
Secure Admission and Execution of Applications in Many-core
Systems

Luciano L. Caimi
UFFS - Chapeco, Brazil

PUCRS - Porto Alegre, Brazil
lcaimi@u�s.edu.br

Vinicius Fochi
PUCRS - Porto Alegre, Brazil
vinicius.fochi@acad.pucrs.br

Eduardo Wachter
PUCRS - Porto Alegre, Brazil

eduardo.wachter@acad.pucrs.br

Daniel Munhoz
PUCRS - Porto Alegre, Brazil
daniel.munhoz@acad.pucrs.br

Fernando G. Moraes
PUCRS - Porto Alegre, Brazil
fernando.moraes@pucrs.br

ABSTRACT
Many-core architectures are similar to a computer network, where
it is necessary to ensure the security during the execution of sensi-
tive applications. �is article discusses two security-related issues:
the secure admission of applications and the prevention of resource
sharing during their execution. �e safe application admission is
an open research subject for many-core systems. Although several
methods are available for the Internet, computer networks, and
so�ware in general, low-cost computational proposals were not
yet been proposed for many-core systems. Methods preventing
resource sharing adopts �rewalls, encryption mechanisms, and
resource isolation to deal with the security threats. �is paper
proposes a protocol, executed at runtime, to tackle these issues.
�e application admission authenticates trusty entities. An entity
authenticated might deploy applications, requiring only a MAC ver-
i�cation to guarantee the application integrity. Secure applications
are mapped into continuous secure zones (SZ), with the reservation
of all Processing Elements (PEs) and communication resources. All
tra�c �ows that should cross the SZ are rerouted to the outside
of the SZ . Such isolation approach avoids Deny-of-Service (DoS),
timing, and spoo�ng a�acks and guarantees con�dentiality and
integrity. �e cost of the protocol is the latency required to start the
secure applications. Results evaluate this latency, showing the ef-
fectiveness on adopting the proposed protocol to execute sensitive
applications on many-core systems.

CCS CONCEPTS
•Networks →Security protocols;

KEYWORDS
Many-core systems, Security, Application Admission, Secure Zones

ACM Reference format:
Luciano L. Caimi, Vinicius Fochi, Eduardo Wachter, Daniel Munhoz, and Fer-
nando G. Moraes. 2017. Secure Admission and Execution of Applications in
Many-core Systems . In Proceedings of SBCCI ’17, Fortaleza - Ceará , Brazil,
August 28-September 01, 2017, 7 pages.
DOI: 10.1145/3109984.3110015

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SBCCI ’17, Fortaleza - Ceará , Brazil
© 2017 ACM. 978-1-4503-5106-5/17/08. . .$15.00
DOI: 10.1145/3109984.3110015

1 INTRODUCTION
�e many-core architecture assumed in this work are NoC-based
MPSoCs, due to their inherent scalability, providing massive paral-
lelism and high performance to the users. �ese architectures con-
tain processing elements (PEs), interconnected through routers. In
such systems, several applications execute simultaneously, sharing
computation (processors) and communication (routers) resources.

�ese MPSoCs are similar to a computer network, where it is
necessary to ensure security during the execution of sensitive ap-
plications [13]. Two questions require an answer to guarantee the
secure execution of applications: (i) how to receive from the MPSoC
external environment an application and trust on its identity and
integrity?; and (ii) how to execute an application without sensitive
data leakage?

�e application admission corresponds to the object code trans-
fer from an o�-chip entity to the MPSoC. Concerning security in
this process, the MPSoC must trust on the entity transmi�ing the
application and the integrity of the application must be veri�ed
to avoid the insertion of malicious code. Solutions to these issues
exist for the Internet, computer networks, and so�ware in general
[11][7][12]. However, a low-cost protocol for application admission
targeting MPSoCs is a gap observed in the literature.

At execution time, a malicious a�acker may have access to sen-
sitive computation or communication data. A secure application
that processes sensitive data may have its security harmed by a
malicious process. Examples of a�acks on such systems include
DoS, timing, spoo�ng, side-channel a�acks and memory leakage
[13][9][14].

�e objective of the paper is to propose a protocol executed at
runtime to tackle these issues: application admission and secure
execution. �e protocol authenticates trusty entities, by creating
an entity key. �e authenticated entities may deploy applications
on the MPSoCs, with an a�ached MAC (Message Authentication
Code), which ensures at the same time integrity and authentication.
Reserving and isolating computation and communication resources
inside a region of the MPSoC guarantees the secure execution.
A�er the application execution, the memory is erased to avoid
information leakage.

�e original contributions are the lightweight methods adopted
in the protocol. �e authentication of trusty entities avoids the
cost of key exchange protocols for each application admi�ed in the
system since the key exchange occurs once for each entity. For each
new application admi�ed in the system, only a MAC veri�cation is
required. �e execution of the application inside a reserved region
eliminates the need of �rewalls and data encryption.

65

SBCCI ’17, August 28-September 01, 2017, Fortaleza - Ceará , Brazil L. L. Caimi et al.

�is paper is organized as follows. Section 2 presents proposals
related to application admission and works related to the secure exe-
cution of applications in MPSoCs. Section 3 details the architecture
model assumed in the current work. Section 4 presents the main
contribution of this paper, the protocol for secure admission and
execution of secure applications. Section 5 evaluates the protocol
regarding the latency to start the secure applications. Section 6
concludes the paper and points-out direction for future works.

2 STATE-OF-THE-ART
�e use of cryptographical schemes to register and authenticate
users and equipment is widely used in many computing areas
[11][1][16]. In the same way, the secure application admission
(also called deploy in other areas) is proposed in [7][12]. However,
to the author’s knowledge, there is no proposal for secure admission
of applications for MPSoCs.

Sepúlveda et al. [14] and Isakovic et al. [10] protect communi-
cation and computation, by adopting �rewalls and cryptography.
Sepúlveda et al. [14] adopt two NoCs: data NoC, used for the ap-
plication data; service NoC used to exchange the security control
packets. �is proposal adopts SZ , de�ned at runtime, encrypting
the packets. �e SZ can be a discontinuous region inside the sys-
tem. Packets from other applications may traverse the SZ , making
the approach vulnerable to timing a�acks. Firewalls ensure access
control, authentication, and con�dentiality. Isakovic et al. [10]
propose an architectural partitioning of the MPSoC resources at
design time. �e Authors adopt security components like a secure
µkernel and a secure channel infrastructure. �e Authors propose
to migrate the security functions from application components to
the security components, instead of using SZ . To obtain a secure
environment for applications, the Authors use physical separation
of applications and secure channels to data exchange.

Hu et al. [9] and Fernandes et al. [5] protect communication.
�e computation is exposed to resource sharing. Both approaches
are applied at design time. Hu et al. [9] proposes an approach to
select the position of the �rewalls: between a PE and a router or
between routers. �e goal of the Authors is to reduce the com-
munication overhead required for security information in packets
headers. Results show a 30% to 63% overhead reduction over a stan-
dard solution, i.e., �rewalls connected to the NIs. Fernandes et al.
[5] propose the creation of SZ based on the routing algorithm. �e
Authors use the Region-based Routing Algorithm (RBR) method
to create SZ and the Segment-based Routing (SBR) to guarantee
deadlock free paths. �e Authors claim that the method mitigates
DoS and timing a�acks. Results show up to 16.56% overhead in the
size of the routing tables over the baseline system.

Real et al. [13] and ARM TrustZone [2] protect computation.
Both approaches are applied at run time. Real et al. [13] uses a
clustered MPSoC. �e Authors propose the creation of SZ , mapping
the application to one or more clusters. If an application task needs
to communicate with a task in another cluster, the message is
sent through an insecure channel. �us, computation is protected,
but the communication is exposed to a�acks. ARM processors
provide the ARM TrustZone (ATZ) [2], a hardware support for the
creation of Trusted Execution Environments (TEEs) and therefore
the isolation of applications in the same processor. In multi-core
architectures, applications running on di�erent processors share
resources such as the communication infrastructure and memory.
�ereby, with TTE, applications running on di�erent processors
have its communication exposed to a�acks.

Table 1 summarizes the characteristics of state-of-art proposals.
�e last row of the Table compares our proposal to the state-of-art.
�e proposal main novelties include: (i) secure admission of the
applications; (ii) runtime protection of the computation and com-
munication; (iii) due to the adoptions of continuous SZ , �rewalls
and tra�c encryption is not required.

3 ARCHITECTURE OVERVIEW
Figure 1 presents the baseline architecture, a homogeneous NoC-
based MPSoC, where each PE contains a 32-bit RISC processor, a
DMNI module (a network interface with DMA capabilities), a local
dual-port memory accessed by the processor and DMNI module, and
a 192-bit pseudo-random number generator (PRNG). �e so�ware
executing at each PE de�nes its role in the system. �e system has
manager PEs, global manager (GMP) and local managers (LMP);
and PEs executing applications, slave processors (SP).

Two NoCs interconnects the PEs: data and control NoC. �e data
NoC transfers data messages, exchanged by applications. �e data
NoC adopts duplicated physical channels, wormhole packet switch-
ing, simultaneous support for distributed XY and source routing.
�e control NoC transfers the control messages. �e control NoC
has the following features (similar architecture to [15]): adoption
of broadcast as the default transmission mode, bu�erless router,
each message has one �it. �e control NoC router has a small area
footprint, corresponding roughly to 20% of the data router.

SP SP SP SP

SP SPSP

SP SP LMP SP

SP

SP

SP SPSP SP

Memory CPU

DMNI

Data NoC
Router

Control
NoC

Router

Processing Element

W W

W

W

W

W

W

W

SP

SP

SP

SP

SP

GMP

SP

SP

SPSP SP

Trusty Entity

CPU

PRNG

Legend:
 - GMP: Global Manager Processor
 - LMP: Local Manager Processor
 - SP: Slave Processor
 - DMNI: Direct Memory Network Interface
 - PRNG: Pseudo-Random Number Generator

Secure Zone

Figure 1: NoC-based MPSoC. Wrappers (W) are added to the
control signals of NoCs links, enabling to isolate ports indi-
vidually.

De�nition 1. Appsec : application modelled as a task graph, with
security constraints.

De�nition 2. SZ : a Secure Zone is a continuous isolated area in
the system, with a rectangular shape, with the SPs and routers of
the SZ reserved to execute a single Appsec . �e Appsec tra�c is
enclosed within the SZ , and any other tra�c crossing the SZ is
rerouted to the outside of the SZ .

Both NoCs contain test wrappers, or simply wrappers, in the �ow
control signals. When activated, the wrapper enables to discard all
incoming and outcoming packets of a given port. �e control NoC
manages their wrappers, for security reasons, i.e. the applications
running at the PEs cannot access the wrappers of the control NoC.
�e data NoC observes the status of the wrappers. A data message
arriving in an activated wrapper is always discarded, and the control
NoC returns to the source of the message a new broadcast reporting
that the message needs retransmission.

�e control NoC has two operation modes: global and restrict.
�e global mode enables the control messages to pass through the
wrappers, even if they are enabled. �is mode enables the PEs
inside the SZ to exchange messages with manager PEs. �e restrict

66

Sec. Admission and Execution of App. in Many-core Systems SBCCI ’17, August 28-September 01, 2017, Fortaleza - Ceará , Brazil

Table 1: Related works on secure execution of applications in MPSoCs.

Proposal Protection Method Services Design Time Run TimeComput. Comm.

Sepulveda
(2015) Yes Yes Discontinuous SZ :

cryptography and �rewalls
Access control;
Authentication;
Con�dentiality

- Key exchange; cipher
and decipher messages

Isakovic
(2013) Yes Yes Cryptography and �rewalls

Access control;
Authentication;
Data integrity

Secure Kernel (key management and
secure channel management) and secure
tools (protocols, algorithms) provided

-

Hu
(2015) No Yes Firewall Access control;

Con�dentiality
Application mapping;
Firewall positioning and con�guration -

Fernandes
(2016) No Yes Discont. SZ : table-

routing algorithm (RBR/SBR)
Timing a�acks;
DoS;

Task Mapping; Run RBR and SBR algorithms
to calculate paths and router tables -

Real
(2016) Yes No SZ : spatial

and temporal isolation
Data integrity;
Con�dentiality
inside the Cluster

- Application mapping;
SZ creation;

ARM
(2008) Yes No SZ : spatial isolation Access control;

Data integrity;
Application development
using ATZ API

Switch to TTE mode
and police execution;

Our Proposal Yes Yes
Secure Admission and
Continuous SZ , without
cryptography or �rewalls

Authentication;
Data integrity;
Timing a�acks;
DoS; Spoo�ng.

-

Entity Authentication,
Secure Admission, Key
exchange, Shape
De�nition, SZ Creation

mode observes the status of the wrappers, i.e., if a control message
hits an activated wrapper, the message is discarded.

�e GMP manages the communication between the MPSoC and
the external world. �e MPSoC may execute applications with
or without security constraints. In the la�er case, trusty entities
(De�nition 3) transmit the secure applications. In this context, the
MPSoC may be a node in an IOT network with higher computa-
tional power, and an entity is a set of nodes transmi�ing secure
applications to the MPSoC.

De�nition 3. Trusty Entity: an external entity to the MPSoC
enabled to transmit Appsec s to be executed by the MPSoC.

4 SECURE ADMISSION AND EXECUTION
PROTOCOL

�is Section presents the Secure Admission and Execution of Applica-
tions protocol. �e protocol has 7 phases: (a) system initialization;
(b) registration of trusty entities running an Elliptic Curve Di�e-
Hellmann (ECDH) key agreement protocol [8]; (c) application ad-
mission including shape de�nition and task mapping; (d) internal
key exchange protocol; (e) tasks allocation and MAC veri�cation
[3]; (f) close the SZ and application execution; (g) at the end of
application execution open the SZ and release the memory contents
of SPs.

4.1 System Initialization
At system startup, the GMP computes and �lls some structures to re-
duce the computation time of the phases executed at runtime. First,
the GMP reads a random number from the PRNG module, sending it
through a polynomial value message to all SPs, using the con-
trol NoC. �e PEs have a set of polynomials de�ned at design time,
to be used by an LSFR. A�er receiving the polynomial value
message from the GMP, the SPs and the GMP select the same poly-
nomial according to the generated random number. Encryptions or
decryptions executed between PEs use the LFSRs con�gured using
this process. Next, the GMP computes the set(P , p), used at the
entity registration phase.

De�nition 4. set(P , p): set of tuples with points over an elliptic
curve, P , and 192-bit prime numbers, p. set(P , p) = {(P0, p0), (P1,
p1), … }.

4.2 Entity Registration and Key Agreement
As shown in Figure 1, external entities may deploy secure applica-
tions to execute in the MPSoC. �e goal of this phase is to de�ne the
entity key (De�nition 5). During the task allocation phase (Section
4.5), Ke will be used by the entity to compute the MAC of each task
object code, and by the SPs to check the received MAC.

De�nition 5. Ke : key generated by the ECDH key agreement
protocol between an entity and the MPSoC.

�e option for the use of ECDH is due to its be�er performance,
considering the execution time, when compared to other systems
with equivalent security levels. �is protocol adopts 192-bit Ellip-
tic Curves, which provides equivalent security levels to 2048-bit
classical Di�e-Hellman [6].

�e external entities may also be connected to the Internet and
run secure protocols such h�ps or TLS/SSL to guarantee the secu-
rity of the received application. �us, with the proposed protocol,
the security between entities and the MPSoC is guaranteed, but
the security between the external world and the entities must be
ensured by the entities using appropriate protocols.

�e entity registration phase runs the ECDH key agreement
protocol using the 25519 curve[4]. Figure 2 shows the registration
steps.

GMPEntity

Public_values(P,p)

Entity_ID(ID) Confirm ID

Select prime number: p

Select point P=(XP,YP)

Generate random value a

Calculate: A = a * P = (XA,YA)

Entity_point(A)

Generate random value b

Calculate: B = b * P = (XB,YB)

GMP_point(B)
Calculate: S = a * B = a * (b * P)

Shared Secret S

Calculate: S = b * A = b * (a * P)

Shared Secret S

1
2

3

3a
4

5

6 6a

7

Figure 2: Entity registration with Di�e-Helmann Elliptic
Curve.

�e �rst action executed by an entity is to send its entity ID
to the MPSoC (1 in Figure 2). �e MPSoC accepting the request
(2) sends an element of the set(P, p) (De�nition 4) to the entity (3).

67

SBCCI ’17, August 28-September 01, 2017, Fortaleza - Ceará , Brazil L. L. Caimi et al.

Using the public values (P , p), the entity and the GMP compute new
points, A and B, as follows:

Entity: A = a ∗ P (mod p)
GMP: B = b ∗ P (mod p)

where: a and b are random numbers, independently generated by
the entity and the GMP at this step of the protocol (3a and 4).

�e new points, A an B, are public exchanged (5 and 6). Now,
each actor is able to compute a common secret point:

Entity: S = a ∗ B (mod p) = a ∗ (b ∗ P) (mod p)
GMP: S = b ∗ A (mod p) = b ∗ (a ∗ P) (mod p)

�e computed S points are equal because in the EC domain
commutative and associative properties are true. �us, at the end
of this phase (6a and 7), the entity and the GMP share a secret
point S=(XS ,YS). �e S point X-coordinate is the Ke . �e GMP
keeps the pair (entity ID, Ke) to use it in all future secure
applications deployed by the entity, saving resource consumption
and decreasing the latency to start the secure applications.

4.3 Application Admission
�e application admission phase determines the location of the
SZ and maps the Appsec ’s tasks (De�nition 1). Figure 3 presents
the application admission steps. An entity requests to the GMP
the execution of a new Appsec , transmi�ing the entity ID and
the Appsec graph (number of tasks, inter-task dependencies) - 1 in
the Figure. �e GMP selects the cluster with enough resources to
execute Appsec (2), sending to the LMP of the selected cluster the
Appsec graph and a tag identifying that the application is secure
(3).

GMP LMP SP 0

Req_Alloc(Tasks_Map)

New_App (graph, secure) Shape Definition and

Map Application's Tasks

Task_Comm(task_ID, locations)

2

3 4

5

Entity

Cluster

Seletion

App_request(ID,graph, ...)

store locations

1

~~~~ ~~~~

7

. . .

6

Figure 3: Application admission phase protocol.

Algorithm 1 presents the pseudo-code to create at runtime a
SZ with a rectangular shape (De�nition 2). Line 1 returns the
shape set , i.e., the rectangular regions that may execute Appsec .
�e function responsible for computing the shape set considers the
number of Appsec ’s task, the cluster size, and the manager position.
�is function favors square shapes to reduce the number of hops
between the communicating tasks.

If the shape set is empty (line 2 to 3) the algorithm returns
FALSE, meaning that the cluster does not have a rectangular shape
to execute Appsec . In such case, the LMP runs a reclustering func-
tion, borrowing resources from neighbor clusters, to guarantee
a shape with resources to execute Appsec . A�er the reclustering
process, Algorithm 1 is re-executed.

If the cluster may receive Appsec , the algorithm creates the set
AR, where each element of AR contains: (i) the number of SPs not
executing tasks inside the shape (nbFreeSPs); (ii) the bo�om le�
address of the SP inside the shape; (iii) the shape size. �e loop
starting at line 7 evaluates each shape of the shape set . For each SP
of the cluster, a sliding window search (SWS) returns the number
of SPs not executing any task inside the shape (line 10), adding the
tuple to the AR set (line 11). If the number of free SPs is equal to

Algorithm 1 Search resources to create the SZ
1: shape set = �nd shapes(#tasks, cluster size, manager position)
2: if shape set = ∅ then
3: return FALSE
4: else
5: // set Available Resources: tuples {nbFreeSPs, SP, shape}
6: AR ← ∅
7: for all shape in shape set do
8: for all SP of the cluster do
9: // SWS = Sliding Window Search

10: nbFreeSPs = SWS((SP.x,SP.y),(shape.∆x,shape.∆y))
11: AR ← AR ∪ {nbFreeSPs, SP, shape}
12: if nbFreeSPs = |shape | then
13: return SP, shape
14: end if
15: end for
16: end for
17: sort(AR , nbFreeSPs)
18: for each SP in AR[0].shape do
19: if task running in SP then
20: migrate tasks(SP)
21: end if
22: end for
23: return AR[0].SP, AR[0].Shape
24: end if

the number of elements of the shape (|shape |) the function returns
the SP address and the shape size (lines 12-14).

If all SPs of the cluster were visited with all possible shapes and
there is no free region to execute Appsec , it is necessary to migrate
tasks to obtain a SZ . Line 17 sorts the AR set according to the
number of free SPs. A�er sorting, the �rst element of AR is the
one with the largest number of free SPs. Lines 18 to 22 visit the
SPs inside the shape, and if an SP has running tasks, the tasks are
migrated to outside the shape boundary (line 20). Line 23 returns
the coordinates of the bo�om le� SP of the SZ and the shape size.

A�er de�ning the SZ the LMP maps the tasks inside this region,
considering as cost function the communication cost between the
tasks (4). Note that mapping means de�nition of tuples {task ID,
SP location}, not the object code transfer.

De�nition 6. Application’s task map: set of tuples {task ID, SP
location} with the address of each Appsec task .

Steps 5 and 6 on Figure 3 corresponds to the transmission of the
addresses of the communicating pairs to the SPs that will receive
the tasks. At the end of this phase, the LMP request to the GMP the
object code of the tasks (7).

4.4 Entity Key Exchange
�is phase of the protocol transmits Ke to the SPs of the SZ , en-
crypted with a new key, Km (internal MPSoC key). Each task
receives a MAC to guarantee the integrity of the object code. �e
MAC is created using the SIPHASH algorithm [3] and Ke . �ere-
fore, the SPs need Ke to compute the MAC a�ached to each task,
and for security reasons Ke must remain in the GMP.

Figure 4 presents the entity key exchange steps. �e LMP trans-
mits the application’s task map (De�nition 6) at the last step of the
previous phase to the GMP (Req Alloc message, 1 in Figure 4).
�e GMP reads a random number from the PRNG (2), transmi�ing
it to each SP inside the SZ using the data NoC. �is step avoids

68



Sec. Admission and Execution of App. in Many-core Systems SBCCI ’17, August 28-September 01, 2017, Fortaleza - Ceará , Brazil

broadcast transmission to prevent the reception of the random num-
ber by other SPs (3). �e GMP and the SPs create Km also using the
SIPHASH algorithm and the transmi�ed random number (4).

Read random number: rnd

Km = SIPHASH(rnd)

M = Ekm(Ke)

GMP SP 0

Req_Alloc(Tasks_Map)

2

send_rnd(rnd)
Km = SIPHASH(rnd)

send_Ke(M)
Ke= Dkm(M)

1

LMP

~~ ~~ ~~

3

5

4

6

. . .

Figure 4: Entity key exchange.

�e GMP uses Km to encrypt Ke , using an LFSR. �e resources
initialization phase de�nes the polynomial of the LSFR (Section 4.1).
A�er encrypting Ke , the GMP sends the encrypted value to each
SP inside the SZ using the data NoC (5). �en, each SP decrypt the
received message using Km (6), obtaining Ke , to be used in the next
protocol phase.

4.5 Tasks Allocation and MAC Veri�cation
�e goal of this phase of the protocol is to allocate the Appsec ’s
tasks in the SPs of the SZ , guaranteeing their integrity.

�is phase starts with the GMP requesting to the external entity
the object code of the Appsec ’s tasks (1 in Figure 5). �e entity
generates a MAC for each task, using the SIPHASH algorithm and
Ke . �en, the entity sends the task ID, the object code of the task and
the MAC to the GMP (2). �e GMP creates a task allocation
message to an SP according to the mapping received at the end of
the Application Admission phase, sending the task identi�cation
(appID and taskID), the object code of task and the MAC (3). �e SP
stores the object code in the memory and computes the MAC also
using the SIPHASH algorithm and Ke (obtained in phase 4.4) (4).
�e SP compares the received MAC with the computed MAC and
sends the task allocated message with the MAC comparison
result to the LPM (5).

GMP LMP SP 0

Send_task(ID, Code, MAC)

Compute:

MAC = SIPHASH(object code, Ke)

Entity

Req_task(ID)

Task_Allocated(taskID, status)

~~
1

~~~~~~

2

3

5

. . .

Task_Allocation(appID, taskID, Code, MAC)

4

Req_task ...
~~~~

Task_Allocated(taskID, status)

~~~~
App_Alloc(appID, status)

5

App_status(status)
7

6

Figure 5: Tasks allocation and MAC veri�cation phase. Red
arrows: broadcastmessages transmitted through the control
NoC.

A�er mapping all tasks, the LMP noti�es the GMP the status
of the allocation phase (6). If all Appsec ’s tasks were correctly re-
ceived, the Appsec might start its execution. Otherwise, the process
is interrupted, and the GMP noti�es the external entity that the
App sec was corrupted during its allocation (7).

4.6 Closing the SZ and Appsec Execution
If the previous phase succeeded, the Appsec might execute. �e
goal of this phase is close the wrappers surrounding the SZ (”W”
in Figure 1), and start the execution of the Appsec . Figure 6 shows
the SZ closing and application execution steps.

LMP SP 0 SP 1

Set_Secure_Zone(boundaries)

Secure_Zone_Received(app_ID)

Start_Sec_App(App_ID)

Task_Allocated(taskID,status)

~~ ~~ ~~

1

2

3

Figure 6: Close SZ phase.

�is phase starts with the LMP Set Secure Zone broadcast
message (1 in Figure 6) through the control NoC with the upper
right and lower le� corners of the SZ . All PEs receive this message,
each one verifying if it is on the SZ boundary. If the SP is on
the SZ boundary, the OS writes in a data structure the wrappers
to be closed. �e SP located at the upper right corner of the SZ
transmits to the LMP a Secure Zone Received message (2).
Once received this message, the LMP can start the execution of
Appsec , by broadcasting a Start Sec App message (3), using
the control NoC in global mode. �is message enables the SPs
to activate the wrappers to block incoming/outcoming tra�c and
releases the tasks belonging to Appsec to execute.

Now, the wrappers discard all messages that should traverse
the SZ . �e control NoC transmits to the source of the discarded
messages (restrict mode) a retransmission request. �e non-secure
applications use the control NoC to �nd an alternative path to
circumvent the SZ and retransmit the non-delivered messages.

4.7 Opening the SZ and Memory Clear
�is phase of the protocol opens the SZ and cleans the memory
contents of the SPs inside it to prevent any information leakage to
be used by an a�acker. Figure 7 shows the open SZ phase.

GMP LMP SP 0 SP 1

Clear Memory

Open Wrapper

Clear Memory

Open Wrapper

Open_SZ(boundaries) Open_SZ(boundaries)

1

End_app(app_ID)

~~ ~~ ~~ ~~
1

2

3 3

4

5

End_Task(task_ID)

End_Task(task_ID)

SZ_Opened(boundaries)

Figure 7: Open SZ phase of protocol.

When an Appsec task �nishes its execution (1 in Figure 7), the
SP sends an End Task message with its task ID, using the control
NoC in global mode. When all Appsec tasks �nish their execution,
the LMP transmits an Open SZ message (2). All SPs inside the
SZ clear their memory to prevent information leakage, erase Km
and Ke , and then open the wrappers (3), releasing the allocated
resources. �en, the PE located at the upper right corner of the
SZ transmits to the LMP an SZ Opened message (4). Finally, the
LMP clears the internal structures to release the cluster resources

69

SBCCI ’17, August 28-September 01, 2017, Fortaleza - Ceará , Brazil L. L. Caimi et al.

previously allocated to Appsec and sends an End app message to
the GMP (5).

5 RESULTS AND DISCUSSIONS
�e evaluation was conducted in a clock-cycle RTL SystemC descrip-
tion of the MPSoC presented in Section 3. �is Section evaluates
the protocol phases that impact in the latency to start the Appsec ,
i. e. the phases 4.3 to 4.6. �e �rst two phases correspond to the
system initialization and entity authentication, respectively. Both
phases do not impact in the latency to start the applications. �e
last phase is responsible for releasing the application resources,
occurring a�er the application execution.

�e evaluation uses an 8x4 MPSoC, with two 4x4 clusters, as
shown in Figure 1. �e �rst result concerns the number of clock
cycles required by the Application Admission phase (Section 4.3).
�ree scenarios were created, varying the SZ size: 2x2, 2x3 and 3x2.
For each scenario, the already mapped tasks in the cluster induce
di�erent positions for the SZ .

Figures 8.a, 8.b and 8.c present the scenario for a 2x2 SZ . Each �g-
ure contains a set o previous mapped tasks, ({A,B}, {C,D}, {E,F}),
making Algorithm 1 to select the SZ at the bo�om-le�, middle and
top-right positions of the cluster, respectively.

Figure 8.d presents the scenario for a 2x3 SZ . �e same method
was applied to make Algorithm 1 select di�erent positions inside
the cluster. With tasks {A,B} previously mapped, the SZ location is
located in the bo�om-le� position of the cluster (starting at address
5,0). With tasks {C,D} and {E,F} the initial SZ address is (4,1) and
(6,1), respectively. Figure 8.e presents the scenario for a 3x2 SZ .
With tasks {A,B}, {C,D,E,F}, {G,H} previously mapped, the SZ
location is located at addresses (5,0), (5,1) and (5,2) respectively.

LMP

BSP

GMP

SP

SP

0

3

2

1

0

A

LMP

ESP

GMP

SP

SP3

2

1

0

A

B

C

LMP

B

C

DSP

GMP

SP

SP3

2

1

0

A

H F

G

(a)

(d) (e)

LMP

SP

GMP

SP

SP3

2

1

0

C

(b)

LMP

SP

GMP

SP

SP3

2

1

0

E

(c)

Secure Zone

D

Secure Zone

F

Secure Zone

4 5 6 7 0 4 5 6 7 0 4 5 6 7

0 4 5 6 7 0 4 5 6 7

E

D F

Figure 8: (a) 2x2 SZ at the bottom-le� position of the cluster;
(b) 2x2 SZ positioned at the middle of the cluster; (c) 2x2 SZ
at the top-right position of the cluster; (d) previous mapped
tasks for a 2x3 SZ ; (e) previous mapped tasks for a 3x2 SZ .

Table 2 presents in the 1st and 2nd columns the number of
Appsec ’tasks and the SZ size, respectively. �e 3rd column lists
the previously mapped tasks in the cluster. �e 4th column presents
the bo�om-le� address of the SZ , computed according to Algo-
rithm 1.

�e 4th column of the Table corresponds to the number of clock
cycles required to execute to Algorithm 1. �e 5th column presents
the number of clock cycles to run the task mapping. Both columns
correspond to the step 4 of Figure 3. �e last column of the Table
corresponds to the Application Admission phase execution time.

�is �rst set of results shows that the Application Admission
phase is not time-consuming. Despite the exhaustive search made

Table 2: Admission Phase evaluation scenarios and results
(cc: clock cycles).

Appsec
#Tasks SZ size Previous

tasks
Shape

from PE
Shape

(cc)
Map
(cc)

Total
(cc)

(A,B) 5x0 946 5852 12154
3 2x2 (C,D) 6x1 1191 6412 12954

(E,F) 6x2 1370 6860 13584
(A,B) 5x0 1471 6736 13584

5 2x3 (C,D) 4x1 1610 7216 14184
(E,F) 6x1 1768 7536 14634
(A,B) 5x0 1983 6522 13854

5 3x2 (C,D,E,F) 5x1 2042 7372 14896
G,H) 5x2 2207 7802 15384

by Algorithm 1, the search space is small (few shapes to evaluate).
�e mapping algorithm is also fast because the search space is de-
limited by the SZ , with enough resources to map the tasks. Finally,
the total time to execute this phase, including the cluster selection
and the exchanged messages (steps 3, 5, 7) reached in the worst-case
15,384 clock cycles, or 153.3µs@100MHz. It is worth to mention
that this performance may be penalized if tasks migrations (typi-
cally 40µs@100MHz for a 32 KB task) and reclustering are required
(not evaluated in the current proof-of-concept implementation).

�e second experiment evaluates the Entity Key exchange phase
(Section 4.4). �is phase of the protocol consumes, in average,
21,744 clock cycles. �e dominant cost is the LSFR rotation time
required to obtain the value used to encrypt (step 2 in Figure 4)
and decrypt (6) Ke . �e LSFR consumes 8,200 clock cycles at each
side (GMP and SPs). �e SIPHASH algorithm consumes 2,270 clock
cycles.

�e third experiment evaluates the Tasks Allocation and MAC
Veri�cation phase - TAMV (Section 4.5). Table 3 presents in the 1st

column the task object code size (in KBytes), in the 2nd column the
number of clock cycles required to compute and verify the MAC,
and in the last column the total time of this protocol phase.

Table 3: Task Allocation and MAC veri�cation evaluation
results.

Object Code size
(KB)

MAC step
(cc)

Total
(cc)

2 67,226 73,105
3 100,122 106,547
4 133,018 139,966
5 165,914 173,362
10 330,394 340,434

�e Table shows that the number of clock cycles to compute
and verify the MAC is a function of the task object code size, being
equal to 32,896 cc/KB. �e equation below presents the number of
clock cycles to compute and verify the MAC.

TAMVphase ≈ 2,646 + (Object Code Size in KB * 32,896)

where: 2,646 cc is the average value between steps 3 and 5 of Figure
5.

Compared to the other protocol phases, this step dominates the
latency to start secure applications. �e reason to explain this larger
delay is due to the MAC computation, which operates on 64-bit

70

Sec. Admission and Execution of App. in Many-core Systems SBCCI ’17, August 28-September 01, 2017, Fortaleza - Ceará , Brazil

blocks, and the result of each block is used in the next block, thus
being a sequential operation.

�e last experiment evaluates the steps presented in Section 4.6,
corresponding to the impact to close SZ in 4 scenarios, changing
the SZ size from 2x2 up to 3x3 SPs. Table 4 presents the evaluation,
considering the SZ size. �e number of clock cycles to close an
SZ starts when the LMP sends the Set Secure Zone message
until the upper right PE in SZ e�ectively activates their wrappers
a�er the Start Sec App message. �e Close Secure Zone results
present a small increase in the number of the clock cycles, pro-
portional to the distance, in hops, to the upper right PE of the
SZ .

Table 4: SZ close phase evaluation.

SZ Shape 2X2 2X3 3X2 3X3
Total (cc) 2,302 2,312 2,316 2,322

Figure 9 presents a timeline for the four phases impacting the
latency to start anAppsec (the Figure does not respect a scale related
to each phase). �e key exchange and MAC veri�cation phases are
executed in parallel, for each SP with Appsec tasks. �e delay to
start each of these phases corresponds to send the encrypted Ke
and the tasks object code, respectively.

Admission Key Exchange SP1 MAC Verification Task 1
Close SZ

23222646 + (Task Size KB * 32896) 2174415384

MAC Verification Task 2

MAC Verification Task N

.

.

.

Key Exchange SP N

Key Exchange SP2

.

.

.

890

... ...

Figure 9: Ttimeline for the four phases impacting the la-
tency to start an Appsec .

6 CONCLUSION
�is work presented a protocol executed at runtime for secure
application admission and execution. �e proposal includes: the
authentication of entities that deploy the application; the secure
admission using a MAC ensuring integrity and authentication; the
secure execution through isolation of computational and communi-
cation resources inside a Secure Zone, and; the release of previously
allocated resources avoiding information leakage. Results show
a low impact on the latency to start a secure application. �e
dominant operation that increases the latency concerns to MAC
calculation and veri�cation steps. Adding the delay of each phase,

the secure application is delayed for less than 4 ms (@100MHz) for
10KB tasks.

Future works include: (i) improve the Task Allocation and MAC
veri�cation phase making parallel the reception of the task object
code with the MAC calculation; (ii) evaluate the cost reduction
obtained with the initialization phase; and (iii) evaluate the cost of
task migration and recluster in the Shape De�nition and Mapping
phase.

7 ACKNOWLEDGEMENT
�e Author Fernando Gehm Moraes is supported by CNPq funding
agency.

REFERENCES
[1] A. M. Allam, I. I. Ibrahim, I. A. Ali, and A. E. H. Elsawy. 2003. E�cient zero-

knowledge identi�cation scheme with secret key exchange. In MWSCAS, Vol. 1.
516–519. h�ps://doi.org/10.1109/MWSCAS.2003.1562331

[2] ARM. 2008. ARM Security Technology Building a Secure System using TrustZone
Technology. In ARM. h�p://infocenter.arm.com

[3] Jean-Philippe Aumasson and Daniel J. Bernstein. 2012. SipHash: A Fast Short-
Input PRF. Springer Berlin Heidelberg, Berlin, Heidelberg, 489–508. h�ps:
//doi.org/10.1007/978-3-642-34931-7 28

[4] Daniel J. Bernstein. 2006. Curve25519: new Di�e-Hellman speed records. In In
Public Key Cryptography (PKC), Springer-Verlag LNCS 3958.

[5] R. Fernandes et al. 2016. A security aware routing approach for NoC-based
MPSoCs. In SBCCI. 1–6. h�ps://doi.org/10.1109/SBCCI.2016.7724054

[6] V. Gupta, S. Gupta, S. Chang, and D.s Stebila. 2002. Performance Analysis of
Elliptic Curve Cryptography for SSL. In WiSE. 87–94. h�ps://doi.org/10.1145/
570681.570691

[7] O. Hanka and H. Wippel. 2011. Secure deployment of application-tailored proto-
cols in future networks. In International Conference on the Network of the Future.
10–14. h�ps://doi.org/10.1109/NOF.2011.6126668

[8] Darrel Hankerson, Alfred J. Menezes, and Sco� Vanstone. 2003. Guide to Elliptic
Curve Cryptography. Springer-Verlag New York,, Secaucus, NJ, USA.

[9] Y. Hu et al. 2015. Automatic ILP-based Firewall Insertion for Secure Application-
Speci�c Networks-on-Chip. In INA-OCMC. 4. h�ps://doi.org/10.1109/INA-OCMC.
2015.9

[10] H. Isakovic and A. Wasicek. 2013. Secure channels in an integrated MPSoC
architecture. In IECON. 4488–4493. h�ps://doi.org/10.1109/IECON.2013.6699858

[11] M.; Chaudet C. Khernane, N.; Potop-Butucaru. 2016. BANZKP: a Secure Authen-
tication Scheme Using Zero Knowledge Proof for WBANs. CoRR abs/1602.00895
(2016).

[12] C. Kuntze N.; Rudolph. 2013. Secure deployment of SmartGrid equipment. In
IEEE Power Energy Society General Meeting. 1–5. h�ps://doi.org/10.1109/PESMG.
2013.6672120

[13] M. M. Real et al. 2016. Dynamic spatially isolated secure zones for NoC-based
many-core accelerators. In ReCoSoC. 1–6. h�ps://doi.org/10.1109/ReCoSoC.2016.
7533900

[14] J. Sepúlveda et al. 2015. Recon�gurable security architecture for disrupted
protection zones in NoC-based MPSoCs. In ReCoSoC. 1–8. h�ps://doi.org/10.
1109/ReCoSoC.2015.7238098

[15] E. Wachter et al. 2013. Topology-Agnostic fault-tolerant NoC routing method.
In DATE. 1595–1600. h�ps://doi.org/10.7873/DATE.2013.324

[16] L. Zhimeng and Z. Yanli. 2016. Provable Secure Node Authentication Protocol
for Wireless Sensor Networks. In WISA. 221–224. h�ps://doi.org/10.1109/WISA.
2016.51

71

https://doi.org/10.1109/MWSCAS.2003.1562331
http://infocenter.arm.com
https://doi.org/10.1007/978-3-642-34931-7_28
https://doi.org/10.1007/978-3-642-34931-7_28
https://doi.org/10.1109/SBCCI.2016.7724054
https://doi.org/10.1145/570681.570691
https://doi.org/10.1145/570681.570691
https://doi.org/10.1109/NOF.2011.6126668
https://doi.org/10.1109/INA-OCMC.2015.9
https://doi.org/10.1109/INA-OCMC.2015.9
https://doi.org/10.1109/IECON.2013.6699858
https://doi.org/10.1109/PESMG.2013.6672120
https://doi.org/10.1109/PESMG.2013.6672120
https://doi.org/10.1109/ReCoSoC.2016.7533900
https://doi.org/10.1109/ReCoSoC.2016.7533900
https://doi.org/10.1109/ReCoSoC.2015.7238098
https://doi.org/10.1109/ReCoSoC.2015.7238098
https://doi.org/10.7873/DATE.2013.324
https://doi.org/10.1109/WISA.2016.51
https://doi.org/10.1109/WISA.2016.51

	Abstract
	1 Introduction
	2 State-Of-the-Art
	3 Architecture Overview
	4 Secure Admission and Execution Protocol
	4.1 System Initialization
	4.2 Entity Registration and Key Agreement
	4.3 Application Admission
	4.4 Entity Key Exchange
	4.5 Tasks Allocation and MAC Verification
	4.6 Closing the SZ and Appsec Execution
	4.7 Opening the SZ and Memory Clear

	5 Results and Discussions
	6 Conclusion
	7 Acknowledgement
	References

