
Virtual Hellfire Hypervisor: Extending Hellfire Framework for Embedded
Virtualization Support

Alexandra Aguiar, Fabiano Hessel
Faculty of Informatics – PUCRS – Av. Ipiranga 6681, Porto Alegre, Brazil

E-mail: alexandra.aguiar@pucrs.br, fabiano.hessel@pucrs.br

Abstract—Virtualization of embedded systems has recently

been in the spotlight especially because of the numerous advan-

tages it can bring. Among these, the improvement of software

design quality can be highlighted, since legacy software can be

reused along with newer applications, easing newer and older

systems’ integration. Also, security concerned systems can en-

joy the gains of virtualization: two Operating Systems (OS) can

be used, namely an application OS and a security certified OS,

both running on the same machine. Though virtualization can

offer so many benefits, its use in embedded systems is still not

as wide as it should or could be. The numerous constraints of

embedded systems combined with suspicious thoughts whether

virtualization overheads are prohibitive or not prevent its wide

adoption. Thus, we present in this paper a methodology for an

extension of the Hellfire Framework Project and the creation of

the Virtual Hellfire Hypervisor - VHH. The Hellfire Framework

already offers an integrated tool-flow in which Design Space

Exploration (DSE), OS customization and static and dynamic

application mapping are highly automated. Therefore, we show

the potential benefits of integrating existing embedded systems

tools, like the Hellfire Framework, to virtualization facilities and

how this can impact in the overall system design quality.

Keywords—Virtualization, MPSoC, Embedded Systems De-

sign, HW/SW Co-design

I. INTRODUCTION

In the past years, the use of Embedded Systems (ES) has

changed from an optional and non essential good to become a

reality for the overwhelming majority of the population. This

includes several fields of applications, which can be from [1]:

• the entertainment world (smart phones, cell phones, video

cameras, digital cameras, games toys etc);

• the medical world (dialysis machines, infusion pumps, car-

diac monitors etc);

• the automotive business (entertainment centers, engine con-

trols, security, ABS etc);

• aerospace and defense (flight management, smart weaponry,

jet engine control etc), and;

• several other fields (industrial automation, office automation,

industrial control etc).

This wide range of applications impacts directly on the design

of embedded devices. It also implies that not all ESs have the

same constraints or goals. Whereas in some systems a given

failure can cause serious damage to the environment or even

be the major cause of millions of human lives’ losses (Criti-

cal Embedded Systems), in others these failures only cause per-

formance degradation and, in spite of being accepted, are not

desired (Non-Critical Embedded Systems).

Increasingly, embedded systems are bringing typical charac-

teristics of general-purpose systems to their design. The main

change is their growing functionality which dramatically affects

and increases the complexity of their software. It is also very

common to run general purpose applications in some embedded

systems as well as to use applications written by developers that

have little or no knowledge at all about the embedded systems

constraints [2].

Within this context, the classical model of embedded systems’

design [1] where software and application layers were consid-

ered optional is losing space to current trends. Now, designers

tend to implement critical and non-critical tasks in software and

applications layers, since it allows a higher flexibility, easier de-

bug and higher reuse rates.

Still, some of the traditional differences between general pur-

pose and embedded systems still remain [3]. Even on high-end

multimedia entertainment-driven embedded systems, some real-

time constraints last. For a great share of the embedded de-

vices, energy consumption is still a matter of concern, which

impacts on the processor frequency choice: usually lower fre-

quency rates are mandatory in order to accomplish energy con-

sumption goals. Another common restriction regards the mem-

ory use, since modern embedded devices are desired to be cost

effective which conflicts with an excessive use of memory. It

is important to highlight that, besides being a high energy con-

suming device, memory is frequently a cost factor issue [4].

In a contradictory way, while some ESs are more concerned

in area and energy consumption reduction, such as cell phones,

others need the most predictable and deterministic behavior in

spite of pure performance levels, such as some avionic systems.

This peculiarity directly affects the processor choice, thus, justi-

fying that, in embedded systems, so many predominant architec-

tures such as ARM, MIPS, PowerPC and even some Intel Atom

versions are used, whereas general purpose systems are mainly

implemented onto the x86 architecture.

Among these (sometimes contradictory) implementation

characteristics, a common way to arrange ESs is the use of mul-

tiprocessed platforms, where Multiprocessors System-on-Chip

(MPSoC) have become a viable choice [5]. In terms of soft-

ware design, before the rise of MPSoCs, embedded systems

used to have a well defined and successful programming model,

which includes the use of Real-Time Operating Systems (RTOS)

and critical functions of a given device. Instead, with the wide

adoption of multicore hardware and the incessant increase of

desired functionalities in embedded devices, especially multi-

media ones, a true change in the way embedded developers are

designing their systems is required.

Several solutions arise including the use of virtualization, a

successful General Purpose (GP) computing technique, which

978-1-61284-914-0/11/$26.00 ©2011 IEEE 196 12th Int'l Symposium on Quality Electronic Design

can increase ESs’ performance and software design quality

while reducing its manufacturing costs. Nevertheless, there are

several key differences in the way that ES developers face the

use of multicore processors and virtualization techniques when

compared to those of GP computing [6].

While virtualization provides advantages such as the capa-

bility of running multiple instances of operating systems on a

single processor (mono- or multi-core), embedded systems are

far different from enterprise systems [7]. This means that in or-

der to take the advantages offered by virtualization, much effort

must be spent in understanding how to better adapt them to em-

bedded’s special needs.

In this paper, we present a methodology to extend an embed-

ded system design tool - the Hellfire Framework - in order to

aggregate virtualization facilities to it, known as Virtual Hellfire

Hypervisor - VHH. We show how to do it and the expected ad-

vantages and issues of our approach. The main contribution of

this paper is to provide a novel methodology to allow virtualiza-

tion to be incorporated in current embedded systems tools.

The remainder of the paper is organized as it follows. The

next section shows the basic concepts of virtualization. Sec-

tion 3 shows some related work, followed by Section 4, that

presents a motivational example to use it in embedded systems.

Section 5 briefly presents the Hellfire framework. Section 6,

discusses the possibilities to extend the Hellfire Framework to

allow virtualization to be achieved whereas Section 7 concludes

the paper besides presenting some future work.

II. CLASSIC VIRTUALIZATION CONCEPTS

Virtualization is an old technique that dates back more than 30

years [8]. It allows a single physical computer to host multiple

virtual machines, each being isolated from one another. Several

advantages arise from its use, such as the possibility of running

different operating systems in the same physical hardware. Still,

if a virtual machine fails, the other ones can be kept safe at a

reasonable cost [9].

This approach is very common in enterprise IT, although it

causes a single point of failure, since many servers can be placed

at a unique hardware machine. Even so, virtualization is con-

sidered safer because most of service interrupts are caused by

software failures, usually, by the operating system which tends

to be big enough so that maintenance is harder [10]. So, the

idea is to use simpler and more efficient kernel level software to

avoid safety problems. The hypervisor - the main virtualization

component - usually is at least two orders of magnitude smaller

than general purpose OSs, therefore, it is less likely to have fail-

ures [10].

To implement the hypervisor, also known as Virtual Machine

Monitor (VMM), commonly two approaches are used. In hy-
pervisor type 1, also known as hardware level virtualization, the

hypervisor itself can be considered as an operating system, since

it is the only piece of software that works in kernel mode, like

depicted in Figure 1. Its main task is to manage multiple copies

of the real hardware - the virtual boards (virtual machines or

domains) - just like an OS manages multitasking.

Type 2 hypervisors, also known as operating system level vir-
tualization, depicted in Figure 2, are implemented such that the

Fig. 1. Hypervisor Type 1

hypervisor itself can be compared to another user application

that simply “interprets” the guest machine ISS.

Fig. 2. Hypervisor Type 2

Since the hypervisor can be considered similar to an oper-

ating system in many aspects, concepts regarding OSs’ imple-

mentation are important to be highlighted. Thus, classic studies

of Popek and Goldberg [11] introduce a classification for the

instructions of an ISA (Instruction Set Architecture) into three

different groups:

1. privileged instructions: those that trap when used in user

mode and do not trap if used in kernel mode;

2. control sensitive instructions: those that attempt to change

the configuration of resources in the system, and;

3. behavior sensitive instructions: those whose behavior or re-

sult depends on the configuration of resources (the content of

the relocation register or the processor’s mode).

Moreover, those researches first declared that in order to virtu-

alize a given machine, sensitive (control and behavior) instruc-

tions must be a subset of the privileged instructions. This is

not a reality in many processors, as Intel’s x86 family and the

common solution in this case, is to adopt processor’s hardware

support. To name, Intel’s support is named as VT (Virtualiza-

tion Technology) and AMD’s named as SVM (Secure Virtual

Machine). Hardware support is not an option for embedded sys-

tems yet, so other options have to be considered in the present

time.

Considering the options to virtualize systems - OS and hard-

ware level - it is important to highlight that at hardware level we

may need some support from the processor and at OS level the

virtual boards share both the hardware and the host’s operating

system. Since one of the most promising advantages of using

virtualization is to allow several operating systems in a single

hardware, OS level virtualization will no longer be considered

in the remainder of the paper.

In this case, we will detail some concepts regarding hardware

level virtualization without hardware support. Here, the hyper-

visor is at charge of translating instructions whenever the virtual

board attempts to execute a privileged instruction (I/O request,

memory write etc), which causes a trap into the hypervisor, be-

ing known as pure virtualization. This is often a very expensive

way of dealing with virtual machines [12].

Another option at hardware level is known as impure virtual-

ization and requires that sensitive instructions (those that require

a trap into the hypervisor) are removed from the code execut-

ing in the virtual machine. This can be done either at compile

time, by a technique called pre-virtualization or by binary code
rewriting, where the executable code is scanned in order to re-

place such instructions. The main issue is that both approaches

can cause huge performance losses.

Alternatively, para-virtualization it a technique that replaces

sensitive instructions of the original kernel code by explicit hy-

pervisor calls (also known as hypercalls). The goal of para-

virtualization is to reduce the problems encountered when deal-

ing with different privilege levels. Usually, a scheme referred to

as protection rings is used and it guarantees that the lower level

rings (Ring 0, for instance) holds the highest privileges. So,

most of OSs are executed in Ring 0, thus being able to interact

directly with the physical hardware.

When the hypervisor is adopted, it becomes the only piece of

software to be executed in Ring 0, bringing severe consequences

for the guest OSs: they are no longer executed in Ring 0, instead,

run in Ring 1, with fewer privileges. This problem, known as

ring de-privileging is depicted in Figure 3.

Fig. 3. Ring de-privileging caused by the hypervisor

When para-virtualization is adopted, the hypervisor must de-

fine an interface composed by system calls allowed to be used

by the guest OS. Besides working on an unsuitable hardware for

pure virtualization, it can also bring performance boost.

The difference between pure virtualization and para-

virtualization is depicted in Figure 4. In part A of the figure,

pure virtualization is showed. In this case, whenever the guest

OS calls a sensitive instruction, a trap is caused to the hyper-

visor, which emulates the instruction behavior and returns the

proper results. In part B, para-virtualization is showed. The

guest OS has been modified in order to make hypercalls instead

of containing sensitive instructions. In this case, the trap is sim-

ilar to the one that occurs in non virtualized systems, whenever

a user application makes a system call on its OS.

Fig. 4. Hypervisor control of pure virtualization (part A) and para-virtualization
(part B)

III. RELATED WORK

In this section, we discuss the existing hypervisors strategies

that allow embedded virtualization.

EmbeddedXEN Project. EmbeddedXEN is an academic

project of the XEN.org research group where the main target

are embedded real-time applications. Its hypervisor is executed

in ARM cores and the EmbeddedXEN project provides to ARM

developers a single multi-kernel binary image which includes

XEN, Linux, miniOS and XenomaiRT extension adapted to run

onto embedded systems. Virtualization and isolation mecha-

nisms are fully relied on the XEN hypervisor for general purpose

computers. The main goal of this project is to provide viability

and performance evaluation of the embedded virtualization. It is

an open-source project and it can be used in any device, although

the Server Xen version is not open-source which can restrict its

use [13].

OKL4. Implemented by OK Labs (Open Kernel Labs), it is

an L4 family microkernel commercially distributed hypervisor

with low overhead rates [9]. It has a high performance Inter-

Process Communication (IPC) message exchange mechanism,

which helps the low overheaded virtualization. A system call

that causes a trap triggered by any virtual machine, calls the mi-

crokernel exception manager, converting this event into an IPC

message to the guest OS. The client deals with this process as a

normal system call and the answer is returned through another

IPC message [9].

Wind River Hypervisor. It focuses on high performance,

small footprint, determinism, low latency and high reliability. It

is highly optimized for and integrated with VxWorks and Wind

River Linux although it supports other operating systems. In

terms of processor, supports single and multicore processors

based on Intel and PowerPC architectures and its solution in-

tegrates with VxWorks and Wind River Linux. It also enables

devices to be assigned to virtual boards as it provides device and

memory protection between virtual boards [14].

VirtualLogix VLX. Hypervisor that decouples hardware

management (intended for ARM and Intel architectures) and ap-

plication environments (Android, Linux, proprietary, Symbian,

Windows), enabling separation of design and functionality con-

cerns. This allows OS/device independence and fault tolerance

with minimal overhead, as well as improved performance for

multimedia and gaming and enhanced device security through

isolation [15].

Trango. It provides a thin layer of code that allows system

designers greater flexibility when extending the functionality of

an existing system or using multiple OSs. Only a single CPU is

then needed to keep the OS and multiple environments separate,

so the designer can create trusted areas where secure processes

(such as key management or secure boot) can run without adding

another CPU [16].

XtratuM. XtratuM is an open source hypervisor specially de-

signed for embedded real-time systems available for x86, Pow-

erPC, MIPS and recently for LEON2 (SPARC v8) processors.

It is a hypervisor designed for embedded systems to meet safety

critical real-time requirements and provides a framework to run

several operating systems in a robust partitioned environment.

XtratuM can be used to build a MILS (Multiple Independent

Levels of Security) architecture [17].

Analysis. Many embedded hypervisors have emerged within

the last few years. Although they have several qualities, to the

best of our knowledge, our proposal is the first that aims to inte-

grate the following features:
• it is a hypervisor intended for real-time MPSoCs;

• it allows several virtual machines on a single processor of a

given MPSoC;

• it is integrated with a well structured design tool (Hellfire

Framework) and it respects a design flow that helps to improve

software quality;

• it allows the use of simpler RISC processors, such as MIPS-

based ones.

IV. MOTIVATIONAL USE CASES

Virtualization can be applied in a wide variety style for em-

bedded systems. Here, we highlight some motivational exam-

ples for its use [18]. The first case for virtualization on embed-

ded systems consists of enabling several operating systems to be

executed concurrently, allowing:
1. legacy software to co-exist with current and incompatible ap-

plications, and;

2. real-time software and user interface applications separation,

by using different OSs.
In this case, virtualization can strongly increase software de-

velopment quality, since it allows the designer to choose among

several OSs, the most suitable for the application or even the

one that presents the best cost/performance ratio. Moreover, the

time required to develop an application can be reduced, since

legacy applications can simply be reused in virtual machines.

Furthermore, unified software architecture for multiple hard-

ware platforms can be achieved, since the software architecture

is developed for the virtual machines and virtualization deals

with the several hardware platforms. In this case, a current issue

in embedded systems - software portability - could be widely

affected and developers would be able to faster satisfy the in-

creasingly restricted time-to-market. The combination of real-

time, legacy and user application operating systems in the same

device is achieved by virtualization, as depicted in Figure 5.

Fig. 5. Legacy software use along with new user applications

Besides, security levels can be increased since virtualization

provides a protective environment that encapsulates embedded

operating systems and other crucial software components. This

approach, where an application specific operating system is kept

apart from the RTOS as a way of avoiding attacks, is depicted

in Figure 6. However, in order to actually guarantee this im-

provement of security, the underlying hypervisor has to be sig-

nificantly more secure that the guest OS. According to Tanem-

baum [10], the most suitable way of achieving it, is to keep the

hypervisor as small as possible.

Fig. 6. User attack blocked by virtual machines’ isolation

Another advantage of using virtualization when MPSoCs are

employed is to ease the workload balance management. The

parallelism can be extracted at the application level, that is, en-

tire applications can be migrated through different virtual ma-

chines since they have the same OS, as depicted in Figure 7.

The advantages of migration in embedded systems have been

widely proved throughout the years [19], [20], [21].

Also, in addition to these cases, virtualization has been con-

sidered for some researchers to be used in critical embedded

systems, such as in avionic matters [22]. Usually, security sensi-

tive or mission critical parts need a protected environment [23].

Then, the sensitive parts have their own OS and the hypervisor

separates them from non-trusted OSs and applications.

The separation showed previously allows creative and use-

ful arrangements, such as when some parts of the system are

Fig. 7. Migration of applications between virtual machines

required to boot up faster than others. For instance, a car or a

camera must have some of their features available at a really fast

pace (tens of milliseconds after power on). A general purpose

OS will take much longer, therefore, virtualization can separate

the functions to be ran in exclusive virtual machines, boosting

their boot time.

Separation also allows license protection to be achieved, since

proprietary application can be completely isolated from GPL

OS. Intellectual Property (IP) protection can rely on virtualiza-

tion’s inherit separation, since private modules are safe from

user’s inappropriate handling. Firmware over the air (FOTA) up-

grades could also be easier to be made with virtualization thus

allowing that only a given part of the system reboots after the

upgrade [9].

Finally, easier application migration would allow extensive

use cases for pervasive computers, as virtual machines could

migrate among different devices, leading to a whole new level

of remote device usage [24].

V. HELLFIRE FRAMEWORK

The present work is an extension of the Hellfire Framework

(HellfireFW) [25] which allows a complete deployment and

test of parallel critical and non-critical embedded applications,

defining the HW/SW architecture to be employed by the de-

signer. The HellfireFW follows a design flow where several

steps can be performed aiming to develop the HW/SW solu-

tion for a given application. This design flow is presented in

Figure 8.

In terms of application design, the entry point in C language,

where an application is manually divided into a set of tasks.

Each task τi is defined as a n-uple (idi, ri,WCETi, Di, Pi)

and the parameters stand for identification, release time, worst

case execution time, deadline and period of task τi, respectively.

They can communicate either through shared memory (in the

same processor) or message passing (in different processors).

After designing the application, the HellfireFW project must

Fig. 8. Hellfire Framework Design Flow

be created. This is the step where the initial HW/SW platform

configuration is defined. The C application is executed on the

top of the HellfireOS stack. HellfireOS [25] is a micro-kernel

based Real-time Operating System - RTOS, highly configurable

and easily portable. To ease the OS port to other architectures,

HellfireOS uses a modular structure as depicted in Figure 9.

Fig. 9. HellfireOS Structure Stack

All hardware specific functions and definitions are imple-

mented on the Hardware Abstraction Layer (HAL), which is

unique for a specific hardware platform solution, simplifying

the port of the kernel onto different platforms. The micro-kernel

itself is implemented on top of this layer. Features like standard

C functions and the kernel Application Programming Interface

(API) are implemented on top of the micro-kernel. Communi-

cation and migration drivers, memory management and mutual

exclusion facilities are implemented on top of the kernel API

and the user application is the highest level in the HellfireOS

development stack.

After following these steps an MPSoC platform configuration

is expected, with a given number of processors, a personalized

instance of HellfireOS on each processor and a static task map-

ping. The user must then trigger the simulation of the system

which runs for a given time window and then generates several

graphical results for the designer to analyze. If the results are

satisfactory, the SW part of the platform can be easily ported

to a prototype, such as an FPGA. Otherwise, the designer can

change the HW/SW settings and rerun the simulation as refine-

ments are needed.

VI. VIRTUAL-HELLFIRE HYPERVISOR (VHH), A HELL-

FIREOS BASED HYPERVISOR

In this section we describe the Virtual-Hellfire Hypervisor

(VHH) architecture, based in the HellfireOS structure. The main

advantages of VHH are:

• temporal and spatial isolation among domains (each domain

contains its own OS);

• resource virtualization: clock, timers, interrupts, memory;

• efficient context switch for domains;

• real-time scheduling policy for domain scheduling;

• deterministic hypervisor system calls (hypercalls).

VHH considers a domain as an execution environment where

a guest OS can be executed and it offers the virtualized ser-

vices of the real hardware to it. As detailed in Section 2,

for embedded systems where no hardware support is offered,

para-virtualization tends to present the best performance results.

Therefore, in VHH, domains need to be modified before being

executed on top of it. As a result, they do not manage hard-

ware interrupts directly. Instead, the guest OS must be modified

to allow the use of virtualized operations provided by the VHH

(hypercalls).

Figure 10 depicts the Virtual-Hellfire Hypervisor structure. In

this figure, the hardware continues to provide the basic services

as timer and interrupt but they are managed by the hypervisor,

which provides hypercalls for the different domains, allowing

them to perform privileged instructions.

In terms of memory management, in MMU-less processors

a possible choice is to implement a software virtual memory

management, as proposed in [26]. Another viable strategy is to

use a fixed partition memory scheme. In this case, the required

amount of memory is allocated to each domain at boot (or load)

time, meaning that its size cannot grow or shrink at run time. If

the application code of the guest OS of a given domain requires

dynamic memory (such as with malloc or free C primitives), the

heap needs to be managed by the domain’s code itself. For now,

VHH uses this second option (fixed partition memory), as we

can see in Figure 11, where each processor (Processing Element

- PE, in the figure) of the MPSoC has its own Local Memory

(LM). This memory is divided according to the amount of parti-

tions that this processor will hold.

Another point of concern is the dealing of I/O peripherals.

Xen [27] is one of the most successful para-virtualized imple-

mentations for desktop systems and it uses the concept of a spe-

cific I/O domain (known as Domain 0). This is needed because

most peripherals must be managed by a single software driver

which is aware of its current status.

Fig. 10. Virtual-Hellfire Hypervisor Domain structure

Fig. 11. Virtual-Hellfire Hypervisor Memory Management

We also use this concept, so I/O ports and interrupt lines of

peripherals are managed by a specific domain, named I/O Do-
main. In the future, we intend to extend this model, allowing

that other partitions also use the peripheral (one at a time). This

approach is depicted in Figure 12, where the highlighted domain

is responsible for handling I/O issues. Currently, this limits the

use of peripherals to the processor that holds the I/O Domain.

In the future, when other domains will be able to handle it, any

processor will be able to have its own I/O peripheral.

The internal architecture of HellfireOS had to be modified to

guarantee the use of virtualization. As a matter of fact, we kept

some of the original features and took advantage of its highly

modular implementation by adding the necessary modules to

provide virtualization. Thus, Virtual-Hellfire Hypervisor is im-

plemented based on the following layers:

• Hardware Abstraction Layer - HAL, responsible for imple-

menting the set of drivers that manage the mandatory hardware,

like processor, interrupts, clock, timers etc;

Fig. 12. Virtual-Hellfire Hypervisor I/O Handling

• Kernel API and Standard C Functions, which are not avail-

able to the partitions;

• Virtualization layer, which provides the services required to

support virtualization and para-virtualization services. The hy-

percalls are implemented in this layer.

In this new layer responsible for allowing virtualization to be

used, there are some mandatory modules, such as:

• domain manager, responsible for domain creation, deletion,

suspension etc;

• domain scheduler, responsible for scheduling domains in a

single processor;

• interrupt manager, that handles hardware interrupts and traps.

It is also in charge of triggering virtual interrupt and traps to

domains;

• hypercall manager, responsible for handling calls made from

domains, being analogous to the use of system calls in conven-

tional operating systems;

• system clock provider, in which two clocks per domain are

implemented: one that only advances while the domain is being

executed (virtual) and a real, counted from the boot time.

• timer provider, similar to clock implementation, provides vir-

tual and real timers, both accessible by hypercalls;

• memory manager, divided in virtual and physical manage-

ment, according to the underlying hardware;

• system output facility, where all messages are queued and can

be redirected to hardware peripherals, such as a serial port.

The described architecture of VHH is depicted in Figure 13.

A very interesting point of the VHH is the use of an MPSoC

as underlying hardware. We assume the use of a Symmetric

MultiProcessor (SMP) and the hypervisor acts as a MultiProces-

sor RTOS (MP-RTOS). The hypervisor is aware of the several

domains and respects their own scheduling policies.

Each processor has its ready task queue, which can contain

tasks from different virtual domains. For each processor, the

highest-priority task in the ready queue is executed. To avoid

starvation of non real-time tasks (when allocated in the same

processor of real-time tasks), it is possible to adopt a scheduling

policy that guarantees the execution of best-effort tasks, such as

R-EDF [28].

The mapping of virtual domains onto real processors is done

at design time. For now, it is the designer’s responsibility to as-

sociate virtual domains and real processors. In the future, we

intend to use virtualization even as a load balancing solution,

Fig. 13. VHH System Architecture

where, dynamically, virtual domains can migrate among the sev-

eral processors of the MPSoC to improve a given measure, as

performance or energy consumption. When more than one do-

main is mapped for a single processor, the scheduling among

domains occurs according to a fixed priority scheduling. Then,

domains are scheduled by the hypervisor considering its priority

level.

Since HellfireOS is integrated in the Hellfire Framework with

several simulation facilities, VHH is also integrated in it and re-

quires the designer to choose whether virtualization is enabled.

In this case, although user-transparent, the design flow presented

by Figure 14 is employed. This flow starts with the configuration

of the VHH, where the number of domains is informed and the

VHH core is generated. Following, each of the desired domains

is configured in a very similar way Hellfire Framework used to

do with non-virtual HellfireOS edition: application tasks were

added and put together with the OS image. Finally, all system is

assembled and executed by an ISS-like (Instruction Set Simula-

tor) simulator.

VII. CONCLUDING REMARKS AND FUTURE WORK

This paper presented an extension of the HellFire framework

in order to incorporate a virtualization methodology. We demon-

strated the usefulness of virtualization in embedded systems’ de-

sign and how it can be applied in current design flows. A new

Fig. 14. VHH Integrated in the Hellfire Framework

design flow with virtualization was proposed as an extension of

the Hellfire methodology.

As a future work we intend to get comparison results for per-

formance, area and energy consumption with non-virtualized

systems. Still, we want to measure precisely the overhead of the

proposal besides improving the methodology itself, especially

regarding memory and I/O management as well as to improve

these features’ implementation quality.

ACKNOWLEDGMENT

The authors acknowledge the support granted by CNPq and

FAPESP to the INCT-SEC (National Institute of Science and

Technology Embedded Critical Systems Brazil), processes

573963/2008-8 and 08/57870-9.

REFERENCES

[1] Tammy Noergaard, Embedded Systems Architecture: A Comprehensive
Guide for Engineers and Programmers, Newnes, 2005.

[2] Y. Zorian and E. Marinissen, “System chip test - how will it impact your
design,” in DAC’2000 - Design Automation Conference, Las Vegas, EUA,
Jun 2000, ACM Press.

[3] Luciano Lavagno and Claudio Passerone, “Design of embedded systems,”
in Embedded Systems Handbook, Richard Zurawski, Ed., chapter 3. CRC
press, 2005.

[4] Michael Hohmuth, Michael Peter, Hermann Härtig, and Jonathan S.
Shapiro, “Reducing tcb size by using untrusted components: small ker-
nels versus virtual-machine monitors,” in EW11: Proceedings of the 11th
workshop on ACM SIGOPS European workshop, New York, NY, USA,
2004, p. 22, ACM.

[5] Ahmed Jerraya, Hannu Tenhunen, and Wayne Wolf, “Multiprocessor
systems-on-chips,” Computer, vol. 38, no. Issue 7, pp. 36– 40, July 2005.

[6] Grant Martin, “Overview of the mpsoc design challenge,” in DAC ’06:
Proceedings of the 43rd annual conference on Design automation, New
York, NY, USA, 2006, pp. 274–279, ACM Press.

[7] Wayne Wolf, Computers as components: principles of embedded comput-
ing system design, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2001.

[8] Robert P. Goldberg, “Survey of virtual machine research,” Computer, pp.
34–35, 1974.

[9] G. Heiser, “Hypervisors for consumer electronics,” jan. 2009, pp. 1 –5.
[10] Andrew S. Tanenbaum, Modern Operating Systems, Prentice Hall Press,

Upper Saddle River, NJ, USA, 2007.

[11] Gerald J. Popek and Robert P. Goldberg, “Formal requirements for virtu-
alizable third generation architectures,” Commun. ACM, vol. 17, no. 7, pp.
412–421, 1974.

[12] Carl A. Waldspurger, “Memory resource management in vmware esx
server,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 181–194, 2002.

[13] XEN.org, “Embedded xen project.,” Web, Available at
http://www.xen.org/community/projects.html. Accessed at 10 ago.,
2010.

[14] Wind River, “Wind river,” Web, Available at http://www.windriver.com/.
Accessed at 2 oct., 2010.

[15] VirtualLogix VLX, “Real-time virtualization for connected devices,” Web,
Available at http://www.virtuallogix.com/. Accessed at 2 oct., 2010.

[16] Trango, “Trango hypervisor,” Web, Available at http://www.trango.com/.
Accessed at 2 oct., 2010.

[17] XtratuM, “Trango hypervisor,” Web, Available at http://www.trango.com/.
Accessed at 2 oct., 2010.

[18] A. Aguiar and F. Hessel, “Embedded systems’ virtualization: The next
challenge?,” in Rapid System Prototyping (RSP), 2010 21st IEEE Interna-
tional Symposium on, 2010, pp. 1 –7.

[19] Hao Shen and F. Petrot, “Novel task migration framework on config-
urable heterogeneous mpsoc platforms,” in Design Automation Confer-
ence, 2009. ASP-DAC 2009. Asia and South Pacific, Jan. 2009, pp. 733–
738.

[20] Stefano Bertozzi, Andrea Acquaviva, Davide Bertozzi, and Antonio Pog-
giali, “Supporting task migration in multi-processor systems-on-chip: A
feasibility study,” in Design, Automation and Test in Europe, 2006. DATE
’06. Proceedings, 2006, pp. 1–6.

[21] V. Nollet, P. Avasare, J-Y. Mignolet, and D. Verkest, “Low cost task mi-
gration initiation in a heterogeneous mp-soc,” in DATE ’05: Proceedings
of the conference on Design, Automation and Test in Europe, Washington,
DC, USA, 2005, pp. 252–253, IEEE Computer Society.

[22] D. Kleidermacher and M. Wolf, “Mils virtualization for integrated modu-
lar avionics,” oct. 2008, pp. 1.C.3–1 –1.C.3–8.

[23] Johan Fornaeus, “Device hypervisors,” jun. 2010, pp. 114 –119.
[24] L. Rudolph, “A virtualization infrastructure that supports pervasive com-

puting,” Pervasive Computing, IEEE, vol. 8, no. 4, pp. 8 –13, oct. 2009.
[25] A. Aguiar, S.J. Filho, F.G. Magalhaes, T.D. Casagrande, and F. Hessel,

“Hellfire: A design framework for critical embedded systems’ applica-
tions,” in Quality Electronic Design (ISQED), 2010 11th International
Symposium on, 2010, pp. 730 –737.

[26] Siddharth Choudhuri and Tony Givargis, “Software virtual memory man-
agement for mmu-less embedded systems,” Tech. Rep., 2005.

[27] XEN.org, “Xen.org,” Web, Available at http://www.xen.org/. Accessed at
10 ago., 2010.

[28] Wanghong Yuan, K. Nahrstedt, and Kihun Kim, “R-edf: a reservation-
based edf scheduling algorithm for multiple multimedia task classes,”
2001, pp. 149 –154.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

