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Abstract— Interest in asynchronous circuits has increased in the 
VLSI research community due the growing limitations faced during 
the design of synchronous circuits, which often result in over 
constrained design and operation. For designing asynchronous 
circuits quasi-delay-insensitive approaches are often preferable due 
to their simple timing analysis and closure. Null Convention Logic 
(NCL) is a style that supports quasi-delay-insensitive design and 
enables power-, area- and speed-efficient circuits using a standard-
cell methodology. However, the correct functionality of such circuits 
can be jeopardized by glitches caused by charge sharing effects, 
which can generate single event upsets. This work scrutinizes the 
electrical behavior of NCL gates and proposes design optimizations 
that improve their robustness to charge sharing glitches. 
Experimental results suggest that the proposed optimizations lead to 
more robust implementations, increasing fault avoidance and 
reliability in such circuits. 
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I.  INTRODUCTION 

Asynchronous, or clockless, circuit design can cope better with 
inherent problems of current technologies that make synchronous 
design over constrained, like susceptibility to PVT variations and 
excessive power dissipation in clock trees. The quasi-delay-
insensitive (QDI) clockless design style [1] is attractive for several 
reasons, but especially because it allows wire and gate delays to be 
ignored, given that the isochronic fork [1] delay assumption is 
respected. With QDI, design complexity can be considerably 
reduced, easing timing closure and analysis. The definition of a 
specific QDI template requires the choice of a handshake protocol 
[1] and a delay-insensitive (DI) data encoding [1]. According to 
Martin and Nyström [2], the 4-phase handshaking protocol 
coupled to either 1-of-2 or 1-of-4 codes comprises almost the 
entirety of options in practical QDI design. For such templates, 
various logic styles support sequential and combinational logic 
implementations. Of the styles proposed to date, the Null 
Convention Logic (NCL) [3] is one that enables power-, area- and 
speed-efficient design based on standard cells. Yet, NCL gates are, 
in fact, sequential circuits. Thus, single event transients (SETs) can 
generate single event upsets (SEUs) in many locations within an 
NCL-based circuit, which can potentially make the circuit to stall, 
given the local data dependent nature of QDI circuits [1]. 

Among the causes that may generate SETs, charge sharing 
appears as an inevitable electrical phenomenon that requires no 
external interference to occur [4]. It is caused by capacitance 
coupling and is a classical source of glitches that propagate as 
SETs. In this work we scrutinize the analog behavior of NCL gates 
in the presence of SETs caused by charge sharing effects and 
demonstrate that these gates can be vulnerable to such problems 
depending on the way their transistors are arranged. We 
distinguish arrangements that are particularly problematic and can 
generate SEUs, and propose topological optimizations that can 
alleviate or even eliminate the problem altogether. 

II. NULL CONVENTION LOGIC 

NCL was proposed by Theseus Logic, Inc. [3] and has been 
successfully employed for implementing QDI asynchronous 
systems on silicon. It is an alternative to other design styles like 
delay insensitive minterm synthesis (DIMS) [1] and was applied to 
cope with power problems [5] [6], to design high-speed circuits [7] 
[8] and to fault tolerant schemes [9], as well as other applications 
such as ternary logic [10]. One of its advantages is that it enables 
power-, area- and speed-efficient QDI design with a standard-cell-
based approach, while other asynchronous templates require 
recourse to full-custom approaches. NCL gates are sometimes 
called threshold gates, but this is imprecise. In fact, NCL gates 
couple a threshold function with positive integer weights assigned 
to inputs to the use of a hysteresis mechanism. This is required to 
support DI circuit design using dual rail or 1-of-4 encoding [3].  

Without loss of generality, this work restricts attention to NCL 
gates where all inputs have the same weight (i. e. 1). NCL gates 
will accordingly also be called M-of-N gates. In such NCL gates, 
the output will switch to logical 0 when all inputs are at logical 0 
and to logical 1 when at least M of its N inputs is/are at logical 1. 
Otherwise, it keeps its output state. Figure 1 shows the NCL gate 
symbol, where N is the number of inputs and M is the gate 
threshold. There are different ways to design NCL gates in CMOS, 
such as the six approaches that Parsan and Smith discuss in [11]. 
Among these, classical static implementations are of particular 
interest, as they are simpler and constitute a good area and power 
compromise. Accordingly, this work assumes the use of static 
implementations of NCL gates. 

 
Figure 1 – Symbol of an M-of-N NCL gate. 

Figure 2 shows an example, the CMOS schematic of a 2-of-3 
static NCL gate, demonstrating the M-of-N general structure. 
Output “Q” will be logical 0 if the inputs are all at logical 0. If any 
two inputs are at logical 1, the output will be at logical 1. The 
transistors of a static NCL gate can be divided in three groups: the 
Logic Stack, the Feedback and the Output Inverter. The logic stack 
(here, P0-P2 and N0-N4) defines the NCL gate output to be logical 
0 or logical 1, depending only on the input combinations (three 
logical 0s or two or more logical 1s). The output inverter group 
(P9 and N9) drives the gate load itself, while feedback transistors 
(P3-P8 and N5-N8) implement the memory scheme that 
guarantees output validity and stability for unbounded periods of 
time, using hysteresis. It consists of a feedback inverter powered 
only by selected input combinations (two logical 0s and one 
logical 1). Specific details on the tradeoffs of such implementation 
can be found in [11].  

The authors proposed in [12] a design flow for obtaining NCL 
gates at the layout level. It automatically dimensions gate 
transistors and generates timing and power models according to 
the Synopsys Liberty format, compatible with most electronic 
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design automation tools. The only manual part of the flow is the 
layout generation itself. Throughout this work, we assume the use 
of this flow for designing NCL gates. 

 
Figure 2 – Example of a 2-of-3 NCL threshold gate [2]. 

III. CHARGE SHARING AND RELATED WORK 

When two electric equipotential regions at different initial 
voltages are connected together [13] [4], they share charges to 
reach a new global potential value, causing voltage variations on 
both regions due to charge redistribution. Such voltage changes in 
e.g. nodes of a transistor circuit are effects of charge sharing. Also, 
it is possible to discern two kinds of charge sharing: pure charge 
sharing and charge sharing with a driven path [13]. In NCL, the 
latter is not problematic, as it will only interfere in the output of a 
gate during output switching, which is the expected behavior. Pure 
charge sharing, on the other hand, can be hazardous as it will be 
discussed in Section IV. Therefore, this paper restricts attention to 
pure charge sharing only. Pure charge sharing occurs, e. g., when 
two non-driven RC subnets are connected through a switch that is 
closed. Classically, in dynamic synchronous circuits, like domino 
logic, charge sharing arises when either charge flows from a gate 
output to internal nodes capacitances previously discharged, or 
when charge flows from initially charged internal nodes parasitic 
capacitances to the output. These phenomena cause glitches on the 
outputs that, depending on the scenario, may trigger adjacent gates 
erroneously, producing SETs that can be latched and cause SEUs. 

In asynchronous circuits, glitches caused by charge sharing 
effects can have irreversible consequences. These circuits rely on 
complex handshake communication protocols that can stall in the 
presence of a soft error, causing the whole circuit to halt. Also, in 
asynchronous circuits, SETs are hardly masked [14]. This is due to 
the fact that there is no temporal assumption and, consequently, no 
temporal masking. Additionally, logic and electrical masking are 
very restricted. This is because the majority of asynchronous 
templates make extensive use of sequential components, which 
limit the depth of logic paths and of signal regeneration effects and 
increase the possibility of SETs to be latched and generate SEUs.  

Albeit there is a wide variety of works available in the 
literature that deal with soft errors problems in asynchronous 
circuits, most of these focus on problems other than charge 
sharing. In special many works approach soft errors caused by 
particle strikes. Moreover, most of the works encompass only a 
special case of NCL logic, namely sets of C-Elements, which 
represents the particular set of N-of-N NCL gates with N > 1 [12]. 
This is the case of the works presented in [15], [16] and [17]. In 
fact, as far as the authors could verify, [18] is the only work that 
report an analysis of the behavior of NCL gates in general under 
the presence of particle strikes and proposes optimizations. Here, 
the authors detect weak conditions for NCL gates and propose 

optimizations by using Schmitt-Triggers and transistor resizing. 
The presented results suggest that for deep submicron technology 
nodes, NCL gates are very sensitive to particle strikes, even with 
their optimizations. Yet, they also propose an efficient method to 
detect and correct soft errors in computational blocks, assuming 
that registers are error free. Yet, the use of Schmitt-Triggers and 
bigger transistors considerably interferes in the performance of the 
circuit at system level. Also, there is no reference to charge 
sharing problems that, as it will be demonstrated throughout this 
work, can also jeopardize the correct functionality of NCL circuits 
in current technologies. Additionally, differently from soft errors 
caused by particle strikes, those caused by charge sharing require 
no external interference and are inevitable in CMOS design [14]. 

Other works, like [19], address the charge sharing problem on 
C-Elements. However, their results are valid for this class of 
restricted NCL gates, which presents a very regular transistors 
topology, and are all based on older technologies, such as 0.35�m. 
Besides, the presented results rely on scenarios where C-Elements 
are simulated in unpractical situations. For instance, they employ 
C-Elements that are usually not present in any handshake 
component, which are the components that compose an 
asynchronous circuit [1], and assume no wire capacitance.  

In this context, the present work stands off by performing a 
close analysis of the analog behavior of NCL gates in general. It 
also proposes techniques to build gates more robust to charge 
sharing problems, particularly to avoid SEU generation. This is 
especially important because, as previously explained, these 
problems are inevitable for CMOS design and, as it will be 
demonstrated, if an NCL gate is not properly designed, it can be 
very sensitive to them. 

IV. CHARGE SHARING ON NCL GATES 

Recalling Figure 2 static NCL gates employ, as usual in static 
logic, series and parallel transistor connections. Depending on the 
threshold and on the number of inputs, more transistors can be 
required. Complexity may lead to routing congestion due to the 
existence of many internal nodes when implemented on silicon, 
which in turn increases parasitic capacitances of the internal nodes 
of the gate. Also, transistors of the logic stack are usually big, 
because they are required to drive the output inverter. In this way, 
their drain and source areas are made larger, which also increases 
parasitic capacitances. With larger internal parasitic capacitances, 
the gate is more susceptible to problems caused by charge sharing, 
as bigger glitches are generated, increasing the possibility of these 
glitches to be latched and to SEUs. 

Albeit there are many different ways of implementing the 
same logic using the same number of transistors, there is no 
reported consensus on how to arrange the transistors of an NCL 
threshold gate. In fact, as far as the authors could verify, no 
previous work analyses the effects of different arrangements, for 
designing robust gates. The results showed herein suggest that the 
correct planning of transistor schematics in NCL gates can 
generate gates more robust towards charge sharing effects. This 
paper will employ as example, without loss of generality, the static 
3-of-5 NCL threshold gate. Figure 3 shows a first schematic of this 
gate, called Arrangement 0 (A0). The choice of this gate as case 
study is justified for its extensive use in fundamental blocks 
usually found in QDI circuits, like adders [12] and for being a 
critical case for the analysis herein. Unless specified, all transistors 
in the experiments are assumed to be general purpose standard 
threshold devices. 
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Figure 3 – A0 CMOS schematic for the 3-of-5 NCL gate. 

As Figure 3 shows, the PMOS transistors in the logic stack of 
the 3-of-5 gate (P0-P4) can only be arranged in series, to 
guarantee that all inputs at logical 0 drive the output to logical 0. 
The capacitances of nodes n00-n03, that connect these transistors, 
are usually not increased by parasitics inherent to metal wiring 
after layout design. This is because such transistors are likely to be 
connected by abutting the diffusion of their respective drains and 
sources. In this way, it is not expected that charge sharing effects 
caused by these capacitances generate relevant hazardous glitches. 

The NMOS transistors of the logic stack, on the other hand, 
can be arranged in many different forms. Each form can contribute 
differently to increase glitches caused by charge sharing in the 
pull-down region. Arrangement A0, specifically, is a worst case. 
For instance, assume the scenario presented in Table I. Initially, all 
inputs are at logical 0. In this way, nodes n00-n03 and O are 
charged and the output is set to logical 0 through the output 
inverter. This is the typical scenario of the beginning of data 
transmission in QDI circuits. Next, say that inputs B, C and D are 
set to logical 1, one at a time (time instants 1-3). In this way, nodes 
O and n11-n16 are discharged and the output is switched to logical 
1. This represents data being propagated through the circuit. Now 
say that all inputs are set back to logical 0, one at a time, starting 
with B, then C and then D (time instants 4-6), to avoid capacitance 
coupling of the initially charged nodes n00-n03 and the discharged 
nodes n11-n16. In this stage, node O is charged and all nodes n11-
n16 are kept discharged. This is an initial setup for the analysis of 
the charge sharing problem. Finally, say that inputs E and A switch 
to logical 1, in this order (time instants 7-8). The effect is that 
when input E switches, capacitance of the following pairs of nodes 
are coupled: n11 and n12, n13 and n14 and O and n15. At this 
point, a glitch occurs in node O as part of its charge is absorbed by 
node n15. However, a larger glitch occurs when input A switches, 
because, in this case, the charge stored in O is partially absorbed 
by capacitances of nodes n11, n12, n13, n14 and n16, which 
represent a much bigger value. In such a scenario, this glitch can 
be more easily latched, generating an SEU.  

Table I – Input sequence for observing charge sharing effects in a 3-of-5 gate. 
Time Instant � Inputs � 0 1 2 3 4 5 6 7 8 

A 0 0 0 0 0 0 0 0 1 
B  0 1 1 1 0 0 0 0 0 
C 0 0 1 1 1 0 0 0 0 
D 0 0 0 1 1 1 0 0 0 
E 0 0 0 0 0 0 0 1 1 

 

This scenario is very common in NCL applications. From the 
authors’ experience, in adders this exact situation or an equivalent 
one always happens during the computation of each single bit. 

Additionally, even worse scenarios may occur, if more inputs are 
assumed to switch, which is also realistic in applications 
implemented in NCL. 

Given the input sequence of Table I, we propose another 
arrangement for the 3-of-5 NCL threshold gate, namely 
Arrangement 1 (A1). Figure 4 shows its CMOS schematic. The 
difference from A0 is that the NMOS transistors of the logic stack 
were redistributed. Note the transistor parallel is now closer to 
node O. In this way, at each input switch, the charge stored in node 
O is slightly absorbed. This helps avoiding that bigger 
capacitances accumulate before coupling with node O, like in A0. 
For instance, assume that A1 is submitted to the same initial setup 
as A0 (instants of time 0-6). At this point, if any input switches to 
logical 1, less parasitic capacitances will be accumulating, since 
critical nodes of parallel transistors will have their capacitances 
coupled to node O. For the example scenario, in the next instant of 
time (7), when input E switches to logical 1, capacitance of node 
n11 is coupled to O, absorbing part of its charge. In last instant of 
time, when input A switches, less capacitance accumulates and 
smaller glitches are expected. 

 
Figure 4 – A1 CMOS schematic for the 3-of-5 NCL gate. 

 

This implementation alleviates glitches generated by charge 
sharing effects. A bigger capacitance in node O would provide 
further improvements. However, a bigger capacitance in this node 
can drastically impact the gate performance. In other words, a 
bigger load would take longer to be charged/ discharged or bigger 
transistors, which would display bigger power figures. In this 
context, we propose Arrangement 2 (A2), showed in Figure 5. In 
A2 the capacitance of node O is only increased when the cell is not 
switching. This is done by placing parallel PMOS transistors of the 
feedback group closer to P20. Here, when the output is at logical 0 
and is not switching, capacitance of node O is coupled with 
capacitance of node n10, which has an increased parasitic 
capacitance in A2, due to the larger number of transistors 
connected to it. Also, depending on the combination of inputs set 
to logical 0, bigger loads are coupled, as nodes n04-n09 can be 
connected to node n10. When the cell is to switch its output to 
logical 1, the connection of nodes n04-n10 to power is cut off, and 
their charge is drained through the direct connection to ground 
provided by the NMOS transistors of the logic stack. 

For instance, say that A2 is submitted to the initial setup of 
Table I. When input E switches to 1, at the time instant 7, there is a 
bigger capacitance coupled to node O, and the generated glitch is 
alleviated. When input A switches, at the next time instant, the 
same effect is observed. However, as soon as another input 
switches to 1, the connection of feedback group nodes to power 
source is cut off, lowering their interference in node O switching. 
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Figure 5 – A2 CMOS schematic for the 3-of-5 NCL gate. 

 

 
Figure 6 – A3 CMOS schematic for the 3-of-5 NCL gate. Thicker line gate 

transistors are low threshold. 
Another optimization is to employ low threshold transistors in 

the feedback group. This can be done for multi-threshold 
technologies only. For deep submicron technology nodes, this is 
usually available. In this context, we propose Arrangement A3. 
The advantage is that feedback transistors provide faster responses 
to cut power connections and coupling capacitances. Figure 6 
shows the CMOS schematic A3, which is very similar to A2. In the 
schematic, low threshold transistors have their gates drawn with 
thicker lines. 

V. EXPERIMENTS 

To analyze the analog behavior of arrangements A0 to A3, 
each arrangement was described in SPICE using the 65nm 
STMicroelectronics general purpose standard and low threshold 
(for A3) models. Each of the four arrangements was designed for 
six different driving strengths, X2, X4, X7, X9, X13 and X18, for 
a total of 4*6=24 different gates. The transistors of the output 
inverter group had the same size of those of an equivalent drive 
inverter of the core library. Transistors of the feedback group are 
minimum size, a classical approach for designing static standard 
cells for asynchronous circuits and the transistors of the logic stack 
had their size calculated according to the flow proposed in [12]. 

As explained before, SEUs in NCL gates caused by charge 
sharing are directly related to internal parasitic capacitances. In 
this way, an experiment was performed to define hazardous 
parasitic capacitance values. Note that no layout information is 
available in this phase. The schematic of all designed gates was 
simulated assuming no wire parasitics, only drain and source 
diffusion and gate capacitances, to isolate and evaluate the impact 

of the parasitics on nodes n11-n16 that could be extracted after 
layout design. Simulations were performed inserting varying 
values of capacitances on these nodes and on node O, to define 
safe parasitic combinations limits. Capacitances were varied from 
0 fF to 4 fF in 0.05 fF steps. In this way, a total of 80*80=6400 
scenarios of parasitic capacitances combinations were simulated. 
All standard cells had 50 ps input slopes, equivalent to an average 
size inverter, and output loads equivalent to four inverters of the 
same driving strength, a common metric known as fanout-of-4 
(FO4). The input sequence scenario is that in Table I. During 
simulations, the peak of the glitch, lowest voltage value, in node O 
was measured after time instant 8 (remember glitches here are 
from high to low voltage, i.e. negative peaks). Results used typical 
process models operating at typical conditions (1 V and 25º C). 
The choice simulator was Cadence Spectre. 

Figure 7 summarizes the results obtained for the X2 drive 
version of each arrangement. In the charts, PU Cap is the parasitic 
capacitance in node O and PD Cap is the parasitic capacitance in 
each node of the pull down network of the logic stack (n11-n16). 
As Figure 7(a) shows, for A0, considering no parasitic capacitance 
in node O (PU Cap=0), PD Cap values bigger than 0.6 fF, generate 
SEUs. The abrupt fall towards 0 V in the chart represents the 
critical points, where if bigger PD Caps are present, the glitch 
generated in node O is sufficiently big to cause it to be latched in 
the memory scheme, switching the output value to logical 1 and 
the value of node O to logical 0.  

In other words, for the bottom of the chart (0 V), the glitch 
generated by charge sharing effects was sufficiently large to be 
latched and generate an SEU. PD Cap values that are lower than 
those in the critical point also generate glitches. However such 
glitches are not high enough to cause an SEU.  For instance, for a 
PU and PD Cap of 0, the peak of the glitch measured in node O is 
of 0.67 V, a glitch of 33% of VDD. However, maintaining the PU 
Cap of 0, for a PD Cap of exactly 0.6 fF, just before the critical 
point, the glitch peak is 0.36 V, which is much more critical (64% 
of VDD) but not enough to be latched. Note that PD Caps of 0 are 
impossible in practice, especially because node O is used for 
interconnecting many transistor branches. The problem is that, 
even if PU Cap is raised to 3 fF, or even 4 fF, values of PD Cap 
close to 1 fF can generate SEUs, which is 3 or 4 times lower than 
PU Cap. 

The values measured for A1, showed in Figure 7(b), move the 
step that represents the critical point to larger values of PD Cap. In 
this way, more PD Cap parasitics are required to cause SEUs. In 
fact, in average, for the same PU Cap values, PD Cap parasitics in 
A1 must be 45% bigger than those in A0. Also, glitches for similar 
PD Caps, and lower than those of the critical point, are roughly 
22% smaller in A1 when compared to A0. As Figure 7(c) shows, 
for A2, these values are improved even more. For the same PU 
Cap values, PD Cap parasitics in A2 must be in average 92% 
bigger than those in A0 to cause SEUs and glitches for similar PD 
Caps are roughly 36% smaller. In A3 (Figure 7(d)) there still more 
optimization. Comparing to A0, this arrangement requires in 
average PD Caps 98% higher to cause SEUs and glitches for same 
PD Caps are in average 42% smaller. In fact, as the charts of 
Figure 7 show, the optimizations proposed move the fall (critical 
points) steadily to the right, representing arrangements 
increasingly more robust to charge sharing effects. Another 
analysis of the same simulation results appears in Figure 8(a). In 
the chart, critical points (the highest value of PD Cap for each PU 
Cap before causing an SEU) were isolated for each arrangement. 
In this way, A2 and A3 are almost twice as robust as A0. 
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(a) (b) (c) (d) 

Figure 7 – Maximum negative peak values (in Volts) of glitches caused in node O due to charge sharing effects for (a) A0 , (b) A1, (c) A2, and (d) A3. 

 

(a) 

 

(b) 

 

(c) 

Figure 8 – Critical PU and PD Cap for the (a) X2 and (b) X18 drive cells, for 
a typical process and typical operating conditions, and (c) for the X18 drive 
for a slow PMOS and fast NMOS process and typical operating conditions. 

After analyzing the results obtained for all driving strengths, 
we noticed that bigger drive cells are more susceptible to charge 
sharing problems, depending on the arrangement. The difference 
on the results for different drives is just quantitative, not 
qualitative. Thus, only the worst case, X18 is analyzed here. 
Figure 8(b) shows critical PU and PD Cap combinations for this 
drive for the same scenario above. It is clear that the improvements 
are much bigger. For instance, in worst case, PD Caps of 0.25 fF 

are required to generate SEUs for A0, while for A1, A2 and A3, 
this value is of 1.3 fF, 1.5 fF and 1.45 fF, respectively. This means 
arrangements 5.2, 6 and 5.8 times more robust than A0, 
respectively.  

The reason why bigger drives are more susceptible to charge 
sharing effects is the elevated diffusion capacitances of NMOS 
transistors of the logic stack that contribute to internal parasitics, 
making lower interconnection parasitics required for causing 
SEUs. Also these transistors are bigger and discharge node O at 
faster rates. For larger drives, A2 presents better results than A3 for 
all cases. In this way, the multi threshold approach is not better in 
general to cope with charge sharing in NCL gates. The presented 
results are all based on typical fabrication processes. However, as 
variations get critical in current technology nodes, this can be an 
overoptimistic approach. Accordingly, we simulated all the 
circuits for the same scenario for a worst case fabrication process 
variation: slow PMOS transistors and fast NMOS transistors. 
Thus, bigger glitches are generated in node O and less glitches are 
filtered by the output inverter. 

Figure 8(c) presents the results obtained for the most critical 
case, namely the X18 drive cells. As observable in the Figure, for 
A0 no interconnection parasitics are needed to cause SEUs. 
However, the proposed optimizations push critical PD Cap values 
to over 0.65 fF. In this way, it is expected that 3-of-5 NCL gates 
designed according to A0 for an X18 driving strength generate 
SEUs when under the scenario shown in Table I. In fact, we 
detected that this problem starts at driving strengths larger than 
X7. The degradation in robustness of NCL gates as their driving 
strength get bigger observed for A0 is undesirable. In fact, the 
quality of standard-cell-based logic synthesis relies on the 
availability of gates with different functionalities and driving 
capabilities. Under a functional point of view, the more gates 
available to implement logic functions, the more optimizations are 
possible. However optimizations in power, area and speed require 
different driving strengths for each gate during physical synthesis. 
Thus, it is essential that NCL gates maintain their robustness for 
increased driving strengths, in order to provide quality standard-
cell-based design. 

Another perspective on the obtained results shows the 
observed degradation. Figure 9(a) shows the critical PU and PD 
Cap combinations for each driving strength. The chart is a steep 
ramp where results get worse as the driving strength increases. 
There is a small deviation, in drive X13, which presents better 
robustness than X9. However this effect is due to transistor sizing. 
After employing the flow of [12], transistors of the logic stack in 
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these drives were set to similar dimensions, while transistors of 
their output inverter are different; in X13 they are bigger. A bigger 
output inverter leads to a bigger capacitance in O for X13 while 
maintaining the same logic stack nodes capacitance, generating a 
slightly more robust cell. The steep ramp problem is not observed 
in the proposed optimizations. As charts of Figure 9(b), (c) and (d) 
show, A1, A2 and A3, present very similar robustness no matter the 
driving strength. For these arrangements, the ramp observed in A0 
is turned into flatter surfaces, which indicates that these 
arrangements are suited for increasing the robustness of NCL-
based logic, while maintaining the advantages of using a standard-
cell-based approach for circuit design. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 9 – Robustness of arrangements A0 (a), A1 (b), A2 (c) and A3 (d). 

VI. CONCLUSIONS 

This work presented an analysis of the analog behavior for 
NCL gates in the presence of hazards caused by charge sharing 
effects. Four different transistors arrangements were proposed and 
better robustness in absolute terms was verified for arrangements 
A1, A2 and A3. In this way, and given that the only difference 
between the arrangements is the transistor topology (there is no 
area overhead associated), we strongly recommend the use of A2 
or A3. As future works, a tradeoff in terms of operating speed and 
power will be performed for the proposed arrangements. Also, it is 
necessary to perform an examination of hazards caused by charge 
sharing effects in inverted gates, which we believe is a much more 
severe problem. This is because in these gates the output is right 
after the logic stack (node O). In this way, generated glitches are 
not attenuated by the regeneration effect provided by the output 
inverter, but directly propagated to the next gate. 
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