
Task Model Suitable for Dynamic Load Balancing

of Real-Time Applications in NoC-based MPSoCs

Sérgio Johann Filho, Alexandra Aguiar, Felipe Göhring de Magalhães, Oliver Longhi, Fabiano Hessel

Faculty of Informatics - PUCRS - Av. Ipiranga 6681, Porto Alegre, Brazil

Email: {sergio.johann,felipe.magalhaes,oliver.longhi}@acad.pucrs.br,

{alexandra.aguiar,fabiano.hessel}@pucrs.br

Abstract—Modern embedded systems implemented through
Multiprocessor System-on-Chip (MPSoCs) benefit themselves
from resources that were previously available solely in general-
purpose computers. Currently, these systems are able to provide
more features at the cost of an increased design complexity. In this
scenario, the applications’ behaviour has changed. In the past, the
majority of applications showed a static behaviour throughout
their entire lifetime. Applications could be divided into tasks
and mapped onto processing elements at design time. Currently,
the applications’ dynamic nature imposes that efficient dynamic
load balancing techniques with different task mapping strategies
must arise, although a fair static mapping still helps increasing
the system overall performance. In this paper we present a
task model suitable for dynamic load balancing of real-time
applications with special support for Network-on-Chip (NoC)-
based MPSoCs that aims to stabilize the system load throughout
its lifetime. Results show a reduction in both system stabilization
time (mean of 47.62%) and deadline misses (mean of 32.28%)
for several benchmarks, compared to classic approaches which
employ a centralized migration manager.

I. INTRODUCTION

MPSoCs have become a solid reality in the last few years,

enhancing and replacing many uniprocessor-based systems

formerly adopted. In this context, in spite of enabling a whole

new category of features and applications, the use of multiple

processing elements in a single chip introduces new challenges

such as an increased architecture complexity.

Along with these new platforms, the applications’ behaviour

have also changed. Currently, the entire system can be con-

sidered as more dynamic since the user himself can upload

and request new functionalities which change the system

load during its lifetime [1]. In this scenario, the efficient

management of the system load considering the available

resources and the constraints to be respected is, itself, an

enormous challenge.

Besides dealing with dynamic applications, some other

common restrictions present in embedded systems still remain.

For instance, in many cases there are timing constraints that

often require Real-Time Operating Systems (RTOSs) to be

nicely met. Still, RTOSs also offer more standard interfaces

which allow developers to have easier access to the under-

lying processing power while respecting applications’ timing

constraints.

On the hardware point of view, current MPSoC solutions

are composed by tens to sometimes hundreds of processing

elements and commonly use Network-on-Chip (NoCs) as

the interconnection media. NoCs are scalable, modular and

provide high communication parallelism and are, therefore, a

suitable solution for dense MPSoCs [2], [3], [4].

Furthermore, MPSoCs can be classified according to their

processing elements nature as either heterogeneous or homo-

geneous. While heterogeneous solutions offer several advan-

tages such as reduced energy consumption with a good silicon

area tradeoff [5], [6], [7], when compared to homogeneous

solutions their design can be considered too complex from

the implementation point of view. Therefore, homogeneous

solutions usually allow a faster implementation of the design

and higher levels of reuse regarding the same architecture for

different products [8]. Still, homogeneous systems ease the

design space exploration when high level tools are used to

provide the mapping of the application tasks.

In this paper we propose a task model suitable for dy-

namic load balancing through task migration to be used in

dense MPSoCs, especially the ones implemented through

NoCs. Our model also contemplates real-time constraints in

a homogeneous MPSoC aiming to provide a system load

stabilization throughout its lifetime. To validate our proposal

we implemented the entire load balancing mechanism in an

RTOS in order to measure the systems’ improvements. Results

show a reduction in both system stabilization time (mean of

47.62%) and deadline misses (mean of 32.28%) for several

benchmarks, compared to classic approaches which employ a

centralized migration manager.

The remainder of the paper is organized as it follows.

Section II presents some related work and discusses open

topics in the area. The proposed model is presented on

Section III, followed by Section IV which briefly describes

our implementation. Results are shown on Section V followed

by Section VI that concludes the paper.

II. RELATED WORK

Nollet [9] presents a centralized, dynamic resource manage-

ment scheme through a heuristic to manage task migrations

over a NoC. In this system, a centralized OS manages the

whole resource allocation. Carvalho [10] investigates the use

of different run-time mapping heuristics targeting reduced

network congestion on heterogeneous MPSoCs. Singh [11]

presents several dynamic mapping heuristics on a hetero-

geneous MPSoC targeting reduced execution time, energy

consumption and network congestion.

49978-1-4673-3052-7/12/$31.00 ©2012 IEEE

Many of the works in the literature [9], [12], [11], [10] use

the concept of a centralized manager to perform migrations or

dynamic mapping of tasks. This approach has some advantages

such as easy global state management and reduced implemen-

tation complexity. The drawbacks are the concentration of the

network traffic near a centralized manager, single failure spot

and impossibility to perform several migrations or mappings

in parallel. Still, as the number of processing elements rises in

current MPSoCs, a single manager is not a scalable approach

[12]. Other works use a very simple task model where the state

is not kept nor considered on dynamic mapping, such as in

[1]. Furthermore, other works consider only one task on each

processing element such as in [10]. Improvements for these

limitations are presented in the proposed model.

III. PROPOSED MODEL

A. Problem Definition

Several works [13], [14], [3] present solutions for the task

mapping problem using static techniques, which offer optimal

solutions for applications that have a profile known at design

time. On the other hand, applications with varying character-

istics at runtime require solutions that perform the dynamic

mapping of tasks, presenting improvements for this type of

application over static approaches [15], [8], [10]. The dynamic

profile of an application can be the major cause of deadline

misses, saturation on network channels and even die-thermal

problems. Therefore, dynamic reconfiguration mechanisms can

help to reduce these problems and to improve the application

execution in this scenario.

In this context, a static mapping is performed on initial

tasks of the application at design time. Then, the operating

system executing on each processing element provides certain

services for the dynamic mapping of tasks, adapting changes in

the execution profile and optimizing the application execution.

B. Application

The application model proposed in this work includes a set

of tasks that execute in several processing elements. Each task

has its own parameters as presented following, along with the

code and data used to implement its actual functionality.

A task is defined an 9-tuple ti =< pi, uidi, ei, di, lci, pwri,

cdi, dti, ctxi >, where: idi is the task local identification, uidi
is the task global identification, pi stands for period of task

i; ei represents the task execution time or capacity; di is its

deadline; lci stands for a communication related list; pwri
represents the task energy requirements; cdi, dti represent the

task code and data segments, respectively; and finally, ctxi

stands for the task context.

Here, pi, ei and di parameters are defined by the application

for each task in the system. The task set executes according a

given scheduling policy1 and the parameters must be informed

in abstract time units, named as tick2. pwri, cdi and dti require

1In this work, the Rate Monotonic [16] scheduling policy is assumed.
2Tick is the minimum scheduling unit. All real-time parameters are rep-

resented as tick values, and the tick itself has a defined time value (e.g. 1
ms).

further characterization, as they depend on the technology, on

the algorithm and on the chosen compiler.

Each node executing one or more tasks is called a partition

and the task set composed of all related tasks executing on

several nodes are responsible for implementing the entire

application. Still, other applications can be inserted in the

system at runtime and also, the task parameters of a given

application may change dynamically. Besides, some tasks

are fixed, that is, they are assumed to execute on the same

processing element and have constant parameters throughout

the system lifetime.

Communication among tasks is represented by the 2-tuple

cij =< tj , ωij >, where tj is the target task and ωij represents

the data content for this particular communication. As the

communication data generated by a single task may be com-

posed by several communications, the total communication

data volume is represented by lci =
∑n−1

i=0
ωij , where n is

the number of communications.

C. Architecture

The proposed architecture model represents processing ele-

ments connected through queues on a two dimensional, regular

2D-mesh topology NoC, using deterministic XY routing and

wormhole packet forwarding. Each node is composed by

a processing element, a network router and communication

queues.

Thus, a node is defined by an 10-tuple NPUc =<

ctc, fc, ldc, ntc, spc, oc,mc, iqc, oqc, vc >, where ctc repre-

sents the processing element type; fc is its clock frequency;

ldc stands for processor load; ntc is the number of tasks; spc
represents the scheduling policy; oc is the operating system

overhead, mc stands for the processor memory size, iqc and

oqc are the input and output queues sizes, respectively; and vc
is the data volume generated from tasks that execute on the

node.

Each communication channel3 is described by the 3-tuple

vci =< tcj , dvij , hij >, where tcj is the target node; dvij
represents the transmitted data content and hij is the number

of hops between the source and target node, considering XY

routing. The total data transmitted from one node to another is

expressed by dvij =
∑t−1

u=0
lcn, where t−1 is the last element

of a list composed by the tasks that send data to tasks executing

on node j. Still, parameters such as target core and number

of hops are characterized after the mapping step. Finally, the

link capacity for each node is defined as lc.

D. Inter-task Communication

Tasks may either enter and leave the system at any time

or have their parameters changed dynamically, modifying the

initial mapping and its cost. Thus, the inter-task communica-

tion must be adapted to allow the communication of non-fixed

tasks that can migrate among the nodes.

In this case, the communication protocol is implemented

based in the classic MPI primitives send() and receive() and

3Here, a communication channel is a path established between source and
target routers.

50

it assumes that at least one of the communicating tasks is

not fixed. So, before the actual message is sent from one

task to another, a control message is sent to the target node

communication control task4, asking for the target task’s

location. The control task verifies whether the target task is

present, has died or migrated to another node, and sends a

reply accordingly. If the referenced task is present indeed,

the communication happens directly. However, if the task has

died, no communication is performed while, if the task has

migrated, another control message is sent from the source

node to the new target node. The process is repeated until the

communication is established. It is important to highlight that

and a referenced task can not migrate before the completion

of this process.

All control is kept by a task list at each node in order

to coordinate the communication control. So, every time a

task migrates or dies, a new entry is added to that list. Then,

each source task has a local data structure that is updated

only during a migration. Still, every time a task returns to

its original node, it is removed from the list. In terms of

implementation, when local tasks communicate they may use

the same message-passing primitives, although, internally, a

shared memory approach is adopted.

E. Dynamic Mapping and Task Migration

Each node has, along with its own instance of the operating

system, a local task repository. Each node manages its own

repository, defined at design time, which can be extended with

migrated tasks’ code and data. This approach differs from

previous works as in [10], where a centralized repository is

used. Moreover, the creation, replication or modification of

task parameters changes the initial scenario used as a reference

for an optimal static mapping. Sometimes a given node does

not have enough resources to map and create a task, and

an overload situation arises. This overload, considering the

proposed model, makes the task partition of a given node

either not schedulable or generates a non optimized network

traffic due to bad dynamic mapping. A bad mapping can be

optimized at runtime by migration managers, which are also

fixed control tasks.

Task migrations are performed by local migration managers

and communication control tasks. Initially, the task code is

sent to the target node. Next, the task is blocked and its data

and context contents are sent to the target. The target node

relocates the task code, adds it to its local repository, maps

the task and restores the context. The source node receives

an acknowledge message, and then it kills the task. All steps

are performed during the execution of migration managers and

communication control tasks, so execution of other tasks in the

system is not delayed. Only the migrated task remains blocked

during part of this process.

Distributed migration managers are responsible for verifying

each node status. As soon as a node enters an overload

4Each node has a communication control task to allow knowing the location
of a task.

situation, the local manager chooses a task to migrate and

queries neighbour nodes’ local managers. The processor over-

load situation is calculated by
∑N−1

j=0

ej
pj

≤ N(21/N − 1) for

the RM [16] scheduling algorithm and network overload is

calculated by vc > lc. The neighbours reply their status (pro-

cessor load, network load, number of tasks and free memory),

so the querying manager decides the best candidate target to

perform the migration. Free memory on node k is calculated

such that fmk = mk − (
∑N−1

i=0
(cdi + dti) + cdos + dtos).

The choice of which task should be migrated, and the target

for the migration can make use of several different heuristics.

In this work, a random non-fixed task is chosen and migrated

to the closest neighbour with enough free processor and

memory to run the task. The target node is chosen using the

nearest neighbour algorithm. If no candidates for migration are

found, the node remains overloaded and no further migration

messages are sent for several rounds5. This way, the system

remains stable, although overloaded. In the event a neighbour

node has enough resources in the future, the overloaded node

still has its chance to have one of its tasks migrated.

IV. MODEL IMPLEMENTATION

We used the HellfireOS[17] RTOS to implement the pro-

posed model as it is fully preemptive, highly configurable

and provides POSIX-like interfaces, standard libraries, timers,

semaphores, dynamic memory allocation, debug facilities,

several scheduling policies and communication drivers.

In terms of architecture, it was first modelled in Register

Transfer Level (RTL), and then characterized and implemented

on a MIPS-like6 cycle accurate Instruction Set Simulator (ISS)

in [18]. Processing elements, hardware queues and network

routers are all emulated on the ISS, and the number of

processors, network interface queues size, as well as mesh

dimensions and routers internal queues are also configurable.

V. RESULTS

We used an architecture simulator based on the work

of [18] to perform our experiments. This simulator consists

of several nodes7, formed by MIPS-like processors with local

memory interconnected in a 2D mesh topology NoC, using

communication FIFOs and a network interface to connect

processors to NoC routers. The simulator implements our

MPSoC architecture model, presented in Section III-C, and

it has a very close precision to our hardware prototype.

On all experiments, the task stack size was set in 2KB,

the scheduling policy is Rate Monotonic, the operating core

frequency for all nodes is 25MHz (unless otherwise specified)

and the time between interrupts (tick time) is 10.48ms. The

migration managers were configured to run each 104ms and

use 10% of processing time. MPSoC size is variable (from

5The algorithm increments by one the time between future queries for
neighbour nodes every time no candidate is found. A round consists of an
execution iteration of the migration manager.

6The architecture is implemented as a subset of the MIPS ISA.
7The number of nodes is parameterizable. In the current implementation,

up to 256 nodes in a 16x16 mesh can be simulated.

51

6 to 30 nodes) and each core has a 512KB shared data and

instruction memory. Packet size is 64 flits on all tests and the

receiving software queue has 16 slots for each core. Operating

system and application code were optimized for size and

compiled with GCC 4.6.1 for the MIPS target architecture.

A. Case study: VOPD

As the first case study, an application described by Mu-

rali [3] was used. This application describes the behaviour

of several modules that implement a video object plane

decoder, where data rates between modules are represented

in an Application Task Graph (ATG) as it can be seen on

Figure 1. Along with data rates (represented by edges), task

parameters are represented in this graph. The first parameter is

the task local id, the second is the task unique id and the last

parameters represent the task period, capacity and deadline.

Each task represents an application module, and all tasks

were configured to execute each 104ms. Two ticks were used

as the task capacity, where one is used for processing and the

other for communication. This application is composed by 17

tasks. The application modules are implemented as tasks as it

follows: demux (t3), variable length decoder (t4), run length

decoder (t5), inverse scan (t6), AC/DC prediction (t7), inverse

quantizer (t8), inverse cosine transform (t9), up sample (t10),

VOP reconstruction (t11), padding (t12), VOP memory (t13),

up sample 2 (t14), reference memory (t15), downsample and

context calculation (t16), arithmetic decoder (t17), memory

(t18) e stripe memory (t19). Tasks t4 (variable length decoder)

and t17 (arithmetic decoder) define two independent start paths

in the pipeline.

Figure 2 depicts the initial mapping (Figure 2(a)) where

all application tasks are mapped to one node, corresponding

to 340% of processor utilization. After several migrations, the

final mapping (Figure 2(b)) is achieved. As it can be seen tasks

are kept nearby, so network links are used in an optimized

fashion. A maximum of only two application tasks could be

mapped per node, because they were configured with tight

real-time parameters (20% for each task of the application

and 10% for the migration manager). There was only one

application mapped to one core initially in this scenario, so

only the migration manager of node 5 performed migrations.

(a) (b)

Fig. 2. VOPD application, distributed managers: initial mapping (a); final
mapping (system stabilization) (b)

B. Case study: MPEG4

As the second case study, an application described by

Milojevic [19] with the behaviour of an MPEG4 encoder

was used. The author describes the application as data rates

between modules, but in this work we characterized the

application with real-time parameters. In this application, tasks

were configured to execute each 115ms, and again, two ticks

were used as task capacity. This application is composed by

18 tasks, and it is described in the ATG graph depicted on

Figure 3. The application modules are described by the tasks:

SRAM New Frame (t3), Input Control (t4), FIFO Current MBL

(t5), FIFO New MBL (t6), ME (t7), FIFO MV (t8), MC (t9),

Error Block (t10), Comp Block (t11), Texture Coding (t12),

Texture Block (t13), Texture Update (t14), SRAM RecFrame

(t15), Copy Controller (t16), Search Area (t17), YUV Buffer

(t18), Quantized MBL (t19) and VLC (t20).

In this scenario, four instances of this application were

mapped to individual nodes on a 6x5 MPSoC. Each task

uses 18.18% of processing time, so a maximum of three

application tasks could be allocated per node. Each application

instance has a 327% of processor utilization, so the nodes are

clearly overloaded. Figure 4 represents the initial (Figure 4(a))

and final mappings (Figure 4(b)). Independent pipelines are

mapped to nodes 7, 10, 24 and 29. After migrations, tasks from

independent pipelines are kept close to each other, improving

the application deadlines along with network utilization.

(a) (b)

Fig. 4. MPEG4 application, distributed managers: initial mapping (a); final
mapping (system stabilization) (b)

Figures 5 and 6 depict processor load over time for two

different migration manager approaches. The first one uses

centralized control of migrations and the second one uses the

proposed distributed migration managers. In the first scenario,

migrations are performed between ticks 100 and 1380. In the

second scenario, migrations are performed between ticks 100

and 700. On both scenarios 60 migrations are performed. After

tick 700 (Figure 6) the application has all its tasks mapped,

and an iteration of each pipeline occurs in 2306ms.

As it can be seen, the distributed managers performed

migrations faster than a centralized one. Although several mes-

sages had to be exchanged among managers in the distributed

approach, a centralized manager has to be updated every time

a node has a load change. This generates a large amount of

messages between the centralized manager (master) and other

nodes (slaves), introducing a large overhead considering the

proposed task model.

C. Experiments

Synthetic and real world applications were tested, and a

summary of the experiments is shown on Tables I and II.

Along with different applications the MPSoC size and number

52

t3,

n0t3,

10,2,10

t4,

n0t4,

10,2,10100

t17,

n0t17,

10,2,10

100

t5,

n0t5,

10,2,10

70

t6,

n0t6,

10,2,10

362

t7,

n0t7,

10,2,10
362

t8,

n0t8,

10,2,10

362

t9,

n0t9,

10,2,10

357

t19,

n0t19,

10,2,10
49

t10,

n0t10,

10,2,10

353
t11,

n0t11,

10,2,10

300

t12,

n0t12,

10,2,10

313 t13,

n0t13,

10,2,10
313

500

94
t14,

n0t14,

10,2,10

t15,

n0t15,

10,2,10

16

16

16

t16,

n0t16,

10,2,10

16

157

t18,

n0t18,

10,2,10

16

16

16

27

Fig. 1. VOPD application task graph

t3,

n0t3,

11,2,11

t4,

n0t4,

11,2,11

384

t5,

n0t5,

11,2,11

384

t6,

n0t6,

11,2,11
256

t9,

n0t9,

11,2,11

384

t7,

n0t7,

11,2,11

1280

t8,

n0t8,

11,2,11

12

12

t10,

n0t10,

11,2,11

432

t11,

n0t11,

11,2,11

384

t12,

n0t12,

11,2,11

432

t14,

n0t14,

11,2,11

384

t13,

n0t13,

11,2,11

432

t19,

n0t19,

11,2,11

576

432

t15,

n0t15,

11,2,11

256
t16,

n0t16,

11,2,11

384

t17,

n0t17,

11,2,11
768

t18,

n0t18,

11,2,11

768

2670

384

384

t20,

n0t20,

11,2,11

576

Fig. 3. MPEG4 application task graph

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
o
d
e
 l
o
a
d
 (

%
)

Time (ticks)

n0
n1
n2
n3
n4
n5
n6
n7
n8
n9

n10
n11
n12
n13
n14
n15
n16
n17
n18
n19
n20
n21
n22
n23
n24
n25
n26
n27
n28
n29

Fig. 5. MPEG4 application, node load over time: centralized manager

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
o
d
e
 l
o
a
d
 (

%
)

Time (ticks)

n0
n1
n2
n3
n4
n5
n6
n7
n8
n9

n10
n11
n12
n13
n14
n15
n16
n17
n18
n19
n20
n21
n22
n23
n24
n25
n26
n27
n28
n29

Fig. 6. MPEG4 application, node load over time: distributed managers

of tasks was varied, so a large set of benchmarks was used.

Improvements on stabilization time and deadline misses are

relative to the centralized manager approach. CM stands for

centralized manager and DM for distributed managers.

The applications used as benchmarks are characterized as

it follows. Synthetic app 1 is composed by 18 tasks, and

another one is mapped at run-time. This is a relatively complex

application, where task parameters are varied and there is

a great dependence among tasks. Tasks are mapped to 4

nodes initially. Synthetic app 2 is an even more complex

application, composed by 36 tasks (plus 2 mapped at run-

time) of varied real-time parameters and great dependence

among tasks. Tasks on this application are mapped to 8 nodes

initially. Applications Synthetic app 3 and Synthetic app 4

are simpler applications, composed by tasks with similar real-

time parameters and less task dependence. MJPEG, VOPD and

MPEG4 are typical benchmarks.

Table I presents results concerning situations where several

nodes are overloaded. As it can be seen, the distributed

approach has a great advantage for this type of application,

presenting reductions on stabilization time (a mean of 47.62%)

and deadline misses (a mean of 32.28%). It can be observed

that the proposed approach is highly scalable as the number

of processors and tasks increase, along with the probability of

overload situations in the same system.

Table II presents results concerning situations where just

one node in the system is overloaded. For applications with

a reduced number of tasks, there is no advantage in the

distributed approach. As the number of tasks increases, the

distributed managers approach presents an increasing advan-

tage in stabilization time (a mean of 12.38%) and reduction

of deadline misses (a mean of 7.83%).

VI. CONCLUSIONS

Recent applications use the computing power of MPSoCs

by extending their features at runtime. This kind of applica-

tion introduces new challenges, and efficient mechanisms are

required to adapt hardware resources to the application needs.

This paper proposes a model that can be used to describe

such complex applications and adapt the available resources

dynamically in a fast and efficient manner. Results show that

a distributed approach may be more efficient for dynamic task

53

TABLE I
MIGRATION MANAGER EXPERIMENTS,MULTIPLE OVERLOADED NODES

Application MPSoC size Tasks Migrations Stabilization

time

Deadline

misses

CM DM CM DM Improvement CM DM Improvement

Synthetic app 1 3x2 18+1 5 5 175 90 48.57% 8 5 37.50%

Synthetic app 2 4x4 36+2 11 10 275 160 41.81% 14 6 57.14%

Synthetic app 3 3x2 12 5 6 100 75 25.00% 10 9 10.00%

Synthetic app 3 4x4 16 8 8 210 65 69.04% 20 12 40.00%

Synthetic app 3 6x5 28 14 14 290 65 56.66% 33 24 27.27%

Synthetic app 4 3x2 27 9 9 240 205 14.58% 8 8 0.00%

Synthetic app 4 4x4 36 12 12 310 90 69.35% 13 8 38.46%

Synthetic app 4 6x5 63 20 20 275 90 67.27% 18 12 33.33%

MJPEG 3x2 8 4 4 115 90 21.73% 32 29 9.37%

VOPD 6x5 68 56 56 1200 400 66.66% 2459 1080 56.07%

MPEG4 6x5 72 60 60 1280 600 53.12% 2383 1288 45.95%

TABLE II
MIGRATION MANAGER EXPERIMENTS, SINGLE OVERLOADED NODE

Application MPSoC size Tasks Migrations Stabilization

time

Deadline

misses

CM DM CM DM Improvement CM DM Improvement

Synthetic app 3 6x5 4 2 2 65 65 0.00% 2 2 0.00%

Synthetic app 4 6x5 9 3 3 95 90 5.26% 3 3 0.00%

MJPEG 3x2 4 2 2 45 45 0.00% 0 0 0.00%

VOPD 4x4 17 15 15 505 350 30.69% 361 311 13.85%

MPEG4 4x4 18 15 15 520 385 25.96% 363 271 25.34%

mapping than a centralized approach and also more scalable

for larger MPSoCs.

REFERENCES

[1] G. Marchesan Almeida, G. Sassatelli, and P. Benoit, “An adaptive
message passing mpsoc framework,” International Journal of

Reconfigurable Computing, vol. 2009, pp. 1–21. [Online]. Available:
http://hindawi.com/journals/ijrc/2009/242981.pdf

[2] J. Hu and R. Marculescu, “Energy- and performance-aware mapping
for regular noc architectures,” IEEE TRANSACTIONS ON COMPUTER-
AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, vol. 24,
no. 4, pp. 551–562, 2005.

[3] S. Murali and G. De Micheli, “Bandwidth-constrained mapping of cores
onto noc architectures,” in Proceedings of the conference on Design,

automation and test in Europe - Volume 2, ser. DATE ’04. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 20 896–. [Online].
Available: http://portal.acm.org/citation.cfm?id=968879.969207

[4] C.-L. Chou and R. Marculescu, “Incremental run-time application
mapping for homogeneous nocs with multiple voltage levels,” in
Proceedings of the 5th IEEE/ACM international conference on

Hardware/software codesign and system synthesis, ser. CODES+ISSS
’07. New York, NY, USA: ACM, 2007, pp. 161–166. [Online].
Available: http://doi.acm.org/10.1145/1289816.1289857

[5] D. Lyonnard et al., “Automatic generation of application-specific ar-
chitectures for heterogeneous multiprocessor,” in DAC’2001 - Design

Automation Conference. New Orleans, EUA: ACM Press, Jun 2001.

[6] J.-Y. Mignolet, V. Nollet, P. Coene, D. Verkest, S. Vernalde, and
R. Lauwereins, “Infrastructure for design and management of relocatable
tasks in a heterogeneous reconfigurable system-on-chip,” in DATE ’03:

Proceedings of the conference on Design, Automation and Test in

Europe. Washington, DC, USA: IEEE Computer Society, 2003, p.
10986.

[7] V. Nollet, P. Avasare, J.-Y. Mignolet, and D. Verkest, “Low cost task
migration initiation in a heterogeneous mp-soc,” in DATE ’05: Pro-

ceedings of the conference on Design, Automation and Test in Europe.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 252–253.

[8] C.-L. Chou and R. Marculescu, “User-aware dynamic task allocation
in networks-on-chip,” in Proceedings of the conference on Design,
automation and test in Europe, ser. DATE ’08. New York,
NY, USA: ACM, 2008, pp. 1232–1237. [Online]. Available:
http://doi.acm.org/10.1145/1403375.1403675

[9] V. Nollet, T. Marescaux, P. Avasare, and J.-Y. Mignolet, “Centralized
run-time resource management in a network-on-chip containing recon-
figurable hardware tiles,” in DATE ’05: Proceedings of the conference
on Design, Automation and Test in Europe. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 234–239.

[10] E. L. de Souza Carvalho, N. L. V. Calazans, and F. G. Moraes, “Dynamic
task mapping for mpsocs,” IEEE Design and Test of Computers, vol. 27,
pp. 26–35, 2010.

[11] A. K. Singh, T. Srikanthan, A. Kumar, and W. Jigang, “Communication-
aware heuristics for run-time task mapping on noc-based mpsoc
platforms,” J. Syst. Archit., vol. 56, pp. 242–255, July 2010. [Online].
Available: http://dx.doi.org/10.1016/j.sysarc.2010.04.007

[12] A. Ngouanga, G. Sassatelli, L. Torres, T. Gil, A. Soares, and A. Susin,
“A contextual resources use: a proof of concept through the apaches’
platform,” Design and Diagnostics of Electronic Circuits and Systems,
vol. 0, pp. 42–47, 2006.

[13] H. Orsila, T. Kangas, E. Salminen, T. D. Hamalainen,
and M. Hannikainen, “Automated memory-aware application
distribution for multi-processor system-on-chips,” J. Syst. Archit.,
vol. 53, pp. 795–815, November 2007. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1282861.1282883

[14] C. Marcon, A. Borin, A. Susin, L. Carro, and F. Wagner,
“Time and energy efficient mapping of embedded applications
onto nocs,” in Proceedings of the 2005 Asia and South

Pacific Design Automation Conference, ser. ASP-DAC ’05. New
York, NY, USA: ACM, 2005, pp. 33–38. [Online]. Available:
http://doi.acm.org/10.1145/1120725.1120738

[15] A. Mehran, A. Khademzadeh, and S. Saeidi, “Dsm: A heuristic dynamic
spiral mapping algorithm for network on chip,” IEICE Electronics

Express, vol. 5, no. 13, pp. 464–471, 2008.
[16] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling

algorithm: exact characterization and average case behaviour,” IEEE
Real-Time Systems Symposium, pp. 166–171, 1989.

[17] A. Aguiar, S. F. Johann, F. G. Magalhaes, T. D. Casagrande, and
F. Hessel, “Hellfire: A design framework for critical embedded systems’
applications,” in ISQED ’10. IEEE, 2010, pp. 730–737.

[18] S. F. Johann, A. Aguiar, C. A. M. Marcon, and F. P. Hessel, “High-
level estimation of execution time and energy consumption for fast
homogeneous mpsocs prototyping,” in RSP ’08: Proceedings of the
2008 The 19th IEEE/IFIP International Symposium on Rapid System

Prototyping. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 27–33.

[19] D. Milojevic, L. Montperrus, and D. Verkest, “Power
dissipation of the network-on-chip in a system-on-chip
for mpeg-4 video encoding,” 2007 IEEE Asian SolidState

Circuits Conference, pp. 392–395, 2007. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4425713

54

