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A B S T R A C T

The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD)
patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated
ASD patients brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging
Data Exchange). ASD is a brain-based disorder characterized by social deficits and repetitive behaviors.
According to recent Centers for Disease Control data, ASD affects one in 68 children in the United States. We
investigated patterns of functional connectivity that objectively identify ASD participants from functional brain
imaging data, and attempted to unveil the neural patterns that emerged from the classification. The results
improved the state-of-the-art by achieving 70% accuracy in identification of ASD versus control patients in the
dataset. The patterns that emerged from the classification show an anticorrelation of brain function between
anterior and posterior areas of the brain; the anticorrelation corroborates current empirical evidence of anterior-
posterior disruption in brain connectivity in ASD. We present the results and identify the areas of the brain that
contributed most to differentiating ASD from typically developing controls as per our deep learning model.

1. Introduction

The primary goal of psychiatric neuroimaging research is to identify
objective biomarkers that may inform the diagnosis and treatment of
brain-based disorders. Data-intensive machine learning methods are a
promising tool for investigating the replicability of patterns of brain
function across larger, more heterogeneous data sets (Varoquaux and
Thirion, 2014). The first goal of the present study was to classify autism
spectrum disorder (ASD) and control participants based on their re-
spective neural patterns of functional connectivity using resting state
functional magnetic resonance imaging (rs-fMRI) data. We used a deep
learning method that combined supervised and unsupervised machine
learning (ML) methods. The method was applied to a large population
sample of brain imaging data, the Autism Imaging Data Exchange I
(ABIDE I). The second goal was to investigate the neural patterns as-
sociated with ASD that contributed most to the classification; the results
are interpreted in the light of the networks of regions within the brain

that differentiate ASD from controls and of previous studies of ASD
brain function.

ASD is associated with a range of phenotypes that vary in severity of
social, communicative and sensorimotor deficits. ASD diagnostic in-
struments assess the characteristic social behaviors and language skills
(see our result about real-world classification accuracy). Yet neu-
roscientific research can help bridge the gap between a clear mapping
of the complexity of the spectrum of alterations in autism behavior and
their neural patterns (Just et al., 2013). Noninvasive brain imaging
studies have advanced the understanding of the neural underpinnings
of brain-based disorders and their associated behavior, such as ASD and
its social and communicative deficits (Aylward et al., 1999; Just et al.,
2014; Kana et al., 2009; Schipul et al., 2012). The identification of
patterns of activation for ASD and the association of the patterns with
neural and psychological components contributes to the understanding
of the etiology of mental disorders (Jordan and Mitchell, 2015; Just
et al., 2014).
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One of the challenges to brain imaging studies of brain disorders is
to replicate findings across larger, more demographically hetero-
geneous datasets that reflect the heterogeneity of clinical populations.
Recently, ML algorithms have been applied to brain imaging data to
extract replicable brain function patterns. These algorithms can extract
replicable, robust neural patterns from brain imaging data of psychia-
tric disorder patients (Pereira et al., 2009).

2. Machine-learning and disease state prediction: the next frontier
for understanding the brain and psychiatric disorders

The combination of machine-learning methods with brain imaging
data has allowed for the classification of mental states associated with
the representation of semantic categories (Haxby, 2001; O’Toole et al.,
2005), of the meanings of nouns (Buchweitz et al., 2012; Mitchell et al.,
2008; Shinkareva et al., 2011), of emotions (Kassam et al., 2013), and
of learning (Bauer and Just, 2015). In the case of mental disease states,
studies have identified patients of brain activation associated with
schizophrenia (Yang et al., 2010), with autism (Just et al., 2014), and
with depression (Craddock et al., 2009). Studies that applied ML al-
gorithms to ASD brain imaging data have classified individuals as au-
tistic or control from their fMRI brain activation with up to 97% ac-
curacy within single sites. They also identified a pattern of brain
activation associated with a psychological factor (self-representation).
The pattern was present in control patients and nearly absent for au-
tistic participants (Just et al., 2014). In another study of classification of
ASD participants (Plitt et al., 2015), the authors obtained a 76.67%
classification accuracy in a population sample of 178 ASD and IQ-
matched typically-developing participants.

A caveat of studies that applied supervised ML to brain imaging data
is their relatively small number of participants. Arbabshirani et al.
(2016) showed that the reliable classification accuracies of ML studies
were obtained with population samples with fewer than 100 partici-
pants; higher classification accuracies, that is, above 90%, were only
obtained with studies constrained to dozens of participants. Classifica-
tion accuracy drops significantly in larger population samples and if
data is from different sites (Nielsen et al., 2013).

Most studies that combine brain imaging and machine learning have
applied supervised learning methods, such as support vector machine
(SVM) or Gaussian naïve Bayes (GNB) classifiers. The subjectivity of
feature selection procedures for supervised machine learning methods
may be an obstacle for the comparison of results across studies. In su-
pervised methods, class labels are assigned to a set of data used as the
training data set; other data points (test data set) are classified in re-
lation to the patterns found in the training data (using the given labels).
In other words, the algorithm operates to classify pre-established labels
(that is, they rely on feature selection, or feature engineering). The
choice of these labels and of the features depends on a priori hypothesis
or exploratory procedures; hence, they depend on a level of sub-
jectivity. For example, the number of voxels used for classification of
brain imaging data has been empirically selected on the basis of ex-
ploring sets of 100, 200, 400 and more voxels and identifying the set
size that works best for the classification (Buchweitz et al., 2012;
Mitchell et al., 2008; Shinkareva et al., 2011).

In the present study, we address the issues of generalizability and of
subjectivity by classifying a psychiatric disorder using a large data set
and an unsupervised machine learning method. Reduction of sub-
jectivity in feature extraction may provide a new window into brain
function that is less experimenter-dependent and more data-driven.

3. Classification of the ABIDE dataset

ABIDE data have previously been used by Nielsen et al. (2013) to
classify autism versus control subjects based on brain connectivity
measurements. The authors reproduced an approach reported in
Anderson et al. (2011) with modifications that included datasets from

multiple sites. BOLD signal from non-overlapping, grey matter ROIs
(SPM8 mask grey.nii) formed by seed voxels separated by at least 5 mm
was computed for the 964 subjects used. Voxels that were Euclidean-
close to a specific ROI's seed voxel were included in this ROI. Based on
data from the 7266 generated ROIs, Nielsen et al. (2013) computed a
connectivity matrix with size of 7266 × 7266, by calculating the pair-
wise correlation between each ROI. Using a leave-one-out approach, a
general linear model was fit to each group (ASD and control) to as-
sociate the connectivity matrix with subject-related variables: age,
gender and handedness. The value of each connection was estimated for
the left out subject based on the variables. It was then adjusted by using
the difference between one site's mean value for the connection and
another site's mean value for the same connection. This procedure
mitigated between-site differences that could bias results, such as dif-
ferent scanners and variations in scanning parameters and protocols.

The authors attempted to accommodate multi-site data and sources
of variance present in the ABIDE data. For the left-out subject, the ac-
tual value for each connection was then subtracted from the estimated
values obtained from the autism model and from the control model. The
average of this subtraction across all 7266 ROIs was computed, and the
average values of ROIs were added up. Positive values were classified as
ASD and negative values, as controls. Nielsen et al. (2013) obtained as
high as 60% accuracy for the classification ASD versus controls. Re-
cently, Abraham et al. (2017) achieved the highest classification up to
the present paper. By building participant-specific functional con-
nectivity matrices (connectomes), the authors achieved 67% accuracy
in the full ABIDE dataset. In the present study, we aimed to improve
that highest accuracy obtained.

4. Neuroimaging and deep learning algorithms

Koyamada et al. (2015) investigated brain states from measurable
brain activities by using Deep Neural Networks (DNN). They trained an
artificial neural network with two hidden layers and a softmax output
layer to classify task-based fMRI data from 499 subjects into seven
categories related to the tasks: Emotion, Gambling, Language, Motor,
Relational, Social and Working Memory. Deep models allowed for
better results (mean accuracy of 50.74%) compared to supervised
learning methods (mean accuracy of 47.97%) such as Linear Regression
and Support Vector Machine. Plis et al. (2014) used deep learning and
structural T1-weighted images in order to classify patients with schi-
zophrenia versus matched healthy controls, using data from four dif-
ferent sites; the authors also classified patients with Huntington disease
versus healthy controls, using data combined by the PREDICT-HD
project (www.predict-hd.net). First, they attempted to classify 198
schizophrenic patients and 191 controls from four different studies
conducted by Johns Hopkins University (JHU), the Maryland Psychia-
tric Research Center (MPRC), the Institute of Psychiatry, London, UK
(IOP), and the Western Psychiatric Institute and Clinic at the University
of Pittsburgh (WPIC). Plis et al. trained a Deep Belief Network with 3
depths (50 hidden units in the first layer, 50 in the second layer, and
100 in the top layer). They achieved 90% classification accuracy using
features extracted from three DBMs in comparison to 68% classification
accuracy using raw data in a Support Vector Machine. The authors
concluded that deep learning holds great potential for clinical brain
imaging applications.

The second part of the work used data collected from healthy con-
trols and patients with Huntington disease of the PREDICT-HD project.
The study aimed to identify the disease using deep learning techniques,
and assess the levels of severity of the disease (low, medium and high).
The study used a large dataset of T1-weighted structural scans from 32
sites from different countries. The set included 2641 images from pa-
tients and 859 from healthy controls. The authors applied a Deep Belief
Network (DBM) with 3 depths: 50-50-100 hidden units in the first,
second and the top layer respectively. The t-Distributed Stochastic
Neighbor Embedding (t-SNE) (Maaten et al., 2008) technique was used
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to reduce the resultant data to a 2-dimensional version; the results
showed a linearly separable projection into patients and control.

Deep learning algorithms take classification of brain imaging data a
step further than strictly supervised methods. The algorithms use
complex data representations in the learned model. Deep learning al-
gorithms rely on minimal human intervention for extracting relevant
features by using unsupervised learning methods. Classification of
clinical populations using unsupervised methods may allow for ex-
ploratory search of neural patterns of psychiatric disorders that is less
dependent on generating hypotheses for feature selection; it may be
thus less susceptible to category errors. In supervised methods, pre-
sumed labels are used to train the classifier and find patterns of brain
activation or connectivity associated with the labels (e.g. a clinical
population and a control population sample). In unsupervised methods,
the classifier explores population samples for patterns in the brain
which may be associated with a clinical population; again, the sub-
jectivity involved in label selection is avoided (Plis et al., 2014). It is
suggested that less subjective and possibly more unrestrained, deep
learning algorithms hold promise for the application of machine
learning to big data sets from multi-site repositories.

5. Materials and methods

5.1. Participants

The present study was carried out using rs-fMRI data from the
Autism Imaging Data Exchange (ABIDE I). ABIDE is a consortium that
provides previously collected rs-fMRI ASD and matched controls data
for the purpose of data sharing in the scientific community (Di Martino
et al., 2014). We included data from 505 ASD individuals and 530
matched controls (typical controls, TC). The ABIDE datasets were col-
lected at 17 different imaging sites and include rs-fMRI images, T1
structural brain images and phenotypic information for each patient,
which is summarized in Table 1. Table 1 contains key phenotypical
information,1 including distribution of ASD and TC by sex and age and
the ADOS score for ASD subjects, as well as the Mean Framewise Dis-
placement (FD) quality measure.2

5.2. Resting state and feature selection

Resting state fMRI provides neural measurements of the functional
relationship between areas of the brain. Rs-fMRI data is particularly
useful for investigation of clinical populations. It allows for investiga-
tion of the disruption brain networks without the added complexity of
variation associated with task-related brain activation (Plitt et al., 2015;
Smith et al., 2009). It may be applied in the investigation of mental
states, memory and the recall of events, clinical populations, among
others (Fox, 2010; Shirer et al., 2012). Rs-fMRI has been shown to be
highly reproducible and provides data sets that can be easily compared
across studies (Franco et al., 2013; Shehzad et al., 2009). The correla-
tion of low frequency fluctuations on resting-state fMRI arises from
fluctuations in blood oxygenation or flow. It is a manifestation of
functional connectivity of the brain (Biswal et al., 1995). To investigate
brain connectivity, a correlation is calculated for the average of the
time series of the regions of interest. The correlation is used to build a
connectivity matrix.

5.3. Data preprocessing

Previously preprocessed rs-fMRI data was downloaded from the

Preprocessed Connectomes Project (http://preprocessed-connectomes-
project.org/). Data was selected from the C-PAC preprocessing pipeline.
The fMRI data was slice time corrected, motion corrected, and the voxel
intensity was normalized. Nuisance signal removal was performed
using 24 motion parameters, CompCor with 5 components (Behzadi
et al., 2007), low-frequency drifts (linear and quadratic trends), and
global signal as regressors. Functional data was band-pass filtered
(0.01–0.1 Hz) and spatially registered using a nonlinear method to a
template space (MNI152).

The mean time series for regions of interest was extracted for each
subject. The CC200 functional parcellation atlas of the brain (Craddock
and James, 2012) was used to reduce the features vector size (see
below). This atlas was generated by a data-driven parcellation of the
whole brain into spatially close regions of homogeneous functional
activity, totalizing in 200 regions.

5.4. Feature selection: functional connectivity of ROIs

Functional connectivity was used to classify subjects as ASD and TC.
Functional connectivity provides an index of the level of co-activation
of brain regions based on the time-series of rs-fMRI brain imaging data.
Each cell in the connectivity matrix contains a Pearson correlation
coefficient. The coefficient is an index of the correlation between two
areas of the brain, and it ranges from 1 to −1: values close to 1 indicate
that the time series are highly correlated; values close to −1 indicate
that time series are anti-correlated.

To upper triangle values were removed for use of the values in the
correlation matrix as features. These values repeat the values of the
lower triangle. We also removed the main diagonal of the matrix, since
it represents an area correlating to itself.

Later, we flattened the remaining triangle (i.e. collapse it in a one-
dimension vector) to retrieve a vector of features, with the purpose of
using it for subject classification. The number of resultant features is
defined by the following equation,

=

−S N N( 1)
2

,

in which N is the number of correlated voxels or regions. The CC200
ROI atlas was used, and the procedure resulted in 19,900 features.

Table 1
Phenotype summary.

ASD TC FD

Site Age Avg
(SD)

ADOS (SD) Count Age Avg
(SD)

Count

CALTECH 27.4
(10.3)

13.1 (4.7) M 15, F 4 28.0
(10.9)

M 14, F 4 0.07

CMU 26.4 (5.8) 13.1 (3.1) M 11, F 3 26.8 (5.7) M 10, F 3 0.29
KKI 10.0 (1.4) 12.5 (3.6) M 16, F 4 10.0 (1.2) M 20, F 8 0.17
LEUVEN 17.8 (5.0) † (†) M 26, F 3 18.2 (5.1) M 29, F 5 0.09
MAX MUN 26.1

(14.9)
9.5 (3.6) M 21, F 3 24.6 (8.8) M 27, F 1 0.13

NYU 14.7 (7.1) 11.4 (4.1) M 65, F
10

15.7 (6.2) M 74, F
26

0.07

OHSU 11.4 (2.2) 9.2 (3.3) M 12, F 0 10.1 (1.1) M 14, F 0 0.10
OLIN 16.5 (3.4) 14.1 (4.1) M 16, F 3 16.7 (3.6) M 13, F 2 0.18
PITT 19.0 (7.3) 12.4 (3.3) M 25, F 4 18.9 (6.6) M 23, F 4 0.15
SBL 35.0

(10.4)
9.2 (1.7) M 15, F 0 33.7 (6.6) M 15, F 0 0.16

SDSU 14.7 (1.8) 11.2 (4.3) M 13, F 1 14.2 (1.9) M 16, F 6 0.09
STANFORD 10.0 (1.6) 11.7 (3.3) M 15, F 4 10.0 (1.6) M 16, F 4 0.11
TRINITY 16.8 (3.2) 10.8 (2.9) M 22, F 0 17.1 (3.8) M 25, F 0 0.11
UCLA 13.0 (2.5) 10.9 (3.6) M 48, F 6 13.0 (1.9) M 38, F 6 0.19
UM 13.2 (2.4) † (†) M 57, F 9 14.8 (3.6) M 56, F

18
0.14

USM 23.5 (8.3) 13.0 (3.1) M 46, F 0 21.3 (8.4) M 25, F 0 0.14
YALE 12.7 (3.0) 11.0 (†) M 20, F 8 12.7 (2.8) M 20, F 8 0.11

M: Male, F: Female. ADOS score: † means site did not have this information.

1 For further phenotypical information, refer to http://preprocessed-connectomes-
project.org/abide/quality_assessment.html.

2 Mean Framewise Displacement is a measure of subject head motion, which compares
the motion between the current and previous volumes.
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5.5. Classification method

Denoising autoencoders were used to train the predictive model for
better generalization; i.e. accurate classification of new subjects outside
the initial pool of participants. Denoising autoencoders reconstruct
input based on a corrupted version of the input (Vincent et al., 2008):
stochastically, some positions of the vector derived from a functional
connectivity matrix are set to zero before training the model. The
corruption modules applied to corrupt data are based on binomial
distributions. The goal of the technique is to make the model suffi-
ciently accurate for predictions using novel data (Vincent et al., 2010).

In the present study, we used two stacked denoising autoencoders
for the unsupervised pre-training stage to extract a lower-dimensional
version from the ABIDE data. We achieved the best optimization for the
validation set using reconstruction loss (mean squared error); the fol-
lowing configuration was used in a cross-validation k-fold schema. The
input and output layers have 19,900 features fully connected to a
bottleneck of 1000 units from the hidden layer. The probability of data
corruption for the first autoencoder is set to 20% (for the binomial
distribution: n = 1, p = 0.8). The second autoencoder maps 1000 in-
puts from the output of the previous autoencoder to outputs through a
hidden layer of 600 units. The second autoencoder corruption module is
parameterized to corrupt a feature with a probability of 30% (for the
binomial distribution: n = 1, p = 0.7).

Unsupervised training of autoencoders is carried out one layer at a
time. To utilize the knowledge extracted with the autoencoders, we
applied the encoders weights to a multilayer perceptron (MLP) with the
configuration: 19,900-1,000-600-2. In other words, the MLP assumes an
input space of 19,900 features and an output space of 2 numbers, ex-
plained below. Between the input and output layers, the network has
two hidden layers with 1000 and 600 units. This process is illustrated in
Figs. 1 and 2: the blue and green weights contain the unsupervised-
trained encoders; Fig. 2 contains the supervised-trained multi-layer
perceptron that uses previous knowledge from autoencoder training.
The MLP contains adjusted weights based on the autoencoder encoders;
thus, its supervised training is called fine-tuning. The goal of fine-tuning
is to adjust the MLP weights to output the expected classes and mini-
mize prediction error on the supervised task. The output layer contains
two output units: each unit represents the probability of an input to be
from an ASD or a TC subject. This type of output is called one-hot:
during fine-tuning only one of the outputs is expected to have an ac-
tivation value of 1 (and the others, 0); the output is obtained applying a
softmax function. Softmax functions normalize the output distribution,
so outputs denote complementary probabilities of being one class (i.e. a
sum one of probabilities of being ASD or TC; for example, an output of
probability of being ASD: 80%, and of being TC: 20%).

5.6. Classifier evaluation

To evaluate the results obtained with deep learning, the perfor-
mance of the model was compared with results of classifiers trained
using Support Vector Machine (SVM) (Vapnik, 1998) and Random
Forest (RF) (Ho, 1995). The evaluation of all models is based on a 10-
fold cross-validation schema, which mixes data from all 17 sites while
keeping the proportions between the different sites. Data dimension-
ality reduction was achieved using the encoder layers of a pre-training,
unsupervised process. Table 2 summarizes the results, which we de-
scribe below.

We report the accuracy, sensitivity, and specificity for all classifiers,
as well as the total time taken to train each model.3

6. Results and discussion

The deep neural network achieved a mean classification accuracy of
70% (sensitivity 74%, specificity 63%) from cross-validation folds, and
a range of accuracy of 66% to 71% in individual folds. Based on the
literature, this is the highest classification achieved so far. The SVM
classifier achieved mean accuracy of 65% (from 62% to 72%, sensitivity
68%, specificity 62%); while the Random Forest classifier achieved
mean accuracy of 63% (sensitivity 69%, specificity 58%). The results
show that the deep learning algorithm classified ASD and typical par-
ticipants above chance in the multi-site ABIDE data. The results also
show that the algorithm outperformed the other supervised methods
used for comparison. The superior accuracy of the trained model came
at a substantial cost in training time, despite the use of a dedicated GPU
to accelerate training. Training of the entire model took over 32 h using
an Two Intel Xeon E5-2620 processors with 24 cores running at 2 GHz
and 48 GB of RAM and 1 Tesla K40 GPU with 2880 CUDA cores and
12 GB of RAM.

The results show that the algorithm applied outperformed results
from previous studies of identification of autism spectrum disorder

19900 1000 19900

(a)

1000 600 1000

(b)

Fig. 1. Two autoencoders structure. We reduce the number of units in order to ease the
visualization of the structures. (a): 19,900-1000-19,900; (b): 1000-600-1000. (For in-
terpretation of the references to color in this figure, the reader is referred to the web
version of this article.)

19900 1000 600 Softmax

Fig. 2. Transfer learning from autoencoders AE1 and AE2 to a neural network classifier.
(For interpretation of the references to color in this figure, the reader is referred to the
web version of this article.)

Table 2
Comparison of Deep Neural Network (DNN), Random Forest (RF) and Support Vector
Machine (SVM) classifiers trained using 10-fold cross-validation on the entire dataset.

Method Accuracy Sensitivity Specificity Time

SVM 0.65 0.68 0.62 1 m 37 s
RF 0.63 0.69 0.58 20 m 55 s
DNN 0.70 0.74 0.63 32h 52 m 36 s

3 The source code for the training scripts is available from Github at https://github.
com/lsa-pucrs/acerta-abide and archived at Zenodo (Heinsfeld et al., 2017).
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patients on ABIDE multi-site resting-state brain activation. Results
using other brain parcellations are shown in the Supplementary mate-
rial. The results for SVM classifications did not vary by reducing the
data dimensionality with autoencoders. We applied SVM on a reduced
number of dimensions learned using autoencoders without the fine-
tuning process. The dimensionality reduction produced lower SVM
classification results (61% accuracy using data transformation with the
first autoencoder, and 63% accuracy using data transformation with
first and second autoencoders). The reduced dimensions may present
patterns that are too complex to be generalized by SVM and auto-
encoders techniques to identify ASD and TC participants in the dataset.
The deep learning classification method showed a 5% increase on
average in classification accuracy in comparison to SVM. The deep
learning method also showed a 10% increase in classification accuracy
in comparison to a previous study that attempted to classify ASD using
the ABIDE multi-site data (Nielsen et al., 2013).

There was a loss of specificity and sensitivity in the present classi-
fication in comparison to studies that attempted to classify ASD with
smaller participant samples. Studies have achieved classification ac-
curacies above 80% and even 90% (for example, Anderson et al., 2011;
Just et al., 2014; Uddin et al., 2013). To assess a realistic prospect of
how our model would behave in the real clinical world, we calculated
two metrics: positive and negative prediction values (Altman and
Bland, 1994) (PPV and NPV, respectively). These metrics provide an
evaluation of the model generalization ability (Castellanos et al., 2013).
The calculation is based on the relationship between sensitivity, spe-
cificity and prevalence of ASD.

The present model achieved a PPV of 4.3% and NPV of 99%. The
PPV and NPV were calculated considering that the prevalence of ASD in
the United States is 2.24%, according to the 2014 surveillance estimate
from the Centers for Disease Control and Prevention (CDC) (Zablotsky
et al., 2015). The high NPV is to be expected; chances are most people
are not autistic. The PPV underscores that the application of machine-
learning methods to brain imaging data is not driven by diagnostic
purposes. Rather, it is a data-driven approach to inform what most
likely are the neural patterns associated with the disorder.

Fewer site-wise variations or the absence of such variation in the
dataset work in favor of classification accuracy; but once supervised
methods are presented with the challenge of classification across many
sites, such as ABIDE, accuracy drops. The increase in dimensions across
different datasets is a challenge to be faced by ML studies of brain
imaging. The dimensions may be representative of variability that adds
clinically-relevant information to the understanding of a mental dis-
order, such as information that results from different demographics.

ABIDE data contains sensitive variations that compromise co-
herence between sites. Deep learning methods encompass such varia-
tions and yield better results than shallow methods. The improvement
in classification can be explained by the autoencoders's potential of
coping with the latent factors from intricate structures in the raw data,
and by the capacity of neural networks to encode variations in data to
guide the classification process. It is suggested that the deep-learning
algorithms handle complexities of multi-site, big brain imaging data
sets better than SVM and the like.

In order to further evaluate the results, we performed a Wilcoxon
Signed Ranks related groups test for each of the classification methods.
Specifically, we compared the label of each classification method to the
ground truth. For the SVM classifier, results showed a statistically sig-
nificant labeling (Z = 12.08, p < 0.001). RF showed a slightly im-
proved classification accuracy (Z = 2.33, p = 0.020); the statistical
differences between labels were still significant. No statistical sig-
nificant difference was shown between labels when the DNN classifier
was used (Z = 0.49, p = 0.624). DNN was the only classification
method to show no statistical difference between the classified labels
and the ground truth.

The 70% accuracy obtained in the present study improves the state
of the art. The literature thus far suggests that supervised methods are

effective at classifying high-dimensional spaces in smaller population
samples; deep neural networks allow the learner to represent more
complex functions, especially when used with autoencoders. These
networks effectively reduce the dimensionality of problems with a very
large feature space (Hjelm et al., 2014; Plis et al., 2014). However, by
training our model with intra-site data with the same hyperparameters
and 5-fold scheme, we achieved 52% average accuracy. The amount of
available data in ABIDE benefits model generalization; site variability
helps to avoid overfitting across sites.

6.1. Leave-one-site-out classification

To evaluate classifier performance across sites, we performed a
leave-one-site-out cross validation process. This process excluded data
from one site from the training process, and used that data as the test
set to evaluate the model. The rationale was to test applicability of the
model to new, different sites. The results of these further analyses are
reported in Table 3.

Results for SVM and RF are shown in Tables 1 and 2 in the sup-
plementary material, respectively.

Five sites showed significantly lower accuracy than the global re-
sult: SBL, MAX_MUN, STANFORD, CALTECH, and OHSU. The results
suggest that the data from these sites have variability that are not
present in other sites. Comparison of the accuracy scores with head
motion quality measures did not show an effect of head motion on
classification accuracy.

The classification leaving one site out tests the global model's ability
to incorporate test data and site-specific variations without losing
training data specificity.

7. Neural patterns: connectivity in the autistic brain

The results for the correlation between rs-fMRI data for areas of the
brain show two distinct sets of areas that were underconnected (nega-
tively correlated) and highly connected (positively correlated) in ASD
rs-fMRI data: (1) a distributed network of anterior and posterior brain
areas whose activation during rs-fMRI was negatively correlated and
(2) a posterior network of areas whose activation during rs-fMRI was
highly correlated. The putative interpretation of these results is dis-
cussed in relation to an existing data-driven theory of anterior-posterior
underconnectivity in the autistic brain.

The areas of the brain that showed the highest anticorrelation for
ASD subjects were: Paracingulate Gyrus (Fig. 3a), Supramarginal Gyrus
(Fig. 3b), and Middle Temporal Gyrus (Fig. 3c). The anticorrelation
patterns of these areas were the most relevant features for our deep

Table 3
Leave-site-out 5-fold cross-validation results using DNN.

Site-Out Size Accuracy Sensitivity Specificity

CALTECH 37 0.68 0.70 0.65
CMU 27 0.66 0.67 0.65
KKI 48 0.67 0.70 0.64
LEUVEN 63 0.65 0.63 0.67
MAX_MUN 52 0.68 0.75 0.61
NYU 175 0.66 0.66 0.65
OHSU 26 0.64 0.70 0.59
OLIN 34 0.64 0.68 0.60
PITT 56 0.66 0.69 0.62
SBL 30 0.66 0.71 0.60
SDSU 36 0.63 0.68 0.59
STANFORD 39 0.66 0.71 0.60
TRINITY 47 0.65 0.67 0.62
UCLA 98 0.66 0.69 0.63
UM 140 0.64 0.66 0.62
USM 71 0.64 0.69 0.58
YALE 56 0.64 0.69 0.59
Mean 60 0.65 0.69 0.62
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learning classification. Table 4 summarizes the anticorrelated areas.
The areas of the brain that showed the highest correlation for ASD
subjects are shown in Fig. 4. The regions with the highest correlation
were all in posterior regions of the brain: Occipital Pole (Fig. 4a), and
Lateral Occipital Cortex; superior division (Fig. 4b). The correlation
patterns of these areas were the most relevant features to the deep
learning classification after the anticorrelated areas. Table 5 sum-
marizes the correlated areas.

Anterior-posterior disruption in the connectivity (correlation be-
tween time series of activation) has been shown in task-related (Just,
2004; Kana et al., 2009; Schipul et al., 2012) and rs-fMRI studies of ASD
patients (Cherkassky et al., 2006). The characteristic of the brain
function of autism patients replicated across previous studies are de-
creased anterior-posterior connectivity and increased local connectivity
between posterior regions relative to the connectivity in the brain of

controls. These studies are the basis for a brain-imaging data-driven
theory of underconnectivity in autism (Just, 2004). The anterior-pos-
terior underconnectivity theory has also been associated with indices of
brain structure, more specifically, corpus callosum morphometry (Just
et al., 2006).

Previous studies of ASD brain function have suggested a disruption
in anterior-posterior brain connectivity in ASD, together with increased
posterior, or local, connectivity. The results for the present study sug-
gest that there was anticorrelation in the function of anterior (para-
cingulate gyrus) and more posterior regions (supramarginal gyrus) and
of frontal-temporal areas (e.g. middle temporal and inferior frontal;
fusiform gyrus and orbital cortex) (see Table 4 for description). The
interpretation we propose is that the anticorrelation reflects under-
connectivity between the anterior and posterior areas of the ASD brains
that contributed the most to the present classification. The trait of

Fig. 3. Anti-correlated (underconnected) areas for ASD subjects. (For
interpretation of the references to color in this figure, the reader is
referred to the web version of this article.)

Table 4
Anti-correlated areas in the brain.

Fig. Source area (green) Red areas Blue areas Yellow areas

3 a Paracingulate Gyrus Middle Temporal Gyrus; posterior division Precuneous Cortex Temporal Fusiform Cortex; posterior division
3 b Supramarginal Gyrus Inferior Frontal Gyrus Superior Temporal Gyrus Frontal Orbital Cortex
3 c Middle Temporal Gyrus Paracingulate Gyrus Precuneous Cortex, Cingulate Gyrus Lateral Occipital Cortex
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anterior-posterior underconnectivity underpins autistic brain function
and helped discriminate between the two groups. We suggest the
anterior-posterior anticorrelation result corroborates the atypical ASD
brain function described in other studies.

We computed the correlation of the networks with ADOS (Autism
Diagnostic Observation Schedule) results from phenotype data pro-
vided by each site to identify patterns of ASD connectivity. ADOS
(Akshoomoff et al., 2006) is an assessment instrument for autism. It
provides a series of social and communication tasks that are relevant to
the diagnosis of ASD. The ABIDE project compiles data from 17 sites
without prior coordination. Thus, ADOS data was available for 351 of

Fig. 4. Highly correlated (connected) areas for ASD subjects. (For in-
terpretation of the references to color in this figure, the reader is referred
to the web version of this article.)

Table 5
Correlated areas in the brain.

Fig. Source area (green) Red areas Blue areas

4 a Occipital Pole Intracalcarine Cortex Lateral Occipital Cortex;
superior division

4 b Lateral Occipital
Cortex; superior
division

Cingulate Gyrus;
posterior division

Postcentral Gyrus
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the ABIDE I subjects. The analysis shows that the networks from
Tables 4 and 5 did not correlate with the ADOS score.

In conclusion, the results suggest that deep learning methods may
reliably classify big multi-site datasets. Classification across multiple
sites has to accommodate additional sources of variance in subjects,
scanning procedures and equipment in comparison to single-site data-
sets (Nielsen et al., 2013). Such variation adds noise to the brain ima-
ging data that challenges the ability to draw signatures from the brain
activation that can classify disease states; yet the achievement of a re-
liable classification accuracy despite such noise generated from dif-
ferent equipment and demographics shows promise for machine
learning applications to clinical datasets, and for future application of
machine learning in the assistance of identification of mental disorders.
Plitt et al. (2015) stated that the overall assessment of classification of
ASD using resting-state fMRI data thus far falls short of biomarker
standards; such obstacle is not overcome in the present study. Yet, we
suggest a step in the direction of more reliable results has been taken.
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