
Exploring the Impact of Soft Errors on Noe-based
Multiprocessor Systems

Felipe T. Bortolon*, Geancarlo Abich*, Sergio Bampi*, Ricardo Reis*, Fernando Moraest, Luciano Ost:l:
* UFRGS - Porto Alegre - RS - Brazil- {ftbortolon, gabich, bampi, reis}@infufrgs.br

t PUCRS - Porto Alegre - RS - Brazil- {femando.moraes}@pucrs.br
:I: University of Leicester - United Kingdom - {luciano.ost}@leicester.ac.uk

Abstract-Software reliability is an essential design metric in
emerging large-scale multiprocessor embedded systems. Design
ers should identify soft error susceptibility of multiple applica
tions executing in parallel early in the design time to ensure
reliable system operation. This work proposes a non-intrusive
fault injection engine that enables to conduct bespoke soft error
analysis, allowing to identify and understand the soft error
propagation through the processing elements (PEs). The proposed
fault injection campaign evaluates the impact of soft errors
considering real benchmarks in an RTL model of a distributed
memory NoC-based multiprocessor. Experiments demonstrate
that 19% of soft errors are propagated to other PEs, where
31.6% of them led to erroneous computation and 58.4% to a
system crash. Thus, the fault analysis must consider not only its
local effect on the processor and memory but also how the fault
propagates to other system components.

Index Terms-Soft error, Reliability, HDL-based simulation,
Multiprocessor systems.

I. INTRODUCTION

Multiprocessor systems are widely applied in many in
dustrial segments, including mobile, medical and automotive
sectors due to their energy efficiency and performance. Such
systems increase performance by employing multiple proces
sors, which vary regarding structure and energy-efficiency.
While multiple processors enhance system performance and
decrease design cost, the increasing number of processor
cores and internal memory cells along with the growing chip
power densities and the continuous technology shrink makes
underlying systems more susceptible to soft errors [1].

Aiming to access the soft error vulnerability of single [2]
and multicore processors [3], simulation-based approaches
have been used considering different levels of abstraction
and trade-offs. While high-level approaches provide better
modeling capabilities and simulation performance [3], [4] with
accuracy penalties [5], hardware description language (HDL)
and gate-based models have the opposite characteristics [6]
[8]. Despite the performance penalty, the latter approaches
possess a higher modeling fidelity and result accuracy than the
first one. In general, researchers have focused on evaluating
the soft error vulnerability of single processor systems due
to several reasons, including the high simulation cost and the
lack of free and stable multiprocessor platforms. To enable
the development of efficient soft error mitigation techniques,
emerging tools and techniques must provide engineers with
effective means to identify most common sources of errors
and their impact on the entire system behavior. Underlying
requirement is even more vital in multiprocessor systems,

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

which have several concurrent events and race conditions,
posing evaluation challenges.

Considering this context, the goal of this work is to present
a non-intrusive fault injection engine that allows software
engineers to conduct customized soft error analysis of NoC
based multiprocessor systems. The promoted engine enables to
identify and understand the soft error propagation through the
multiprocessor system components early in the design cycle.

The contributions of this paper include: (i) development of a
portable non-intrusive Fault Injection Engine for Multiproces
sor Systems; (ii) detailed evaluation of the impact of soft errors
on a real NoC-based multiprocessor platform; (iii) a novel
soft error propagation analysis among the system components,
considering real applications.

The remaining of this paper is organized as follows. Section
II presents the proposed fault injection engine. Afterwards,
Section ill discusses the fault injection campaign results.
Section IV evaluates the error propagation across the PEs.
Finally, Section V draws the conclusions and remarks.

II. PROPOSED FAULT INJECTION ENGINE

To overcome the lack of soft error reliability analysis
support for multiprocessor platforms, a non-intrusive and
automated engine that enables to inject faults and evaluate their
impact on underlying systems was developed. It automatically
classifies the effects of a fault injection based on the behavior
of available signals, e.g., interruption signal. The proposed
environment is autonomous and requires little interaction with
it, after its configuration.

Although developed engine enables the injection of faults
(i.e. bit-flips) in memory and general micro-architecture CPU
components, this work only considers the injection of single
bit-flips in registers elements [9]. Section II-A describes the
fault injection flow and the classification used throughout the
paper. Next, Section II-B explains the hardware-independent
fault injection mechanism and how interrupt signals (IRQ) aid
in their classification.

A. Execution Flow
The method to simulate a fault injection campaign consists

of the four-phase flow depicted in Fig. 1. Given as input an
HDL design, the system kernel, and an application source
code, it produces a report detailing which types of soft errors
the system is most vulnerable. Note that since this work
focuses on exploring the impact of soft errors on NoC-based
multiprocessor systems, this Section does not discusses the
platform creation, i.e., outside the dashed rectangle.

[;} ("" - - - - - - - - Gold - - - - - - - - - ~,

Golden Reference Data
Model -D Report

=.S

'" IG,ld
: I--: F"II

~
.....

: Reference Data=
Ch"k '~

..
·-----D'"'.. Fault'"" AnalysisU

~i-'"..
~

r- For each
Fault Fault I Fault
Setup ~ Simulation

Fig. 1: Fault injection flow.

In the first phase, Golden Model, the target architecture
is simulated in the absence of faults to extract the reference
system behavior. The obtained information comprises the
total simulation time, instruction count, and the states of the
memory and the register bank at the moment the application
finishes the execution. This information is part of the input for
the last phase of the flow. Afterwards, the Fault Setup phase
defines the fault configuration or, in other words, the fault
location (register), position (register bit) and time. A random
uniform function generates those parameters, which is a well
accepted fault injection technique that covers several types of
failures on a system at a low computational cost [10]. The
third phase, called as Fault Simulation, simulates the target
architecture in the presence of a fault with the previously
defined characteristics. This phase, collects the same design
information as the first for comparison. Note that the Fault
Simulation and the Fault Analysis are an interactive process.
For each fault defined in the Fault Setup phase, one simulation
is executed, and the results are analyzed.

For each fault injection campaign, the results are compared
against the gold reference model, aiming to identify any mis
behavior. This work adopts the Cho et al. [11] classification,
which categorizes faults into five groups:

• Vanished, when no fault traces are left;
• ONA (Output not Affected), when the resulting memory

is not modified, however, one or more remaining bits of
the architectural state is incorrect;

• OMM (Output Mismatch), when the application finishes
without any errors but the resulting memory is affected;

• UT (Unexpected Termination), when the application fin
ishes abnormally with an error indication;

• Hang, when the application does not finish, and it is
preempted using a timeout.

Cho's classification is employed because it provides a macro
perspective of the most sensitive parts of the system at a small
analysis cost. Therefore, the target multiprocessor system only
needs a few interrupt signals to allow detecting these errors,
and results offer to the designer insights on the hardware and
software combination susceptibility.

B. Injection/Classification Engine
For several years now, Tcl has become the de facto standard

embedded command language for Computer-Aided Design
(CAD) applications, which is offered by several vendors.

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

Accordingly, both the developed fault injection and the clas
sification techniques rely on Tcl language. Therefore, it is
important to clarify that any multiprocessor system can use
developed scripts given it comply with certain aspects.

First, the registers must be accessible through the simulator
tool. Second, the PE must provide some interrupt signals that
the Tcl script uses to classify faults. Finally, the simulator
must offer specific commands to insert faults without mutants
or saboteurs such as the Mentor Graphics Questa simulator,
used throughout this work.

As previously detailed, the Tcl scripts are responsible for
generating the different single-bit flip configurations, inserting
and classifying them. More specifically, to inject a fault, the
simulator initially simulates up to the injection time, then it an
alyzes the victim register value and flips the target bit using the
force -deposit command. Afterwards, the framework monitors
some interrupt signals from the system to identify and classify
system faults. To comply with Cho's fault organization, the
designer has to specify in the scripts the location of the register
bank, the memory, the program counter, and the interrupt
signals to identify hardware failures, e.g., invalid memory
access, arithmetic abort, etc. If the simulation completes at the
expected time, without any rising IRQ, the Tcl scripts analyze
both the memory and register bank from the Fault Simulation
to verify whether they hold the same values as the Gold Model.
The engine uses those information to classify the fault and
repeats these steps until all necessary simulations complete.

Although HDL simulation offers a high precision, the
time it requires to complete a fault injection campaign is
impractical for large scale platforms. Therefore, the developed
simulation infrastructure utilizes checkpoints to boost up the
fault injection simulation. The use of checkpoints consists
in collecting platform components context during the Gold
Model in order to restore the appropriate context later during
the fault injection campaign, reducing the amount of re
executed events.

III. EXPERIMENTAL SETUP AND RESULTS

To validate and evaluate the proposed engine, this work
adopts the public-available HeMPS platform [12]. Fig. 2 illus
trates the HeMPS, a homogeneous NoC-based multiprocessor
system connected to an application repository.

Fig. 2: Platform Example.

Each PE contains a MIPS-like processor, a DMNl (a net
work interface with DMA capabilities), a local memory and,
a NoC router. The PEs executes a small operating system
(f.Lkernel) and may assume either manager or slave roles.
A manager PE (MP) receives application requests from the

50%

(L)g 75%
~....
::::l
U
U
o

I00 500 1000 100 500 1000 100 500 1000 100 500 1000

PEO PE I PE2 PE3

Target PE / injections

.=: 25%
~

U;..

DVanished DONA f!lOMM ilIUT _Hang
100%

Fig. 4: Evaluation of fault occurrence precision according to the
number of fault injection simulations (executed application: MPEG).

Fig. 5 presents the fault inject campaign results for DTW
(I), Dijkstra (II), and MPEG (ill) considering 100 fault simula
tions, grouped according to the PE where the fault is injected.
As Fig. 3 shows, applications have distinct behaviors and
mappings. Thus, the results discussion is made separately for
each application.

0%

Fig. 5: Fault injection campaign results grouped according to where
the fault is injected (PE) for each application: (I) DTW, (II) Dijkstra,
and (III) MPEG.

The results from MPEG (columns ill) exhibit a higher
occurrence of OMMs. When faults are injected into PEl and
PE2, which execute two similar tasks with an intense memory
write access, the occurrence of OMMs reaches 77% and 74%
respectively. Nevertheless, that number reduces to 38% in PE3,
which executes a single memory intensive task (NLC) and a
lightweight function without data dependence (start), used for
synchronization purpose. In this case, the number of OMM
decreased by half and vanished faults increased by 3.5 times.

In turn, the DTW application (column I) has higher com
munication workload and fewer write operations when com
pared to the MPEG. Accordingly, the number of OMM faults
severely reduces to 4%, but the Hang occurrences rise to
13%, for PEl, PE2, and PE3. The reason for this behavior
is that the message passing interface is vulnerable to packet
modifications, which might cause a PE to wait indefinitely for
a packet. Nonetheless, packet corruption is not as frequent as
memory accesses in MPEG, and thus not as likely to generate
faults.

Fig. 3: Task graph and mapping (color/fill) for all applications. PEO
is the manager processor, not executing applications' tasks.

The benchmarks have distinct behaviors to ensure a broader
range of results. The MPEG has intense memory accesses
but small communication. On the other hand, the DTW per
forms significant communication between tasks in a sequential
consumer-producer fashion. In tum, similar to the DTW the
Dijkstra has high communication between tasks but in a
distinct manner. Instead of a sequential data distribution, only
one task concentrates the requests for data computation, and
thus the returning result. Comparing to the MPEG, the last
two do not execute as much memory write operations.

PEl ~ PE2 • PE3

A. Experimental Setup

The experiments adopt a 2x2 HeMPS platform, with four
PEs. From those, one is the MP (PEa) and the remaining SPs
(PEl, PE2, and PE3), which are able of executing two tasks
simultaneously. The experiments consider three applications:
DTW, Dijkstra, and MPEG. The MP maps the applications'
tasks onto the SPs. Fig. 3 presents the task graph of each
application, as well as their task mapping. Each application is
evaluated separately, with the injection of a single-bit flip per
simulation. Moreover, the experiments consider that faults can
be injected in any of the available PEs individually.

external memory (application repository) and executes task
mapping. Slave PEs (SP) execute the application tasks, en
abling multitasking and task communication through message
passing.

B. Results

While high-level simulation approaches can afford millions
of fault injection scenarios [3], HDL-based simulation restricts
the experiments to few thousands of faults, considering small
multiprocessor systems. Fig. 4 presents in the Y-axis the per
centage of fault occurrence and in the X-axis the PE number
where a fault was injected, using 100, 500 and 1,000 simu
lations, evaluating the number of required fault scenarios to
obtain representative results. The average difference between
1,000 simulations w.r.t 500 and 100 simulations is 3% and
9%, respectively. Thus, the simulation of 100 fault scenarios
provides a good insight on the overall system behavior with
reasonable simulation time and small accuracy loss.

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

Propagated to PE memory. Propagated to PE register bank.

Fig. 6: Fault propagation to other PEs when injecting faults at a target PE.

75%

50%

(b)

DPEO 0 PEl 0 PE2 0 PE3

PEO PEl PE2 PE3 PEO PEl PE2 PE3 PEO PEl PE2 PE3

DTIV Dijkslra MPEG

Application 1Target PE

0%

25%

100%

(a)

100%
o PEO 0 PEl 0 PE2 ~ PE3

g 75% c
0

'';:; .~

'"

_~HH
OJ) 50% OJ)

'" '"0..

nnn_,..,,,,,H
0..

2 2
"- Q.;
~ 25% ~

:::l :::l

'"r.c. '"r.c.
0%

PEO PE I PE2 PE3 PEO PEl PE2 PE3 PEO PEl PE2 PE3

DTIV Dijkstra MPEG

Application 1Target PE

The Dijkstra application (column II), has similar character
istics to the DTW but with different a communication scheme.
While the DTW has one task to divide the computation and
gather results, the Dijkstra has only one for both functions
(Fig. 3). This difference means that PE3 can execute two tasks
with different profiles and thus reducing the occurrence of
Hang failures by 7%. Similar to the MPEG, results demon
strate that mapping tasks with different functionality to the
same PE can attenuate a particular type of soft error.

Finally, under the presence of faults, the manager pro
cessor (PEO) exhibits a different behavior than SPs because
it performs specific management functions, which demand
additional operations (e.g. access to the application repository).
Therefore, the behavior of faults injected in PEO is similar
to the remaining PEs since they execute about the same
p,kemel. Results show a minor variation for the OMM faults
in the DTW scenario. This variation is due to the fact that
DTW has two initial tasks, while MPEG and Dijkstra have
one, and a higher number of interactions with other tasks.
Nonetheless, the behavior of fault injects in p,kemel is similar
to all applications.

This set of experiments demonstrate the effectiveness of
the proposed fault injection engine, which enables a detailed
evaluation of the effect of faults on different applications
mapped onto a NoC-based multiprocessor system. The exper
iments also revealed the task mapping impact on the system
resilience, i.e., it is possible to reduce the soft-error occurrence
depending on the mapping strategy. The next section evaluates
fault propagation and its effect on the operation of other PEs.

IV. FAULT PROPAGATION

In multiprocessor platforms, it is desirable to evaluate not
only the impact of a fault on an individual PE, but whether this
fault is propagated to other PEs as well. This paper defines an
error as propagated when it meets the following definitions.

Definition 1. An error is considered as propagated when a
fault injected into a PE affects the memory and/or the register
bank of another PE.

Definition 2. At the end of an application execution, a
memory or register bank is considered as affected when it
stores a different value from the fault-free system. This is only

valid when either the application (i) terminated spontaneously
or (i) it executed indefinitely.

The second definition excludes the cases when the simula
tion terminates unexpectedly and hence has not given enough
time for the system to stabilize. Fig. 6 presents the fault
propagation (FP) for all applications separating affected entity.
Overall, DTW is the application that propagates more faults
to other PE memories and register banks. The MPEG presents
the lowest FP rate on the register bank (Fig. 6.b) because it
contains lesser data exchange, reducing the chance to affect
the workload output. However, MPEG reaches almost 50%
of FP on memory (Fig. 6.a) for PE3, which is justified by
the memory intensive nature of the (IVLC) task. This high
FP rate is explained because a fault (i.e., bit flipped error),
in most of the cases, is propagated whenever the first access
to an affected data is a read operation. It is evident that the
FP rate increases when faults are injected into PEs that are
executing initial tasks. The PEO presents the lower FP rate
because it executes only lightweight management functions
responsible for sending and receiving small control packets
and application object codes. Further, results also demonstrate
that of up to 90% of propagated errors, led to either erroneous
computation or a system crash operation.

Conducted experiments provide comprehensive determina
tion of whether faults propagate and impact system opera
tion, demonstrating the importance of providing engines with
appropriate means that are able to identify not only the
occurrence but also the system characteristics that contribute to
the error propagation (e.g., application flow, data dependence,
task mapping).

V. CONCLUSIONS

This paper developed a portable and non-intrusive fault
injection engine for multiprocessor systems. Moreover, it pro
posed a methodology to evaluate fault propagation that allows
a more detailed analysis of MPSoCs. The proposed engine
and method demonstrate the importance of early evaluation of
soft errors in design time and that 19% of SEUs injected into
a single core propagated to others in the worst case for the
applications considered herein.

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

REFERENCES

[I] R. C. Baumann, "Radiation-induced soft errors in advanced semi
conductor technologies," IEEE Transactions on Device and Materials
Reliability, vol. 5, no. 3, pp. 305-316, Sept 2005.

[2] W. Mansour and R. Velazco, "An Automated SED Fault-Injection
Method and Tool for HDL-Based Designs," IEEE Transactions on
Nuclear Science, vol. 60, no. 4, pp. 2728-2733, Aug 2013.

[3] F. Rosa, L. Ost, R. Reis, S. Davidmann, and L. Lapides, "Evaluation
of multicore systems soft error reliability using virtual platforms," in
NEWCAS, 2017, pp. 85-88.

[4] M. Kaliorakis, S. Tselonis, A. Chatzidimitriou, N. Foutris, and D. Gi
zopoulos, "Differential Fault Injection on Microarchitectural Simula
tors," in IISWC, 2015, pp. 172-182.

[5] T. Flenker, 1. Malburg, G. Fey, S. Avramenko, M. Violante, and M. S.
Reorda, "Towards Making Fault Injection on Abstract Models a More
Accurate Tool for Predicting RT-Level Effects," in ISVLSI, 2017, pp.
533-538.

[6] J. C. Baraza, J. Gracia, D. Gil, and P. J. Gil, "A prototype of a VHDL
based fault injection tool," in DF7VS, 2000, pp. 396-404.

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

[7] S. S. Mukherjee, C. Weaver, 1. Emer, S. K. Reinhardt, and T. Austin, "
A Systematic Methodology to Compute the Architectural Vulnerability
Factors for a High-Performance Microprocessor," in MICRO, 2003, pp.
29-40.

[8] M. Solinas, A. Coelho, J. A. Fraire, N. E. Zergainoh, P. A. Ferreyra,
and R. Velazco, "Preliminary results of NETFI-2: An automatic method
for fault injection on HDL-based designs," in rATS, 2017.

[9] F. M. Lins, L. A. Tambara, F. L. Kastensmidt, and P. Rech, "Register
File Criticality and Compiler Optimization Effects on Embedded Micro
processor Reliability," IEEE Transactions on Nuclear Science, vol. 64,
no. 8, pp. 2179-2187, Aug 2017.

[10] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, "Shoestring: Probabilistic
Soft Error Reliability on the Cheap," in ASPLOS, 2010, pp. 385-396.

[11] H. Cho, S. Mirkhani, C. Y. Cher, J. A. Abraham, and S. Mitra,
"Quantitative evaluation of soft error injection techniques for robust
system design," in DAC, 2013, pp. 1-10.

[12] E. A. Carara, R. P. de Oliveira, N. L. V. Calazans, and F. G. Moraes,
"HeMPS - a framework for NoC-based MPSoC generation," in ISCAS,
2009, pp. 1345-1348.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

