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Abstract—The downscaling of silicon technology and the 
possibility of building MPSoCs, make intrachip 
communication a mainstream research topic. NoCs are an 
elegant solution to provide communication scalability and 
modularity. NoCs are already common in MPSoC design. 
Moreover, new technology challenges point to a growth in the 
use of non-synchronous NoCs. However, the design of 
asynchronous infrastructures with current EDA tools is 
challenging. That is due to the fact that most of these tools are 
oriented towards synchronous design. This work proposes and 
evaluates a fully asynchronous NoC router based on the Balsa 
language and framework. The design is validates through 
FPGA synthesis. 

Keywords-component; Asynchronous circuits, network-on-
chip, semi-custom 

I. INTRODUCTION 
Current technologies allow the implementation of multi-

processor systems-on-chip (MPSoCs), large amount of 
intellectual property cores (IP cores) interconnected through 
some communication architecture. The limitations of classic 
bus infrastructures led to the development of networks-on-
chip (NoCs). These present higher levels of scalability and 
communication parallelism than buses. In fact, the use of 
NoCs is already a well established concept for creating 
effective intrachip communication architectures. Modern 
MPSoCs rely heavily on IP reuse, where IPs may employ 
particular standards and/or protocols and present varying 
design constraints. Often, IPs’ requirements determine the 
use of specific communication protocols and/or operating 
frequencies. This renders the design of MPSoCs with 
multiple frequency domains far more natural than fully 
synchronous ones [1].  

Systems with multiple frequency domains that 
communicate with each other through some synchronization 
mechanism are classified as globally-asynchronous locally-
synchronous (GALS) [2]. In such systems, synchronization 
interfaces must be used at specific points, to allow distinct 
clock domains to communicate. Clearly, NoCs are natural 
candidates to include such synchronization interfaces, and 
this is an active research area [3]. These NoCs can 
themselves be fully synchronous, GALS or fully 
asynchronous, depending on their router design and on the 
router-to-router and router-to-IP interfaces design. The 
present work addresses the class of fully asynchronous 
NoCs. 

The drawback is that the automation provided for the 
design of asynchronous circuits is still in early stages of 

development, because most commercial tools focus 
exclusively on the synchronous design paradigm. 
Consequently, all classes of asynchronous circuits have 
limited electronic design automation (EDA) support. Also, 
designing asynchronous circuits requires specific 
components, which are typically absent from standard cell 
libraries. In short, the design of non-synchronous circuits is 
often classified as a difficult task. 

This work describes the design of an asynchronous 
router, called Balsa Based Router (abbreviated to 
BaBaRouter) to support the design of GALS SoCs. The 
Balsa language [4] allowed the straightforward description 
of this fully asynchronous NoC router. The circuit is an 
asynchronous version of the well-known Hermes NoC 
router [5]. Itsdesign was validating through its synthesis for 
different Xilinx FPGAs, supported by the Balsa Framework. 

II. CONCEPTS 

A. Asynchronous Circuits 
Asynchronous circuits can be classified according to 

several criteria. One of the most employed criterion is based 
on the delays of wires and gates [6]. Accordingly, the most 
robust and restrictive delay model is the delay insensitive 
(DI) model [7] [8], which operates correctly regardless of 
gate and wire delay values. Unfortunately, this class is too 
restrictive. The addition of an assumption on wire delays in 
some carefully selected forks enables to define the quasi-
delay-insensitive (QDI) circuit class. Here, signal transitions 
occur at the same time only at each end point of the 
mentioned forks, which are called isochronic forks. In fact, 
many works report QDI as the most suited class for practical 
asynchronous circuits, such as [9]. 

In order to implement QDI circuits, DI codes [7] [8] are 
required. These guarantee robustness to wire delay 
variations, because the request signal is embedded within 
the data signal. An example is the class of m-of-n codes. 
Given n and m, with m<n, an m-of-n code consists in the 
set of all n-bit code words with Hamming weight (i.e. the 
number of bits in 1 in the code word) equal to m. For 
example, the well-known one-hot code is an example of 1-
of-n code. The use of m-of-n codes coupled to a protocol 
that establishes how valid codes succeed one another in a 
data flow allows obtaining communication with absolute 
insensitivity to delay variations in individual wires. 
Handshake protocols can be either 2-phase or 4-phase [6] 
both illustrated in Figure 1for a 1-of-2 code. Usually, 2-
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phase protocols operate faster, but require more hardware 
than 4-phase protocols. 

One of the most used approaches to achieve delay 
insensitivity consists in representing each data bit in a 
circuit by a pair of wires, in what is called dual-rail (DR) 
encoding (where each bit is represented using a 1-of-2 
code). Let d.t (data true or 1) and d.f (data false or 0) be the 
names of two wires representing a single data bit. One 
example of 2-phase handshake using a 1-bit DR code 
appears in Figure 1(a). Here, a transition in wire d.f signals 
a logical 0 value, which is recognized by a transition in the 
signal acknowledge (ack). A transition in d.t signals a 
logical 1 value, which is again acknowledged by a transition 
in ack. 

 
Figure 1 –Handshake protocols types: (a) 2-phase (b) 4-phase. 

Figure 1(b) shows an example 4-phase protocol using 
DR code. Logical levels in wires uniquely identify data bit 
values. Again, let d.t and d.f be the names of two wires 
representing one bit of some DR code. Valid bit values are 
always valid code words of the 1-of-2 code (“01” for bit 0 
and “10” for 1). However, after a value is acknowledged, all 
wires must return to a predefined value, here the all-0s 
spacer. The spacer itself is an invalid DR code word. This 
protocol is accordingly denominated return to zero or RTZ. 
In Figure 1(b), the first communicated data value is a logical 
0, encoded by d.t=0 and d.f=1. After the value is 
acknowledged by a low-to-high transition in the ack signal, 
a spacer is issued, in this case d.t=0 and d.f=0. Next, the 
ack signal switches to 0, signaling reception of the spacer, 
and a new transmission may occur. Any 4-phase protocol 
requires spacers when using m-of-n codes. 

B. Balsa 
With the growing interest for asynchronous circuits, 

different research tools have been proposed to automate the 
process of designing them. Among these, Balsa stands as a 
comprehensive, open source environment [6]. The tool was 
designed and is maintained by the Advanced Processor 
Technologies Group from the University of Manchester [4]. 
In fact, Balsa is both a language to describe asynchronous 
circuits and a framework to simulate and synthesize them. 
The compilation of a Balsa description is transparent, since 
language constructs are directly mapped into handshake 
components. In this way, it is relatively easy for the 
designer to visualize the circuit-level architecture of a Balsa 
description. Moreover, modifications in a Balsa description 
reflect in predictable changes in the resulting circuit, which 
means that the designer has a clear control of the generated 
hardware. 

Balsa requires the designer to furnishthe order of 
handshake events through Balsa language operators. These 
events imply the communication between handshake 

components (data exchange or control only) and can be 
specified as occurring sequentially or concurrently. 
Moreover, handshake components are transparent and are 
derived from higher abstraction language constructs, such as 
if/else, case, select and arbitrate. The two latter are very 
important for asynchronous circuits; they allow the designer 
to control and arbitrate events without a discrete notion of 
time. Therefore, one of the main advantages of using Balsa 
to describe and implement asynchronous circuits is that 
specific communication control signals between handshake 
components are abstracted. 

After translating Balsa descriptions into a network of 
handshake components, different asynchronous templates 
can be assumed to map this to a target technology. For 
standard-cell implementations, a library with specific 
components is required, for FPGAs implementations, only 
the basic libraries are required. After the mapping, the 
netlists can be imported into back-end commercial tools for 
physical implementation and optimization, power and 
timing analysis. 

III. RELATED WORK 
As far as the authors could verify, six other fully 

asynchronous NoC routers are described in the literature: 
Asynchronous MANGO [10], ASPIN [11], QNoC [12], A-
NoC [13], and Hermes-A/Hermes-AA [14] [15]. The latter 
derived from the work of the research group of the authors. 

MANGO, asynchronous QNoC and A-NoC claim 
support to quality of service through the use of virtual 
channels and/or special circuits. A-NoC is the most 
developed of the proposals and presents the best overall 
performance. It has been successfully used to build at least 
two complete integrated circuits. Since Hermes-A and 
Hermes-AA are very similar, we restrict attention to the 
latter. Hermes-AA presents adaptive routing schemes to 
deal with unpredictable application dynamic behaviors, 
allowing packets to take different paths through the network 
every time congestion is detected. 

The development of HermesA and Hermes-AA 
demonstrated that adapting typical tools and standard cell 
libraries to design asynchronous circuits is challenging. 
Hermes-AA functional description took months to be 
implemented and validated. Its logic synthesis used lots of 
manual labor to generate a functional netlist. The difficulties 
faced during the development of Hermes-AA were a 
motivation for the research this paper describes. 
Accordingly, the BaBaRouter first functional version was 
described and validated in the Balsa Framework during one 
week. Balsa automatically produced functional netlists for 
physical synthesis input. 

All asynchronous NoCs reviewed in the literature report 
the use of synchronous design flows and tools for 
implementing asynchronous routers. This generates more 
workload, where the focus of the work becomes the 
adaptation of the circuit, to guarantee the asynchronous 
circuit works. Besides, asynchronous modules are 
handcrafted. This means that manual design is omnipresent 
to implement handshake elements, asynchronous control 
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logic and even basic components. Also, the BaBaRouter 
design employs a fully QDI asynchronous template. The 
only reviewed works that pledge the same approach are A-
NoC and Hermes-A/Hermes-AA. The use of a QDI 
template, even if it increases design complexity somehow, is 
justified by the fact that it enables overall delay 
insensitivity, leading to designs that are robust to process, 
voltage and temperature variations.  

In short, the main two differences between the work 
presented herein and the others discussed above are: (i) the 
use of a high level language and framework for design entry 
and synthesis and (ii) an automated connection between the 
high level framework and the physical synthesis framework. 
These enable facilitated design space exploration for 
asynchronous circuits, a feature absent in previous works. 

IV. THE BABAROUTER ARCHITECTURE 
The BaBaRouter was described using the Balsa 

language. The router can be implemented for different 
asynchronous templates, due to the fact that a Balsa 
descriptionabstracts data encoding methods, as well as 
communication protocols. Thus, specific design template 
decisions are made during synthesis and mapping to a 
specific technology, not during design capture. Moreover, as 
the Hermes router, BaBaRouter is parameterizable. In fact, 
the latter has exactly the same functionality and block 
structure as the Hermes router. Figure 2 displays the block 
diagram of the BaBaRouter. 

A
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Figure 2 – BaBaRouter implementation block diagram. Communication 
and synchronization takes place through handshake channels. Control 
signals are implicit in the figure. The flit size is denoted by n, which is 

used to specify the adopted internal channel widths. 

Four fundamental block types form the BaBaRouter: (i) 
the input FIFO buffers and (ii) the input control (IN CTRL), 
which together are equivalent to a Hermes input buffer, (iii) 
the switch control and (iv) the crossbar. All blocks are built 
with handshake components and each block is itself a 
handshake component. Consequently, blocks use handshake 
channels to communicate and synchronize. All channels in 
Figure 2 abstract existing request and acknowledge control 
signals. Also, at most five input and five output ports 

compose the router: East (0), West (1), North (2), South (3) 
and Local (4), each with input and output interfaces. Again, 
ports 0-3 interconnect routers and port 4 interconnect router 
and IP. 

A. The Input FIFO and IN CTRL Modules 
Sequentially connected registers form the input FIFO. 

Width and depth of the FIFOs are parameterizable by the 
designer. Neighbor registers handshake to each other as data 
flows through the FIFO. The width of router data channels 
is the same as the router flit width. Without loss of 
generality, this work assumes the use of 8-bit flits and 8-flit 
deep FIFOs. 

The IN CTRL block treats packet control information. A 
packet in BaBaRouter has a variable size and follows the 
Hermes format, as Figure 3 shows. 

 
Figure 3 – BaBaRouter packet structure. 

The first flit has the packet destination address in its 
lower half, followed by the packet payload size in the 
second flit, trailed by the payload in itself, i.e. all following 
flits. When the IN CTRL of a given port detects a new 
communication, it sends the address to the switch control 
through a (n/2)-bit channel, where n is the flit width. Then, 
it sends the whole address flit, together with an inactive end 
of package (EOP) signal (value ‘0’), to the crossbar, through 
an (n+1)-bit channel. Upon receiving the next flit (the 
payload size) IN CTRL sets an internal register to the value 
contained in this flit, resets its internal counter and 
propagates the flit to the crossbar, again with the ‘0’ EOP 
value. Next, IN CTRL increments its counter for each new 
flit received and propagates the flit to the crossbar with 
EOP=‘0’. When it detects the last flit, by comparing its 
counter to the internal register that keeps the packet size, it 
signals EOP=‘1’ when sending the last flit of the packet. 
Note that empty payloads are allowed. 

B. The Switch Control Module 
The switch control is responsible for computing a router 

output port for a packet, using the address received from IN 
CTRL and the internal router address. All input ports share 
the switch control module to route packets. Therefore, 
requests from these ports to the switch must be arbitrated. 
For instance, if two ports receive a new package at the same 
time and the delays of each path to the switch control are 
equivalent, two requests to use the switch control block 
arrive at the same time. Choosing what packet to route first, 
the switch control arbitrates requests through the Arbitration 
block. This can be achieved at high level using the arbitrate 
Balsa construct. 

The arbitration choice comprises the selected destination 
address (n/2 bits) and the port identifier that requested it (3 
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bits). This output is input to the Routing block, which 
computes the path the packet will follow. Currently, packets 
are routed using the XY algorithm. Other routing algorithms 
can be easily adapted, due to the modularity inherent to 
asynchronous circuits and in particular to Balsa descriptions 
and the BaBaRouter architecture. The Routing module 
produces a 3-bit code for choosing one of the five output 
ports. The switch control has five 3-bit, 4-position output 
FIFOs, one for each router output port. The FIFO queue 
requests to a specific output port. For instance, consider that 
a router with address “11” receives a new packet in the East 
port with destination “11”. The switch control will compute 
that the packet must follow to the Local output port. Then, it 
will write in the local output FIFO the value of the East 
router input (0). In other words, it will inform that the Local 
output port needs to be reserved for the East input port. 
Each new request to the Local output port will be queued in 
the output FIFO. The FIFO will be full when all input ports, 
but the Local, request the local output port. Note that it is 
impossible that any routing request is pending to enter a full 
FIFO, because at any moment at most four input ports may 
request a same output port. This justifies the fixed size of 
the FIFOs and guarantees that the switch control alone will 
never cause communication to stall. 

FIFOs in the switch control outputs are useful to avoid 
starvation while ensuring fair service to all ports, when 
multiple inputs request the same output port. A same input 
port is not allowed to request the same output port twice 
consecutively. This approach is indeed fairer than the Round 
Robin arbiter of Hermes. Besides this approach costs little 
hardware. Implementing the original Hermes round robin in 
an asynchronous style would be a more area-consuming and 
complex task. 

C. The Crossbar 
Figure 4shows the simplified crossbar block diagram. 

The crossbar binds an output port to an input port. This is 
done with the information generated by the switch control 
module. When the switch control routes a packet to an 
output port, it signals to the crossbar through the CTRL 
channels (see Figure 2) which input port must be bound to a 
given output port. The crossbar then binds the ports and 
propagates the packets received from the IN CTRL until an 
EOP=‘1’ is received. Remember all modules in Figure 4are 
handshake components. The DEMUX control triggers a 
handshake between this component and the MERGE 
module that selects one of its input flows to send to its 
output port data lines. After EOP=‘1’ is received that port 
can be bound to a new input port. Only when the whole 
packet is transferred, the crossbar finishes the 
communication with the switch control for a given output 
port, generating an acknowledge signal. Thus, a new 
communication for any of the remaining output ports can 
take place at any time.  

BaBaRouter can have data flowing from different inputs 
to different output ports concurrently. The router maximum 
throughput is reached when all input ports are granted to 
communicate with different output ports. In this case, five 
paths are simultaneously established across the router.  

 
Figure 4 – BaBaRouter Crossbar simplified block diagram. 

The crossbar consumes a large amount of hardware, 
becausefor each input port four channels must exist, one for 
each possible output port. The choice of what channel to use 
can be viewed as a demultiplexer (DEMUX) where the 
control input derives from information coming from the 
crossbar CTRL block. This block receives data from the 
switch control along with EOP signals (not shown in Figure 
4) and binds each input port to an output port, producing 
control signals to the demultiplexers in each input. Channels 
destinedto a same output port are merged to the actual 
output port. This was the best approach that the authors 
could find for a Balsa description of a crossbar, to guarantee 
concurrency of communication for different input/output 
port pairs. 

D. Dataflow in BaBaRouter 
As Figure 5 shows, when the first flit of a packet is 

received in an input of the router, it is propagated through 
the input FIFO and reaches the IN CTRL, which feeds the 
switch control and the crossbar. The switch control decides 
the path that the packet must follow and associates an output 
port to the input port. This can be done concurrently for all 
output ports, as the switch control generates routing 
information. 

 
Figure 5 –BaBaRouter dataflow for the first flit of each packet. 

As Figure 6 shows, when the following flits are received 
in the input port, they follow directly to the output port until 
the last flit passes. This is due to the fact that all active 
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CTRL channels of Figure 2are locked until the respective IN 
CTRL block signals EOP=‘1’. When the crossbar detects 
this situation, it sends the last flit to the output and clears the 
associated CTRL channel, by issuing an acknowledge signal 
to it. From this point on, that output port is free. 

 
Figure 6 –BaBaRouter dataflow for flits after the first. 

V. THE BABAROUTER IMPLEMENTATION FLOW 
Figure 7 illustrates the proposed design flow, which was 

adopted for BaBaRouter. The functional behavior of this 
router was initially described in the Balsa language and 
compiled into handshake components through the Balsa 
compiler (Balsa-c), producing a Breeze Netlist. This netlist 
contains handshake components only, and can be simulated 
in the Balsa Framework to validate its functional behavior 
(with the Balsa Simulator). 

Back EndFront End

*

Balsa 
Source

Balsa-c Breeze 
Netlist

Balsa 
Synthesis

Mapped 
Netlist ISE

FPGA

Reports

Balsa 
Simulation

 
Figure 7 – The BaBaRouter design flow. 

After extensive simulation of different random traffic 
scenarios, the design can be mapped to a specific 
technology. In this work, BaBaRouter was validated 
through its synthesis targeting Xilinx FPGAs, which 
arecompatible with the Balsa framework for generating 
QDI, four-phase DR style circuits. This synthesis produces a 
netlist of gates, which is described in Verilog and is fully 
compatible with commercial back-end tools. The generated 
mapped netlist is imported into the ISE Frameworkin order 
to be synthesized for a given FPGA.  

The Balsa Front End allows design capture, simulation 
at the level of communicating processes, automatic 
synthesis and technology mapping. Design capture and 
simulation are independent of the final choice for an 
asynchronous template, which is left for the Balsa synthesis 
step (marked with * in Figure 7). In this way, freedom to 
explore the design space is guaranteed, because there is no 
constrain to choose asynchronous template at design capture 
time.This is in contrast to the use of structural design 
approaches such as the one employed for the design of 
Hermes-AA, where the asynchronous template must be 
chosen from the start. 

It is useful to study the Balsa description of some blocks 
of the design, to assess the usefulness of the Front End. 
Figure 8shows the description of the BaBaRouter input 
FIFO and the register it employs. The first procedure 
(Register, in line 3) is the description of an asynchronous 
register with a parameter width, which defines how many 

bits it can store, an input i and an output o. The procedure 
also uses a variable x (line 8), that stores the data. Register 
input and output are just handshake channels; the storage 
hardware itself is denoted by the declared variable. The 
description of the Register behavior comprises lines 10 to 
13, delimited by the reserved words begin andend. The 
semicolon in line 11 denotes that commands in lines 11 and 
12 must be executed in sequence. Concurrent commands are 
also explicitly specified with the two vertical bars operator 
(||, as noted e.g. in line 29). The Register procedure consists 
of an endless loop (lines 10 to 14) that waits for a handshake 
request in input channel i and as it occurs, stores the input 
data in variable x(line 11). Next, it requests a 
communication in the output channel o to propagate the data 
stored in x (line 12). At the end of the loop (in line 13), input 
i waits for a new request. Thesemicolon of line 11 is 
responsible for the sequential semantics of the 
communications i x and x o.  

 
Figure 8 – Description of BaBaRouter Register and fifo. 

The Register design is used as a module to build an 
asynchronous fifo, the next procedure in Figure 8. The fifo 
consists in a parameterizable number (depth) of 
interconnected registers. The width of the register instance 
is also parameterizable. The fifo interface consists in one 
input channel i and one output channel o, which share the 
same data width as the (internal) registers. The internal 
declaration of procedure reg binds to the Register module 
parameterized by the fifo width (line 22). This language 
construction is similar to the declaration of a component e.g. 
in VHDL. The fifo behavioral description (lines 24 to 36) 
tests the depth, using a construction with semantics similar 
to that of a conditional generate command in VHDL. If the 
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depth is 1 (line 24), a single register is instantiated (line 25). 
Otherwise (line 26), the description instantiates one register 
for the first position (line 29), one register for the last 
position (line 30) and depth-2 registers for the intermediate 
positions (lines 31 to 33), using a language construction 
similar to a for generate in VHDL. Note that all registers are 
configured to operate in parallel, through the concurrency 
operator (||) at the end of each line and in the for 
construction of line 31. In this way, there is no sequential 
operation at the fifo level, only inside each register. 
Communication and flow control are implied in the 
handshake and are independent of the specific asynchronous 
design style of the implementation. Also, as it can be seen 
from Figure 8, changes in Balsa the description lead to 
predictable changes in the resulting hardware. 

VI. EXPERIMENTS AND RESULTS 
In order to validate the Babarouter presented in this 

work, a synthesis flow using Xilinx ISE Framework was 
defined. Also, a comparison was made between our balsa-
based router implementation and the Hermes’ regular 
VHDL implementation. Four different FPGA families were 
used for comparing the routers: Virtex5, Virtex6, Kintex 7 
and Artix 7. As mentioned before, netlists generated by 
Balsa are fully compatible with ISE. 

To make a fair comparison both routers were designed 
with similar parameters. However, Hermes stands as the 
synchronous implementation and the Babarouter as the 
asynchronous version. The adopted configuration was: 

• 16 bits flit size 

• 16 positions intermediary buffers size 

• Round-robin arbitration 

• Wormhole 

• Handshake synchronization protocol 

In this work, two outputs were taken into account for 
comparison: the area used to implement each router over the 
FPGA and the estimated power consumption. Table 1 
presents the results obtained for the Hermes 
implementation. In the Table it is possible to see six 
columns: I) FPGA, which stands for the board family; ii) 
REGISTERs, as the name suggests, is the number of  
registers used to implement the logic over the specified 
FPGA family; iii) LUTs stands as the percentage of LUTS 
used; iv) TP is the estimated total power consumed by the 
router; v) DP stands for dynamic power. In this case the 
dynamic power is a function of the variation over the inputs, 
automatically estimated by the power tool, and; vi) SP, 
which is static power, or the power the router consumes 
when it’s not performing any actions. 

On the Table 2, the results regarding the Babarouter 
implementation are shown. As in Table 1, the same six 
columns are presented.  

 

Table 1 – Obtained results for Hermes. 

Hermes 

FPGA REGISTERs LUTs TP DP 
Virtex 5 0.11% 0.35% 3.85 0.122 
Virtex 6 0.06% 0.43% 5.905 0.107 
Kintex7 0.04% 0.27% 0.444 0.09 
Artix7 0.05% 0.30% 0.189 0.091 
 

Table 2 – Obtained results for BaBaRouter. 

 

Table 3 presents a comparison between both 
implementations. The table shows the energy consumption 
difference in percentage and the difference in resources used 
in number of times.  Analyzing all tables we can make some 
initial conclusions.  

1. As expected, the dynamic energy consumption 
of the asynchronous version is much smaller. 
This happens due to to the very nature of these 
circuits to only consume where and when they 
are needed.  

2. Babarouter’s overall power consumption is 
smaller. Again, this is a characteristic of 
asynchronous circuits, and these results only 
confirmed what were already expected. 

The overall area used is smaller on the synchronous 
version, which was also expected. While synchronous 
circuits can count on several tools to support its 
development, asynchronous circuits still lacks of such 
support. In this way a big gap between the two approaches 
become easily visible, as it is not possible, yet, to get a 
solution for asynchronous circuits as good as we can get for 
its synchronous counterparts. On the other hand, the 
asynchronous implementation didn't use any registers, 
what's desirable in this case, as registers are more expensive 
resources in FPGAs, and could be used to implement 
another IPs. 
Table 3 – Results comparison. 

Results Comparasion 
FPGA FAMILY Regs LUTs TP DP 

Virtex 5 0.00 6.72x -18,94% -98,36%
Virtex 6 0.00 7.21x -1,83% -97,20%
Kintex7 0.00 6.16x -19,82% -96,67%
Artix7 0.00 7.27x -47,62% -97,80%

 

BaBaRouter 
FPGA  REGISTERs LUTs TP DP 

Virtex 5 0.00% 2.37% 3.121 0.002 
Virtex 6 0.00% 3.12% 5.797 0.003 
Kintex7 0.00% 1.65% 0.356 0.003 
Artix7 0.00% 2.18% 0.099 0.002 
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VII. CONCLUSIONS 
This work presented the design and implementation of 

an asynchronous QDI DR NoC router. The router was 
described in a language specifically designed for 
asynchronous circuits, Balsa. As far as the authors could 
verify, this is the first asynchronous NoC router to be 
implemented using a high level design approach. Also, 
preliminary results show that by using Balsa to implement 
asynchronous intrachip networks power efficient designs 
can be obtained. Although it does incur overheads, the 
BaBaRouter is naturally tolerant to operational variations 
when compared to a synchronous NoC router. This is due 
to innate characteristics of asynchronous circuits and is 
advantageous in current technologies. 

Future work includes exploring different routing 
algorithms, which can easily be added to the router. Also 
other asynchronous templates can be used to re-implement 
the router, including bundled-data and 1-of-4 encoding, 
combined with 2-phase or 4-phase protocols. In addition, 
the authors envisage the construction of an automatic 
generator for BaBaRouter, along with a high level 
simulation and evaluation environment. 
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