
Integrating Ontologies with Multi-Agent Systems
through CArtAgO Artifacts

Artur Freitas, Alison R. Panisson, Lucas Hilgert,

Felipe Meneguzzi, Renata Vieira, Rafael H. Bordini

Postgraduate Programme in Computer Science, School of Informatics (FACIN)

Pontifical Catholic University of Rio Grande do Sul (PUCRS). Porto Alegre, RS - Brazil

{artur.freitas, alison.panisson}@acad.pucrs.br,

{lucas.hilgert, felipe.meneguzzi, renata.vieira, rafael.bordini}@pucrs.br

Abstract—Several advantages can be obtained by allowing
multi-agent systems to easily access ontologies, for example,
in scenarios where agents make their decisions based on the
knowledge provided by ontologies. Thus, this paper presents an
infrastructure to allow the use of web ontologies in different
agent-oriented platforms. The agents use this infrastructure layer
as a tool for storing, accessing and querying domain-specific
OWL ontologies. As a result, this layer allows an integration
of agent platforms with semantic web data and ontologies. We
exemplify in practice how agents, coded in one such platform, can
use the proposed access layer to ontological reasoning engines, as
well as which features can be obtained from it. The performance
of this semantic infrastructure is evaluated and compared against
usual knowledge representation in agent programming.

Keywords-Ontology, Agent-Oriented Programming Languages,
Multi-Agent Systems, CArtAgO

I. INTRODUCTION

Ontologies empower the execution of semantic reasoners,

such as Pellet [1], which provide the functionalities of consis-
tency checking, concept satisfiability, classification and reali-
sation. Ontologies also allow sharing a common understanding

of the structure of information among people and software

agents and the reuse of domain knowledge. The integration of

such semantic technologies into Multi-Agent Systems (MAS)

enhances the knowledge representation features and reasoning

capabilities of applications developed under these paradigms.

Using ontologies in MAS results in the possibility of creating

logic rules that can be applied by a semantic reasoner to infer

new knowledge. Thus, the logic is moved from the agent code

to the ontology, and the knowledge may be reused by different

applications. Moreover, each agent is allowed to include these

ontologies and specialise them with more specific and domain-

dependent knowledge.

Our approach enables the use of ontologies within MAS, by

enabling agents to reason about and query elements encoded in

ontologies, such as instances, concepts and properties. Agents

in such systems interact with ontologies by means of an

infrastructure layer coded in a CArtAgO [2] artifact (CArtAgO

offers computational abstractions and provides services that

agents can exploit to support their activities). The information

obtained from operations over this infrastructure may be used

in agent plans to achieve goals, such as in argumentation-based

negotiation/dialogue scenarios, whereupon more information

can benefit the agents engaged in such process [3]. Agents

can use the operations of our artifact to access and manipulate

information in ontologies, as we show in further sections,

using the Jason [4] agent platform to access ontologies in

OWL [5].

This paper makes the following contributions: (i). devel-

oping an infrastructure layer (artifact) coded in CArtAgO to

enable ontology reasoning and querying features in different

agent-oriented platforms; (ii). describing and implementing

scenarios in Jason agent platform using the operations pro-

vided by such infrastructure; (iii). evaluating and comparing

the performance of this new knowledge representation ap-

proach (of accessing ontologies by the infrastructure) against

representations that use the belief base of agents; (iv). dis-

cussing advantages, limitations and trends of enabling agents

to access the knowledge from ontology to support their deci-

sion making.

This paper is structured as follows. It first explains a

theoretical background on multi-agent systems and ontologies.

Then we propose an architecture, based on a CArtAgO artifact,

working as an infrastructure layer to provide ontology manip-

ulation capabilities in agent platforms. The following section

uses this artifact to access an OWL ontology in the context

of Jason agents. We explain the ontology used, reasoning ex-

amples and how it can support the decision making of agents.

Next, experiments are used to compare the performance of

our approach against an agent reasoning that uses only the

regular agent’s belief base. Finally, we discuss related work

and outline research directions.

II. ONTOLOGIES AND MULTI-AGENT SYSTEMS

Ontology is defined as an explicit specification of a con-
ceptualisation [6], where a conceptualisation is an abstract,

simplified view of the world that we wish to represent for some

purpose. Every knowledge base, knowledge-based system, or

knowledge-level agent is committed to some conceptualisa-

tion, explicitly or implicitly [6]. Some essential properties of

ontologies are [7]: (i) ontologies describe a specific domain;

(ii) ontology users agree to use the terms consistently; (iii)
ontology concepts and relations are unambiguously defined in

2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-1-4673-9618-9/15 $31.00 © 2015 IEEE

DOI 10.1109/WI-IAT.2015.116

143

a formal language by axioms and definitions; (iv) relationships

between ontology concepts determine the ontology structure;

and (v) ontologies can be understood by computers. More

importantly, ontologies empower the execution of semantic

reasoners which provide functionalities such as consistency
checking, concept satisfiability, classification and realisation.

Ontologies are knowledge representation structures, usually

based on Description Logics, composed of concepts, proper-

ties, individuals, relationships and axioms [8]. A concept (or

class) is a collection of objects that share specific restrictions,

similarities or common properties; a property expresses rela-

tionships between concepts; an individual (instance, object, or

fact) is an element of a concept; a relationship instantiates a

property to relate two individuals; and an axiom (or rule) im-

poses constraints on values of concepts or individuals normally

using logic languages (that can be used to check ontological

consistency or infer new knowledge). The most prominent

ontology language is OWL (Web Ontology Language), which

is a language for processing web information and semantic

web standard formalism to explicitly represent the meaning

and relationships of terms [5].

We consider that these essential properties of ontologies

have a role to play in multi-agent systems. Agents are reactive

systems that can independently determine how to best achieve

their goals and perform their tasks while demonstrating prop-

erties such as autonomy, reactivity, pro-activeness and social

ability [4]. Although the advantages of ontologies for agents

are clear, few multi-agent system platforms currently integrate

ontology techniques. Limited ontological support is provided

by agent-oriented software engineering approaches since they

do not incorporate ontologies throughout the entire systems

development life cycle nor consider ways in which ontologies

can be used to account for interoperability and verification

during design [9]. Considering such context, this work inves-

tigates the use of ontologies in multi-agent systems.

III. ENGINEERING ONTOLOGY-BASED AGENTS

There are many agent-oriented programming platforms,

such as Jason, Jadex, Jack, AgentFactory, 2APL, GOAL,

Golog, and MetateM, as pointed out in [10]. Those lan-

guages differ in the agent architecture used, in the form

of communication/interaction between them, and also on the

programming paradigms that inspired or underlie each lan-

guage. Our proposal to interact with ontologies can be used in

any agent platform that supports CArtAgO. In this paper we

used Jason [4] to demonstrate the application of our artifact.

Jason is one of the best-known languages inspired by the

BDI (Beliefs-Desires-Intentions) architecture. Jason is open

source interpreter and offers several features such as speech-

act based agent communication, plans annotation, architecture

customisation, distributed execution and extensibility through

internal actions.

As previously explained, ontology is defined in computer

science as an explicit specification of a conceptualisation.

In other words, it means an abstract model of some world

aspect that specifies properties of important concepts and rela-

tionships. Ontologies are knowledge representation structures

composed of concepts, properties, individuals, relationships

and axioms. For example, OWL (Web Ontology Language)

is a language for processing web information defined as

a semantic web standard formalism to explicitly represent

the meaning of terms and the relationships between those

terms [5]. The use of ontology in agents is motivated by the

needs of improving knowledge representation and enabling

the execution of semantic reasoning. For example, in OWL,

a given class C can be declared with certain conditions (i.e.,

every instance of C has to satisfy these restrictions, and/or

every instance that satisfies these restrictions can be inferred

as belonging to C). OWL class restrictions [5] can be defined

by elements such as cardinality and logic restrictions (e.g.,

union, intersection, negation, the universal and the existential

quantifier). These restrictions allow to make inferences by us-

ing semantic reasoners over the ontology, which are important

features to provide to agent when building complex artificial

intelligence systems.

A comparison about the integration of ontologies within

MAS is discussed with more detail in the Related Work

section. In short, AgentSpeak-DL [11] is a language which

appears in a paper that does not implement it in any agent

platform; JASDL [12] is an AgentSpeak-DL implementation

directly in Jason; and CooL-AgentSpeak [13] is implemented

in a way that each agent ontology is private. Our approach

differs in the sense that ontologies can be shared among more

than one agent and the ontologies can be used in several

agent platforms. These features are obtained based on the

architecture we designed that is implemented in CArtAgO

[2]. CArtAgO is a platform to support the artifact notion in

MAS. Artifacts are function-oriented computational abstrac-

tions which provide services that agents can exploit to support

their activities. As design and implementation decision, each

instance of our artifact can load and encapsulate exactly

one OWL ontology. However, each workspace can have any

number of instances of this artifact, where each instance

references an ontology, and the agents in the same workspace

of the artifacts can observe and manipulate any number of

them. Thus, MAS using our approach can handle multiple

ontologies.

The approach proposed in this paper is an alternative to

agents in which the knowledge is represented and manipulated

by means of ontologies, instead of using a platform-specific

mechanism (such as a belief base). However, an agent may

still use its regular knowledge representation approach simul-

taneous with the new approach proposed here (or completely

replace the old approach). As this paper demonstrates, using

our approach provides advantages in terms of expressiveness,

interoperability, and performance. Our infrastructure layer

implemented in CArtAgO provides ontology features to agents

by using the OWL API [14], which allows to create, ma-

nipulate and serialise OWL ontologies. An artifact makes its

functionalities available and exploitable by agents through

a set of operations and a set of observable properties [2].

144

Fig. 1. Example of agents using the proposed approach (Workspace 1 and 2) versus usual multi-agent systems (Workspace 3).

Operations represent computational processes executed inside

artifacts, that may be triggered by agents or other artifacts.
An example of our approach is showed in Figure 1, where

we have 3 workspaces with different configurations. As de-

scribed, each workspace can have any number of instances of

CArtAgO artifacts, and each artifact loads and encapsulates

an OWL ontology. The agents can observe and manipulate

the correspondent ontologies depending on artifacts available

to them in the workspace. Further, as described, the agents can

still use their regular knowledge representation approach (e.g.,

belief base) simultaneous with the new approach proposed

here, e.g., Workspace 1 in Figure 1, or completely replace

the old approach, e.g., Workspace 2 in Figure 1. The usual

approach, without using our proposed artifact to interact with

ontologies, is shown in Workspace 3 of Figure 1.
Figure 1 clearly demonstrates that our approach allows

agents to share the same ontology, including agents from

different workspaces (e.g., the agents on Workspace 1 and 2

are sharing the Ontology 2), as well as it allows the agents to

use information from specific ontologies, based on their role

in the multi-agent system. Figure 1 shows just one possible

multi-agent system configuration, we emphasise that different

configurations are possible, depending on resources provided

by the multi-agent platform. In other words, our approach

requires that the platform used supports CArtAgO artifacts.

Our artifact provides the following operations:

• addInstance(instance) : adds the new instance in the

ontology;

• isInstanceOf(instance, concept) : verifies if the instance

belongs to the given concept, returning a boolean value;

• getInstances(concept) : retrieves a set of instances

classified in a specific concept, returning a

Set<OWLNamedIndividual>;

• addProperty(domain, property, range) : adds a relation-

ship among the specified instances;

• isRelated(domain, property, range) : verifies if there is

a specific kind of property among the given instances,

returning a boolean value;

• getInstances(domain, property) : retrieves the instances

that are targeted by the given domain and property,

returning a Set<OWLNamedIndividual>;

• addConcept(concept) : adds the new concept in the

ontology;

• isSubConceptOf(subConcept, superConcept) : verifies if

the first concept is subclass of the second one, returning

a boolean value; and

• getConcepts(instance) : retrieves a set of concepts for the

given instance, returning a Set<OWLClass>.

145

IV. USAGE EXAMPLES OF THE ONTOLOGY ARTIFACT

We explain the use of our approach with a scenario com-

monly used in the agent literature: suppose a MAS which

represents a soccer team and that each role is represented

by concepts in an ontology. For example, a soccer team has

players who can be right midfielders, which specialises the

concept of midfield, which is a subclass of player, and so on.

In certain moments the coach agent of a team needs to choose

a player to replace other. To make its decision the coach agent

just needs to look for the corresponding ontology concept and

choose a player among the individuals of that concept.

A. Agent Decision Making using Ontology Information

Decision making is a process where an agent looks for the

information available to it to decide which course of action to

follow. This information generally comes from its environment

perceptions, its initial beliefs, or from the communication with

others agent, (i.e., beliefs from different sources). This work

proposes an infrastructure layer in the form of a CArtAgO

artifact to access domain specific knowledge provided by

ontologies in a way that agents can use such information to

make their decisions. Decision making is one example of how

our approach may be employed, however it can be used in

other domains where information and reasoning provided by

ontologies is necessary or useful. In our example, the coach

agent uses an ontology describing the team members and the

roles of each agent/player in several situations (e.g., to retrieve

information, reason and make its decisions).

This section shows examples of plans in Jason, which have

the following format1: triggering event : context <- body,

where the triggering event represents a new agent goal (or

belief), and has a format such as !goal(Parameter), the

context which defines the required preconditions to perform

that plan, and the body that is a sequence of actions and sub-

goals to fulfil that plan.

According to the soccer team scenario, the ontology con-

cepts model soccer roles, such as Player, Midfield and Right

Midfield (represented as concepts such as C1, C2 and C3).

The instances may represent Players, e.g., i1 can be a player

whose role is Right Midfield (concept C3). The instance i1
can be related with i2 through r1 (e.g., r1 can be defined as

“is a player less defensive than”). Suppose an agent that needs

to make a decision about which course of action to follow

considering its context that is represented in an ontology.

This decision can be guided, for example, by checking if a

particular individual belongs to a particular concept. Using

operations provided in the CArtAgO artifact presented in this

paper to access the ontology, the agent can obtain the required

information by executing the operation isInstanceOf, as

shown in Figure 2. This operation returns a boolean, which is

true if the individual queried, i1, belongs to a given concept

C3, or false in the other case. The return unifies with the last

parameter of the operation (R), which the agent uses to decide

1We refer the reader to [4] for more details about the syntax and semantics
of the language.

between executing action_a1 or action_a2. Suppose a

coach that needs to choose a player in some position, which is

done by querying player agents that belongs to the desired role

encoded as concepts in the ontology. For example, if in a given

moment a player is injured, then the coach agent needs to scale

another player in that position. To make this, the coach checks

if a player agent belongs to the right midfield role. In this

scenario, the coach has perceived that the injured player plays

in front, but it does not remember its exact role (right midfield

or left midfield). After checking this information, which is

encoded as concepts in the ontology, the coach can make the

decision of scaling a new player.

Fig. 2. Jason plan using ontological knowledge (isInstanceOf operation).

Now, suppose that an agent needs to recover all individuals

who participate in a particular relationship. The agent can use

this information to make a decision about the existence of

an individual in the returned set, or to select one of these

individuals for a particular need. In this case, the operation

getInstances can be used, as presented in Figure 3. The return

of this operation is a set of individuals which have that

relationship (r1) with the given instance (i2). Then, this

plan tests if the set returned is empty, which leads to the

execution of action_03 if true, or in the other case the

agent will pursue a goal involving a new decision making

which uses the set of individuals returned (goal3). In our

example, suppose that the coach wants to scale more defensive

players to replace a particular player (i2) using the relation

defensive substitution (r1) which returns the list of defensive

substitutions available for that player. If the list is empty,

the coach may decide to reposition the players to have a

more defensive team (action_03). In other case, where

there is at least one player more defensive to substitute i2,

the coach may choose one player of this set to be scaled

(!goal3(Set)).

Fig. 3. Jason plan using ontological knowledge (getInstances operation).

V. COMPARING ONTOLOGY AND AGENT APPROACHES

An agent can represent its knowledge within its internal

structures (e.g., its belief base), or in external structures (e.g.,

an ontology). This paper shows an artifact for agents to work

with knowledge represented in ontologies, and such approach

offers advantages in terms of expressiveness and reusability.

146

More expressiveness is obtained by the execution of semantic

reasoners over the ontology; and more reusability comes from

the possibility of different platforms updating and querying the

same repository and formalism. Despite these improvements,

programmers would be interested to known which approach is

the fastest. So, we conducted an experiment to verify which

approach presents better performance in terms of execution

time.

To compare the ontology reasoning with the reasoning

executed only in the agents, we defined ways to convert on-

tology statements to agent code, as depicted in Table I. These

equivalences allow us to execute both approaches (which will

return the same result) to compare their performance (i.e., the

performance of reasoning with the ontology against simulating

the same reasoning inside agents). Thus, the proposed artifact

offers a new way to represent knowledge and new operations

compared when using Jason alone and the proposed CArtAgO

artifact to integrate agents with ontologies. For simplicity

reason, Table I shows only the main statements which were

used to test our approach of reasoning with the ontology in

order to compare it with simulating the same reasoning only

inside agents.

TABLE I
STATEMENTS IN ONTOLOGIES AND IN JASON CODE.

Statement Ontology Jason
x is instance of A x : A A(x)

x has property P targeting y (x,y) : P P(x,y)

B is subclass of A B � A A(x) :- B(x)

If B then A (B implies A) B ⇒ A A :- B

A. Experiment Description

Our experiment compares the performance of executing

agent plans that follow one of these two approaches for

handling knowledge (internal or external structures). One

approach uses our CArtAgO artifact to query information

from ontologies; and the other approach queries the knowledge

stored in the agent belief base. To access the corresponding

performance impact, when using ontologies the number of

individuals is increased, and when using the belief base the

ontologies were converted to beliefs and rules in Jason. In

both approaches we measured and compared the execution

time for an agent to retrieve its information (from queries in

an ontology or from its belief base).

The ontology used has 3 concepts (e.g., C1, C2 and C3)

defined such as C3 is subclass of C2, and C2 is subclass of

C1. The number of individuals ranges from 100 to 100.000,

which are asserted to the most specific concept, in this case

C3. The executed queries verify if an individual is an instance

of the most specific (C3) and the most generic concept (C1).

These queries were performed and compared both in ontology

reasoning, and in Jason, and these queries return true, since an

instance of C3 is inferred as C1 and the queried individuals

were asserted as C3. All tests were executed in the same

computer, which is a Mac Pro Server (OS X 10.9.4) with two

6-core Intel Xeon (2.4 GHz) CPU, 32 GB of RAM (DDR3

1333MHz) and 2 TB of disk storage. Regarding software, we

used Java SDK 1.7 (build 1.7.0 65-b17), Jason 1.3.9, OWL

API 2 version 3.50 and HermiT reasoner version 1.3.8.

The experiments measure the execution time of a Jason plan

which uses an operation of our CArtAgO artifact (e.g., isIn-
stanceOf). The time was measured for a hundred operations,

and the sum of these values was divided by one hundred

to obtain the average time of a single operation. We used

this approach to obtain more accurate results by calculating

an average that avoids spikes (too low or high values). This

process was repeated ten times, and the final result is an

average of these ten executions, each one executing a hundred

of operations. The instances queried are selected based in the

calculation of an interval (interval = NumberOfInstances
NumberOfQueries),

where it is ensured that it will be selected members of all

set, and not only members at the start or at the end of the set

(uniformity).

B. Experiment Results

The results demonstrate that Jason performance can be

improved by using this new approach instead of querying and

reasoning with only the regular belief base. The execution time

was measured to retrieve the same information, however in one

case it is represented and retrieved from the ontology using

our artifact, and in the other case it is stored and queried

in the regular Jason belief base. When using ontologies, we

tested two alternatives: with or without the execution of a

semantic reasoner (respectively, Hermit and Structural). We

queried for asserted, inferred and nonexistent knowledge. Our

experiments demonstrate that the proposed approach enhance

Jason performance, and also offers advantages of reuse and

expressiveness. In applications with a low number of instances

(Figure 4) we see a minor loss in performance, however if we

consider instance rich ontologies and applications the proposed

approach shows improvement (Figure 5). We would like to

highlight that these two approaches are not mutually exclusive,

which means that the agent programmer can choose to use

��

��

��

��

��

��

�	

�

���� ���� ���� ���� ���� �	�� �
�� ���� ���� �����

�
��

��
��
	

��
�

�

��
�������	��������

�������	
������������������

�����������
�	�
�

�������

Fig. 4. Performance to retrieve asserted knowledge from a small number of
individuals (instance of C3 axiom).

147

�

�

�

�

�

�

�

�

�	

 �	

 �	

 �	

 �	

 �	

 �	

 �	

 �	

 �
	

�
��

��
��
	

��
�

�

��
�������	��������

�������	
������������������

��������
�����

�����

�

�

��

�

��

�

��

�

�
	

 �
	

 �
	

 �
	

 �
	

 �
	

 �
	

 �
	

 �
	

 �

	

�
��

��
��
	

��
�

�

��
�������	��������

�������	
������������������

��������
�����

�����

�

�

��

�

��

�

��

�

�
	

 �
	

 �
	

 �
	

 �
	

 �
	

 �
	

 �
	

 �
	

 �

	

�
��

��
��
	

��
�

�

��
�������	��������

�������	
������	������������

��������
�����

�����

�

�

�

�

�

�

�
	

 �
	

 �
	

 �
	

 �
	

 �
	

 �
	

 �
	

 �
	

 �

	

�
��

��
��
	

��
�

�

��
�������	��������

�������	
�����������	����������

��������
�����

�����

Fig. 5. Performance to retrieve asserted, inferred and nonexistent knowledge using ontology versus agent approaches.

them together, or just one if desired.

The experiments consider different sizes of ontologies, for

example, Figure 4 shows our results with instances ranging

from 100 to 1.000 instances. The results using ontologies

with more instances (until 100.000 instances) are depicted in

Figure 5. All tests demonstrate that the best performance is

obtained when using our artifact with the Structural approach.

When considering a large number of instances, the worst

performance obtained comes from using Jason regular belief

base. When retrieving inferred information (i.e., it is not

explicit asserted), the performance of ontological approaches

is similar for asserted facts. However, the regular belief base

of Jason takes more time to apply the rules and return the

result. When retrieving nonexistent information (which is not

explicit asserted and cannot be inferred), the performance of

ontological approaches is similar to previous ones. However,

the regular belief base of Jason takes even more time than the

previous cases.

VI. RELATED WORK: AGENTS & ONTOLOGIES

AgentSpeak-DL [11] is an agent-oriented programming

language that extends agents’ belief base with Description

Logic. The advantages of integrating ontologies with agents

are: (i) more expressive queries in the belief base, since

its results can be inferred from the ontology and thus are

not limited to explicit knowledge; (ii) refined belief update

given that ontological consistency of a belief addition can be

checked; (iii) the search for a plan to deal with an event is

more flexible (not limited to unification), i.e., subsumption

relationships between concepts can be considered; and (iv)

agents can share knowledge using ontology languages, such

as OWL. AgentSpeak-DL extends agents’ belief base with

Description Logic in which the belief base includes: (i) one

immutable TBox (terminological box, or conceptualisation)

that characterises the domain concepts and properties; and

(ii) one ABox (assertion box, or instantiation) with dynamic

factual knowledge that changes according to the results of

environment perception, plan execution and agent communica-

tion. AgentSpeak-DL approach enriches the agent belief base

with the definition of complex concepts that can go beyond

factual knowledge [11].

JASDL [12] implements AgentSpeak-DL in Jason to merge

the agent belief base with ontological reasoning. It provides

ontology manipulation capabilities to agents, (i.e., it is a

practical approach for using ontologies and semantic reasoning

in Jason agents). Agent programmers benefit from features

such as plan trigger generalisation based on ontologies and

the use of such knowledge in belief base querying. Jason

modules were altered to implement JASDL, such as the

belief base (that was extended to partly resides within an

ontology ABox and a DL reasoner), the plan library and

the agent architecture. JASDL provides reuse of ontological

knowledge, new inferences that an agent can make based on

148

TABLE II
COMPARING RELATED WORK IN THE AREAS OF ONTOLOGIES AND MULTI-AGENT SYSTEMS.

Research Overview of the work Ontologies included MAS platforms used
AgentSpeak-DL [11] An approach for using on-

tologies during agent reason-

ing to extend agents’ belief

base with DL

It is a way for agents to

represent knowledge and

interact with ontologies

AgentSpeak

JASDL [12] An implementation of

AgentSpeak-DL in the Jason

platform

Jason agents can repre-

sent knowledge and inter-

act with ontologies

Jason

CooL-AgentSpeak [13] An extension of AgentSpeak-

DL with plan exchange and

ontology services

Each agent has access only

to its private ontologies

Jason

Our approach A CArtAgO infrastructure

to integrate multi-agent plat-

forms with ontologies

Agents can access and ma-

nipulate shared ontologies

using our artifact

Any platform support-

ing CArtAgO artifacts

(e.g., Jason)

its beliefs, knowledge consistency, enhanced plan searching;

and improved message processing with semantically-enriched

inter-agent communication.
CooL-AgentSpeak [13] is an extension of AgentSpeak-DL

with plan exchange and ontology services. It implements a

CArtAgO artifact functioning as ontology repository which

stores a possibly dynamic set of ontologies and offers ontology

matching/alignment features. It searches for ontologically rel-

evant plans not only in the agent’s local plan library, but in the

other agents’ libraries too, according to a cooperation strategy

(that is not based solely on unification and on the subsumption

relation between concepts, but also on ontology matching). In

short, CooL-AgentSpeak performs cross ontological unifica-

tion for agents that do not disclose their ontologies to each

other (that cooperate while preserving their privacy).
Our approach differs in some points. First, we implement

an infrastructure layer which works as an interface between

ontologies and MAS using a CArtAgO artifact that can

be reused in several MAS platforms. On the other hand,

AgentSpeak-DL [11] targets AgentSpeak, and JASDL [12]

addresses Jason. CooL-AgentSpeak [13] also uses CArtAgO

as a mean to integrate ontologies and agents, but our work

differs from this one since we assume that agents may share

their ontologies, while in CooL-AgentSpeak the agents do not

share their ontologies. A comparison among such related work

is depicted in Table II.
We have done previous work towards combining ontology

and multi-agent technologies, whereby we developed tools

to model multi-agent systems using an ontology as a meta-

model [15]. That work extends our initial ideas towards

models of multi-agent systems represented as abstractions in

ontologies [16], [17]. We also developed an approach [18]

for using an ontology to represent planning domains in HTN

(Hierarchical Task Network). That approach can be used in

developing plans for the Jason platform, given the similarity

of HTN and Jason plans. However, our previous work does

not address the use of ontologies as sources of information to

be explored by agents.

VII. FINAL REMARKS

The integration of agent platforms with ontologies enables

agents the ability to operate in a Semantic Web context. This

work investigates how to enable current agent-oriented devel-

opment platforms to transparently merge with such semantic

technologies. As result, developers may obtain new features

for developing complex software systems with a semantic

infrastructure that applies software and knowledge engineering

principles. The development of applications that integrate

semantic and agent technologies is still an open challenge.

To address this issue, we pointed out that ontology languages

offering semantic querying and reasoning should be suitably

integrated into agent development frameworks.

Our implementation to integrate ontologies within agents

uses an artifact implemented in CArtAgO [2] that provides

agents the ability to reason and manipulate ontologies. Our

infrastructure is applicable to several agent-oriented platforms

to engineer ontology-based AI applications, and we demon-

strate how we use it in Jason [4] to access ontologies in

OWL [5]. We measured the performance of our approach

and compared with an alternative one which stores all the

knowledge inside the agent, which demonstrated that the

technology being proposed enable the development of new and

more powerful AI applications. However, these approaches can

be used together, in other words, an agent can represent part

of its knowledge in its own belief base and part in ontologies

to be accessed using the proposed artifact. As future work,

we plan to carry out experiments to compare the use of our

approach together with and against other agent platforms.

ACKNOWLEDGMENTS

Part of the results presented in this paper were obtained

through research on a project titled “Semantic and Multi-Agent

Technologies for Group Interaction”, sponsored by Samsung

Eletrônica da Amazônia Ltda. under the terms of Brazilian

federal law No. 8.248/91.

149

REFERENCES

[1] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: a
practical OWL-DL reasoner,” Web Semant., vol. 5, no. 2, pp. 51–53,
Jun. 2007.

[2] A. Ricci, M. Piunti, and M. Viroli, “Environment programming in multi-
agent systems: An artifact-based perspective,” Autonomous Agents and
Multi-Agent Systems, vol. 23, no. 2, pp. 158–192, Sep. 2011.

[3] A. R. Panisson, A. Freitas, D. Schmidt, L. Hilgert, F. Meneguzzi,
R. Vieira, and R. H. Bordini, “Arguing About Task Reallocation Using
Ontological Information in Multi-Agent Systems,” in 12th International
Workshop on Argumentation in Multiagent Systems, 2015.

[4] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming Multi-
Agent Systems in AgentSpeak using Jason (Wiley Series in Agent
Technology). John Wiley & Sons, 2007.

[5] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein, “OWL Web
Ontology Language Reference,” W3C, Tech. Rep., February 2004.
[Online]. Available: http://www.w3.org/TR/owl-ref/

[6] T. R. Gruber, “A translation approach to portable ontology specifica-
tions,” Knowl. Acquis., vol. 5, no. 2, pp. 199–220, Jun. 1993.

[7] M. Hadzic, P. Wongthongtham, T. Dillon, and E. Chang, Ontology-
based multi-agent systems, ser. Studies in Computational Intelligence.
Springer, 2009.

[8] F. Baader, I. Horrocks, and U. Sattler, “Description logics,” in Handbook
on Ontologies, S. Staab and R. Studer, Eds. Springer, 2009, pp. 3–28.

[9] Q.-N. N. Tran and G. Low, “MOBMAS: a methodology for ontology-
based multi-agent systems development,” Inf. Softw. Technol., vol. 50,
no. 7-8, pp. 697–722, Jun. 2008.

[10] R. H. Bordini, M. Dastani, J. Dix, and A. E. F. Seghrouchni, Multi-Agent
Programming: Languages, Tools and Applications, 1st ed. Springer
Publishing Company, Incorporated, 2009.

[11] A. F. Moreira, R. Vieira, R. H. Bordini, and J. F. Hübner, “Agent-oriented
programming with underlying ontological reasoning,” in Proceedings of
the 3rd international workshop on Declarative Agent Languages and
Technologies, ser. DALT’05. Springer-Verlag, 2006, pp. 155–170.

[12] T. Klapiscak and R. H. Bordini, “JASDL: a practical programming
approach combining agent and semantic web technologies,” in The 6th
international workshop on Declarative Agent Languages and Technolo-
gies, vol. 5397. Springer, 2008, pp. 91–110.

[13] V. Mascardi, D. Ancona, M. Barbieri, R. H. Bordini, and A. Ricci,
“CooL-AgentSpeak: Endowing AgentSpeak-DL agents with plan ex-
change and ontology services,” Web Intelligence and Agent Systems,
vol. 12, no. 1, pp. 83–107, 2014.

[14] M. Horridge and S. Bechhofer, “The OWL API: A Java API for OWL
ontologies,” Semant. web, vol. 2, no. 1, pp. 11–21, Jan. 2011.

[15] A. Freitas, L. Hilgert, S. Marczak, F. Meneguzzi, R. H. Bordini, and
R. Vieira, “A multi-agent systems engineering tool based on ontologies,”
in 34th International Conference on Conceptual Modeling, Stockholm,
Sweden, ser. Lecture Notes in Computer Science. Springer, 2015.

[16] A. Freitas, R. H. Bordini, F. Meneguzzi, and R. Vieira, “Towards
integrating ontologies in multi-agent programming platforms,” in 2013
IEEE/WIC/ACM International Conference on Intelligent Agent Technol-
ogy, IAT 2013, Atlanta, Georgia, USA, 2013.

[17] A. Freitas, D. Schmidt, A. Panisson, F. Meneguzzi, R. Vieira, and
R. H. Bordini, “Applying ontologies and agent technologies to generate
ambient intelligence applications,” in Joint Proceedings Collaborative
Agents – Research & Development, CARE for Intelligent Mobile Services
& Agents, Virtual Societies and Analytics, 2014, pp. 22–33.

[18] ——, “Semantic representations of agent plans and planning problem
domains,” in Engineering Multi-Agent Systems, ser. Lecture Notes in
Computer Science, F. Dalpiaz, J. Dix, and M. van Riemsdijk, Eds., vol.
8758. Springer International Publishing, 2014, pp. 351–366.

150

