
Runtime Creation of Continuous Secure Zones in Many-Core
Systems for Secure Applications

Luciano L. Caimi∗†, Vinicius Fochi†, Eduardo Wachter†, Fernando G. Moraes†
∗UFFS – Av. Fernando Machado 108E, 89802-112, Chapecó, Brazil – lcaimi@uffs.edu.br

†FACIN - PUCRS – Av. Ipiranga 6681, 90619-900, Porto Alegre, Brazil – fernando.moraes@pucrs.br

Abstract—Security is an important design issue in current many-core
systems. Several applications run simultaneously, processing sensitive
data. The literature describes different attacks on many-core systems,
stealing data from processors, by unauthorized access to the memories,
and from the communication infrastructure, by sniffing the packets or
even modifying them using Hardware Trojans. Thus protect at the same
time the computation and communication infrastructures is a paramount
requirement to add security to applications processing sensitive data.
This paper presents a method to create at runtime secure zones in the
many-core, by reserving the computation and communication resources
exclusively to the secure application. The method isolates the processing
elements of the secure zone, blocking any traffic to cross the region.
Traffic that should cross the secure zone is forwarded to the outside of
the region using a dynamic rerouting mechanism. The main contribution
of this paper is the proposition of an algorithm to define the secure
zone. Results evaluate the cost to execute the proposed algorithm with
different secure zone shapes, showing that its execution cost is small and
that several secure application may execute in parallel, using different
regions of the many-core.

Index Terms—Many-core, MPSoC, Network on Chip, Security, Secure
Zone.

I. INTRODUCTION

As the adoption and complexity of many-core systems increases,
the concern for data protection appears as a major design requirement.
Applications that handle sensitive information running in NoC-based
many-core systems should protect data and code, adding security
mechanisms to prevent attacks. Thus, it is necessary to protect the
application’s data from unauthorized access.

The literature presents a diversity of mechanisms used in NoC-
based many-core systems to protect communication and computation
from attacks. Mechanisms used to protect the communication include:
(i) firewalls [1]; (ii) secure zones [2] ; (iii) routing schemes [3]; (iv)
temporal network partitioning [4] ; (v) cryptography [5]. To protect
computation the main mechanisms used are: (i) spatial and/or logical
isolation [6]–[8]; (ii) secure zones [9].

A secure zone (SZ) is a common mechanism used to protect both
communication and computation resources. Secure zones provide an
interface that isolates the execution and data exchanged between tasks
of the application using some technique, like cryptography, routing
scheme, logical isolation.

The goal of this paper is to present a runtime algorithm to
create secure zones in NoC-based many-core systems to execute
applications with security concerns. Despite the available proposals in
the literature, the method herein presented stands out in the reduced
hardware and software requirements, as discussed in the state-of-the-
art section.

The contribution of this work is twofold. First, using orthogonal
criteria, we present a classification of the available techniques to
create secure zones. Afterwards, the paper presents and evaluates
an algorithm to create continuous secure zones, at runtime, in NoC-
based many-core systems.

II. STATE-OF-THE-ART

Fernandes et al. [2] propose a design-time method that enables
the creation of SZ based on the routing algorithm to mitigate DoS

and timing side channel attacks. The Authors extend the Segment-
based Routing (SBR) to security purposes creating the SBR Security
Zone Awareness (SBR-SZA) that enables the creation of SZs. After
running, at design time, the SBR-SZA, the Region-based Routing
Algorithm (RBR) is used to create routing restrictions avoiding shared
paths between different applications and deadlock-free paths.

Real et al. [6] propose a logical and spatial isolation of sensitive
applications through the dynamic creation of SZs to mitigate DoS
attacks and guarantee data confidentiality and integrity. The method
occurs at runtime. The architecture uses the MPSoCSim, a mesh NoC
where each router is connected to a cluster with 4 processors (with
local memory), 1 shared memory and 1 shared bus. The SZ only
isolates the cluster resources. When a given task sends a message to
a task in another cluster, this message uses an insecure channel. The
performance overhead of the proposed mechanisms increases with
the number of required secure zones.

ARM processors provide the ARM TrustZone (ATZ) [7], a hard-
ware support for the creation at runtime of Trusted Execution
Environments (TEEs) and therefore the isolation of applications in
the same processor. This feature creates 2 virtual processors and 2
Memory Management Units (MMU), allowing to execute a secure
and a non-secure application simultaneously. However, at any instant,
only a single domain in the system can be secured. TEE allows the
secure partition of the shared memory controlling memory accesses
to avoid data extraction and change (mitigating confidentiality and
integrity attacks). Nevertheless, in multicore and many-core archi-
tectures, applications running on different processors share resources
such as the communication infrastructure (NoC, buses) and memory.
Thereby, with TEE, applications running on different processors
are not protected from each other since sharing the communication
infrastructure leads to possible leakage of information.

Isakovic et al. [8] obtain computation and communication pro-
tection using spatial isolation with encryption mechanisms. The
Authors propose an architectural partitioning of the MPSoC resources
at design time to prevent availability, confidentiality and integrity
attacks. The Authors adopt security components like a secure µKernel
and a secure channel infrastructure that includes cryptography and
firewalls. The Authors propose to migrate the security functions from
application components to the security components.

Sepúlveda et al. [9] also protect computation and communication
resources using spatial isolation with encryption mechanisms. The
Authors propose a NoC-based architecture that implements run-time
discontinuous SZs using three cryptographic techniques: hierarchical
Diffie-Hellman, hierarchical Tree-based Diffie-Hellman, and mapping
key predistribution scheme. The method prevents attacks on avail-
ability, confidentiality, and integrity of the system. The architecture
adopts two NoCs: (a) data NoC, used for the application data; (b)
service NoC used to exchange the security control packets (key
exchange, firewall rules, etc.). After mapping the application, one
of the key agreement protocol is executed between the mapped
PEs using the service NoC. The encryption/decryption is obtained
XORing the message with the shared key.978-1-5386-2311-4/18/$31.00 c©2018 IEEE

2018 IEEE 9th Latin American Symposium on Circuits & Systems (LASCAS)

TABLE I: Secure Zone Methods.
Proposal Creation Shape Commun. Sharing Comp. Sharing Method
Fernandes (2016) [2] Design Discontinuous Yes No Routing Tables and encryption
Real (2016) [6] Runtime Discontinuous Yes No Spatial and temporal isolation

ARM (2008) [7] Runtime
Continuous
(same CPU)

Yes Yes Logical and temporal isolation

Isakovic (2013) [8] Runtime Rectangular Yes No Spatial isolation and encryption
Sepulveda (2017) [9] Runtime Discontinuous Yes No Spatial Isolation, firewalls and encryption
Our Proposal Runtime Rectilinear No No Spatial Isolation, wrappers, rerouting

A. SZ Classification

From the above review, Table I classifies the SZ proposals using
a set of orthogonal criteria:

• Creation time: the definition of the SZ occurs at design time
[2] or runtime [6]–[9].

• Shape: the SZ may be discontinuous [2], [6], [9], or continuous
[7], [8], with a rectangular or rectilinear shape.

• Communication sharing: the SZ may allow that flows belong-
ing to sensitive applications share NoC links

• Computation sharing: the SZ may allow that tasks belonging
to sensitive applications share the same processor.

• Methods: the methods used to create the secure zones include
cryptography, routing algorithm, logical isolation, spatial isola-
tion, temporal isolation, rerouting.

Methods deployed at design time enable the adoption of sophis-
ticated and robust algorithms to provide solutions to the security
problem since they do not have limitations related to the computation
time of the heuristics. However, design time methods are not applica-
ble in dynamic workload scenarios. Thus, these methods are limited
to scenarios where the workload is known beforehand, without any
change during the life cycle of the system.

Discontinuous SZ secure zones [2], [6], [9] require more efforts
to prevent attacks, with the use of encryption or routing schemes,
while continuous secure zones can imply internal fragmentation of
resources, i.e., reservation of resources without effective use. The
use of continuous SZ in [7], [8] still exposes the communication to
attackers because the implemented mechanism does not isolate the
communication resources.

As observed in Table I, all reviewed works present communication
sharing, i.e., the traffic of the secure application is subject to timing,
side-channel attacks, DOS and Hardware Trojans. Two situations may
expose the communication to attacks. The first one is due to the
possibility of flows not belonging to the secure application share the
NoC links. The second one is due to the communication of the secure
flows with IPs outside the SZ or due to the adoption of discontinuous
SZ. The standard solution to protect the communication is to adopt
encryption mechanisms.

A common feature observed in Table I is the computation protec-
tion, i.e., the methods reserve the processors required to execute the
secure applications. The exception is the ARM proposal [7], which
enables the secure application to share the same CPU with other
applications. As discussed, this proposal creates virtual processors to
enhance security.

The original contributions of our proposal w.r.t the state-of-the-art
are: (i) prevent communication and computation sharing at runtime,
by reserving processing elements (PEs) and communication channels
to execute the secure application (Appsec); (ii) several SZs may
co-exist in parallel. The flows are not exposed to attackers due to
the adoption of wrappers to isolate the SZ, blocking all incoming
and outcoming packets, corresponding to a full spatial isolation (see
isolation and rerouting in Figure 1). The method relies on a rerouting
mechanism, able to reroute packets at runtime [10]. With the goal to
avoid unnecessary PEs reserved inside the SZ, they are removed from
the region, resulting in a rectilinear polygon (see SZ2 in Figure 2).

III. SYSTEM ARCHITECTURE

The baseline architecture is a homogeneous NoC-based many-
core, where each PE contains a 32-bit RISC processor, a DMNI
module (a network interface with DMA capabilities) and a local
dual-port memory accessed by the processor and DMNI module. The
software executing at each PE defines its role in the system. The
system has manager PEs (MP), and PEs responsible for executing
the applications (SP - slave processor).

Two NoCs interconnects the PEs: data and control NoC. The data
NoC transfers data messages, exchanged by applications. The control
NoC [10] transfers management packets. Both NoCs contain test
wrappers, or simply wrappers, in the flow control signals. When
activated, the wrapper enables to discard all incoming and outcoming
packets of a given port. In the current work, the Operating System
(OS) of each PE controls the wrappers connected to the data NoC.
The control NoC manages their wrappers, for security reasons, i.e.,
the applications running at the PEs cannot access the wrappers of the
control NoC.

The current work uses the control NoC to transfer the control
messages to close and open an SZ. The control NoC has two
operation modes: global and restrict. The global mode enables the
control messages to pass through the wrappers, even if they are
enabled. This mode enables the PEs inside the SZ to exchange
messages with manager PEs. The restrict mode observes the status
of the wrappers, discarding all received control message.

The data NoC observes the status of the wrappers. In this case, an
activated wrapper discard all received data messages, and the control
NoC returns to the source of the message a new message reporting
that the message needs retransmission. This mechanism enables the
PEs on both sides of SZ to search a new path.

IV. THREAT MODEL

The resource sharing of the many-core components introduces
vulnerabilities to Appsecs running on it. It is possible to explore
these vulnerabilities in attacks, such as: confidentiality and integrity;
timing attack; denial of service; spoofing; hijacking [2], [4], [6].

Our proposal adopts two fundamental assumptions: (i) an SZ is
a continuous region; (ii) there is no resource sharing inside the SZ,
i.e., only one application executes inside the region. The activation of
the wrappers at the boundary of the SZ enables the first assumption.
The mapping procedure enables the second assumption. Once defined
the SZ, tasks executing in the SZ are migrated to outside the SZ
before the Appsec mapping. The definition of SZ and the migration
of tasks are managed by Algorithm 1 (section V).

The adoption of these assumptions avoids the attacks previously
presented. As only the Appsec executes in the SZ, and the wrappers
block the traffic at the boundary of the region, any access or data
modification by an external application is blocked, ensuring data
confidentiality and integrity. Timing or DoS attacks to the Appsec
are automatically refused by the wrappers since no external traffic is
allowed inside the SZ. Thus, malicious applications cannot extract
any information with temporal correlation to a task running inside
the SZ, or overload the resources (routers and processors). In the
same way, this method prevents spoofing attacks since data cannot
cross the SZ boundary. Side channel attacks, as power-monitoring or
electromagnetic attacks, are not considered in this proposal. However,

the feasibility of such attacks in a system with dozens of processors
is unlikely to occur.

V. PROPOSED METHOD TO CREATE AND SET SECURE ZONES

The proposed method includes: (i) shape selection; (ii) wrapper
activation; (iii) retransmission of lost packets in and out the SZ
boundaries; (iv) launch Appsec. Figure 1 illustrates the method.
In Figure 1(a) the MPSoC contains one application in execution,
app1. Next, the MP maps an Appsec, activating the wrappers at the
boundary of the SZ. At this moment (Figure1(b)), the app1 traffic is
blocked by the SZ. Figure 1(c) shows the Appsec executing in the
SZ, and the traffic of app1 circumventing the region.

MP

APP 1

T2

APP 1

T1

 (a) (b) (c)

MP

APP 1

T2

APP 1

T1

APP 2

T2

APP 2

T1

W

W

W

W

WW

MP

APP 1

T2

APP 1

T1

APP 2

T2

APP 2

T1

W

W

W

W

WW

Fig. 1: Secure zone and dynamic reconfiguration of routing paths.

A protocol defines the steps to admit a new application [11]. The
MP first executes the algorithm proposed in Section V-A, which
determines the location of the SZ, and fires task migrations if
necessary to reserve the SZ exclusively to the Appsec. After defining
the SZ, the MP maps the tasks inside this region, considering as cost
function the communication cost between the tasks. After these steps,
the MP activates the wrappers of the SZ and transmits a message to
start the execution of the Appsec.

A. Algorithm to Create Secure Zones at Runtime
Algorithm 1 presents the pseudo-code to create at runtime an

SZ. The algorithm inputs are the number of Appsec’s tasks
(app.#tasks), the number of tasks PEs may execute simultane-
ously (#tasks.PE), the cluster side size (cluster_side), and
the manager position (MP.pos).

Definition 1. Shape: a rectilinear polygon, enclosing a set of PEs,
without any task executing inside it, avoiding computation and
communication sharing.
Definition 2. Fragmentation: shape area minus the number of PEs to
execute Appsec. The algorithm removes PEs from rectangular regions
to avoid internal fragmentation, leading to rectilinear polygons.
Definition 3. MAX MIGRATION: design time parameter, defining
the maximum number of task migrations. Once a shape defined, it
may contain tasks belonging to other applications. The algorithms
migrate the tasks running in the selected region to guarantee the
exclusive use of the processors by the App sec. Due to the cost of
the task migration, the algorithm limits the number of task migrations.

The first step of the algorithm, lines 1–5, is the definition of the
shape set. The loop computes the number of PEs to execute Appsec
according to app.#tasks and #tasks.PE (line 3). The function
shapes returns a set of rectangular shapes. For example, consider
app.#tasks = 7 and #tasks.PE = 2. The first iteration (t = 1)
requires 7 PEs, returning shapes {(3,3),(2,4),(4,2)}, with a
fragmentation equal to 2, 1 and 1 for each shape. The second iteration
(t = 2) requires 4 PEs, returning shapes {(2,2),(1,4),(4,1)}.
For these shapes, there is no fragmentation.

If the shape set is empty (line 6–7) the algorithm returns
FALSE, meaning that the cluster does not have a shape to execute
Appsec. In this case, the MP runs a reclustering function, borrowing
resources from neighbor clusters, to guarantee a shape with resources
to execute Appsec. After this process, Algorithm 1 is re-executed.

If the cluster may receive Appsec (else block), the algorithm sorts
the shape set in ascending order, using as criteria the shape size.

Algorithm 1: Search resources to create the SZ
Input: app.#tasks, #tasks.PE, cluster side, MP.pos
Output: sh // selected shape

1 shape set ← ∅
2 for t from 1 to #tasks.PE do
3 PEs needed ← ceil(app.#tasks / t)
4 shape set ← shape set ∪ shapes(PEs needed, cluster side)
5 end
6 if shape set = ∅ then
7 return FALSE
8 else
9 sort(shape set, largest) // sort shape set according to the area, largest first

10 for mig# from 0 to MAX MIGRATION do
11 if mig# = 1 then
12 sort(shape set, smallest) // sort shape set, smallest first
13 end
14 forall sh[i] in shape set do
15 forall PE in (cluster side × cluster side) do

// SWS: Sliding Window Search
16 usedPEs ← SWS(PE.xy, sh[i].∆xy, MP.pos, cluster side)
17 if usedPEs = mig# then
18 sh[i].x ← PE.x
19 sh[i].y ← PE.y
20 if sh[i].fragmentation > 0 then
21 x ← sh[i].x + sh[i].∆x - 1
22 for y from 1 to sh[i].fragmentation do
23 PE.pos(x, sh[i].y).invalid ← 1
24 end
25 end
26 if usedPEs 6= 0 then
27 foreach PE in sh[i] do
28 if PE.used 6= 0 then
29 migrate task(PE, sh[i])
30 end
31 end
32 end
33 return sh[i]
34 end
35 end
36 end
37 end
38 return FALSE
39 end

The rationale is to minimize the CPU sharing (one task per PE),
maximizing the Appsec performance.

After the sorting step, the algorithm starts the search process. This
process requires three loops: (i) outer loop (line 10), controls the
number of tasks migrations; (ii) intermediate loop (line 14) traverses
the shape set; (iii) internal loop (line 15) traverses the PE set.

The search process adopts a sliding window search (SWS) pro-
cedure (line 16), using as inputs the PE coordinates (PE.xy), the
shape size (∆.xy), the manager position, and the cluster side size.
If the shape fits in the cluster and does not overlap the manager
processor or an active SZ, the SWS procedure returns the number
of processors executing tasks inside the region, otherwise −1, in the
variable usedPEs.

The first iteration of the outer loop disables task migrations
(mig# = 0). Thus, after executing the SWS procedure, all PEs
must be available, i.e., there is no task executing in the PEs inside
the region. If one of the shapes fills this condition (line 17), the
bottom left coordinate of the selected shape receives the current PE
position (lines 18-19). For this first iteration of the outer loop, only
defragmentation (Definition 2) occurs, if necessary (lines 20-25). If
the shape has internal fragmentation, the rightmost shape column has
some of the PEs marked as invalid (line 23), modifying the shape
from a rectangular to a rectilinear format (Definition 1). After this
process, the selected shape returns to the caller function.

Subsequent iterations of the outer loop enable task migrations,
from 1 to MAX MIGRATIONs (Definition 3). With the goal to reduce
the number of task migrations, the shape set is reordered, with the
smallest shapes evaluated first. The previous process is repeated,
executing the SWS procedure. When the number of used PEs inside

the cluster is equal to the allowed number of task migrations, the
shape is selected. Besides defragmentation, tasks in used processors
are migrated to outside the region (lines 26-32).

VI. RESULTS

The evaluation was conducted using a clock-cycle description
models many-core system (RTL SystemC and VHDL). Operating
system and applications are described in C language. The experi-
mental setup includes a 6x6 many-core instance (cluster side=6), a
9-task application (Appsec), up to 2 tasks may execute simultane-
ously per PE (#tasks.PE=2). With such configuration, the shape set
is equal to: {(3, 3), (2, 5)∗, (5, 2)∗, (2, 3)∗, (3, 2)∗, (1, 5), (5, 1)}.
Shapes marked with a ’∗’ have internal fragmentation (equal to 1),
requiring the removing of PEs from the shape.

Figure 2 presents the 6x6 many-core, with producer-consumer
applications mapped when the system starts – pink PEs, with the goal
to create obstacles to the SZ creation, and three SZs. The creation
of the SZs occurs according to the following sequence:

• SZ1: corresponds to the smallest execution time of Algorithm
1 because the execution of the outer loop finds a valid region in
the first iteration;

• SZ2: corresponds to an intermediate execution time due to the
execution of the SWS several times, with the removal of a PE
from the region (this is an example of a rectilinear polygon);

• SZ3: corresponds to the largest execution time to find an SZ
in this scenario.

Fig. 2: Secure zone evaluation scenario.

Note that the algorithm creates the three SZs at runtime, with
Appsecs executing in parallel. Also, the blue SZ (SZ2) requires
internal rerouting when the top-left PE send packets to PEs on the
right side of the SZ (if XY routing is used the packets would expose
the communication). The experimental setup also has scenarios with
tasks mapped inside the SZs with the goal to activate the task
migration, enabling to evaluate its cost (not presented in Figure 2).

Table II presents the evaluation of the proposed method. The
first column shows the Secure Zones created according to Figure
2. Results for execution of Algorithm 1 (2nd column of the Table) are
a function of the number of shapes and the position of selected shape
in the cluster. The Migration results (3rd column) shows the cost to
migrate one task of 4.3 KB at a distance of 4 hops. The Protocol
delay (4th column) is related to a set of messages send to the PEs
of the selected shape to inform the boundaries of SZ. The Delay to
start Appsec (5th column) is the sum of the previous columns that
correspond to delay to start the Appsec due to the proposed method.
This includes the delay to find the shape and an appropriated position,
the delay in migrating tasks inside the selected position and, the delay
due to the protocol messages exchanged with the PEs of SZ. The
internal Source Routing evaluation (6th column) shows the delay to
find a new path to a message lost due to the fragmentation.

Results show a low impact on executing Algorithm 1 to create and
search a suitable shape position. In the worst-case of the proposed
evaluation scenario (SZ3), the delay was 20.5K clock cycles (cc).

The cost of the migration is a function of the number of migrations
and the size of the task’s object code. The proposed algorithm tries to
minimize the number of migrations first looking for regions that not
require migration and after looking by small shapes (and potentially
fewer migrations). The cost of the protocol varies with the distance
of the PEs belonging to the SZ and the MP. The protocol has a
negligible impact on the delay to start the Appsec. The internal SR
cost impact in the execution time of the Appsec due the rerouting
mechanism used. The cost varies with the number of the broken paths
because when a new path is found, all subsequent messages use it.
Overall, results show the effectiveness of the approach and the low
impact to start the Appsec (94.2K cc, or less than 0.1ms@100MHz).

TABLE II: Secure Zone Performance Evaluation. All results correspond
to the number of clock cycles.

Secure Zone Alg. 1 Migrations Protocol
Delay to start
Appsec

Internal SR
(Appsec delay)

SZ1 3.3K - 4.8K 8.1K -
SZ2 12.7K - 5.1K 17.8K 18.9K
SZ2 12.7K 24.0K 5.1K 41.8K 18.9K
SZ3 20.5K - 5.3K 25.8K -
SZ3 20.5K 23.4K 5.3K 94.2K -

VII. CONCLUSION

This paper presented a method to create SZs in many-core
systems. Relevant characteristics of the method include: (i) runtime
execution; (ii) several SZs may co-exist in parallel; (iii) absence of
communication and computation sharing; (iv) packets are transmitted
without cryptography, not penalizing the execution time of the secure
application; (v) small area overhead (only wrappers added to isolate
the PEs); (vi) small latency to start the secure applications. In the
Authors knowledge, this is the first proposal enabling complete
communication isolation, due to the dynamic rerouting of packets.
Future works comprise to enhance the secure admission protocol of
secure applications and the addition of a lightweight cryptography
method to enable the communication of the SZ with external IPs.

VIII. ACKNOWLEDGEMENT

Author Fernando Gehm Moraes is supported by FAPERGS
(17/2551) and CNPq (302531/2016-5), Brazilian funding agencies.

REFERENCES

[1] J. Rajesh et al., “Runtime Detection of a Bandwidth Denial Attack from
a Rogue Network-on-Chip,” in NOCs, 2015, pp. 1–8.

[2] R. Fernandes et al., “A security aware routing approach for NoC-based
MPSoCs,” in SBCCI, 2016, pp. 1–6.

[3] J. Sepúlveda, D. Flórez, and G. Gogniat, “Reconfigurable security
architecture for disrupted protection zones in NoC-based MPSoCs,”
in Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC),
10th International Symposium on, 2015, pp. 1–8.

[4] H. M. G. Wassel et al., “Networks on Chip with Provable Security
Properties,” IEEE Micro, vol. 34, no. 3, pp. 57–68, May 2014.

[5] D. M. Ancajas, K. Chakraborty, and S. Roy, “Fort-NoCs: Mitigating the
threat of a compromised NoC,” in DAC, 2014, pp. 1–6.

[6] M. M. Real et al., “Dynamic spatially isolated secure zones for NoC-
based many-core accelerators,” in ReCoSoC, 2016, pp. 1–6.

[7] ARM, ARM Security Technology Building a Secure System using
TrustZone Technology, 2008 (accessed June 19, 2017). [Online].
Available: http://infocenter.arm.com

[8] H. Isakovic and A. Wasicek, “Secure channels in an integrated MPSoC
architecture,” in IECON, 2013, pp. 4488–4493.

[9] J. Sepulveda et al., “Efficient security zones implementation through
hierarchical group key management at NoC-based MPSoCs,” Micropro-
cessors and Microsystems, vol. 50, pp. 164–174, 2017.

[10] E. Wachter, L. Caimi, V. Fochi, D. Munhoz, and F. Moraes, “BrNoC: A
broadcast NoC for control messages in many-core systems,” Microelectr.
Journal, vol. 68, pp. 69 – 77, 2017.

[11] L. Caimi, V. Fochi, E. Wachter, D. Munhoz, and F. Moraes, “Secure
Admission and Execution of Applications in Many-core Systems,” in
SBCCI, 2017, pp. 65–71.

