Fault-tolerance at the Management Level in
Many-core Systems

Vinicius Fochi*, Luciano L. Caimi*T, Marcelo H. da Silva*, Fernando Gehm Moraes*
*PUCRS - Av. Ipiranga 6681, 90619-900, Porto Alegre, Brazil
TUFFS - Av. Fernando Machado 108E, 89802-112, Chapecd, Brazil
vinicius.fochi @acad.pucrs.br, Icaimi @uffs.edu.br, marcelo.holgado @acad.pucrs.br, fernando.moraes @ pucrs.br

Abstract—The technology nodes reduction enabled the emer-
gence of NoC-based many-cores with dozens to hundreds of
processing elements (PEs). Despite the processing power offered
by a large number of processors and communication flexibility
due to the adoption of NoCs, it is necessary to manage the
many-core resources to ensure scalability. The execution of
the management tasks requires a processing element reserved
exclusively to execute such actions. A centralized approach would
induce a significant load to the managers PE (MPE) in large-scale
systems. The adoption of distributed approaches, with MPEs
hierarchically organized, reduces the management load, being
the organization adopted in this work. Consider a permanent
fault in an MPE. In a centralized approach the entire system is
compromised, and in a hierarchical organization, a set of PEs
become inaccessible due to the fault in the MPE responsible for
managing these PEs. The literature presents several fault-tolerant
proposals targeting the NoC or the processors. However, there is
a significant gap related to fault-tolerant methods at the system
level, i.e., related to fault-tolerant methods regarding the MPEs.
The goal of this paper is to present a recovery method when
an MPE became faulty, and propose a protocol to migrate the
management software safely to a new PE. The protocol adopts
task migration to release a processor if there is no processor
to receive the kernel that was executing in a faulty processor.
The proposal is transparent to the applications executing in the
many-core, with a small execution overhead observed during the
management and task migration.

Index Terms—Many-core; NoC; System Management; Fault-
recovery protocol; Task migration; Fault-tolerance.

I. INTRODUCTION

Modern many-core systems enable embedded systems with
dozens of processors. Networks-on-Chip (NoCs) provide en-
hanced performance and scalability for the communication
infrastructure. However, large systems demand one or more
dedicated Processing Element (PE) for management actions,
as task mapping/migration, power management (DVFES), QoS
management, self-awareness adaptation, system monitoring
(energy, temperature, deadlines). How to deal with a failure
on Manager PEs (MPEs) opens a set of new challenges and
opportunities in the field of many-core systems research.

The management of a many-core may be centralized or
hierarchically organized in clusters (Definition 1) [1], [2].
In a centralized approach, if the MPE presents a permanent
fault, the entire system halts. In the hierarchical organization
when a MPE became unresponsive, only a many-core region
is affected.

Definition 1. Cluster - a many-core virtual region, with a
set of PEs and one MPE, named Cluster Manager (CM). The

978-1-5386-7431-4/18/$31.00 (©2018 IEEE

cluster size is a design-time parameter, but a cluster can borrow
resources from other clusters at runtime when all clusters
resources are busy - reclustering process [1].

With the ever-increasing reduction in the devices geometry,
transistors, vias, and wires degrade faster over time, causing
transient and permanent failures to occur earlier, thereby
decreasing the lifetime of integrated circuits [3]. For these
reasons, reliability becomes a critical design issue in many-
core systems [4]. Classical fault-tolerant approaches, as Triple
Module Redundancy (TMR) or spare components [5], do
not comply with today’s requirements of silicon area and
power dissipation. By construction, a many-core contains a
set of replicated structures (PEs), where a healthy component
can replace the faulty component functions, with minimal
performance reduction.

Thus, many-cores need management mechanisms to per-
form different control tasks at the system level, and the tech-
nology evolution from one side enables to increase the number
of PEs and from the other side accelerates the emergent of
failures. The literature presents different approaches at the
system level: power management (e.g., DVFS), performance
and QoS management, resource management and security [6],
[71, [8], [9]. A rich literature with methods to test PEs is also
available, with approaches adopted at different levels (hard-
ware or software) or modules (NoC, processors, memory).
However, there is a significant gap related to fault-tolerant
methods at the system level, i.e., related to the processors
with the function to manage the system. Therefore, the system
management requires monitoring and actuation policies to
recover the system when one of these processors presents a
permanent fault.

This work adopts many-core architectures with a hierarchi-
cal organization, with clusters. The paper goal is to present
a recovery method when a CM became faulty, and propose
a protocol to migrate the management software safely to a
new PE. The method does not require redundant structures,
as TMR or software replicas. This work uses task migration
and heuristics to select the new CM position. The fault model
assumes permanent faults on processors, and the NoC and
memory have fault-tolerant mechanisms.

The paper is organized as follows. Section II presents
related work. Section III details the system architecture and
the fault model. Section IV overviews the recovery method.
Section V presents the actions executed by the recovery proto-
col. Section VI details the recovery protocol steps. Section VII
presents the results, and Section VIII concludes this paper.



II. RELATED WORK

Paul et al. [10] propose a resource-aware computing
paradigm called Invasive Computing to reduce the negative
effects of resource sharing in MPSoCs with the focus in
mobile robotics applications. In the proposal, the operating
system can influence the internal decisions in the application
based on dynamic load distribution. Using the resource-aware
programming model the application gain the ability to adapt
to available resources by changing their workload. The model
helped to avoid frame drops. No frame was dropped during
the evaluation, and the accuracy values improved significantly
over the conventional approach.

Chen et al. [11] propose a Path-Diversity-Aware Fault-
Tolerant Routing (PDA-FTR) algorithm for NoCs. The PDA-
FTR combines adaptive path and routing path quality to
achieve fault-resilient packet delivery (FPD) and traffic load
distribution. In the proposal, the algorithm uses the PDA infor-
mation and a local buffer occupancy to acquire the Effective
Buffer Length (EBL) of the routing direction. EBL is a router
delay measurement, where higher EBL implies shorter routing
delay. The routing decision made by the proposed routing
algorithm sends the packet to a less congested region and
away from the faulty region. To reduce the cost of memory, the
Authors propose a regional FPD table to cover most routing
paths for packet transmission while minimizing performance
degradation. Due to the data locality, processing elements
that often communicate with each other are usually placed
in proximity to each other for minimizing the delay in data
delivery.

Kamran et al. [12] propose an autonomous test mechanism
for online detection of permanent faults in many-core proces-
sors. In this method, several test components are incorporated
in the many-core architecture that autonomously and concur-
rent with the system normal operation, distribute software-
based self-test routines among the processing cores, monitor
the behavior of the processing cores during execution of the
test routines, detect faulty cores, and make their omission from
the system possible. To use short idle times of the processing
cores, test data is segmented into small pieces, called test
snippets. Individual test snippets are distributed among the
processing cores and are made accessible to them for a limited
period. If a processing core has an idle slot during a period
that a test snippet is available, it executes the test snippet.
Otherwise, it skips execution of that portion of the test.

Bhowmik et al. [13] present a distributed online test mech-
anism that detects stuck-at faults (SAFs) in the channels
as well as identifies the faulty channel-wires in an on-chip
network (NoC). The proposed test mechanism improves yield
and reliability of NoCs at the cost of few test clocks and
small performance degradation. The method focus on detecting
stuck-at-0 (SAO) and stuck-at-1 (SA1) faults in the chan-
nels and evaluate their effect on network performance. Each
channel consists of control, data, and handshake wires. The
Authors propose an on-line method for testing channel-wires
connecting a node (router and its core).

Tsoutsouras et al. [14] present a run-time resource man-
agement framework which can dynamically adapt the system

to permanent faults in a self-organized, workload-aware man-
ner. They proposed a self-organization that allows resource
management agents to recovery from a failure electing a
new agent to replace the faulty management agent, while
workload awareness optimizes the election according to the
status of each core. The work is hierarchically organized in: (7)
controller cores: responsible for monitoring the system status
sending this data to the set of the PEs; (if) manager core:
responsible for managing one application; (iif) worker cores:
execute the applications’ tasks. The cluster area is monitored
by a controller core defined at system startup, but cannot
change at runtime.

Previous works present fault-tolerant methods focusing on
the applications’ execution, using methods well established in
distributed systems. Fault-tolerance at the system level is a gap
observed in the literature. The present work fulfills this gap,
by proposing a runtime method to migrate the management
functions assigned to a given CM to a healthy PE.

III. SYSTEM ARCHITECTURE AND FAULT MODEL

Figure 1 presents the reference many-core platform. It is
an adaptation of the public-available HeMPS many-core [15].
The architecture contains a set of PEs interconnected by a
data NoC and a control NoC [16]. One CM has an interface
with the external environment to the many-core to receive new
applications. Each PE contains one processor (32 bits MIPS),
a Direct Memory Network Interface (DMNI, combining the
functions of a Network Interface and a DMA module) [17], a
dual-port private memory, the data and control routers. The
PEs hardware is the same, being the role assigned to the
PEs made by software: Slave PEs (SPs) executes users’ tasks,
supporting multitasking and message exchanging; CM manage
a given cluster.

4

Cﬁn(écl
cpu .l%‘%gﬁj

Processing Element

Fig. 1. A 6x6 reference many-core system instance with 3x3 clusters.

Two similar descriptions model the platform: (i) synthesiz-
able VHDL, for characterization purposes; (if) RTL SystemC,
with clock-cycle accuracy, enabling the simulation of systems
with dozens of PEs.

The data NoC main features includes: (i) 2-D mesh topol-
ogy; (ii) 8-flit buffer depth input buffering; (iii) wormhole
packet-switching; (iv) support for deterministic XY and source
routing; (v) credit-based flow control; (vi) duplicated physical
channels (two 16-bit channels per link), enabling full adaptive
routing.

The control NoC [16] transfers the control messages. The
current work uses the control NoC to transmit messages with
the following purposes:



« notify the status of the CMs;

« freeze application(s) managed by a given CM,;

« notify an SP that it will become a new CM;

« notify a DMNI module to transfer the memory contents
of an SP to a new system address;

« notity the SPs about a new CM address;

« unfreeze application(s) after the CM migration.

An important architecture feature is that the memory is
accessible by the data NoC even if the processor has a
permanent fault. The control NoC configures the DMNI mod-
ule to transfer the memory contents to another PE. This
feature, transfer the memory contents when the processor
has a permanent fault, is commonly adopted in fault-tolerant
approaches [18].

The method herein presented may be applied to homoge-
neous or heterogeneous many-cores. The proposed method
requires the following architectural features: (i) a set of PEs
with the same architecture; (ii) at least two disjoint NoCs, one
for application data and one for management purposes [19];
(iii) a memory module that can be read/write directly by the
network interface [18].

The paper focus is not the fault detection, but the protocol
for fault recovery. This work assumes:

o PE healthy modules: memory, DMNI, data and control
NoCs. A usual method to protect the memory is the usage
of ECC (Error Correction Codes). The DMNI is a small
hardware module, with two state machines and a buffer.
This module may be protected by hardware replication
and adoption of ECC in the buffer. Besides the NoCs be
considered healthy, it is possible to detect transient faults
[20], and according to the transient faults severity, trigger
the proposed protocol.

e PE faulty module: CPU. The proposed method is fired
a when a permanent fault is detected in a CM. A fault
detection mechanisms (out of scope) detects faults in the
CPU and inject a message to report it.

IV. PROPOSED RECOVERY METHOD OVERVIEW

Figure 2 exemplifies two possible situations handled by the
proposed recovery method, using as example a 4x2 many-core
instances, with 2x2 clusters. In Figure 2(a), CM3 o is faulty
and SPs3 is free, i.e., there is no tasks executing on it. In
this case, the proposed recovery method migrates the kernel
from CMs o to SP3. In Figure 2(b) all SPs of the cluster
managed by the faulty CM execute tasks. In this scenario,
the recovery method migrates tasks executing in the cluster to
another cluster, before migrating the kernel.

The proposal starts by defining CM pairs. Each CM selects
its pair at runtime. A pair of CMs is responsible for supervising
each other, by exchanging periodically control messages, or for
receiving a fault message.

Figure 3 presents the actions taken when a CM presents a
permanent fault. When a permanent fault is detected in a CM
(faulty CM, or C' M), its CM pair (healthy CM, or CMp)
is notified by a broadcast control message. The C M starts
the recovery method. The C'My immediately inject a freeze
message to all the PEs. All tasks managed by C'MF stop their

(A)SP
Available ;

(B) Cluster:
Ful

Fig. 2. Scenarios handled by the recovery method: (a) cluster with available
SPs; (b) cluster with all SPs executing tasks.

execution. Next, C' My evaluate the PE location to receive the
functions executed by CMp. If there is an available SP in
the cluster, i.e., with no tasks assigned it, the kernel migration
process starts. Otherwise, it is necessary to release an SP of
the cluster managed by C'Mp to another cluster. This action
is done by migrating one or more tasks to a free SP. When
the task migration finishes, the kernel migration begins. After
the kernel migration, the PE that received the kernel assumes
the role of the previous CMp.

Fault Detected
inaCM

l

Freeze all applications
managed by the CM faulty

Available SPs
in the cluster?

Find a PE to receive a task |

|

Migrate task(s)

L

High-level flow chart, with the actions executed by the recovery

Migrate Kernel

Fig. 3.
protocol.

V. ACTIONS EXECUTED BY THE RECOVERY PROTOCOL

This Section presents the actions executed by the recovery
protocol. The criteria to select the new CM_ qndidates (Sec-
tion V-A), the method to freeze and unfreeze tasks (Sec-
tion V-B), the technique for task migration (Section V-C) and
the method to migrate the CM memory contents (Section V-D).

A. CM Candidate Selection

At system startup, the closest SP to its CM is the
CMandidate- When the CM maps a new application into the
cluster, it verifies if CM qndidate has tasks assigned to it. In



this case, the rule to select a new CM_ .y ndidate 1S the SP
with the minimum number of tasks assigned to it. Thus, after
any application mapping, the CM computes the CM .qndidate
address and transmits it to its CM pair. The number of tasks
executing in CM qpndidate 1S also transmitted because if its
different from zero, the CM pair will manage the migration
of the tasks executing in CM .qndidate if CM fails.

B. Freeze/Unfreeze Process

Freeze and unfreeze are control actions to stop or release
the execution of a set of tasks. The freezing process starts
with a healthy CM (C' M) transmitting in broadcast a freeze
message, using the Control NoC, having in its payload the
address of the faulty CM (C'Mp). It is necessary to stop
(freeze) the tasks to prevent loss of control messages.

Any SP receiving a freeze message verifies if it has tasks
managed by CMp. If it is the case, all tasks of this SP must
freeze. Otherwise, the message is discarded. The broadcast
transmission of the freeze message enables to stop tasks in
SPs managed by C My executing in other clusters, due to the
reclustering process. The freeze message does not stop the
tasks immediately. To avoid messages losses, the task must be
in a safe state. A safe state is defined as: the task to freeze
should be ready to be scheduled by the kernel, and there is no
pending request for messages. For example, if a task is in a
waiting state, this means that the task requested a message to
a producer task. Thus, the producer receives the request and at
some moment inject messages into the NoC. Such procedure
ensures that when a given task stops, there are no messages
generated by the task in the data NoC. Thus, all tasks managed
by C'MF goes to the freeze state, avoiding their scheduling by
the kernel.

After the kernel migration, the new CM sends an unfreeze
message, also in broadcast. This message unfreezes the tasks
managed by the new C'M and also transmits the new CM
address to the SPs of the cluster.

C. Task Migration

The C My starts the task migration process. The C My
sends to the SP with the task(s) to migrate a set of messages
to migrate the structures related to the task:

(1) task code;

(ii)) TCB (Task Control Block): a data structure that stores the
task state, including the values stored at each register, PC
(Program Counter), SP (Stack Pointer), size of the object
code and data (for migration purposes);

(iii) Message Requests: a structure with the received requests
for messages;

(iv) Stack data: data stored in the memory corresponding to
the stack;

(v) Pipe: all messages produced by the task but not yet
delivered;

(vi) Data: includes the local data and BSS memory segments;

(vii) Tasks location: addresses of the tasks that communicate
with the task being migrated.

The target PE after receiving all task messages related to
the task migration execute the following actions: (i) sends a

message to all SPs that communicate with the migrated task
with the new task address; (if) sends a message to C'Mpy
notifying that the migration process ended.

D. Kernel Migration

The kernel migration process first step is to prepare the
CM candidate to receive the memory contents (code and data)
of CMp. The CMpg notifies the CM ., pndidate that it will
receive the kernel executing in C'Mp, through a wait kernel
message. A special field in the packet header of this message
defines that the DMNI module should process the message
payload, not the processor. This message induces in the PE
the following actions: (i) hold the processor and configure the
DMNI module to write incoming packets into the memory,
from address zero; (ii) once the DMNI configured to write
packets directly into the memory, the DMNI sends a wait
kernel acknowledge message to C'Mpy.

Once received the acknowledgement, C' My sends a mes-
sage to CMp: send kernel. The kernel migration is simpler
than the task migration because the kernel has no context
(it is not controlled by a scheduler), neither communication
structures (as requests and pipe). The DMNI of the CMpg
handles the send kernel message, transferring the memory
contents (code and data) to CM_ qndidate, Using the data
NoC. After transferring the memory contents, the DMNI is
configured to avoid any transmission from the faulty processor,
preventing Bizantine faults.

VI. RECOVERY PROTOCOL STEPS

Figure 4 presents the recovery method, assuming:

— a many-core with two clusters, being CM0 and CM1
the managers of clusters 0 and 1, respectively;

— SP7: CM cqndidate, €xecuting 1 task;

— SP1: an idle processor from another cluster that will
receive the task executing in SP7.

Cluster 1 receives application mapping requests (1 in Fig-
ure 4), assigning a task to each SP in its cluster. In this
example, all SPs execute at least one task. After assigning the
tasks in the cluster, SP7 is elected as a new CM qndidate, and
CM1 notifies C MO that SP7 is the CM qndidate, €Xecuting
one task (2).

At a given moment (3), a permanent fault is detected
in the processor of C'M1. The control NoC receives the
fault notification, and broadcast a Fail CPU service message,
targeting the CM pair, in this case, CMO0. The first action
of the protocol, after the fault notification message, is to
broadcast a freeze message (Section V-B) to all tasks managed
by CM1 (4).

The next protocol action is to migrate tasks, if necessary.
In this example, it is necessary to migrate the task executing
on SP7 to SP1. The C M0 sends a message to SP7 to migrate
the task it is executing to SP1 (5). As detailed in Section V-C,
SP7 sends to SP1 a set of messages with the task contents.
After receiving all the messages related to the task migration,
SP1 notifies to all application tasks the new location of the
migrated task (6). The task migration ends with SP1 notifying
the healthy CM (C'MO0) the end of the migration process (7).



Cluster 0

( 1 Cluster 1
[sP1 ] cmo | ‘Cemi ] [spz ) [ sp8 .. [spia]|
@ application
SP7 - Task A ) g
SP8 - Task B . %
> -
c
@ CM Candidate SP13- TaskN "
SP7 - Task A - —
execution -
time 2
3
fault detected
@ Fail CPU service 1
J—

@ Freeze » al

L
(5) Migrate Task A to SP1 > <
Task <
. Migration 5
@ Undate Task Location N > 3
o
(7]
@ Task Migrated ~

»
Wait Kernel =
Wait Kernel Ack g
Send Kernel > ]
Kernel 5
©) :
CM1
< < @ Unfreeze > q

Fig. 4. Sequence diagram of the recovery protocol steps. Black arrows: messages transmitted through the Data NoC. Red arrow: messages transmitted through

the Control Noc.

With the availability of a PE in the cluster, the kernel
migration starts. Actions represented in event 8 correspond to
the kernel migration protocol (Section V-D): notification of the
SP that will assume the CM role (SP7); the acknowledgment
message to C'My; and the message to transfer the memory
contents from the CMpr to CM_.undidate- Next, the CMp
DMNI transfers the memory contents to CM cqndidate (9). Once
the kernel received, the CM .4, didate TEStarts, assuming the role
of a new CM. After restarting, the new CM sends an unfreeze
message to the stopped task (10). This message unfreezes the
tasks managed by the new C'M and also transmits the CM
address to the SPs.

VII. RESULTS

The experiments are executed using a clock cycle accurate
RTL SystemC model of the reference many-core platform
(Figure 1). Applications and kernel are described in C lan-
guage, compiled from C code and executed over cycle-accurate
models of the processing cores.

The many-core contains 16 PEs, organized in 2x4 clusters.
The experiments use two benchmarks to evaluate the recovery
protocol: MPEG decoder (5 tasks) and Prod_Cons (2 tasks).

A. Proposed Protocol Overhead

This Section evaluates the overhead induced in the Appli-
cation Execution Time (AET) when adopting the proposed
recovery protocol, associated to a 64 KB kernel migration,
with one task migration (10KB code and data). Figure 5
presents the steps for a task and a kernel migration. In

Figure 5(a) CM> o fails. The fault detection module notifies
the fault by injecting in the control NoC router the Fail CPU
service. The CMy o knows that the CMqndidates €X€cCute one
task (task C). Thus, it is necessary a task migration before the
kernel migration. In Figure 5(b) task C migrates from SP ;
to SPy 1, in another cluster. When the task migration finishes,
the kernel migrates to SPy ; (Figure 5(c)).

Each application executes with three different number of
iterations. The MPEG executes 20, 40 and 60 iterations, and
Prod_Cons executes 500, 700 and 900 iterations. Table I
presents the execution time for both applications. The column
baseline presents the AET without executing the proposed
protocol. The last column task + C'Mp presents the AET
with the protocol executing one task migration and the kernel
migration. Note that the time to execute the protocol cor-
responds to 1.78 ms (fourth column values minus the third
column values). Hence, the AET overhead reduces when the
number of executed interactions increases.

TABLE I
APPLICATION EXECUTION TIME (AET), IN MS (@ 100MHZz).

The percentage in the last column represents the overhead of the
proposal w.r.t the baseline execution time.

iterations  baseline task + CMp
MPEG 20 / 500 11.447 13.178 (15.1%)
+ 40 / 700 17.824  19.607 (10.0%)
Prod_Cons 60 / 900 26.455 28.238 (6.73%)




Fig. 5.
Highlighted PE, PEj3 1, is the CM qndidates tO receive the kernel.

MPEG and Prod_Cons task graphs, and applications mapping.

B. Proposed Protocol Steps Overhead

Table II details the time spent at each recovery protocol
step. The first line presents the time when a fault was inserted
and detected, 2.0 ms (Figure 5(a)). The second line shows the
moment when task migration starts. The overhead induced by
the task migration is 0.3 ms. The third line shows the moment
when kernel migration starts. The overhead due to the kernel
migration (64 KB) is in average 1.3 ms. For kernel sizes of
32 KB and 128 KB, the overhead is in average 0.7 and 2.6
ms, respectively.

TABLE II
PROTOCOL OVERHEAD FOR ONE AND TWO TASK MIGRATIONS.
one task  two task
Fail CPU 2.000 ms 2.000 ms
Migration task  2.172 ms  2.130 ms
Wait Kernel 2.429 ms 2.633 ms
Unfreeze 3.777 ms 3.988 ms

VIII. CONCLUSION

This work presented a runtime protocol for management
recovery in NoC-based many-core. The proposal includes a
method to safely migrate the management software to a new
processing element, assuming a protected memory and a task
migration method to release an SP candidate. The results
displayed a small overhead for to task migration, as well as a
small impact on the execution time of the applications when
they are stopped to migrated the management functions to
another PE.

Future works include: (i) extend the method to faults in slave
processing elements, enabling to recover applications from

faults; (ii) add multiple interfaces to the external environment
to avoid a single point of failure, i.e., enable multiple CMs to

receive application requests.

IX. ACKNOWLEDGEMENTS

Author Fernando Gehm Moraes is supported by FAPERGS
(17/2551-196-1) and CNPq (302531/2016-5), Brazilian fund-
ing agencies.

REFERENCES

[1]1 G. Castilhos, M. Mandelli, G. Madalozzo, and F. G. Moraes, “Dis-
tributed resource management in NoC-based MPSoCs with dynamic
cluster sizes,” in ISVLSI, 2013, pp. 153-158.

[2] R. Brillu, S. Pillement, F. Lemonnier, and P. Millet, “Cluster Based
MPSoC Architecture: An On-chip Message Passing Implementation,”
Design Automation for Embedded Systems, vol. 17, no. 3-4, pp. 587—
607, 2013.

[3] H. Kim, A. Vitkovskiy, P. V. Gratz, and V. Soteriou, “Use it or lose
it: Wear-out and Lifetime in Future Chip Multiprocessors,” in MICRO,
2013, pp. 136-147.

[4] O. Heron, J. Guilhemsang, N. Ventroux, and A. Giulieri, “Analysis of
on-line self-testing policies for real-time embedded multiprocessors in
DSM technologies,” in IOLTS, 2010, pp. 49-55.

[5] B. Reddy, M. Vasantha, and Y. Kumar, “A Gracefully Degrading and
Energy-Efficient Fault Tolerant NoC Using Spare Core,” in ISVLSI,
2016, pp. 146-151.

[6] N. Dutt, A. Jantsch, and S. Sarma, “Self-Aware Cyber-Physical Systems-
on-Chip,” in ICCAD, 2015, pp. 46-50.

[71 H. Tajik, B. Donyanavard, N. Dutt, J. Jahn, and J. Henkel, “SPM-
Pool: Runtime SPM Management for Memory-Intensive Applications in
Embedded Many-Cores,” ACM Transactions on Embedded Computing
Systems, vol. 16, no. 1, pp. 25:1-25:27, 2016.

[8] F. Barreto, A. M. Amory, and F. G. Moraes, “Fault Recovery Protocol
for Distributed Memory MPSoCs,” in ISCAS, 2015, pp. 421-424.

[9] L. Caimi, V. Fochi, E. Wachter, D. Munhoz, and F. G. Moraes, “Secure

Admission and Execution of Applications in Many-core Systems,” in

SBCCI, 2017, pp. 65-71.

J. Paul et al., “Self-adaptive Corner Detection on MPSoC Through

Resource-aware Programming,” Journal of System Architecture, vol. 61,

no. 10, pp. 520-530, 2015.

Y. Y. Chen et al., “Path-Diversity-Aware Fault-Tolerant Routing Algo-

rithm for Network-on-Chip Systems,” IEEE Transactions on Parallel

and Distributed Systems, vol. 28, no. 3, pp. 838-849, 2017.

A. Kamran and Z. Navabi, “Stochastic Testing of Processing Cores in

a Many-core Architecture,” Integration, the VLSI Journal, vol. 55, pp.

183-193, 2016.

B. Bhowmik, J. K. Deka, S. Biswas, and B. B. Bhattacharya, “On-line

Detection and Diagnosis of Stuck-at Faults in Channels of NoC-based

systems,” in SMC, 2016, pp. 4567-4572.

V. Tsoutsouras, D. Masouros, S. Xydis, and D. Soudris, “SoftRM: Self-

Organized Fault-Tolerant Resource Management for Failure Detection

and Recovery in NoC Based Many-Cores,” ACM Transactions on

Embedded Computing Systems, vol. 16, no. Ss, pp. 144:1-144:19, 2017.

E. A. Carara, R. P. de Oliveira, N. L. V. Calazans, and F. G. Moraes,

“HeMPS - a framework for NoC-based MPSoC generation,” in ISCAS,

2009, pp. 1345-1348.

E. Wachter, L. L. Caimi, V. Fochi, D. Munhoz, and F. G. Moraes,

“BrNoC : A broadcast NoC for control messages in many-core systems,”

Microelectronics Journal, vol. 68, pp. 69-77, 2017.

M. Ruaro, F. B. Lazzarotto, C. A. Marcon, and F. G. Moraes, “DMNI: A

specialized network interface for NoC-based MPSoCs,” in ISCAS, 2016,

pp. 1202-1205.

P. Meloni et al., “System Adaptivity and Fault-Tolerance in NoC-based

MPSoCs: The MADNESS Project Approach,” in DSD, 2012, pp. 517-

524.

D. Wentzlaff et al., “On-Chip Interconnection Architecture of the Tile

Processor,” IEEE Micro, vol. 27, no. 5, pp. 15-31, 2007.

V. Fochi, E. Wichter, A. Erichsen, A. M. Amory, and F. G. Moraes, “An

integrated method for implementing online fault detection in NoC-based

MPSoCs,” in ISCAS, 2015, pp. 1562-1565.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]



