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Abstract—Networks on chip (NoCs) are efficient infrastruc-
tures to enable communication among the large number of
IPs that compose modern systems on chip (SoCs). However,
even if recent technologies allow the construction of such com-
plex systems, they increase the cost and effort of designing a
correct and efficient chip-wide clock delivery network for a
fully synchronous system. Asynchronous NoCs are an attractive
alternative, as they allow each IP to operate on an independent
clock domain, eliminating the need for a global clock network and
producing globally asynchronous locally synchronous (GALS)
systems. This paper details the design of a low power NoC router
that is asynchronous and employs a transition-signaling bundled-
data design style. Results show reductions of 27% in energy
consumption when compared to a similar synchronous router.

I. INTRODUCTION
Today, SoCs with dozens of IP cores are viable and

commonly found in commercial products. Interconnecting
large amounts of cores requires the careful design of specific
communication architectures that fulfill bandwidth, quality
of service and power budgets demanded by SoCs. There is
already several alternative NoC architectures that are useful
in many fields of application and which fulfill widely varied
requirements. These may use regular or irregular topologies
NoCs, employ deterministic or adaptive routing, be syn-
chronous, asynchronous or a mix of these, etc. As technology
nodes advance, changes in the behavior of silicon devices
impose serious restrictions for designers of complex systems.
Contrary to what occur with processors, memories or I/O
controllers, NoCs tend to have a chip-wide reach, and this
exacerbates their sensitivity to parameters that tend to degrade
as silicon technology advances. In this scenario, asynchronous
NoC design appears as a trend to deal with such issues.

Asynchronous design can be based in different templates,
each with different timing assumptions. Among these, the most
employed are based either on quasi-delay-insensitive (QDI) [1]
or bundled-data (BD) [2] families. QDI circuits are more robust
against process, voltage and temperature (PVT) variations, but
impose large power and area overheads. BD requires more
careful design, but can be much more area and power efficient.
A BD circuit is somewhat similar to a synchronous circuit.
However, instead of using a global signal to control sequencing
of events, synchronization occurs locally between each pair
of communicating entities, using handshaking protocols. Such
protocols can be either 2- or 4-phase and can employ different
control circuits, as discussed in [3]. Among these, we highlight
the Mousetrap template [3], which relies on conventional
standard cells for the implementation of control blocks and
employs 2-phase handshaking. These characteristics lead to
reduced switching activity, lower cycle time and can be made
compatible with synchronous flows and libraries.

This work introduces BAT-Hermes, a low-power NoC
router capable of interconnecting IPs within distinct clock
domains. When compared to a synchronous router of similar
characteristics, BAT-Hermes shows average reductions of 27%
in energy consumption. The use of single-rail data encoding

potentially leads to low power overheads, when compared to
other asynchronous approaches like QDI. Moreover, use of
a transition-signaling protocol reduces latency, by eliminating
return phases in the handshake, which improves circuit per-
formance when compared to level-signaling approaches, at the
cost of more complex controllers, which translates to some
additional cost in area.

II. RELATED WORK
A survey of related work revealed only one NoC router

that implements a transition-signaling handshake protocol:
the design proposed by Ghiribaldi et al. in [4]. This router
features wormhole switching, 32-bit flits, and dimension-
ordered routing. The design was synthesized using a low power
standard-Vt 40nm cell library, achieving an average throughput
of 20.6Gbytes/s per router. In this design, MUTEXes and
C-elements required to implement arbiters rely on ordinary
standard cells. All remaining related work on bundled-data
routers adopt level-signaling protocols. The reason behind this
is that level-signaling significantly reduces design complexity,
when compared to transition-signaling protocols [5].

The ASPIN NoC [6], proposed by Sheibanyrad et al. uses
both BD and dual-rail data encoding, the latter being used
only for long wires. Each router features wormhole packet
switching, 32-bit flit size, and uses the XY routing algorithm.
Synthesis targets a 90nm low voltage threshold technology, re-
sulting on a maximum throughput of 4.423Gbytes/s per router.
There is no information on physical design mapping in [6].
Another work, proposed by Bjerregaard and Sparso in [7],
presents the MANGO NoC, which employs virtual channels to
provide connection-oriented guaranteed services and connec-
tionless best effort routing. The router implements wormhole
packet switching, 32-bit flit size, and XY routing algorithm.
The NoC was synthesized using 0.12µm CMOS standard cell
technology, yielding an average throughput of 15.4GBytes/s
per router under typical conditions. In [8], Dobkin et al.
proposed asynchronous QNoC, supporting quality-of-service
in four distinct service levels using virtual channels. The
routers support XY routing and wormhole packet switching
with 8-bit flit size. The NoC was synthesized using a 0.18µm
CMOS standard cell library, resulting in an average throughput
of 1.1GBytes/sec per router.

Related works employ different design styles and CMOS
technologies, making it difficult to draw a fair comparison.
Moreover, with respect to BAT-Hermes, only [4] features the
same design style. In fact, BAT-Hermes is quite similar to the
proposal in [4], with the main difference between the two being
the packet control technique. The router proposed here em-
ploys a packet control logic based on a flit counter mechanism,
to keep compatibility with its synchronous counterpart. The
drawback is that it adds considerable control overhead with
regard to the simpler end-of-packet (EOP) flag approach of
[4]. A transition-signaling FIFO architecture is also proposed
in [4], but the authors do not detail it, or even explain if the
router actually uses it, which can justify the reported small
area.
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III.ARCHITECTURE
The starting point for BAT-Hermes was the architecture

of the synchronous router called YeAH! [9], which employs
a fully distributed control logic and a functionality similar to
the Hermes router [10]. In this design, each router port has
input and output interfaces (II and OI). The II of each router
port is directly connected to all OIs of the remaining ports.
Routing and arbitration tasks are distributed across the router
and assigned to IIs and OIs, respectively. This is different
from centralized routers like the original Hermes, where a
single control block performs both tasks for all ports. The
distributed approach results in a modular design that avoids
bottlenecks in the control unit and improves performance
on congested networks. More importantly, this is relevant
in conjunction with asynchronous design, as it reduces the
complexity of control blocks, alleviating overheads. Just like
YeAH!, BAT-Hermes features wormhole packet switching, XY
routing algorithm, and parameterizable flit size and buffer
depth. The router was designed to work on a 2D mesh topology
and can have up to 5 ports - one for communication with an
IP and the remaining for communication with other routers.

The II of BAT-Hermes is responsible for buffering and
routing tasks. As Figure 1 shows, the II consists in an input
buffer (FIFO), the FIFO control unit (Control), and the Routing
Control. When the input buffer outputs a header flit (the first
flit of a packet), Control activates Routing Control, which
requests the usage of the chosen OI through a transition on
req outport o. Once the request is granted via the incoming
ack outport i signal, the packet is transmitted through hand-
shakes on req data o and ack data i. Using these two pairs of
control signals allows concentrating all routing and arbitration
overhead on the first handshake, reducing the latency of
data transfers. After using the first flit, Control loads the
payload size (the second flit of each packet) in a register and
decrements it as the payload (the remaining flits) is transferred.
When this register reaches zero, last flit o switches, indicating
that the last flit of the packet is about to be transferred, and
Control then waits for the next packet to arrive.

The buffer implements a circular FIFO as proposed in [4].
Since the req data o signal is shared among all OIs, and given
the transition-signaling nature of the design that expects a
transition on the acknowledge signal as requests are completed,
the ack data i signals coming from the OIs can be on different
phases during execution. Hence, an XOR gate is needed
to phase-match the ack data i signals to req data o. Since
each transition at the input of the XOR results on an output
transition, this gate is used throughout the design as a phase-
matcher for merging signal buses that are guaranteed by design
to switch only one signal at a time. Differently from [4], the
proposed router employs transition-signaling communication
for all control signals. Additionally, to maintain compatibility
with the environments used in the design and analysis of
the YeAH! router, at the expense of area and performance
overhead, BAT-Hermes uses a flit counter instead of begin-of-
packet (BOP) and end-of-packet (EOP) flags to identify packet
limits. A BOP/EOP strategy could potentially simplify the
control circuit, resulting in smaller area and higher throughput.
However, additional sideband signals between routers and IPs
would be required to implement the BOP/EOP flags.

The OI handles arbitration between requests from IIs.
Figure 2 depicts its architecture, which comprises an Arbiter, a
multiplexer (MUX) and an output port control module (Outport
Control) connected to each II interfacing to this OI. The
arbiter ensures that only one II has access to the specific
OI at a time. Ghiribaldi’s et al. design [4] was reproduced
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Fig. 1. Architecture of the Input Interface.
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Fig. 2. Simplified architecture of the Output Interface.

using MUTEX cells from the ASCEnD library [11], [12].
Outport Control handles arbiter requests and last flit detection
(last flit i). It also performs phase matching in cases where
signals req data i and ack data o are out-of-phase. This
phase matching is needed due to the shared req data i signal,
similarly to what happens in the control signals of the II.

IV.DESIGN
A. The Input Interface

The II comprises three blocks: FIFO, Control and Routing
Control. Details of the first are in [4]. Figure 3 details the
(Input Buffer) Control circuit, which implements the logic that
detects each packet’s first and last flits. Control contains two
blocks: a flit counter and the control logic for selecting which
handshake signal sends each flit to the OI (req outport o
for the first flit and req data o for the remaining flits of
the packet). Flip-flops FF1 and FF2, register REG2, and the
adjoining logic compose the flit counter circuit (block i). The
data stored in these is updated every time a new flit enters
the circuit - i.e. a req i transition propagates through LT1.
Note that LT1 is transparent whenever new information can be
transmitted through Control - that is, the II is not waiting for an
acknowledgement of any OI. As soon as a transition in req i
propagates through LT1, the latch becomes opaque because it
triggers the XOR gate that feeds the LT1 enable signal. REG2
holds the number of flits remaining in the packet currently
being transmitted. Its value is initialized with the payload size,
read from the second packet flit, and decremented after sending
each flit. Before sending the last packet flit, the value stored
in the flit counter is 1. Once the last flit of the packet enters
Control, FF1 asserts its output, generating a rising edge on
the signal connected to the clock pin of FF3, which in turn
switches the value of last flit o, indicating the last flit will
follow. When the next flit (a header) arrives, the value stored
in FF2 propagates to the output of FF2, changing the MUX
selection to initialize REG2 with the payload size when the
following flit arrives.

The second block, composed of latches LT2 and LT3, flip-
flop FF4 and the adjacent logic routes the request of the
header flit to the req header o signal, and the remaining flits
to req data o signal. The value stored in FF4 indicates if the
current flit is the first of the packet and controls the enabling
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Fig. 3. Input Buffer Control used at the Input Interface.
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of LT2 and LT3 to select between header and data requests.
The value of this register is determined as follows: i) If the
current output of FF4 is de-asserted (req header o handshake),
the next value will be asserted (req data o handshake); ii) If
the current output of FF4 is asserted and the current flit is
the last (FF1 asserted), the next value will be de-asserted;
iii) otherwise, it keeps the value asserted. LT1 and REG1
implement a pipeline stage to allow the buffer to fetch a new
flit while Control is busy. When a req i request arrives and
Control is idle, the request and its data are immediately stored
in LT1 and REG1, respectively. As soon as the latches become
opaque, an ack o acknowledge is issued, liberating one posi-
tion on the buffer. Routing Control is responsible for requesting
the use of OIs. Figure 4 shows this circuit that comprises a
Routing Unit and a set of latches and XOR gates, to keep
phase coherence. A combinational circuit accomplishes the
routing task, comparing the value of signal target address i
to the current router address. This enables flexibility to adopt
different routing algorithms. Once the computation is ready,
the target OI latch is enabled, generating a request through
the respective req outport o. Note that this module can be
optimized by removing absent IIs and OIs, e.g. on corners and
edges of a mesh network.

B. The Output Interface
The building blocks of the OI are an Arbiter, a MUX,

and a set of Outport Control modules (each connected to
corresponding IIs, up to four per router, per OI). BAT-Hermes
employs the Arbiter proposed in [4], but implements it with
custom MUTEX cells. This is a very important difference,
as our approach enables a more realistic analysis. MUTEX
cells are used to guarantee that only one requester will be
granted access to the output interface in the event of several
simultaneous requests. More importantly, these cells guarantee
that no metastability will be propagated to the control path
in the event of eodem tempore requests. Actually, it is not
clear how a standard-cell implementation of a MUTEX avoids
the injection of metastability in the control path, which can
jeopardize correct functionality of the design. Unlike the
handshake between the other components of BAT-Hermes,
the Arbiter communicates using a level-signaling protocol.
This was mandatory, since no transition-sensitive MUTEX is
available in the used cell library. In fact, authors could find no
such gate in the literature.
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Fig. 5. Outport Control used at the Output Interface.

The Outport Control block controls interactions between
IIs, the Arbiter, and the output channel. The circuit, detailed in
Figure 5, is split in three main blocks: i) last flit detector (FF2,
FF3, and the adjoining XOR gate); ii) a programmable phase
matcher for the shared signal req data i (FF1, LT2, and the
connected XOR gates); iii) the arbiter handshake control (LT4
and the adjoining AND gates). The remaining latches and XOR
gates serve to phase match request and acknowledge signals
and keep these stable when Outport Control is idle. The last
flit detector (block i) compares the initial value of last flit i
stored in FF3 to the current one, when acknowledging the
transmission of each data flit. When a transition is detected,
FF2 asserts its output and the Outport Control relinquishes the
OI. Since req data i is shared across all OI, it is necessary to
guarantee that its initial phase at the input of LT2 is the same
as the signal stored in the latch - if not, the phase mismatch
will be mistakenly interpreted as a request to transfer data.
At the beginning of each packet transfer, the programmable
phase-matcher (block ii) configures FF1 to invert the phase of
req data i when it does not match the value stored in LT2. The
arbiter handshake control (block iii) requests the use of the OI
when a header flit is received, by setting LT4, and relinquishes
it when the last flit of the packet is received, by resetting the
same latch.

C. Router Synthesis
BAT-Hermes timing constraints were manually extracted

and used as input to a semi-automated synthesis flow based
on the Synopsys synthesis framework. Timing constraints
were automatically fulfilled in the physical synthesis using
set min delay constraints to adjust the minimal delay of
control lines, similar to [4]. However, in our design the
ASCEnD cell library [11] provides asynchronous cells, we
need not use gates from the conventional cell library to
create such functionality. This enables more realistic analysis,
because asynchronous cell construction with standard gates can
introduce hazards in the circuit and should be avoided. The
design targeted the STMicroelectronics 65nm standard Vt cell
library and the router was synthesized employing 16-bit flit
size and buffer depth of 8. The total gates area for the physical
design was 30,013µm2. Based on post-layout simulations we
computed an average throughput of 3.85GB/s when the router
simultaneously drives five connections. Given that timing
constraints were extracted manually, we could not leverage all
degrees of optimizations performed by the synthesis tool on
synchronous designs. Additionally, the methodology used to
set the delay line values do not optimize delay margins fully,
resulting in performance penalties.



V. EXPERIMENTS AND DISCUSSION
To analyze BAT-Hermes trade-offs, the YeAH! router also

underwent synthesis and layout generation. This router em-
ploys a 16-bit flit size and an 8-flit buffer depth. It uses
a traditional synchronous synthesis flow targeting the same
technology. Preliminary results show that YeAH! achieves
maximum throughput higher than BAT-Hermes. This is a
consequence of the high degree of optimization allowed by
synchronous tools. Also, this demonstrates that for high-
speed applications, this router is a better option than BAT-
Hermes, as for such applications the focus is in the maximum
obtainable frequency. However, for low power applications,
power efficiency must be the constraining metric, as high-
speed designs are usually not the most power efficient. For
synthesizing a design that would enable us to assess power
efficiency trade-offs, we iteratively optimized the clock period
of the router during the synthesis process until we obtained a
slack margin smaller than 100ps for the critical path. This
allowed the synthesis tool to map the design targeting the
highest frequency it could with low driving strength gates,
ensuring a reasonable area/delay trade-off. This means that
allowing a big slack leads to underuse the driving capability
of the logic gates. The resulting clock frequency was 667MHz.

From the layout we extracted the physical netlist and
annotated nets and gates delays to an SDF file. With this file we
conducted timing simulation to extract the switching activity.
Design Compiler used the latter to compute power character-
istics. Circuits were evaluated on the typical corner, operating
at 25◦C, standard Vt, and 1V supply. Evaluated performance
metrics are: forward latency, maximum throughput, and power
consumption. Forward latency is the average time it takes for a
flit to traverse an initially idle router with empty buffers (thus,
with no contention). Maximum throughput computation relies
on the average cycle time of the router multiplied by the flit
size and the number of simultaneously supported connections.
For the synchronous design, the average cycle time is the clock
period; on the asynchronous circuit, this value is measured
based as the time between successive acknowledgements on
the output interface. Power figures were measured in two
scenarios: best and worst cases. In both test cases, five packets
with 4,096 flits were simultaneously sent to/from all ports at
the maximum possible rate - that is, one flit per clock cycle
for YeAH!, and on BAT-Hermes a new flit issued immediately
upon receiving an acknowledgment for the previous flit. In best
case scenarios all flits were zero, to reduce circuit switching
activity; in worst case ones, each flit was the inverse of the
previous one, to increase switching activity.

Table I summarizes throughput and power results. Average
forward latency of BAT-Hermes is 4.54ns; for YeAH!, it is 3
clock cycles: 4.5ns. YeAH! has a total cell area of 17,182µm2

and BAT-Hermes has a cell area of 30,013µm2, an overhead
of 75%. The table also presents a measure of power efficiency
in mJ/GB, from dividing the average power by the average
throughput. This metric correlates performance and energy
consumption, displaying the energy required to transfer a Giga-
byte of data, enabling the assessment of the power efficiency of
each design. These characteristics reflect the scenario used for
the power measurement: five simultaneous connections with
no contention and flit injection at the maximum possible rate.
For both, the traffic best and worst cases, BAT-Hermes yields a
better energy efficiency than its synchronous counterpart. This
means that to transfer the same amount of data BAT-Hermes
requires up to 27% less energy than YeAH!.

The area disparity between BAT-Hermes and YeAH! can
be explained by the synthesis process of the former and by the

TABLE I. THROUGHPUT, POWER AND ENERGY COMPARISON.
Router Throughput Average Power Energy per GB

Best Worst Best Worst
YeAH! 6.2 GB/s 7.05 mW 9.12 mW 1.14 mJ/GB 1.47 mJ/GB

BAT-Hermes 3.85 GB/s 3.18 mW 4.15 mW 0.83 mJ/GB 1.08 mJ/GB

different buffering strategies. Since commercial EDA tools do
not support asynchronous circuits, it is necessary to manually
define timing constraints and the circuit cannot leverage the
timing optimizations supported in synchronous designs, which
results in a design with larger area and timing overheads.
Additionally, the more complex control circuit based on the
packet size increases the number of timing constraints in the
controller, requiring additional delay lines – which translates
to area overhead. Regarding power efficiency, it is notable
the advantage of the asynchronous design employing the
transition-signaling handshake protocol. There is a clear trade-
off between performance, area and power between the evalu-
ated routers. YeAH! is clearly the best option for high-speed
applications, as EDA frameworks allow better design space
exploration for fully synchronous designs. The asynchronous
nature of BAT-Hermes displays considerable improvement in
power efficiency, at a higher cost in area. This is particularly
important for contemporary technologies, as power constraints
in modern VLSI applications are getting increasingly tighter.

VI.CONCLUSIONS
This work focused on the design of a low power asyn-

chronous transition-signaling BD NoC router. The router was
synthesized to layout using commercial EDA tools and vali-
dated through post-synthesis simulation. Experimental results
show reduction of energy consumption in the order of 27%,
when compared to a fully synchronous router with similar
characteristics. As future work we will explore optimizations
in the synthesis process employed to enable timing constraints
optimization and improve area and timing.
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