
Secure Environment Architecture for MPSoCs
Bruno Scherer Oliveira, Henrique Medina, Anderson Sant’Ana, Fernando Gehm Moraes

PUCRS – Av. Ipiranga 6681, 90619-900, Porto Alegre, Brazil
{bruno.scherer, henrique.medina, anderson.santana.001}@acad.pucrs.br, fernando.moraes@pucrs.br

Abstract—The widespread use of complex MPSoCs (Multipro-
cessor SoCs) is a trend in the semiconductor industry due to
the increasing demand for interconnected devices, thus Internet
of Things (IoT). The use these devices to store, process and
protect private information increases everyday, since all devices
are interconnected. As a goal to create resilience against attacks
on users’ information, this paper proposes a secure architecture
and provides the costs of increasing the security for MPSoCs.
The secure architecture contains a firewall capable of filtering
incoming and outgoing network traffic and ciphering sensitive
information by performing end-to-end encryption using an AES
cipher block. The keys are stored at each firewall using a
secure channel, through a dedicated path, isolated from the
NoC. The firewall and the AES block increases the router area
by 95.63% and the application execution time increases in the
worst-case scenario by 6% using an MPEG application running
in a homogeneous MPSoC. Despite the impact in the area of
the communication infrastructure and in the execution time of
applications, the communication between tasks becomes safe, and
the user data is protected against attacks.

Index Terms—NoC, MPSoC, Security, AES, Ciphers, Firewall.

I. INTRODUCTION

With the advances in manufacturing technologies of In-
tegrated Circuits (ICs), taking into account Moore’s law,
implementing complete systems into a single die coined the
term Systems-on-Chip (SoC). The current industry’s current
trend is to build SoCs which present multiple multiprocessors,
the so-called Multiprocessor SoC (MPSoC), also called many-
core systems. MPSoCs are mostly Processing Elements (PEs)
and Intellectual Property (IP) modules interconnected by a
communication infrastructure. As the International Technology
Roadmap for Semiconductors (ITRS) [1] foresees thousands
of PEs integrated into a SoC by 2020, there is a growing need
for a reliable and scalable communication architecture. The
search for reliable and scalable communicating architecture,
lead the community to adopt the Networks-on-Chip paradigm.
The change in the approach of interconnections deeply affected
the design of MPSoCs and became widely adopted.

In the case of adopting MPSoCs for the embedded systems
market, the complexity and the concern for the security that
resides in such systems increases. By using such solutions
in major public markets, as telecommunications, turn-out to
become targets due to the amount of sensitive data available
in the devices. Credit-Card, Social Security numbers and so
on, are ever more intrinsic to our digital identities and are
residing on our devices [2]. Software-based attacks account
for 80% of security incidents in embedded systems [3], by

using abnormal communication, such as viruses and worms,
exploit code structures, for example, buffer overflows. NoCs,
are vulnerable to network attacks such as Denial of Service
(DoS), Data Extraction, timing attacks, Hijacking Attacks.
Also, there are hardware attacks that might compromise the
device security (e.g., Hardware Trojans).

The literature presents proposals to create isolated environ-
ments, as disabling communications that are not certified of
their security in the same PE or that can pass through that
core. Others create security zones, where a whole area of
the MPSoC becomes dedicated to run a single application
(or multiple secure applications). Both ideas present a major
tradeoff with scalability and performance. For example, a
small MPSoC that needs to run multiple applications will
have its cores so sectioned that it may not deliver real-time
performance. Therefore, the use of these techniques might be
inappropriate for to real-time systems, an important feature for
most applications in the telecom and Internet of Things (IoT)
domain.

The goal of this paper is to present a secure architecture
to increase the security of applications running in MPSoCs.
The secure architecture contains a firewall capable of filtering
incoming and outgoing network traffic and ciphering sensitive
information by performing end-to-end encryption using an
AES cipher block. The keys are stored at each firewall using
a secure channel, through a dedicated channel, isolated from
the NoC.

This paper is organized as follows. Section II presents
the State-of-the-Art research in the field of security for MP-
SoC. Section III details the proposed architecture. Section IV
presents results of the proposed security solutions. Section V
draws the conclusions and directions for future work.

II. RELATED WORK

The state-of-the-art review contains different methods to
increase the security of intra-chip networks. Still, some points
need to be addressed. In the work of Gebotys et al. [4] a
framework for security on NoC is presented. To control the
information flow through the NoC it uses cryptography to
deliver data to the secure applications. A secure PE (processing
element), called Key Keeper Core, creates the public keys. The
remaining of the NoC is connected to two types of PEs, the
secure ones, called SCores (being able to execute one or more
secure applications, such as encryption, authentication, key
exchange, etc.) and a non-secure core that runs general purpose
applications. Even though only the secure cores have the
capability of decrypting the security keys, passing it through978-1-5386-7431-4/18/$31.00 c©2018 IEEE

the NoC is not a secure strategy. For example, a DoS attack
may be able to flood the network making it hard to allocate
new keys.

Sepúlveda et al. [5], [6] develop a strategy for creating
networks that are secure and independent inside the NoC (i.e.,
secure regions) by using the Diffie-Hellman together with a
mapping-aware key pre-distribution scheme, it is possible to
create authenticated and separated secured zones. Furthermore,
all components of the same security zone are considered secure
among them. Thus, all transactions inside the security zone
can be performed in plain text (without the need of ciphering)
and without security checking. Otherwise, messages are sent
in meta packets, i.e., encrypted packets, which are verified
and encoded. This approach may present a limitation when
the MPSoC is under heavy load, with multiple applications
running at the same time. In the case of new applications
having to be executed, the security zones may prevent the
execution of these new applications due to the reservation of
resources.

The work of Grammatikakis et al. [7] present a firewall
that is placed between the NI and the PE (CPU, memory
controller or hardware accelerator), making it possible to stop
malicious injections from the applications running in the PE
to the Network. Furthermore, the implementation needs to be
configured (statically or dynamically) for systems or users
to grant access to physical memory, and its verification is
based on the physical address of the communication initiators.
This type of firewall will not be able to cover data extraction
from a malicious task running on the same core as the
communication initiator. This approach can filter underlying
transactions and ensures that security rules are obeyed at the
NI of each initiator by providing fast and efficient access to
rules. Therefore, a compromised process cannot access data
owned by a secure process, thus subverting denial-of-service
(DoS) attacks, malware attacks on data or hardware/software
vulnerabilities and eavesdropping.

Hu et al. [5] showed a different technique for implementing
secure networks. A method of inserting firewalls between
routers to avoid insecurities caused by third-party IPs is
proposed. The approach is to isolate trusted initiators and
targets with sensitive data in secure domains. Data flows from
untrusted initiators must pass the firewall to enter a secure
domain. Thus, no additional firewalls or security headers are
required inside. Furthermore, in the paper, it is presented an
automatic approach to satisfy a given set of security require-
ments, with a method based on integer linear programming
(ILP). Still, there was no demonstration of how it behaved
with constraints on latency or QoS results.

Ancajas et al. [8] present a work that not only encrypts the
information that travels in the NoC, it also presents a way
to authenticate it. Furthermore, it presents a concern with a
sophisticated attack such as Side Channel attacks. Without
considering the Obfuscation strategy, the work herein proposed
has similar features to [8]. The goal of not only hiding the
sensitive data transmitted through the network and also being
able to authenticate it, the strategy used in extra-chip networks,

as the Secure Socket Layer (SSL), that present the same
strategy.

Fernandes et al. [9] presented a solution using routing
algorithms and security zones that might not be scalable to
high-density NoC (due to the size of the routing tables). Still,
for small NoC sizes, it is a fair method to provide security. On
the downside, the technique needs to understand the security
requirements during the development phase, to provide its
heuristic to determine the weight given to the cost function of
each path the algorithm will use. Furthermore, the proposed
technique is not suitable for general purpose computing, since
it is executed at design time.

Wehbe et al. [10] exhibit a solution that is dependable on
the IP provider to define private and public keys for its cores.
That will have an impact on each one selected IP providers (as
not all IP designers will provide it). The work is both focused
on security as well as fault tolerance. The main idea presented
in the paper is built around its reconfigurable NoC.

All of these reviewed works present insights in the security
field over NoCs. Still, two major gaps remain. The first one is
that the proposals are NoC-centric, i.e., they do not consider
a real MPSoC and the corresponding cost of the security with
real applications. The second one is the fact that none of them
present data regarding how much those strategies cost when
taking the unsecure environment as the reference.

The contribution of this work is twofold. The first one
is to present a secure environment architecture, enabling to
cipher the NoC flows (Section III). The second contribution
is to evaluate the silicon area and latency overhead to obtain
both security and high-performance in the MPSoC, using as
reference a baseline architecture without security mechanism.
Cyphering the data NoC prevents eavesdropping, man-in-the-
middle, and spoofing attacks.

III. SECURE ENVIRONMENT ARCHITECTURE - SEA

This Section presents the Secure Environment Architecture
(SEA). Many-core architectures divide workloads among
multiple threads/tasks aiming to scale efficiently up system
performance without compromising its energy-efficiency. The
multitasking feature does present security issues regarding
messages exchanged between threads/tasks. A message sent
from one task to another task may be read/corrupted by a task
in the same processor, or by a task in the path of the message.

In the state-of-the-art, it is common to find secure environ-
ments with restricted zones, where packets are limited to run
through in the NoC’s region. This type of security creates a
reasonable amount of constraints. For example, when creating
a secure zone, it is not possible to have more than one safe
application running at each PE in that zone. Thus, limiting
the number of applications running in the MPSoC. So, the
question is, how to avoid these limitations and remain secure?
The idea behind implementing SEA is to provide security
at the application level, preventing a malicious application to
interfere with the data being handled by communicating tasks
of the secured application.

Fig. 1. MPSoC components, with a firewall (FW) between the router and
processing element. A Hamiltonian Path interconnects the firewalls [11]. Only
a manager PE has access to this path, resulting in a secure path to send
sensitive data.

A manager PE (a core that does not execute user appli-
cations, just management functions) generates random keys.
Each key is sent to the firewalls through a Hamiltonian path
[11]. The Hamiltonian path is a serial communicating channel
separated from the NoC communication infrastructure. Thus,
making it a secure way to deliver sensitive information such
as keys. Figure 1 shows this infrastructure. Each application
has its unique key. Therefore, when mapping the applications
through the NoC, the manager PE also send the keys to the
firewalls of the selected PEs that execute the application tasks.
With the keys being the same between communicating tasks,
it is possible to use symmetric cryptography (AES) to encrypt
the data that flows through the NoC. Also, it is possible to
append common integrity mechanisms, such as CRC or Hash
functions as an additional mechanism to support data integrity.
With these functionalities, the NoC is resilient to the three
common types of attacks: DoS, system hijacking, and data
extraction.

A. NoC Changes

The router itself was not modified, keeping the same routing
algorithm, buffer/arbitration strategy, and topology. The major
addition is a firewall module. The firewall is placed between
the Network Interface (NI) module and the local router port.
Thus, being able to control the communication generated or
received by the PEs. The improvement over the different
proposal is that any NoC with a similar interface can use
a similar strategy with no significant changes in the original
architecture. Thus, our approach is general and may be adopted
by other NoCs.

B. Firewall

The firewall was implemented using an existing framework,
similar to the firewall developed by Fernandes et al. [11].
The firewall interconnects the PE, the AES, and the router
interface. The principle adopted in its development is to
respect the original router’s interfaces, in such a way to avoid

Fig. 2. Representation of the firewall connections. The Hamiltonian path is
not included in the Figure for sake of simplicity.

modifications in the original modules. With this strategy, it is
possible to select which routers might receive the firewall.

Figure 2 presents the interfaces connected to the firewall.
The router and the NI signals are the same. Instead of
changing the interfaces, state machines in the firewall manage
the flow control signal. The firewall may encrypt or not the
packets according to an identifier in the packet. For sensitive
applications, all traffic is encrypted, otherwise plain data is
transmitted to avoid the encryption overhead.

The firewall contains two separate states machines that
handle the interfaces with the Router and the NI. Also,
embedded in each machine there are the interconnections with
the AES module. An arbiter manages the communication flows
(encryption or decryption).

The communication through the firewall is always full-
duplex. Even when both incoming and outgoing flows require
encryption or decryption, the arbiter manages the flows, using
time slices with four 32-bits words. The arbiter full-duplex
behavior is a feature to avoid deadlocks at the communication
level.

C. AES Core

The AES Core used in our design is based on [12], which is
a version of the FIPS-197 implemented in the ECB mode. The
author understands that ECB mode presents a risk regarding
the repetition of messages that could lead to plaintext attacks.
The architecture works with two 64-bit blocks, loaded in
consecutive clock cycles using the load signal. The load signal
injects both keys and data. Once the data is loaded, the start
signal raises, and after 13 clock cycles, the done signal rises
and the data (encrypted/decrypted) is available as it can be
seen in Figure 3.

IV. RESULTS

This Section evaluates different scenarios, with and without
encryption, to assess the impact of the firewall and the
AES block. The description of the modules use synthesizable
VHDL, and the simulation was made using the ModelSim tool.

The public available HeMPS MPSoC [13] is the baseline
MPSoC architecture. It contains a set of processing elements
(PEs) interconnected by the Hermes NoC [14]. Each PE

Fig. 3. Process sequence for encryption/decryption data usind the AES core
[12].

MPEG

start ivlc iquant idct print

DTW

bank

P2 P3 P4P1

recognizer

Synthetic

taskA

taskD taskE

taskC

taskB

taskF

SDRAM_0

SRAM2_0

RISC_0

BAB_0

VU_0

SRAM1_0

ADSP_0

RAST_0MCPU_0

AU_0

UPSAMP_0

IDCT_0

MPEG4

Prod_Cons

dijkstra

MWD

prod cons

dijsktra_4

dijsktra_2

dijsktra_0

dijsktra_1

dijsktra_3

divider

VSHS

MEM2

JUG1

NR HVS

BLENDMEM1 SE

JUG2

MEM3IN

ARM_0

VLD_0 RUN_0 ISCAN_0

STRIPEM_0

IDCT2_0

IQUANT_0

ACDC_0

PAD_0

VOPME_0

UPSAMP_0 VOPREC_0

VOPD fixe_base_test_16

P2

P1

XYZ2

GFC

LAB1

WRMS

XYZ1

RMS

RGB1

LAB2

RGB2

DLABDXYZ DRGB

AES

AES_slave_n

AES_slave_1 AES_slave_2

AES_master

Fig. 4. Task-graphs of the benchmarks used to evaluate the impact of the
messages’ encryption on the execution time.

executes a small operating system, enabling multitasking and
inter-task communication (message exchange). At design time
the designer may include or not the structure firewall+AES.
The goal of using this infrastructure is to obtain a fair per-
formance evaluation, comparing the applications’ performance
when communication encryption is enabled.

Results evaluate the iteration latency of different bench-
marks because this is the main performance figure affected
by the encryption process. Figure 4 shows the task graphs of
the applications.

A. Prod Cons Evaluation

The first experiment evaluates the impact of the firewall with
and without encryption, compared to the baseline MPSoC.
This scenario uses a 3x3 instance of the MPSoC, executing
the producer/consumer application (Prod Cons in Figure 4),
which has a communication intensive profile. The hop distance
between the producer-consumer varies from 1 to 4 hops. Due
to the software stack to create and transmit the packets, and
the corresponding functions to receive them, the number of
hops has a negligible impact on the latency.

Oliveira et al. [15] compared the latency of non-ciphered to
ciphered flows in NoCs, using synthetic traffic. The latency
overhead increased up to 4.95 times in the experiments.
However, applications running on MPSoCs have an injection
rate below 10% [16]: ”In real-world multi-core applications,

4_hops

Page 1

Aplicação: Produtor e Consumidor

Ticks Latência (%) Ticks Latẽncia (%)

1 2862 2829 -1,153% 3475 21,419%

2 1915 1936 1,097% 3458 80,574%

3 1915 1936 1,097% 3518 83,708%

4 1915 1936 1,097% 2732 42,663%

5 1915 1936 1,097% 2725 42,298%

6 1915 1936 1,097% 2738 42,977%

7 1915 1936 1,097% 2730 42,559%

8 1915 1936 1,097% 2725 42,298%

9 2209 2230 0,951% 2738 23,947%

10 1915 1936 1,097% 2730 42,559%

11 1915 1936 1,097% 2725 42,298%

12 1915 1936 1,097% 2738 42,977%

13 1915 1936 1,097% 2730 42,559%

14 1915 1936 1,097% 3048 59,164%

15 1915 1936 1,097% 2738 42,977%

16 1915 1936 1,097% 2730 42,559%

17 2410 2431 0,871% 2725 13,071%

18 2238 1936 -13,494% 2738 22,341%

19 1592 1936 21,608% 2730 71,482%

20 1915 1936 1,097% 2725 42,298%

21 1915 1936 1,097% 2738 42,977%

22 1915 1936 1,097% 2730 42,559%

23 1915 1936 1,097% 2725 42,298%

24 1915 1936 1,097% 2738 42,977%

25 2733 2754 0,768% 2730 -0,110%

26 1915 1936 1,097% 2725 42,298%

27 1915 1936 1,097% 2738 42,977%

28 1915 1936 1,097% 2730 42,559%

29 1915 1936 1,097% 2725 42,298%

30 1915 1936 1,097% 3061 59,843%

31 1915 1936 1,097% 2407 25,692%

32 1915 1936 1,097% 3048 59,164%

33 2410 2230 -7,469% 2738 13,610%

34 1915 1936 1,097% 2730 42,559%

35 1915 1936 1,097% 2725 42,298%

36 1915 1936 1,097% 2738 42,977%

37 1915 1936 1,097% 2730 42,559%

38 1915 1936 1,097% 2725 42,298%

39 1915 1936 1,097% 2738 42,977%

40 1915 1936 1,097% 2730 42,559%

41 2410 2431 0,871% 2725 13,071%

42 2238 3457 54,468% 2738 22,341%

43 3102 1973 -36,396% 2730 -11,992%

44 1952 1977 1,281% 2725 39,600%

45 1956 1973 0,869% 2738 39,980%

46 1952 1977 1,281% 2730 39,857%

47 1956 1973 0,869% 2725 39,315%

48 1952 1977 1,281% 2968 52,049%

49 2573 2590 0,661% 2340 -9,056%

50 1642 2241 36,480% 2379 44,884%

Média 2027,64 2056,06 2,00% 2778,86 39,08%

Dados: Hops 3 | Cluster 3x3 | Mpsocs 3x3

Interações Hemps8.5
Firewall AES

1500

2000

2500

3000

3500

4000

1 6 11 16 21 26 31 36 41 46

La
te

nc
y

(ti
ck

s)

Iterations

Hemps8.5 AES Firewall

Fig. 5. Prod Cons iteration latency (in clock cycles), considering the baseline
platform (HeMPS 8.5), just the firewall, and with encryption (AES).

less than 5% of channels are utilized on average.”. The exper-
iments using the HeMPS MPSoC corroborate this statement,
but as a function of the mapping, several flows share the same
link, increasing the NoC utilization, leading to congested links.

Figure 5 presents the iteration latency for: (i) baseline
MPSoC; (ii) MPSoC with firewall and encryption disabled;
(iii) MPSoC with firewall and encryption enabled. The latency
increased in average by 1.39% by adding the firewall in the
baseline MPSoC. The latency increase is due to the logic
added in the firewall to manage the control flow signals. The
latency increased in average by 39% when encrypting the
flows. This is an important result, since the Prod Cons is a
synthetic application, with almost no computation (only loops
to send/receive packets). Thus, using real traffic, generated
by a CPU, the overall impact on the performance is smaller
than the one observed by simulating only the NoC+AES with
synthetic traffic.

B. MPEG and DTW Evaluation

The second experiment follows the same goal of the first
experiment, using two real application, MPEG and DTW,
which are computation intensive. Due to the structure of the
applications (pipeline for MPEG and master-slave for DTW),
the AES block may be a bottleneck in the communication
since tasks may simultaneously send and receive data. The
implementation of the firewall, with an arbiter enabling full-
duplex communication, alleviates this issue. Figure 6 presents
the mappings adopted in this experiment.

Available SPs
in the cluster?

No

Find a PE to receive a task

Migrate task(s)

Migrate Kernel

Yes

Freeze all applications
managed by the CM faulty

Fault Detected
in a CM

START

CM

IVLC

IQUANT

IDCTPRINT

SPSP

SPCM

B

CM

SP

E

SPSP A D

SPSP C SP

0 1 2 3

0

1

2

3

MPEG

A B C D E

DTW

T2

P2

P3

P4

P1

T1

CM

RECOG

BANK

P1 P3 P4

DTWMPEG

P2

Fig. 6. MPEG and DTW applications’ mapping. CM: cluster manager.

Table I presents the iteration execution time, for the baseline
MPSoC and the one with encryption, as well as the overhead

TABLE I
MPEG LATENCY RESULTS (RESULTS IN CLOCK CYCLES).

frame Iteration Execution Time
number baseline with encryption overhead
5 213,044 218,255 5,211
6 225,470 230,852 5,382
7 224,717 229,778 5,061
8 224,798 229,861 5,063
9 224,633 229,692 5,059
10 225,040 229,778 4,738
11 224,798 230,184 5,386
12 225,532 230,015 4,483
13 225,939 230,101 4,162
14 225,697 229,861 4,164
15 225,532 229,956 4,424
16 224,717 229,778 5,061
17 225,121 229,861 4,740
18 224,956 229,692 4,736
19 225,618 230,101 4,483
20 226,022 230,184 4,162
21 225,534 230,015 4,481
22 225,618 230,679 5,061
Average 224,599 229,369 4,519
StdDev 2,835 2,713 1,133

due to the messages’ encryption. This experiment does not
have NoC congestion. The experiment decodes 26 frames,
discarding the latency of first and last four frames (warm-
up and NoC flushing). As shown in Figure 4, the MPEG
application has a pipeline behavior. Tasks START to IDCT
receive and transmit 128-flit packets. The average latency to
transmit each packet increases by 880 clock cycles, explaining
the overhead observed in Table I - average value of 4,519 clock
cycles with a small standard deviation. The relevant result is
that the iteration execution time increased, on average, only
2.12% using an AES block implemented in hardware.

Table II presents the results for the DTW (Dynamic Time
Warping) application. This application measures the similarity
between two temporal sequences. Task recognizer sends four
patterns (each one corresponding to a 128-flit message) to the
worker threads (P1 to P4), where each one reads the reference
patterns from task bank. The result of the similarity returns
to task recognizer as a small packet with the similarity rate
(packet with one flit in its payload). Thus, the overhead due
to the latency of the encryption/decryption is minimized due
to the parallel execution of the worker threads. Each DTW
latency, corresponding to the similarity between 4 patterns,
increases on average 456 clock cycles. For this application,
the adoption of data encryption increase on average 1% the
iteration latency.

TABLE II
DTW LATENCY RESULTS (RESULTS IN CLOCK CYCLES).

Pattern recognition time.
baseline with encryption overhead

Average 47,546 47,996 456
StdDev 674 627 364

C. Congested Scenario

In this scenario, all PEs execute two tasks simultaneously,
by mapping one DTW (6 tasks) and 2 MPEG (5 tasks)

Untitled - Untitled

20 21 22

10
IDCT

00

12

01 02 03 04

13
IQUANT 14

23 24

30 32 33 34

40
START

41 42
43

IVLC
44

31
PRINT

11

START IVLC IQUANT IDCT PRINT

MPEG

20 21 22

10
IDCT 1
IVLC 2

00

12

01 02 03 04

13
IQUANT 1
IQUAN T

2

14

23 24

30 32 33 34

40
START 1
PRINT 2

41 42
43

IVLC 1
IDCT 2

44

31
PRINT1

START 2

11

20
IDCT 2

p4

21
IVLC 2
IDCT 1

22
IVLC 1
recog

10
PRINT 2

p1

00

12
START 1

bank

01
IQUANT 2

p3

02
IQUANT 1

p2

11
START 2
PRINT 1

p1 p2 p3 p4

DTW

recognizer

bank

PROD CONS

Prod_Cons

START

IVLC

IQUANT

IDCT

PRINT

MPEG
START IVLC IQUANT IDCT PRINT

MPEG

(a)

(b)

(c)

p1 p2 p3 p4

DTW

recognizer

bank

PROD CONS

Prod_Cons

START IVLC IQUANT IDCT PRINT

MPEG

20
IDCT 2

p4

21
IVLC 2
IDCT 1

22
IVLC 1
recog

10
PRINT 2

p1

00

12
bank

START 1

01
IQUANT 2

p3

02
p2

IQUANT 1

11
START 2
PRINT 1

20
IDCT 2

p4

21
IVLC 2
IDCT 1

22
IVLC 1
recog

10
PRINT 2

p1

12
bank

START 1

11
START 2
PRINT 1

Fig. 7. Task mapping and traffic flows for scenario executing one DTW and
2 MPEG applications.

TABLE III
CONGESTED SCENARIO RESULTS (RESULTS IN CLOCK CYCLES).

Iteration Latency. iteration
reference without encryption with encryption overhead

MPEG1 224,599 252,13 265,858 13,721
+12% +18%

MPEG2 224,599 286,188 294,61 8,424
+27% +31%

DTW 47,546 65,143 66,193 1,050
+37% +39%

applications, as shown in Figure 7. The goal is to evaluate
the MPSoC with several tasks exchanging data, with one
AES block per core. This scenario uses real applications, with
computation-intensive applications.

Table III evaluates the iteration latency, as in the previous ta-
bles. The percentage values corresponds to the overhead w.r.t.
to the non-congested scenarios (bold values on Tables I and
II). Two components affect the iteration latency: multitasking
and concurrency to use the single AES block per core. The
effect of the first component, multitasking, is observed in the
third column (without encryption). The iteration latency for
the applications increases from 12% up to 37%, according
to the mapping adopted in the simulated scenario. Most of
the computing intensive tasks from DTW share the CPU with
another computing intensive tasks of the MPEG instances,
explaining the higher observed overhead (37%). The effect
of the second component, concurrency of the AES block, is
observed in the fourth column (with encryption). Results of
the previous section showed an impact on the iteration latency
between 1% to 2.12%. Now, due to the presence of one AES
block per PE, a packet encryption or decryption by one task
blocks the other task to use the NoC. The impact now can
reach 6%, as observed in the first instance of the MPEG
application (MPEG1). The iteration overhead in the single-task
evaluation was, in average, 4,519 clock cycles, while in the
multitasking evaluation the average overhead reached 13,721
clock cycles.

This experiment revealed the real impact of encrypting the

messages. The communication overhead, in non-congested
scenarios with one task executing per PE, has a negligible
impact on the application performance. However, increasing
the number of tasks executing simultaneously per PE, the
crypto core may represent a communication bottleneck, even
if full-duplex communication is enabled.

D. Area Consumption

Table IV illustrates the required area for 3x3 mesh NoC
with firewalls and AES ciphers. The NoC area includes all
connections, routers, firewall, and cipher. A single firewall
including the AES represents an increase of 95.63% in the
router’s area using STMicroelectronics standard-cells CMOS
65 nm technology. A major impact is due to the AES cipher
that represents 79.12% of the additional area increase. This
area overhead is a trade-off in relation the security that the
AES cipher aggregates.

TABLE IV
3X3 NOC’S AREA CONSUMPTION IN CORE65GPSVT LIBRARY (µm2).

Instance #Cells Cell Area Total Area
Firewall 1,441 7,743 9,707
AES 17,097 62,763 105,316
Router Buffer 16 5,926 43,188 58,795
Firewall+AES 18,538 70,506 115,023

Note that the area results are related to the communication
infrastructure. If we consider that the router area (communica-
tion infrastructure) corresponds to no more than 10% of the PE
area (which includes the processor, DMA, memory), doubling
the router area means that the PE will increase, in worst-case,
10%.

V. CONCLUSION

In this work, we proposed the implementation of firewalls
that included an AES block cipher providing security at the
communication level. The firewall is decoupled from the
MPSoC, being generic and applicable to other MPSoCs. The
increase of concern regarding information security is presented
as the major motivation for this work.

Results show a trade-off between silicon area, performance,
and workload. The silicon area is an important overhead
since the crypto core has an area equivalent to two routers.
The performance versus workload is a direct function: the
performance penalty increases with the workload executing
in the MPSoC.

A direction to follow to diminish the area overhead is the
evaluation of lightweight cryptography algorithms. These algo-

rithms also have an impact on reducing the performance over-
head. To tackle the performance degradation when increasing
the workload different research directions may be followed: (1)
take ino account the links’ occupation during the application
mapping process; (2) avoid CPU sharing between applications
requiring security constraints; (3) include dedicated circuit-
switching (CS) sub-NoCs (MPN - multiple physical networks)
to avoid the encryption of flows using CS.

VI. ACKNOWLEDGEMENTS

Author Fernando Gehm Moraes is supported by FAPERGS
(17/2551-196-1) and CNPq (302531/2016-5), Brazilian fund-
ing agencies.

REFERENCES

[1] International Technology Roadmap for Semiconductors, ITRS 2015
Report, 2015. [Online]. Available: http://www.itrs2.net/itrs-reports.html

[2] Massachusetts Institute of Technology, Protecting Data, 2017. [Online].
Available: http://web.mit.edu/infoprotect/docs/protectingdata.pdf

[3] Symantec, Internet Security Threat Report, 2016. [Online]. Available:
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-
2016-en.pdf

[4] C. H. Gebotys and R. J. Gebotys, “A framework for security on NoC
Technologies,” in ISVLSI, 2003, pp. 113–117.

[5] Y. Hu, D. Müller-Gritschneder, M. J. Sepulveda, G. Gogniat, and
U. Schlichtmann, “Automatic ILP-based Firewall Insertion for Secure
Application-Specific Networks-on-Chip,” in INA-OCMC, 2015, pp. 9–
12.

[6] J. Sepulveda and R. Fernandes and C. Marcon and D. Florez and G. Sigl,
“A security-aware routing implementation for dynamic data protection
in zone-based MPSoC,” in SBCCI, 2017, pp. 59–64.

[7] M. D. Grammatikakis et al., “Security Effectiveness and a Hardware
Firewall for MPSoCs,” in HPCC, 2014, pp. 1032–1039.

[8] D. M. Ancajas, K. Chakraborty, and S. Roy, “Fort-NoCs: Mitigating the
threat of a compromised NoC,” in DAC, 2014, pp. 1–6.

[9] R. Fernandes, C. Marcon, R. Cataldo, J. Silveira, G. Sigl, and
J. Sepúlveda, “A security aware routing approach for NoC-based MP-
SoCs,” in SBCCI, 2016, pp. 1–6.

[10] T. Wehbe and X. Wang, “Secure and Dependable NoC-Connected
Systems on an FPGA Chip,” IEEE Transactions on Reliability, vol. 65,
no. 4, pp. 1852–1863, Dec 2016.

[11] R. Fernandes, B. Oliveira, J. Sepúlveda, C. Marcon, and F. G. Moraes,
“A non-intrusive and reconfigurable access control to secure NoCs,” in
ICECS, 2015, pp. 316–319.

[12] Hemanth, aes crypto core, 2004. [Online]. Available:
https://opencores.org/project,aes crypto core

[13] E. A. Carara, R. P. de Oliveira, N. L. V. Calazans, and F. G. Moraes,
“HeMPS - a framework for NoC-based MPSoC generation,” in ISCAS,
2009, pp. 1345–1348.

[14] F. G. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost, “HERMES:
an Infrastructure for Low Area Overhead Packet-switching Networks on
Chip,” Integration, vol. 38, no. 1, pp. 69–93, 2004.

[15] B. Oliveira, R. Reusch, H. Medina, and F. Moraes, “Evaluating the Cost
to Cipher the NoC Communication,” in LASCAS, 2018.

[16] R. Hesse, J. Nicholls, and N. E. Jerger, “Fine-Grained Bandwidth Adap-
tivity in Networks-on-Chip Using Bidirectional Channels,” in NOCS,
2012, pp. 132–141.

