
complex task.

C. The Crossbar
Figure 4shows the simplified crossbar block diagram.

The crossbar binds an output port to an input port. This is
done with the information generated by the switch control
module. When the switch control routes a packet to an
output port, it signals to the crossbar through the CTRL
channels (see Figure 2) which input port must be bound to a
given output port. The crossbar then binds the ports and
propagates the packets received from the IN CTRL until an
EOP=‘1’ is received. Remember all modules in Figure 4are
handshake components. The DEMUX control triggers a
handshake between this component and the MERGE
module that selects one of its input flows to send to its
output port data lines. After EOP=‘1’ is received that port
can be bound to a new input port. Only when the whole
packet is transferred, the crossbar finishes the
communication with the switch control for a given output
port, generating an acknowledge signal. Thus, a new
communication for any of the remaining output ports can
take place at any time.

BaBaRouter can have data flowing from different inputs
to different output ports concurrently. The router maximum
throughput is reached when all input ports are granted to
communicate with different output ports. In this case, five
paths are simultaneously established across the router.

Figure 4 – BaBaRouter Crossbar simplified block diagram.

The crossbar consumes a large amount of hardware,
becausefor each input port four channels must exist, one for
each possible output port. The choice of what channel to use
can be viewed as a demultiplexer (DEMUX) where the
control input derives from information coming from the
crossbar CTRL block. This block receives data from the
switch control along with EOP signals (not shown in Figure
4) and binds each input port to an output port, producing
control signals to the demultiplexers in each input. Channels
destinedto a same output port are merged to the actual
output port. This was the best approach that the authors
could find for a Balsa description of a crossbar, to guarantee
concurrency of communication for different input/output
port pairs.

D. Dataflow in BaBaRouter
As Figure 5 shows, when the first flit of a packet is

received in an input of the router, it is propagated through
the input FIFO and reaches the IN CTRL, which feeds the
switch control and the crossbar. The switch control decides
the path that the packet must follow and associates an output
port to the input port. This can be done concurrently for all
output ports, as the switch control generates routing
information.

Figure 5 –BaBaRouter dataflow for the first flit of each packet.

As Figure 6 shows, when the following flits are received
in the input port, they follow directly to the output port until
the last flit passes. This is due to the fact that all active

40

CTRL channels of Figure 2are locked until the respective IN
CTRL block signals EOP=‘1’. When the crossbar detects
this situation, it sends the last flit to the output and clears the
associated CTRL channel, by issuing an acknowledge signal
to it. From this point on, that output port is free.

Figure 6 –BaBaRouter dataflow for flits after the first.

V. THE BABAROUTER IMPLEMENTATION FLOW
Figure 7 illustrates the proposed design flow, which was

adopted for BaBaRouter. The functional behavior of this
router was initially described in the Balsa language and
compiled into handshake components through the Balsa
compiler (Balsa-c), producing a Breeze Netlist. This netlist
contains handshake components only, and can be simulated
in the Balsa Framework to validate its functional behavior
(with the Balsa Simulator).

Back EndFront End

*

Balsa
Source

Balsa-c Breeze
Netlist

Balsa
Synthesis

Mapped
Netlist ISE

FPGA

Reports

Balsa
Simulation

Figure 7 – The BaBaRouter design flow.

After extensive simulation of different random traffic
scenarios, the design can be mapped to a specific
technology. In this work, BaBaRouter was validated
through its synthesis targeting Xilinx FPGAs, which
arecompatible with the Balsa framework for generating
QDI, four-phase DR style circuits. This synthesis produces a
netlist of gates, which is described in Verilog and is fully
compatible with commercial back-end tools. The generated
mapped netlist is imported into the ISE Frameworkin order
to be synthesized for a given FPGA.

The Balsa Front End allows design capture, simulation
at the level of communicating processes, automatic
synthesis and technology mapping. Design capture and
simulation are independent of the final choice for an
asynchronous template, which is left for the Balsa synthesis
step (marked with * in Figure 7). In this way, freedom to
explore the design space is guaranteed, because there is no
constrain to choose asynchronous template at design capture
time.This is in contrast to the use of structural design
approaches such as the one employed for the design of
Hermes-AA, where the asynchronous template must be
chosen from the start.

It is useful to study the Balsa description of some blocks
of the design, to assess the usefulness of the Front End.
Figure 8shows the description of the BaBaRouter input
FIFO and the register it employs. The first procedure
(Register, in line 3) is the description of an asynchronous
register with a parameter width, which defines how many

bits it can store, an input i and an output o. The procedure
also uses a variable x (line 8), that stores the data. Register
input and output are just handshake channels; the storage
hardware itself is denoted by the declared variable. The
description of the Register behavior comprises lines 10 to
13, delimited by the reserved words begin andend. The
semicolon in line 11 denotes that commands in lines 11 and
12 must be executed in sequence. Concurrent commands are
also explicitly specified with the two vertical bars operator
(||, as noted e.g. in line 29). The Register procedure consists
of an endless loop (lines 10 to 14) that waits for a handshake
request in input channel i and as it occurs, stores the input
data in variable x(line 11). Next, it requests a
communication in the output channel o to propagate the data
stored in x (line 12). At the end of the loop (in line 13), input
i waits for a new request. Thesemicolon of line 11 is
responsible for the sequential semantics of the
communications i x and x o.

Figure 8 – Description of BaBaRouter Register and fifo.

The Register design is used as a module to build an
asynchronous fifo, the next procedure in Figure 8. The fifo
consists in a parameterizable number (depth) of
interconnected registers. The width of the register instance
is also parameterizable. The fifo interface consists in one
input channel i and one output channel o, which share the
same data width as the (internal) registers. The internal
declaration of procedure reg binds to the Register module
parameterized by the fifo width (line 22). This language
construction is similar to the declaration of a component e.g.
in VHDL. The fifo behavioral description (lines 24 to 36)
tests the depth, using a construction with semantics similar
to that of a conditional generate command in VHDL. If the

41

depth is 1 (line 24), a single register is instantiated (line 25).
Otherwise (line 26), the description instantiates one register
for the first position (line 29), one register for the last
position (line 30) and depth-2 registers for the intermediate
positions (lines 31 to 33), using a language construction
similar to a for generate in VHDL. Note that all registers are
configured to operate in parallel, through the concurrency
operator (||) at the end of each line and in the for
construction of line 31. In this way, there is no sequential
operation at the fifo level, only inside each register.
Communication and flow control are implied in the
handshake and are independent of the specific asynchronous
design style of the implementation. Also, as it can be seen
from Figure 8, changes in Balsa the description lead to
predictable changes in the resulting hardware.

VI. EXPERIMENTS AND RESULTS
In order to validate the Babarouter presented in this

work, a synthesis flow using Xilinx ISE Framework was
defined. Also, a comparison was made between our balsa-
based router implementation and the Hermes’ regular
VHDL implementation. Four different FPGA families were
used for comparing the routers: Virtex5, Virtex6, Kintex 7
and Artix 7. As mentioned before, netlists generated by
Balsa are fully compatible with ISE.

To make a fair comparison both routers were designed
with similar parameters. However, Hermes stands as the
synchronous implementation and the Babarouter as the
asynchronous version. The adopted configuration was:

• 16 bits flit size

• 16 positions intermediary buffers size

• Round-robin arbitration

• Wormhole

• Handshake synchronization protocol

In this work, two outputs were taken into account for
comparison: the area used to implement each router over the
FPGA and the estimated power consumption. Table 1
presents the results obtained for the Hermes
implementation. In the Table it is possible to see six
columns: I) FPGA, which stands for the board family; ii)
REGISTERs, as the name suggests, is the number of
registers used to implement the logic over the specified
FPGA family; iii) LUTs stands as the percentage of LUTS
used; iv) TP is the estimated total power consumed by the
router; v) DP stands for dynamic power. In this case the
dynamic power is a function of the variation over the inputs,
automatically estimated by the power tool, and; vi) SP,
which is static power, or the power the router consumes
when it’s not performing any actions.

On the Table 2, the results regarding the Babarouter
implementation are shown. As in Table 1, the same six
columns are presented.

Table 1 – Obtained results for Hermes.

Hermes

FPGA REGISTERs LUTs TP DP
Virtex 5 0.11% 0.35% 3.85 0.122
Virtex 6 0.06% 0.43% 5.905 0.107
Kintex7 0.04% 0.27% 0.444 0.09
Artix7 0.05% 0.30% 0.189 0.091

Table 2 – Obtained results for BaBaRouter.

Table 3 presents a comparison between both
implementations. The table shows the energy consumption
difference in percentage and the difference in resources used
in number of times. Analyzing all tables we can make some
initial conclusions.

1. As expected, the dynamic energy consumption
of the asynchronous version is much smaller.
This happens due to to the very nature of these
circuits to only consume where and when they
are needed.

2. Babarouter’s overall power consumption is
smaller. Again, this is a characteristic of
asynchronous circuits, and these results only
confirmed what were already expected.

The overall area used is smaller on the synchronous
version, which was also expected. While synchronous
circuits can count on several tools to support its
development, asynchronous circuits still lacks of such
support. In this way a big gap between the two approaches
become easily visible, as it is not possible, yet, to get a
solution for asynchronous circuits as good as we can get for
its synchronous counterparts. On the other hand, the
asynchronous implementation didn't use any registers,
what's desirable in this case, as registers are more expensive
resources in FPGAs, and could be used to implement
another IPs.
Table 3 – Results comparison.

Results Comparasion
FPGA FAMILY Regs LUTs TP DP

Virtex 5 0.00 6.72x -18,94% -98,36%
Virtex 6 0.00 7.21x -1,83% -97,20%
Kintex7 0.00 6.16x -19,82% -96,67%
Artix7 0.00 7.27x -47,62% -97,80%

BaBaRouter
FPGA REGISTERs LUTs TP DP

Virtex 5 0.00% 2.37% 3.121 0.002
Virtex 6 0.00% 3.12% 5.797 0.003
Kintex7 0.00% 1.65% 0.356 0.003
Artix7 0.00% 2.18% 0.099 0.002

42

VII. CONCLUSIONS
This work presented the design and implementation of

an asynchronous QDI DR NoC router. The router was
described in a language specifically designed for
asynchronous circuits, Balsa. As far as the authors could
verify, this is the first asynchronous NoC router to be
implemented using a high level design approach. Also,
preliminary results show that by using Balsa to implement
asynchronous intrachip networks power efficient designs
can be obtained. Although it does incur overheads, the
BaBaRouter is naturally tolerant to operational variations
when compared to a synchronous NoC router. This is due
to innate characteristics of asynchronous circuits and is
advantageous in current technologies.

Future work includes exploring different routing
algorithms, which can easily be added to the router. Also
other asynchronous templates can be used to re-implement
the router, including bundled-data and 1-of-4 encoding,
combined with 2-phase or 4-phase protocols. In addition,
the authors envisage the construction of an automatic
generator for BaBaRouter, along with a high level
simulation and evaluation environment.

REFERENCES
[1] International Technology Roadmap for Semiconductors. “Design

Section”, 2009,available at http://www.itrs.net.
[2] D. Chapiro. “Globally Asynchronous Locally Synchronous

Systems”. PhD Thesis, Stanford University, 1984, 134p.
[3] A. Agarwal, C. Iskander, and R, Shankar. “Survey of network on

chip (NoC) architectures &contributions”. Journal of Engineering,
Computing & Architecture, vol. 3(1), 2009, 15p.

[4] D. Edwards, A. Bardsley, L. Janin, L. Plana, W. Toms,Balsa: A
Tutorial Guide,Version 3.5, APT Group, University of Manchester,
2006, 157p.

[5] F. Moraes, N. Calazans, A. Mello, L. Möller, L. Ost, HERMES: an
Infrastructure for Low Area Overhead Packet-switching Networks
on Chip. Integration, the VLSI Journal 38(1) (October 2004) 69-93.

[6] J. Sparsø and S. B. Furber. “Principles of asynchronous circuit
design – a systems perspective”.Kluwer Academic Publishers,
Boston, 2001, 360 p.

[7] T. Verhoeff. Delay-insensitive codes- an overview. Distributed
Computing, vol.3(1), 1988, pp.1-8.

[8] W. J. Bainbridge, W. B. Toms, D. A. Edwards, and S. B. Furber.
“Delay-insensitive, point-to-point interconnect using m-of-n codes”.
In:ASYNC´03, 2003, pp. 132- 140.

[9] A. J. Martin.“Formal program transformations for VLSI circuit
synthesis”.In: Formal Development of Programs and Proofs, E. W.
Dijkstra, Editor, Addison-Wesley, 1989, pp. 59-80.

[10] T. Bjerregaard, J. Sparsø, A router architecture for connection-
oriented service guarantees in the MANGO clockless network-on-
chip,in: Design, Automation and Test in Europe (DATE’05), 2005,
pp. 1226-1231.

[11] A. Sheibanyrad, I. Miro-Panades, A. Greiner, Multisynchronous and
Fully Asynchronous NoCs for GALS Architectures, IEEE Design
and Test of Computers 25(6)(November-December 2008) 572 - 580.

[12] R. Dobkin, R. Ginosar, A. Kolodny,QNoC asynchronous router,
Integration the VLSI Journal42(2) (February 2009) 103-115.

[13] Y. Thonnart, E. Beigné, P. Vivet,Design and Implementation of a
GALS Adapter for ANoC Based Architectures, in: 14th IEEE
International Symposium on Asynchronous Circuits and Systems
(ASYNC’09), 2009, pp. 13-22.

[14] J. Pontes, M. Moreira, F. Moraes, N. Calazans, Hermes-A - An
Asynchronous NoC Router with Distributed Routing, in:

International Workshop on Power and Timing Modeling,
Optimization and Simulation (PATMOS'10), LNCS vol. 6448, 2010.
pp. 150-159.

[15] J. Pontes, M. Moreira, F. Moraes, N. Calazans, Hermes-AA: A 65nm
asynchronous NoC router with adaptive routing, in: IEEE
International SOC Conference (SOCC’10), 2010, pp. 493-498.

43

