
System Management Recovery
Protocol for MPSoCs

Vinicius Fochi, Luciano L. Caimi, Marcelo Ruaro, Eduardo Wachter, Fernando G. Moraes
FACIN - PUCRS – Av. Ipiranga 6681, 90619-900, Porto Alegre, Brazil

{vinicius.fochi, luciano.caimi, marcelo.ruaro, eduardo.wachter}@acad.pucrs.br, fernando.moraes@pucrs.br

Abstract—The advances in silicon technology lead to systems
with hundreds of processors, the NoC-based MPSoCs. However,
the higher fault probability in deep sub-micron technologies
shortens the integrated circuits lifetime. Operating systems en-
able to execute distributed applications in the MPSoC process-
ing elements (PEs). Large systems require PEs dedicated to
management purposes, for example, execute the task mapping,
handle monitoring data, and run self-awareness adaptation. This
paper addresses an MPSoC hierarchically organized: PEs with an
embedded operating system executing the applications (SPE) and
dedicated PEs manage at runtime the system resources (MPE). A
rich literature presents fault-tolerant proposals for the hardware
and software components of the MPSoC, but there is a significant
gap related to fault-tolerant approaches at the system level, i.e.,
related to the PEs with the function to manage the system.
Consider for example an MPE responsible for managing a set
of SPE s. A fault in an MPE prevents the access to the set of
SPE s to execute new applications. The goal of this paper is to
present a method to determine when an MPE became faulty, and
propose a protocol to migrate the management software safely to
an SPE . The management data is preserved, without saving the
context in redundant structures. The proposal is transparent to
the applications executing in the system, with a small execution
overhead observed during the management migration, presented
in the results Section.

Index Terms—MPSoC; NoC; System Management; Fault-
recovery protocol; Fault-tolerance.

I. INTRODUCTION

The continuous development of large multiprocessor

systems-on-chip (MPSoCs) resulted in systems with dozens

of embedded processors. Networks-on-chip (NoCs) provide

enhanced performance and scalability for communication.

Large systems require processing elements (PEs) dedicated to

management purposes, for example, execute the task mapping,

handle monitoring data obtained from sensors and estimation

functions, and run self-awareness adaptation (e.g. quality-of-

service, DVFS control, aging, temperature) [1] [2].

MPSoC with a hierarchical organization ensure scalability at

the management level. This organization assigns distinct roles

to PEs: cluster managers (CM) and slave processors (SP) [3].

With such organization, the MPSoC contains virtual regions,

named clusters, with one CM and a set SPs per cluster. A

cluster may increase its size at runtime, borrowing SPs from

neighbor clusters, in a process named reclustering.

Transistors, vias, and wires degrade faster over time in deep

sub-micron technologies, causing transient faults and perma-

nent errors, thus shortening integrated circuits lifetime [4].

For these reasons, reliability becomes a key issue in MPSoC

architecture design [5]. Classical fault-tolerant approaches, as

TMR or spare components [6], do not comply with today’s

requirements of silicon area and power dissipation. Due to

the way it is built, an MPSoC provides a set of replicated

structures (PEs), where a healthy component can execute the

faulty component functions, without penalizing the system

performance.

It is worth to differentiate the consequences of a permanent

fault in SPs and CMs. A fault in a PE executing a user

application (SP) compromises the application, being possible

to remap the application [7]. The effect of a fault in a CM
is more severe than a fault in an SP, because it may halt the

entire cluster, making the set of SPs controlled by the faulty

CM unavailable.

The goal of the paper is to present a protocol to detect

at runtime faulty CMs and a recovery method to migrate

the functions of the faulty component to a healthy one. The

protocol detects faulty CMs, starting the process to delegate

this manager capability to another PE. Briefly, the method

detects a faulty CM, choose an SP to became the new CM,

freeze the tasks owned by the failed CM, migrate the memory

contents to the new CM, reboot the CM, and unfreeze the tasks

without restarting them.

The main original contribution of the proposal is a run-

time fault recovery protocol targeting the management of the

MPSoC, with the following features: (i) migration of the

management functions to a new PE; (ii) the management

context is preserved without saving the context in redundant

structures. Related works focus on specific components of the

MPSoC, as the processor or the NoC, without a systemic view

of the system.

This paper is organized as follows. Section II presents re-

lated work. Section III details the system architecture. Section

IV details the fault model. Section V presents the protocol for

fault handling in manager processors. Section VI presents the

results, and Section VI concludes this paper.

II. RELATED WORK

Azad et al. [8] propose a system with a set of components

for detection, classification and recovering from faults. The

system contains a System Health Monitoring Unit (SHMU).

The SHMU provides a holistic view of the system health

status, using a memory which keeps different mapping and

scheduling solutions based on the current fault configuration of

the system. The system has online checkers for fault detection,

978-1-5386-4034-0/17/$31.00 ©2017 IEEE 369

able to capture faults with low detection latency and providing

the fault information for SHMU. The SHMU can deal with

faults on PEs, routers, and links. The main drawback of the

approach is the centralized SHMU, compromising scalability,

and the system model. The Authors model the system with

Phyton, being not possible to infer the behavior of the system

in the presence of faults.

Walters et al. [9] describe fault-tolerant strategies for the

Maestro many-core processor. The Authors adopt a software-

based fault tolerance, memory controllers, PLR (process-

level replication), TLR (thread-level replication), kernel level

checkpoint/rollback, distributed heartbeat implementation, and

hybrid or application-specific fault-tolerant strategies. The

PLR creates two redundant processes for a single application,

with the same application running on different tiles. The output

files are compared at the end of execution, and if they do

not match, a majority rule determines the correct output. The

TLR is similar to PLR, but used for thread-level, providing

a fine-grain control of the replication process. Heartbeat is

a method used to determine if a processor continues its

execution or not. A shared memory keeps the timestamps of

each processor. A timeout mechanism determines when the

processor is considered failed.

Bolchini et al. [10] describe a system with an adaptive

level of reliability. The work presents a fault management

layer at the operating system level. This layer has a stra-

tegy for dynamically adapting the reliability at run-time. The

fault management layer contains three methods: duplication

with comparison (DWC), triplication (TMR), duplication with

comparison and re-execution (DWCR). The DWC create an

application replica and compare the outputs. The TMR cre-

ates two replicas of the original application and compares

the outputs. The DWCR creates an application replica and

compares the results. If an error is detected, a third task replica

is created and executed. The method has an observe-decide-act

(ODA) control loop. The observe module collect the status and

execution data from the system. The decide module measure

the data collected and analysis the system according to the

specified metrics and goals. The act module can modify the

system to alter its behavior, as activate or deactivate a PE.

Previous works present fault-tolerant methods focusing on

the applications’ execution, using methods well established

in distributed systems: software replication. Fault-tolerance

at the system level is a gap observed in the literature. The

present work fulfills this gap, by proposing a runtime method

to migrate the management functions assigned to a given PE

(CM) to a healthy PE.

III. SYSTEM ARCHITECTURE

Figure 1 presents the modules of the reference many-

core platform adopted in the present work. The architecture

contains a set of PEs interconnected by a data NoC and

a control NoC. One CM has an interface with the external

environment to the MPSoC to receive new applications. Each

PE contains one processor (32 bits MIPS), a Direct Memory

Network Interface (DMNI, combining the functions of a

Network Interface and a DMA module), a dual-port private

memory, the data and control routers. The hardware of the

PEs is the same, being the role assigned to the PEs made by

software: SPs executes users’ tasks, supporting multitasking;

CMs manage a given cluster.

Two similar descriptions model the platform: (i) synthesiz-

able VHDL, for characterization purposes; (ii) RTL SystemC,

with clock-cycle accuracy, enabling the simulation of systems

with dozens of PEs.

Fig. 1: A 6x6 instance of the reference many-core system with

3x3 clusters.

The data NoC main features includes: (i) 2-D mesh topol-

ogy; (ii) 8-flit buffer depth input buffering; (iii) wormhole

packet-switching; (iv) support for deterministic XY and source

routing; (v) credit-based flow control; (vi) duplicated physical

channels (two 16-bit channels per link), enabling full adaptive

routing.

The control NoC transfers the control messages. Control

messages have different constraints from data messages. Con-

trol messages have to reach their target(s) as fast as possible,

and can not be exposed to congestion effects (e.g. fault

notification). Control messages may have more than one target

(e.g. freeze all tasks of a given application or cache protocols).

Also, control messages are much less frequent than application

messages, with a small payload. The control NoC has the

following features (similar architecture to [11]): adoption of

broadcast as the default transmission mode, bufferless router,

each message with one flit. The current work uses the control
NoC for the following purposes:

• monitoring the status of CMs;

• freeze an application(s) when a CM fails;

• notify an SP that it will become a new CM;

• notify a DMNI module to transfer the memory contents

of a PE to a new system address system;

• notity SPs with the new CM address;

• unfreeze application(s) after the CM migration.

An important feature of the architecture is that the memory

is accessible by the data NoC even if the processor has

a permanent fault. The control NoC configures the DMNI

module to transfer the memory contents to another PE. This

feature, transfer of the memory contents when the processor

has a permanent fault, is commonly adopted in fault tolerant

approaches [12].

The method herein presented may be applied to homoge-

neous or heterogeneous MPSoCs. Summarizing, the method

370

presented in Section V requires the following architectural

features: (i) a set of PEs with the same architecture; (ii) at

least two disjoint NoCs, one for application data and one for

management purposes [13]; (iii) a memory module that can

be read/write directly by the network interface [12].

IV. FAULT MODEL

The focus of the paper is not the fault detection, but the

protocol for fault recovery. This work assumes:

• Healthy modules of the PE: memory, DMNI, data and

control NoCs. A usual method to protect the memory is

the usage of ECC (Error Correction Codes). The DMNI

is a small hardware module, with two state machines

and a buffer. This module may be protected by hardware

replication and adoption of ECC in the buffer. Besides

the NoCs be considered healthy, it is possible to detect

transient faults [14], and according to the severity of the

transient faults trigger the proposed protocol.

• Faulty module of the PE: CPU. The proposed method is

fired a when a permanent fault is detected in a manager

PE.

The basis of the fault recovery method is a monitoring pro-

cess between CMs. Each CM receives messages periodically

from a neighbor CM. When a CM has a permanent fault, the

recovery process starts. The goal of the recovery process is to

transfer the memory contents of the faulty CM to a healthy

PE. The DMNI of the faulty CM manages this process.

A. Fault Detection Mechanisms

This section presents examples of fault detection methods,

that can be applied to the PE modules, and used by be current

work. All techniques cited bellow can initiate the proposed

protocol. A rich literature with methods to test the modules of

the processing elements is available, with approaches adopted

at different levels or modules.

Fault detection at the system level. The Madness project [12]

adopts two approaches to detect faulty processors: self-testing

using a pre-computed signature for non-critical applications,

or N-modular redundancy at the software level. Using these

methods, the Authors present a system level adaptive and fault-

tolerant techniques to reduce the performance loss by using

dynamic remapping (task migration) of faulty PEs. In [15] the

Authors propose a Runtime Module Configuration with a 3-

mode configurable encoder. The goal is to change the encoder

mode according to the number of faults occurring at the NoC

links. The method encodes packets and optimizes the fault

coverage of the NoC.

Fault detection at the processor level. In [16] a general

purpose device (GPD) creates a test pattern, sending it to the

processor. The processor applies the test pattern and sends the

results back to the GPD. Faulty tiles are bypassed and replaced

by another processor via an embedded resource manager

implemented in software. The Authors in [9] adopt a software-

based fault tolerance, PLR (process-level replication), TLR

(thread-level replication), kernel level checkpoint/rollback and

distributed heartbeat implementation.

Fault detection at the router level. The proposal in [17]

inserts multiplexers at the input ports to enable port swapping,

and a bypass bus enables to connect input ports to output ports

when the internal crossbar fails. Zhang et al. in [18] present

a dual-input crossbar design targeting performance and power

reduction. The crossbar duplication enables fault tolerance at

the router level. When a crossbar failure is detected, all the

inputs ports are forwarded to another crossbar. The proposal

in [19] focuses on transient errors in the router using ECC to

prevent packet loss, incorrect routing, and network congestion.

An error detection module request re-computation if a fault is

detected. It also includes an error correction module after the

crossbar to prevent error propagation.

Fault detection at the link level. In [20] the Authors propose

a fault-tolerant method with a gracefully degrading link-level,

proportional to the number of faults detected in the link. In

[21] the Authors implements an error recovery technique for

NoCs with the goal to protect network links against crosstalk

effects using CRC modules.

V. PROTOCOL FOR FAULT HANDLING IN MANAGER

PROCESSORS

This Section presents the fault recovery protocol, including

the system monitoring method to detect faulty CMs (V-B),

the criteria to select the address of a new CM (V-C), and

the protocol to migrate the CM memory contents (V-D). The

following definitions of terms are adopted:

Definition 1. Ward message: a monitoring message transmit-

ted through the control NoC between CMs.

Definition 2. Ward pair: a pair of CMs responsible for super-

vising each other, by exchanging periodically ward messages.

Definition 3. CMH : healthy CM responsible to execute the

management recovery protocol.

Definition 4. CMF : faulty CM stopped due to a permanent

fault in the processor.

Definition 5. CMcandidate: PE that will assume the role of

the CMF .

A. Definition of manager pairs

The proposal starts by defining the ward pairs. Each CM
selects its pair at runtime, at system startup. Note that the

definition of the ward pairs is logical, not physical. At

system startup the ward pairs are physically aligned, but after

migrating a CM to a new position this arrangement changes.

For this reason, the monitoring process uses broadcast (control
NoC) to exchange messaged between ward pairs.

The method defines initially horizontal ward pairs. Consider

Figure 2 as an example. The horizontal ward pairs are {CM0,0,

CM3,0}, {CM0,3, CM3,3} and {CM0,6, CM3,6}. If the number of

CM columns is odd, the second step defines vertical ward pairs
at the rightmost CM coordinate. In this example, one vertical

ward pair is created, {CM6,6, CM6,3}. Finally, as CM6,0 has

no pair to supervise, its ward is the last CM address, CM6,3.

371

Thus, CM6,3 is in charge to monitor the status of CM6,0 and

CM6,6. Note that CM6,0 sends periodically Ward_Msgs, and

its supervision function responsible to trigger the management

migration is disabled.

CM0,6 ←→ CM3,6 CM6,6
�

CM0,3 ←→ CM3,3 CM6,3
↑

CM0,0 ←→ CM3,0 CM6,0

Fig. 2: Example of ward pairs definition.

B. Ward Messages

After defining the ward pairs, each CM exchange period-

ically Ward_Msgs. The definition of the interval between

these messages is a design-time parameter. Larger periods

delays the time to recover from a faulty CM, while shorter

periods may lead to false positives. The false positives may

occur if the CM is executing management functions, delaying

the answer to its pair, which will consider it faulty, starting

the recovering process.

In the present work, the monitoring messages are sent every

millisecond. Every millisecond each CM sends a Ward_Msg
through the control NoC to its pair. The message is sent by

broadcast and only the destination CM handles this message.

If a CM sends three Ward_Msgs without receiving any

answer from its pair, the CM that did not reply is considered

faulty, starting the recovering process. The Ward_Msg uses

the control NoC and broadcast transmissions because the CM
address changes when the recovering process occurs, misalign-

ing the CM addresses. According to the requirements of the

platform, it is possible to parametrize the interval between the

Ward_Msgs. Smaller intervals between Ward_Msgs leads to

higher execution overhead time while higher intervals increase

the recovery time.

The detection of a permanent fault in the processor induces

its isolation by test wrappers. Thus, all messages transmitted

before the detection of the faulty processor are discarded, and

the source of the message retransmits it later (every message

transmitted to a CM requires an acknowledgment).

C. Definition of the PE to Receive the CM Memory

If a fault disables a CM processor, the memory contents of

this processor must migrate to a new PE. The process to define

a PE to receive the memory contents occurs as follows. At

system startup, the closest PE to CM is the CMcandidate. When

the CM maps a new application into the cluster, it verifies if

CMcandidate has tasks assigned to it. In this case, the rule to

select a new CMcandidate is the PE with the minimum number

of tasks assigned to it. If the CMcandidate has tasks assigned

to it, all tasks executing in this PE must be migrated to enable

the reception of the CM memory contents.

Thus, after any application mapping, the CM computes the

CMcandidate address and transmits it to its Ward pair. If

necessary, the identification of the tasks to migrate is also

transmitted.

D. Management Recovery Protocol

Figure 3 presents the management recovery protocol, as-

suming: CM1 as CMF , CM0 as CMH , SP7 as CMcandidate.

CM0 and CM1 are a CM pair, exchanging periodically

Ward_Msgs (event 1 at Figure 3). At a given moment (event

2), CM1 becomes unresponsive and after three unanswered

Ward_Msgs it is considered faulty. Then, its CM pair starts

the process to promote SP7 to CM. The first action is to inject

a Freeze message to all PEs (event 3). Only tasks managed

by CMF stops the execution. Note that as this message is

sent through the control NoC (in broadcast), tasks executing

in another clusters due to the reclustering process are also

freezed.

Fig. 3: Management Recovery Protocol. Continuous lines:

messages exchanged by the control NoC. Dotted red line

(event 6): message exchanged by the data NoC.

An SP receiving a Freeze message verifies if exists in

its TCB (Task Control Block) a task managed by CMF . The

Freeze message does not stop the task immediately. To avoid

messages losses, the task must be in a safe state. A safe state

if defined as: the task to freeze is ready to be scheduled by

the kernel, and there is no pending request for messages. For

example, if a task is in a waiting state, this means that the task

requested a message to a producer task. Thus, the producer

receives the request and at some moment inject messages into

the NoC. Such procedure ensures that when a given task stops,

there are no messages generated by the task in the data NoC.

Any task managed by CMF goes to a freeze state, avoiding

its scheduling by the kernel.

Next, CM0 notifies SP7 that it will receive the kernel

executing in CM1 (event 4), Wait Kernel message. The

SP defined as CMcandidate handles this message. A special

field in the packet header of this message defines that the

DMNI module process the payload, not the processor. The

action executed by this message is twofold: hold the processor

and configure to DMNI module to write incoming packets in

the memory from address zero.

Figure 4 details the management recovery protocol events

on the faulty CM (CM1). The DMNI module handles the

kernel migration in this situation.

372

After notifying the CMcandidate, CM0 (CMH) sends a

message to the CM1 (CMF): Send Kernel (event 5 -

Figures 3 and 4). The DMNI handles this message, transferring

the memory contents (code and data) to SP7 (CMcandidate),

using the data NoC. After transferring the memory contents,

the DMNI is programmed to avoid any transmission from the

faulty processor, preventing Bizantine faults. Note that this

is the only message transferred using the data NoC in the

protocol. All other messages use the control NoC.

Fig. 4: Events 5 and 6 of the protocol, on CM1 (faulty CM).

The SP7 (CMcandidate) after received the kernel (event

6), restart the execution, now as a CM . Once the migration

process finishes at the CMcandidate, the DMNI returns to the

normal operation, and the CPU is restarted. As the kernel

migration transferred the data memory, the CM data structures

are preserved. Thus, the restart of the new CM updates few

data structures, such as its network address. After restarting,

the new CM sends an Unfreeze message to the stopped task

(event 7). This message unfreezes the tasks managed by the

new CM and also transmits the CM address to the SPs. The

new CM restarts the Ward_Msgs with its pair (event 8).

VI. RESULTS

The experiments are executed using a clock cycle accurate

RTL SystemC model of the reference MPSoC platform (Figure

1). Applications and kernel are described in C language, com-

piled from C code and executed over cycle-accurate models

of the processing cores.

The MPSoC contains 16 PEs, organized in 2x4 clusters.

The experiments use two benchmarks to evaluate the approach

(Figure 5): MPEG decoder (5 tasks) and DTW (6 tasks).

A. Overhead of the Proposed Protocol

This Section evaluates two scenarios. The first one evaluates

the overhead due to the Ward_Msg messages. The second one

evaluates the protocol overhead to freeze tasks and migrate the

kernel to the new CM. The two scenarios execute according

to the mapping illustrated in Figure 5.

Each application executes with three different number of

iterations. The MPEG executes 20, 40 and 60 iterations, and

the DTW executes 160, 240 and 320 iterations. Table I presents

the execution time for both applications. The column no ward

Fig. 5: MPEG and DTW task graphs, and applications map-

ping. Highlighted PEs, PE3,3 and PE2,2, are the CMcandidates

to receive the kernel.

presents the Application Execution Time (AET) without the

proposed protocol. The column with ward presents the AET

with the proposed protocol, but without a faulty CM. The last

column, ward +CMF presents the AET when the protocol is

executed, migrating CMF to CMcandidate: CM2,0 to CM3,3
and CM2,0 to CM2,2, for the MPEG and DTW scenarios

respectively.

TABLE I: Application Execution Time, in ms. The percentage

in the last column represents the overhead of the proposal w.r.t

the baseline execution time (no ward).

iterations no ward with ward ward +CMF

20 9.246 9.256 10.068 (8.89%)
MPEG 40 17.994 18.005 18.803 (4.50%)

60 26.737 26.749 27.584 (3.17%)
160 14.315 14.326 15.173 (5.99%)

DTW 240 21.231 21.241 22.170 (4.42%)
320 28.146 28.156 29.132 (3.50%)

The overhead induced the Ward protocol is 0.01 ms, re-

gardless the number of iterations executed by the applications.

This time is constant because it corresponds to the interference

of the ward messages with the application mapping, which

occurs once (both actions, monitoring and mapping run in the

CM).

The overhead induced by the migration of the CM memory

contents is in average 0.877 ms (from 0.809 ms to 0.986 ms).

This result also has a small variation because only 1 migration

occurred. As expected, the overhead reduces according to

the number of executed iterations (percentage values in the

last Table column). This result shows the effectiveness of the
proposal, with a small impact of the protocol in the application
execution time. Note that the delay to migrate the CM is

proportional to the memory size. The memory size for these

experiments is 64 KB. The overhead is in average 0.4 ms and

1.6 ms for a memory size of 32 KB and 128 KB, respectively.

B. Execution Overhead in Applications

This Section presents the latency to execute one iteration of

each application of Figure 5. The graphs in Figure 6 represents

373

in the x-axis the iteration number and in the y-axis the number

of clock cycles to execute one iteration. As there are no

disturbing applications in these scenarios, the iteration latency

is constant for both applications. When the CM migrates, the

application is stopped, increasing the latency of one iteration

only. This result is in agreement with the previous results,

showing that the overhead of the proposal is small, and the

effect on the applications is negligible. Take for example the

MPEG application. According to the latency graph, only one

decoded frame is delayed, which is in practice imperceptible

by the users.

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C
lo

c
k
 C

y
c
le

s

Iteration Number

MPEG

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Iteration Number

DTW

Fig. 6: MPEG and DTW latency to execute one iteration of

the applications.

VII. CONCLUSION

This work presented a runtime protocol for management

recovery in NoC-based MPSoCs. The proposal includes a

monitoring method that determines when a manager processor

fails, the Ward protocol, and a method to safely migrate the

management software to a new processing element, assuming

a protected memory. The results displayed a small overhead

to add the Ward protocol, as weel as a small impact on the

execution time of the applications when they are stopped to

migrated the management functions to another PE.

Future works include: (i) extend the method to faults in slave

processing elements, enabling to recover applications from

faults; (ii) add multiple interfaces to the external environment

to avoid single point of failure, i.e., enable multiple CMs to

receive application requests.

VIII. ACKNOWLEDGEMENT

Authors Eduardo Wachter and Fernando Gehm Moraes are

supported by CNPq funding agency.

REFERENCES

[1] N. Dutt, A. Jantsch, and S. Sarma, “Self-Aware Cyber-Physical Systems-
on-Chip,” in ICCAD, 2015, pp. 46–50.

[2] H. Tajik, B. Donyanavard, N. Dutt, J. Jahn, and J. Henkel, “SPM-
Pool: Runtime SPM Management for Memory-Intensive Applications in
Embedded Many-Cores,” ACM Transactions on Embedded Computing
Systems, vol. 16, no. 1, pp. 25:1–25:27, Oct. 2016.

[3] G. Castilhos, M. Mandelli, G. Madalozzo, and F. G. Moraes, “Dis-
tributed resource management in NoC-based MPSoCs with dynamic
cluster sizes,” in ISVLSI, 2013, pp. 153–158.

[4] H. Kim, A. Vitkovskiy, P. V. Gratz, and V. Soteriou, “Use it or lose it:
Wear-out and lifetime in future chip multiprocessors,” in MICRO, 2013,
pp. 136–147.

[5] O. Heron, J. Guilhemsang, N. Ventroux, and A. Giulieri, “Analysis of
on-line self-testing policies for real-time embedded multiprocessors in
DSM technologies,” in IOLTS, 2010, pp. 49–55.

[6] B. N. K. Reddy, M. H. Vasantha, and Y. B. N. Kumar, “A Gracefully
Degrading and Energy-Efficient Fault Tolerant NoC Using Spare Core,”
in ISVLSI, 2016, pp. 146–151.

[7] F. F. S. Barreto, A. M. Amory, and F. G. Moraes, “Fault recovery
protocol for distributed memory MPSoCs,” in ISCAS, 2015, pp. 421–
424.

[8] S. P. Azad, B. Niazmand, J. Raik, G. Jervan, and T. Hollstein,
“Holistic Approach for Fault-Tolerant Network-on-Chip based Many-
Core Systems,” CoRR, vol. abs/1601.07089, 2016. [Online]. Available:
http://arxiv.org/abs/1601.07089

[9] J. P. Walters, R. Kost, K. Singh, J. Suh, and S. P. Crago, “Software-
based fault tolerance for the Maestro many-core processor,” in IEEE
Aerospace Conference, 2011, pp. 1–12.

[10] C. Bolchini, M. Carminati, and A. Miele, “Self-Adaptive Fault Tolerance
in Multi-/Many-Core Systems,” Journal of Electronic Testing: Theory
and Applications, vol. 29, no. 2, pp. 159–175, Apr. 2013.

[11] E. Wachter, A. Erichsen, A. Amory, and F. G. Moraes, “Topology-
Agnostic fault-tolerant NoC routing method,” in DATE, 2013, pp. 1595–
1600.

[12] P. Meloni, G. Tuveri, L. Raffo, E. Cannella, T. Stefanov, O. Derin,
L. Fiorin, and M. Sami, “System Adaptivity and Fault-Tolerance in NoC-
based MPSoCs: The MADNESS Project Approach,” in DSD, 2012, pp.
517–524.

[13] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C. C. Miao, J. F. Brown, and A. Agarwal, “On-chip
interconnection architecture of the tile processor,” IEEE Micro, vol. 27,
no. 5, pp. 15–31, Sept 2007.

[14] V. Fochi, E. Wächter, A. Erichsen, A. M. Amory, and F. G. Moraes, “An
integrated method for implementing online fault detection in NoC-based
MPSoCs,” in ISCAS, 2015, pp. 1562–1565.

[15] T. Boraten and A. Kodi, “Runtime Techniques to Mitigate Soft Er-
rors in Network-on-Chip (NoC) Architectures,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. PP,
no. 99, pp. 1–1, 2017.

[16] T. D. T. Braak, S. T. Burgess, H. Hurskainen, H. G. Kerkhoff,
B. Vermeulen, and X. Zhang, “On-line dependability enhancement of
multiprocessor SoCs by resource management,” in SoC, 2010, pp. 103–
110.

[17] D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw, and D. Sylvester,
“Vicis: A reliable network for unreliable silicon,” in DAC, July 2009,
pp. 812–817.

[18] Y. Zhang, R. Morris, D. DiTomaso, and A. Kodi, “Energy-Efficient and
Fault-Tolerant Unified Buffer and Bufferless Crossbar Architecture for
NoCs,” in IPDPS, 2012, pp. 972–981.

[19] Q. Yu, M. Zhang, and P. Ampadu, “Exploiting inherent information
redundancy to manage transient errors in NoC routing arbitration,” in
NoCS, 2011, pp. 105–112.

[20] A. Vitkovskiy, V. Soteriou, and C. Nicopoulos, “A Dynamically Ad-
justing Gracefully Degrading Link-Level Fault-Tolerant Mechanism for
NoCs,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 31, no. 8, pp. 1235–1248, 2012.

[21] A. H. Lucas and F. G. Moraes, “Crosstalk fault tolerant NoC - Design
and evaluation,” in VLSI-SoC, 2009, pp. 115–120.

374

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

