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Abstract

Classic MPSoCs tend to be fully implemented using a
single communication approach. However, recent efforts
have shown a new promising multiprocessor system-on-chip
infrastructure: cluster-based or clustered MPSoC. This in-
frastructure adopts hybrid interconnection schemes where
both buses and NoCs are used in a concomitant way. The
main idea is to decrease the size and complexity of the NoC
by using bus based communication systems at each local
port. For example, while in a classic approach a 16 pro-
cessor NoC might be formed in a 4 x 4 arrangement, in
cluster-based MPSoCs a 2 x 2 NoC is employed and each
router connected to a local port contains buses that carry 4
processors. Nevertheless, although good results have been
reached using this approach, the implementation of wrap-
pers to connect the local router port to the bus can be com-
plex. Therefore, we propose in this work the use of embed-
ded virtualization, another current promising technique, to
achieve similar results to cluster based MPSoCs without the
need for wrappers besides providing a decreased area us-
age.

1 Introduction

Embedded Systems (ES) have become a solid reality in
people’s lives. They are present in a broad range of facil-
ities, such as entertainment devices (smart phones, video
cameras, games toys), medical supply (dialysis machines,
infusion pumps, cardiac monitors), automotive business
(engine controls, security, ABS) and even in aerospace and
defense fields (flight management, smart weaponry, jet en-
gine control) [18].

Usually, these systems need powerful implementation
solutions, which contemplates several processor units, such
as the Multiprocessor System-on-Chips (MPSoCs) [11].
One of the most important issues regarding MPSoCs lies
in the way communication is implemented. Initially, bus-
based systems used to be the most common communication
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solution, since they used to be usually simpler in terms of
implementation.

On the other hand, buses have poor scalability rates,
since only a few dozens of processors can be placed in
the same structure without presenting prohibitive contention
rates. Therefore, other communication solutions started be-
ing researched and the most prominent one is the Network-
on-Chip (NoC) approach [16].

NoCs are a communication solution widely accepted
and based on general purpose network concepts. However,
NoCs can present more complex communication protocols
and, consequently, less predictability.

In this context, a recent idea known as Cluster-based
MPSoCs has gained notoriety [7], [12]. In this approach
the best of both worlds are intended to be placed together:
NoCs allow higher scalability rates but buses keep the de-
sign simpler even with more processors on the system. To
better understand the concept, Figure 1 depicts a 2x2 sized
NoC which contains a bus located at each local port. Each
bus carries along four processors which communicate in
simpler ways inside and, if needed, can communicate with
other clusters through the NoC. Dotted lines represent the
wrappers needed to connect the bus to the NoC.
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Figure 1. Cluster-based MPSoC concept

Another recent idea for embedded systems is the use of
virtualization in their composition. Virtualization has sev-
eral possible advantages, including the decrease of area,
increase of security levels and the ease of software de-
sign [10], [2], [3]. Virtualized systems are composed by



a hypervisor that holds and controls all virtual machines’
operation details.

This paper proposes the unification of both concepts. In-
stead of using buses on each router of the NoC, we propose
a single processor holding a hypervisor, providing the emu-
lation of several virtual processors. Since buses are poorly
scalable, hypervisors do not need to support more proces-
sors than a simple bus would. The main contribution of
this proposal, named as Virtual Cluster-based MPSoCs, is
to provide multiprocessed systems with less area occupa-
tion.

The remainder of the paper is organized as it follows.
Next section show some related work on cluster-based MP-
SoC. Section 3 shows basic concepts regarding embedded
virtualization. Then, in Section 4, details about the Virtual
Cluster-based MPSoCs are discussed. Section 5 details mo-
tivational use cases and some initial experimental results.
Finally, Section 6 concludes the paper besides presenting
some future work.

2  Cluster-based MPSoCs

It is widely known that several MPSoCs are bus-based
architectures. Systems such as the ARM MPCore [9], the
Intel IXP2855 [6] and the Cell processor [13] are examples
of it. Nevertheless, the need for more processing elements
and a growing system complexity has led other approaches
to be researched.

Networks-on-Chip (NoCs) have arisen as the main
communication infrastructure involving complex MPSoCs.
However, the design of NoC-based parallel application is
far more complex that the one involving only bus-based sys-
tems [7].

Due to the lack of scalability present in bus-based sys-
tems and the excessive application design complexity found
in NoCs, cluster-based systems are becoming a possible al-
ternative. These systems, intend to achieve the advantages
of both systems.

In [7], the authors propose a cluster-based MPSoC pro-
totype design. In this paper, the authors integrate 17
NioslI [14] cores, organized in four processing clusters and
a central core. In every cluster, the cores are composed by
their own local memory and their communication is per-
formed through a shared memory, accessed from the bus. In
order to access the inter-cluster communication, cores have
a shared network interface.

This system still proposes that a single processing el-
ement has the access to external peripherals, such as
SDRAM controllers. Also, this central control unit is re-
sponsible for managing mapping issues of the parallel appli-
cation in the clusters as well as gathering expected results.
Figure 2 depicts the architecture proposed by [7]. In this
Figure, LM stands for Local Memory, CSM, for Common
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Shared Memory, NI, for Network Interface and SDRAM IF
for SDRAM Interface.
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Figure 2. The architecture of Cluster-based
MPSoC proposed by [7]

Results were taken considering two real applications:
matrix chain multiplication and JPEG picture decoding,
both implemented on an FPGA development board. The
implementation resulted in speedup ratios of above 15
times. The main drawback is that real-time applications are
not referred by the authors.

Figure 3 shows an example of a processing cluster that
composes the cluster-based MPSoC, which is composed by
four processor cores itself. Each processor core, a NIOSII,
contains its own Local Memory (LM, in the figure) and
a bridge to access the local bus. In this bus, it is also
connected a Common Shared Memory (CSM, in the fig-
ure), used to exchange data among the processors. Still, a
semaphore register file, used for synchronization purposes
among the processes during the use of the shared memory,
is present. Finally, the cores also share a Network Interface
(NI, in the figure) which allows the inter-cluster communi-
cation.

[ LM [ NiosIT | [ LM [ NiosIl | [ LM | NioslI |
| Bridge | | Bridge: ‘ | Bridge |

i
-/ : *
Semaphaore
‘ CSM ‘ Reg file

Figure 3. The architecture of each processing
cluster proposed by [7]
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Jin [12] proposes a cluster-based MPSoC using hierar-
chical buses on-chip, aiming to attack some of the prob-
lems pure NoC implementations can present to the com-
ponent connected to the network. One of the main prob-
lems pointed by the authors is for real-time applications,



where the NoC must provide a high efficiency for data ex-
change. In this approach, no NoCs are adopted. Therefore,
in cluster-based MPSoCs the performance of the computa-
tion cluster is very important for the system as a whole.

The approach presented in [12] can be seen in Figure 4.
The system adopts the AMBA-AHB protocol, which is a
high performance system bus that supports multiple bus
masters besides providing high-bandwidth operation. The
authors also use a hierarchical bus architecture aiming to
obtain better performance results, especially when decreas-
ing bus collision rates, improving the speed of register con-
figuration and avoiding shared memory contention and bot-
tlenecks.
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Figure 4. The architecture of the cluster based
MPSoC proposed by [12]

The proposed solution is divided into inner buses, which
are present in each SoC itself - forming each cluster - and
the outer bus, which connects them to each other and to
external peripherals.

Still, the work proposed by [4] also targets pure NoC im-
plementation by adding bus-based interface on NoC routers.
The main goal is to ease the integration with other bus-based
IP components, which are more commonly found. Thus, the
proposed NoC has the ability of integrating standard non-
packet based components thus reducing design time.

Other approaches also studied the use of buses in NoCs
with different purposes [15], [20]. In our case, we still want
to use the NoC infrastructure but instead of adding another
level of communication we propose to use virtual domains.

Next section introduces some concepts about embedded
virtualization.

3 Virtualization and Embedded Systems

First of all, even for classic virtualization concepts,
which date back more than 30 years [8], the main com-
ponent involving virtualization is the hypervisor. It is the
hypervisor the responsible for managing the virtual ma-
chines (also known as virtual domains) by providing them
the needed scenario for its fine work.
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To implement the hypervisor, also known as Virtual
Machine Monitor (VMM), commonly two approaches are
used. In hypervisor type 1, also known as hardware level
virtualization, the hypervisor itself can be considered as an
operating system, since it is the only piece of software that
works in kernel mode, like depicted in Figure 5. Its main
task is to manage multiple copies of the real hardware - the
virtual boards (virtual machines or domains) - just like an
OS manages multitasking.

Guest OS

Trap occurs when
executes privileged
instruction

Figure 5. Hypervisor Type 1

Type 2 hypervisors, also known as operating system level
virtualization, depicted in Figure 6, are implemented such
that the hypervisor itself can be compared to another user
application that simply “interprets” the guest machine ISA.

Virtual Domai

[ Guest OS

Hypervisor
(Type?2)

Host OS

Hardware

Figure 6. Hypervisor Type 2

One of the most successful techniques to implement vir-
tualized systems is known as para-virtualization. 1t is a
technique that replaces sensitive instructions of the origi-
nal kernel code by explicit hypervisor calls (also known as
hypercalls). Sensitive instructions belong to a classification
for the instructions of an ISA (Instruction Set Architecture)
into three different groups, proposed by Popek and Gold-



berg [19]:

1. privileged instructions: those that trap when used in
user mode and do not trap if used in kernel mode;

control sensitive instructions: those that attempt to
change the configuration of resources in the system,
and;

behavior sensitive instructions: those whose behav-
ior or result depends on the configuration of resources
(the content of the relocation register or the processor’s
mode).

The goal of para-virtualization is to reduce the problems
encountered when dealing with different privilege levels.
Usually, a scheme referred to as protection rings is used
and it guarantees that the lower level rings (Ring 0, for in-
stance) holds the highest privileges. So, most of OSs are
executed in Ring 0, thus being able to interact directly with
the physical hardware.

When the hypervisor is adopted, it becomes the only
piece of software to be executed in Ring 0, bringing se-
vere consequences for the guest OSs: they are no longer
executed in Ring 0, instead, run in Ring 1, with fewer priv-
ileges.

These concepts are present in the virtualization done for
general purpose systems but are very important when deal-
ing with embedded systems’ typical challenges. Next, some
peculiarities found in the application of virtualization solu-
tions in embedded systems are discussed.

3.1 Virtual-Hellfire Hypervisor

There are several hypervisors with embedded systems’
focus [22], [10], [21]. In this work, we adopt the Virtual-
Hellfire Hypervisor (VHH) [3], part of the Hellfire Frame-
work. The main advantages of VHH are:

e temporal and spatial isolation among domains (each
domain contains its own OS);

resource virtualization: clock, timers, interrupts, mem-
ory;
efficient context switch for domains;

real-time scheduling policy for domain scheduling;

e deterministic hypervisor system calls (hypercalls).

VHH considers a domain as an execution environment
where a guest OS can be executed and it offers the vir-
tualized services of the real hardware to it. In embed-
ded systems where no hardware support is offered, para-
virtualization tends to present the best performance results.
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Therefore, in VHH, domains need to be modified before be-
ing executed on top of it. As a result, they do not manage
hardware interrupts directly. Instead, the guest OS must be
modified to allow the use of virtualized operations provided
by the VHH (hypercalls).

Figure 7 depicts the Virtual-Hellfire Hypervisor struc-
ture. In this figure, the hardware continues to provide the
basic services as timer and interrupt but they are managed
by the hypervisor, which provides hypercalls for the differ-
ent domains, allowing them to perform privileged instruc-
tions.

Domain 1 Domain n

Virtual Timer Virtual Timer

Virtual Interrupt
Controller

Virtual Interrupt
Controller

Interrupt Controller

Figure 7. Virtual-Hellfire Hypervisor Domain
structure

Thus, Virtual-Hellfire Hypervisor is implemented based
on the HellfireOS [1] and counts on the following layers:

e Hardware Abstraction Layer - HAL, responsible
for implementing the set of drivers that manage the
mandatory hardware, like processor, interrupts, clock,
timers etc;

Kernel API and Standard C Functions, which are
not available to the partitions;

Virtualization layer, which provides the services re-
quired to support virtualization and para-virtualization
services. The hypercalls are implemented in this layer.

Figure 8 depicts the architecture of the VHH, where
some of the following modules can be found:

e domain manager, responsible for domain creation,
deletion, suspension etc;

o domain scheduler, responsible for scheduling domains
in a single processor;



interrupt manager, which handles hardware interrupts
and traps. It is also in charge of triggering virtual in-
terrupt and traps to domains, and;

hypercall manager, responsible for handling calls
made from domains, being analogous to the use of sys-
tem calls in conventional operating systems.

Virtualization Laye

(System output facility)(Memory Managea
Domain | System Clock Timer
Scheduler Provider Provider
Interrupt Hypercall
Manager Manager

uKernel

Domain
Manager

HAL

Figure 8. VHH System Architecture

4 Virtual Cluster-Based MPSoCs

This section describes the Virtual Cluster-Based MPSoC
proposal. Initially, let us take a look into each cluster of the
MPSoC.

Since our work is based on the Hellfire Project, we
also use the Plasma [5] processor, a MIPS-like architec-
ture. Therefore, the VHH is placed on a Plasma processor
as the basis of our cluster. Then, the VHH is responsible
for managing several virtual domains. In our case, each
VHH is responsible for managing its own processing clus-
ter and it allows the internal communication of these pro-
cessors through shared memory.

Figure 9 is divided in two parts. In A, the current version
for memory division, which only predicts a single memory
partition per virtual domain, is shown. This means that this
partition is considered to be the local memory for a given
virtual domain. In B, it is possible to see that an extra par-
tition was added: the shared partition. Here, the idea is to
provide easy and low overhead communication inside the
cluster.

The VHH was extended to allow the communication in
two levels. The first level, is named as intracluster commu-
nication and occurs through shared memory. Currently, this
is not user transparent and a specific hypercall must be used
for this communication. In this hypercall, a single CPU
identification (CPU_ID) must be used, which means they
belong to the same processing cluster.

These hypercalls are similar to the communication func-
tions provided by the HellfireOS and have the follow-
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Figure 9. VHH Memory for (A) Non-clustered
systems (B) Clustered systems

ing parameters: VHH_SendMessage (cpu-id, task_id, mes-
sage, message_length) used to send a message through the
shared memory and VHH _ReceiveMessage (source_cpu_id,
source_task_id, message, message _length) used to receive it.

The second communication level is done among clus-
ters, through the NoC. In our case, we use the HERMES
NoC [17] and a MIPS-like processor in each router. We
adopted a Network Interface (NI) as a wrapper which con-
nects the NoC router to the processor located in its local
port. This interface, works in a similar way that the non-
virtualized approach. This increases the possibility of using
several NoC infrastructures as the underlying architecture.
Figure 10 depicts this approach.

Domain n

Comm.
driver

y
(NI B

Figure 10. VHH Communication Infrastructure
with NoC based Systems

The wrapper is connected through specific memory ad-
dresses: read and write, to the Plasma. Still, a communica-
tion VHH driver had to be written to allow the integration
between the wrapper and the virtual cluster. Also, the hy-
percalls provided by the VHH allow a virtual processor to
send or receive messages with an extra parameter: the Vir-



tual CPU ID, as an identification of the virtual CPU on a
specific cluster.

Thus, the hypercalls to be used to the inter-cluster
communication are: VHH_SendMessageNoC (cpu_id, vir-
tual_cpu_id, task_id, message, message _length) used to send
a message through the NoC and VHH_ReceiveMessage
(source_cpu_id, source_virtual_cpu_id, source_task_id, mes-
sage, message_length) used to receive it.

The complete vision of the system is depicted in Fig-
ure 11. In the Figure, VHH is the Virtual Hellfire Hypervi-
sor. LM stands for Local Memory. NI stands for Network
interface and PE, for Processing Element. R represents each
router of the NoC.

[ Domainn |
VHH

( Domain0 )

( Domain 0 )

( Domain 0 )
N i N
[ Domainn

Figure 11. Virtual Cluster-Based MPSoC pro-
posal

5 Use Cases and Experimental Results

In this section we highlight some possible use cases for
Cluster-Based MPSoCs and some preliminary prototyping
results.

The main use for a Cluster-based MPSoC is the possi-
bility for field specialization. In this case, each cluster is
responsible for executing a set of tasks with a common pur-
pose. For instance, it is possible to execute a JPEG decoder
in one cluster, a MPEG decoder in another and so on. In this
case, the greatest advantage is to simplify the communica-
tion of similar tasks, since they share a given memory area,
but still allowing a great number of processors, increasing
system scalability through the NoC usage. Figure 12 de-
picts an example of cluster-based MPSoC with application
specialization.

Another possible use of the Virtual Cluster-based MP-
SoC is when decreasing area with guaranteed system scal-
ability is needed. Scalability is assured by NoC usage and
the cluster-based MPSoC itself allows an easier use of real-
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Figure 12. Virtual Cluster-Based MPSoC with
Application Specialization

time tasks with no extra communication penalties. Regard-
ing area occupation, we prototyped some possible configu-
rations to illustrate the benefits of our approach in this issue.
We used the Xilinx Virtex-5 XC5VLX330T FPGA.

First, when using the HellfireOS with a Plasma proces-
sor, we usually indicate a processor with at least 16KB of
local memory. HellfireOS is a much optimized kernel and
depending on the application even such a small memory
can fulfill the expected needs. When using the VHH, more
memory is required and the total memory size depends es-
pecially on the number of virtual domains that are required.
Although greater memory sizes infer more block RAMs, it
does not affect the FPGA area measured in LUTs. In all
experiments performed, the total system memory could be
inferred as block RAMs.

We used three different MPSoC configurations, all with
16 processors (physical or virtual). First, we have a 16
processor MPSoC, distributed in a 4x4 NoC where each
router carries its own processor, known as Pure 4x4 NoC
approach.

The second MPSoC configuration regards a 2x2 NoC
with bus-based clustering system, known as Bus Clustered
approach. Here, each router has a wrapper to connect it to
the clustered-bus, and each bus carries four processors.

Finally, the last approach is the Virtual cluster-based (V-
Cluster 2x2 NoC) where a 2x2 NoC was used again and
each router contains a single physical processor. This pro-
cessor runs the VHH, where 4 virtual domains are emulated
per cluster, totalizing the 16 processors of the MPSoC.

In the first two solutions, each processor has 16KB of
local memory. The last, for the virtual cluster approach, 4
processors with 128KB of memory each were employed. In
Table 1, it is possible to see the prototyping results for three
different MPSoCs.

These results show a decrease of the area occupation in
up to 70%, depending on the processor local memory con-



Table 1. Area results for MPSoCs configura-
tion

Configuration Area occupation (LUTs)
Pure 4x4 NoC 60934
Bus Clustered 2x2 NoC 56099
V-Cluster 2x2 NoC 17179

figuration and the original MPSoC configuration. Also, de-
pending on the bus structure used for the Bus-based clus-
tered version, the bus communication overhead is similar to
the virtualization overhead.

6 Concluding Remarks and Future Work

This paper presents a new proposal for MPSoC config-
uration using virtualization with a cluster-based approach.
For validation purposes, we use an extension of the Hellfire
Framework and, in order to incorporate our virtualization
methodology, the Virtual-Hellfire Hypervisor (VHH).

We use a HERMES NoC as the underlying architecture
where each processor runs the VHH, forming the processing
clusters. We achieved up to 70% decrease in FPGA area
occupation in our preliminary tests.

As a future work we intend to get comparison results for
performance and overheads with other approaches. Still,
we want to improve the proposal itself, especially regarding
memory and I/O management.
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