
Charge Sharing Aware NCL Gates Design
Matheus T. Moreira, Bruno S. Oliveira, Fernando G. Moraes, Ney L. V. Calazans

GAPH – Faculty of Computer Science – PUCRS – Porto Alegre – RS – Brazil
{matheus.moreira, bruno.oliveira}@acad.pucrs.br, {fernando.moraes, ney.calazans}@pucrs.br

Abstract— Interest in asynchronous circuits has increased in the
VLSI research community due the growing limitations faced during
the design of synchronous circuits, which often result in over
constrained design and operation. For designing asynchronous
circuits quasi-delay-insensitive approaches are often preferable due
to their simple timing analysis and closure. Null Convention Logic
(NCL) is a style that supports quasi-delay-insensitive design and
enables power-, area- and speed-efficient circuits using a standard-
cell methodology. However, the correct functionality of such circuits
can be jeopardized by glitches caused by charge sharing effects,
which can generate single event upsets. This work scrutinizes the
electrical behavior of NCL gates and proposes design optimizations
that improve their robustness to charge sharing glitches.
Experimental results suggest that the proposed optimizations lead to
more robust implementations, increasing fault avoidance and
reliability in such circuits.

Keywords— reliability, charge sharing, null convention logic.

I. INTRODUCTION

Asynchronous, or clockless, circuit design can cope better with
inherent problems of current technologies that make synchronous
design over constrained, like susceptibility to PVT variations and
excessive power dissipation in clock trees. The quasi-delay-
insensitive (QDI) clockless design style [1] is attractive for several
reasons, but especially because it allows wire and gate delays to be
ignored, given that the isochronic fork [1] delay assumption is
respected. With QDI, design complexity can be considerably
reduced, easing timing closure and analysis. The definition of a
specific QDI template requires the choice of a handshake protocol
[1] and a delay-insensitive (DI) data encoding [1]. According to
Martin and Nyström [2], the 4-phase handshaking protocol
coupled to either 1-of-2 or 1-of-4 codes comprises almost the
entirety of options in practical QDI design. For such templates,
various logic styles support sequential and combinational logic
implementations. Of the styles proposed to date, the Null
Convention Logic (NCL) [3] is one that enables power-, area- and
speed-efficient design based on standard cells. Yet, NCL gates are,
in fact, sequential circuits. Thus, single event transients (SETs) can
generate single event upsets (SEUs) in many locations within an
NCL-based circuit, which can potentially make the circuit to stall,
given the local data dependent nature of QDI circuits [1].

Among the causes that may generate SETs, charge sharing
appears as an inevitable electrical phenomenon that requires no
external interference to occur [4]. It is caused by capacitance
coupling and is a classical source of glitches that propagate as
SETs. In this work we scrutinize the analog behavior of NCL gates
in the presence of SETs caused by charge sharing effects and
demonstrate that these gates can be vulnerable to such problems
depending on the way their transistors are arranged. We
distinguish arrangements that are particularly problematic and can
generate SEUs, and propose topological optimizations that can
alleviate or even eliminate the problem altogether.

II. NULL CONVENTION LOGIC

NCL was proposed by Theseus Logic, Inc. [3] and has been
successfully employed for implementing QDI asynchronous
systems on silicon. It is an alternative to other design styles like
delay insensitive minterm synthesis (DIMS) [1] and was applied to
cope with power problems [5] [6], to design high-speed circuits [7]
[8] and to fault tolerant schemes [9], as well as other applications
such as ternary logic [10]. One of its advantages is that it enables
power-, area- and speed-efficient QDI design with a standard-cell-
based approach, while other asynchronous templates require
recourse to full-custom approaches. NCL gates are sometimes
called threshold gates, but this is imprecise. In fact, NCL gates
couple a threshold function with positive integer weights assigned
to inputs to the use of a hysteresis mechanism. This is required to
support DI circuit design using dual rail or 1-of-4 encoding [3].

Without loss of generality, this work restricts attention to NCL
gates where all inputs have the same weight (i. e. 1). NCL gates
will accordingly also be called M-of-N gates. In such NCL gates,
the output will switch to logical 0 when all inputs are at logical 0
and to logical 1 when at least M of its N inputs is/are at logical 1.
Otherwise, it keeps its output state. Figure 1 shows the NCL gate
symbol, where N is the number of inputs and M is the gate
threshold. There are different ways to design NCL gates in CMOS,
such as the six approaches that Parsan and Smith discuss in [11].
Among these, classical static implementations are of particular
interest, as they are simpler and constitute a good area and power
compromise. Accordingly, this work assumes the use of static
implementations of NCL gates.

Figure 1 – Symbol of an M-of-N NCL gate.

Figure 2 shows an example, the CMOS schematic of a 2-of-3
static NCL gate, demonstrating the M-of-N general structure.
Output “Q” will be logical 0 if the inputs are all at logical 0. If any
two inputs are at logical 1, the output will be at logical 1. The
transistors of a static NCL gate can be divided in three groups: the
Logic Stack, the Feedback and the Output Inverter. The logic stack
(here, P0-P2 and N0-N4) defines the NCL gate output to be logical
0 or logical 1, depending only on the input combinations (three
logical 0s or two or more logical 1s). The output inverter group
(P9 and N9) drives the gate load itself, while feedback transistors
(P3-P8 and N5-N8) implement the memory scheme that
guarantees output validity and stability for unbounded periods of
time, using hysteresis. It consists of a feedback inverter powered
only by selected input combinations (two logical 0s and one
logical 1). Specific details on the tradeoffs of such implementation
can be found in [11].

The authors proposed in [12] a design flow for obtaining NCL
gates at the layout level. It automatically dimensions gate
transistors and generates timing and power models according to
the Synopsys Liberty format, compatible with most electronic

212978-1-4799-1585-9/13/$31.00 c©2013 IEEE

design automation tools. The only manual part of the flow is the
layout generation itself. Throughout this work, we assume the use
of this flow for designing NCL gates.

Figure 2 – Example of a 2-of-3 NCL threshold gate [2].

III. CHARGE SHARING AND RELATED WORK

When two electric equipotential regions at different initial
voltages are connected together [13] [4], they share charges to
reach a new global potential value, causing voltage variations on
both regions due to charge redistribution. Such voltage changes in
e.g. nodes of a transistor circuit are effects of charge sharing. Also,
it is possible to discern two kinds of charge sharing: pure charge
sharing and charge sharing with a driven path [13]. In NCL, the
latter is not problematic, as it will only interfere in the output of a
gate during output switching, which is the expected behavior. Pure
charge sharing, on the other hand, can be hazardous as it will be
discussed in Section IV. Therefore, this paper restricts attention to
pure charge sharing only. Pure charge sharing occurs, e. g., when
two non-driven RC subnets are connected through a switch that is
closed. Classically, in dynamic synchronous circuits, like domino
logic, charge sharing arises when either charge flows from a gate
output to internal nodes capacitances previously discharged, or
when charge flows from initially charged internal nodes parasitic
capacitances to the output. These phenomena cause glitches on the
outputs that, depending on the scenario, may trigger adjacent gates
erroneously, producing SETs that can be latched and cause SEUs.

In asynchronous circuits, glitches caused by charge sharing
effects can have irreversible consequences. These circuits rely on
complex handshake communication protocols that can stall in the
presence of a soft error, causing the whole circuit to halt. Also, in
asynchronous circuits, SETs are hardly masked [14]. This is due to
the fact that there is no temporal assumption and, consequently, no
temporal masking. Additionally, logic and electrical masking are
very restricted. This is because the majority of asynchronous
templates make extensive use of sequential components, which
limit the depth of logic paths and of signal regeneration effects and
increase the possibility of SETs to be latched and generate SEUs.

Albeit there is a wide variety of works available in the
literature that deal with soft errors problems in asynchronous
circuits, most of these focus on problems other than charge
sharing. In special many works approach soft errors caused by
particle strikes. Moreover, most of the works encompass only a
special case of NCL logic, namely sets of C-Elements, which
represents the particular set of N-of-N NCL gates with N > 1 [12].
This is the case of the works presented in [15], [16] and [17]. In
fact, as far as the authors could verify, [18] is the only work that
report an analysis of the behavior of NCL gates in general under
the presence of particle strikes and proposes optimizations. Here,
the authors detect weak conditions for NCL gates and propose

optimizations by using Schmitt-Triggers and transistor resizing.
The presented results suggest that for deep submicron technology
nodes, NCL gates are very sensitive to particle strikes, even with
their optimizations. Yet, they also propose an efficient method to
detect and correct soft errors in computational blocks, assuming
that registers are error free. Yet, the use of Schmitt-Triggers and
bigger transistors considerably interferes in the performance of the
circuit at system level. Also, there is no reference to charge
sharing problems that, as it will be demonstrated throughout this
work, can also jeopardize the correct functionality of NCL circuits
in current technologies. Additionally, differently from soft errors
caused by particle strikes, those caused by charge sharing require
no external interference and are inevitable in CMOS design [14].

Other works, like [19], address the charge sharing problem on
C-Elements. However, their results are valid for this class of
restricted NCL gates, which presents a very regular transistors
topology, and are all based on older technologies, such as 0.35�m.
Besides, the presented results rely on scenarios where C-Elements
are simulated in unpractical situations. For instance, they employ
C-Elements that are usually not present in any handshake
component, which are the components that compose an
asynchronous circuit [1], and assume no wire capacitance.

In this context, the present work stands off by performing a
close analysis of the analog behavior of NCL gates in general. It
also proposes techniques to build gates more robust to charge
sharing problems, particularly to avoid SEU generation. This is
especially important because, as previously explained, these
problems are inevitable for CMOS design and, as it will be
demonstrated, if an NCL gate is not properly designed, it can be
very sensitive to them.

IV. CHARGE SHARING ON NCL GATES

Recalling Figure 2 static NCL gates employ, as usual in static
logic, series and parallel transistor connections. Depending on the
threshold and on the number of inputs, more transistors can be
required. Complexity may lead to routing congestion due to the
existence of many internal nodes when implemented on silicon,
which in turn increases parasitic capacitances of the internal nodes
of the gate. Also, transistors of the logic stack are usually big,
because they are required to drive the output inverter. In this way,
their drain and source areas are made larger, which also increases
parasitic capacitances. With larger internal parasitic capacitances,
the gate is more susceptible to problems caused by charge sharing,
as bigger glitches are generated, increasing the possibility of these
glitches to be latched and to SEUs.

Albeit there are many different ways of implementing the
same logic using the same number of transistors, there is no
reported consensus on how to arrange the transistors of an NCL
threshold gate. In fact, as far as the authors could verify, no
previous work analyses the effects of different arrangements, for
designing robust gates. The results showed herein suggest that the
correct planning of transistor schematics in NCL gates can
generate gates more robust towards charge sharing effects. This
paper will employ as example, without loss of generality, the static
3-of-5 NCL threshold gate. Figure 3 shows a first schematic of this
gate, called Arrangement 0 (A0). The choice of this gate as case
study is justified for its extensive use in fundamental blocks
usually found in QDI circuits, like adders [12] and for being a
critical case for the analysis herein. Unless specified, all transistors
in the experiments are assumed to be general purpose standard
threshold devices.

2013 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS) 213

Figure 3 – A0 CMOS schematic for the 3-of-5 NCL gate.

As Figure 3 shows, the PMOS transistors in the logic stack of
the 3-of-5 gate (P0-P4) can only be arranged in series, to
guarantee that all inputs at logical 0 drive the output to logical 0.
The capacitances of nodes n00-n03, that connect these transistors,
are usually not increased by parasitics inherent to metal wiring
after layout design. This is because such transistors are likely to be
connected by abutting the diffusion of their respective drains and
sources. In this way, it is not expected that charge sharing effects
caused by these capacitances generate relevant hazardous glitches.

The NMOS transistors of the logic stack, on the other hand,
can be arranged in many different forms. Each form can contribute
differently to increase glitches caused by charge sharing in the
pull-down region. Arrangement A0, specifically, is a worst case.
For instance, assume the scenario presented in Table I. Initially, all
inputs are at logical 0. In this way, nodes n00-n03 and O are
charged and the output is set to logical 0 through the output
inverter. This is the typical scenario of the beginning of data
transmission in QDI circuits. Next, say that inputs B, C and D are
set to logical 1, one at a time (time instants 1-3). In this way, nodes
O and n11-n16 are discharged and the output is switched to logical
1. This represents data being propagated through the circuit. Now
say that all inputs are set back to logical 0, one at a time, starting
with B, then C and then D (time instants 4-6), to avoid capacitance
coupling of the initially charged nodes n00-n03 and the discharged
nodes n11-n16. In this stage, node O is charged and all nodes n11-
n16 are kept discharged. This is an initial setup for the analysis of
the charge sharing problem. Finally, say that inputs E and A switch
to logical 1, in this order (time instants 7-8). The effect is that
when input E switches, capacitance of the following pairs of nodes
are coupled: n11 and n12, n13 and n14 and O and n15. At this
point, a glitch occurs in node O as part of its charge is absorbed by
node n15. However, a larger glitch occurs when input A switches,
because, in this case, the charge stored in O is partially absorbed
by capacitances of nodes n11, n12, n13, n14 and n16, which
represent a much bigger value. In such a scenario, this glitch can
be more easily latched, generating an SEU.

Table I – Input sequence for observing charge sharing effects in a 3-of-5 gate.
Time Instant � Inputs � 0 1 2 3 4 5 6 7 8

A 0 0 0 0 0 0 0 0 1
B 0 1 1 1 0 0 0 0 0
C 0 0 1 1 1 0 0 0 0
D 0 0 0 1 1 1 0 0 0
E 0 0 0 0 0 0 0 1 1

This scenario is very common in NCL applications. From the
authors’ experience, in adders this exact situation or an equivalent
one always happens during the computation of each single bit.

Additionally, even worse scenarios may occur, if more inputs are
assumed to switch, which is also realistic in applications
implemented in NCL.

Given the input sequence of Table I, we propose another
arrangement for the 3-of-5 NCL threshold gate, namely
Arrangement 1 (A1). Figure 4 shows its CMOS schematic. The
difference from A0 is that the NMOS transistors of the logic stack
were redistributed. Note the transistor parallel is now closer to
node O. In this way, at each input switch, the charge stored in node
O is slightly absorbed. This helps avoiding that bigger
capacitances accumulate before coupling with node O, like in A0.
For instance, assume that A1 is submitted to the same initial setup
as A0 (instants of time 0-6). At this point, if any input switches to
logical 1, less parasitic capacitances will be accumulating, since
critical nodes of parallel transistors will have their capacitances
coupled to node O. For the example scenario, in the next instant of
time (7), when input E switches to logical 1, capacitance of node
n11 is coupled to O, absorbing part of its charge. In last instant of
time, when input A switches, less capacitance accumulates and
smaller glitches are expected.

Figure 4 – A1 CMOS schematic for the 3-of-5 NCL gate.

This implementation alleviates glitches generated by charge
sharing effects. A bigger capacitance in node O would provide
further improvements. However, a bigger capacitance in this node
can drastically impact the gate performance. In other words, a
bigger load would take longer to be charged/ discharged or bigger
transistors, which would display bigger power figures. In this
context, we propose Arrangement 2 (A2), showed in Figure 5. In
A2 the capacitance of node O is only increased when the cell is not
switching. This is done by placing parallel PMOS transistors of the
feedback group closer to P20. Here, when the output is at logical 0
and is not switching, capacitance of node O is coupled with
capacitance of node n10, which has an increased parasitic
capacitance in A2, due to the larger number of transistors
connected to it. Also, depending on the combination of inputs set
to logical 0, bigger loads are coupled, as nodes n04-n09 can be
connected to node n10. When the cell is to switch its output to
logical 1, the connection of nodes n04-n10 to power is cut off, and
their charge is drained through the direct connection to ground
provided by the NMOS transistors of the logic stack.

For instance, say that A2 is submitted to the initial setup of
Table I. When input E switches to 1, at the time instant 7, there is a
bigger capacitance coupled to node O, and the generated glitch is
alleviated. When input A switches, at the next time instant, the
same effect is observed. However, as soon as another input
switches to 1, the connection of feedback group nodes to power
source is cut off, lowering their interference in node O switching.

214 2013 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)

Figure 5 – A2 CMOS schematic for the 3-of-5 NCL gate.

Figure 6 – A3 CMOS schematic for the 3-of-5 NCL gate. Thicker line gate

transistors are low threshold.
Another optimization is to employ low threshold transistors in

the feedback group. This can be done for multi-threshold
technologies only. For deep submicron technology nodes, this is
usually available. In this context, we propose Arrangement A3.
The advantage is that feedback transistors provide faster responses
to cut power connections and coupling capacitances. Figure 6
shows the CMOS schematic A3, which is very similar to A2. In the
schematic, low threshold transistors have their gates drawn with
thicker lines.

V. EXPERIMENTS

To analyze the analog behavior of arrangements A0 to A3,
each arrangement was described in SPICE using the 65nm
STMicroelectronics general purpose standard and low threshold
(for A3) models. Each of the four arrangements was designed for
six different driving strengths, X2, X4, X7, X9, X13 and X18, for
a total of 4*6=24 different gates. The transistors of the output
inverter group had the same size of those of an equivalent drive
inverter of the core library. Transistors of the feedback group are
minimum size, a classical approach for designing static standard
cells for asynchronous circuits and the transistors of the logic stack
had their size calculated according to the flow proposed in [12].

As explained before, SEUs in NCL gates caused by charge
sharing are directly related to internal parasitic capacitances. In
this way, an experiment was performed to define hazardous
parasitic capacitance values. Note that no layout information is
available in this phase. The schematic of all designed gates was
simulated assuming no wire parasitics, only drain and source
diffusion and gate capacitances, to isolate and evaluate the impact

of the parasitics on nodes n11-n16 that could be extracted after
layout design. Simulations were performed inserting varying
values of capacitances on these nodes and on node O, to define
safe parasitic combinations limits. Capacitances were varied from
0 fF to 4 fF in 0.05 fF steps. In this way, a total of 80*80=6400
scenarios of parasitic capacitances combinations were simulated.
All standard cells had 50 ps input slopes, equivalent to an average
size inverter, and output loads equivalent to four inverters of the
same driving strength, a common metric known as fanout-of-4
(FO4). The input sequence scenario is that in Table I. During
simulations, the peak of the glitch, lowest voltage value, in node O
was measured after time instant 8 (remember glitches here are
from high to low voltage, i.e. negative peaks). Results used typical
process models operating at typical conditions (1 V and 25º C).
The choice simulator was Cadence Spectre.

Figure 7 summarizes the results obtained for the X2 drive
version of each arrangement. In the charts, PU Cap is the parasitic
capacitance in node O and PD Cap is the parasitic capacitance in
each node of the pull down network of the logic stack (n11-n16).
As Figure 7(a) shows, for A0, considering no parasitic capacitance
in node O (PU Cap=0), PD Cap values bigger than 0.6 fF, generate
SEUs. The abrupt fall towards 0 V in the chart represents the
critical points, where if bigger PD Caps are present, the glitch
generated in node O is sufficiently big to cause it to be latched in
the memory scheme, switching the output value to logical 1 and
the value of node O to logical 0.

In other words, for the bottom of the chart (0 V), the glitch
generated by charge sharing effects was sufficiently large to be
latched and generate an SEU. PD Cap values that are lower than
those in the critical point also generate glitches. However such
glitches are not high enough to cause an SEU. For instance, for a
PU and PD Cap of 0, the peak of the glitch measured in node O is
of 0.67 V, a glitch of 33% of VDD. However, maintaining the PU
Cap of 0, for a PD Cap of exactly 0.6 fF, just before the critical
point, the glitch peak is 0.36 V, which is much more critical (64%
of VDD) but not enough to be latched. Note that PD Caps of 0 are
impossible in practice, especially because node O is used for
interconnecting many transistor branches. The problem is that,
even if PU Cap is raised to 3 fF, or even 4 fF, values of PD Cap
close to 1 fF can generate SEUs, which is 3 or 4 times lower than
PU Cap.

The values measured for A1, showed in Figure 7(b), move the
step that represents the critical point to larger values of PD Cap. In
this way, more PD Cap parasitics are required to cause SEUs. In
fact, in average, for the same PU Cap values, PD Cap parasitics in
A1 must be 45% bigger than those in A0. Also, glitches for similar
PD Caps, and lower than those of the critical point, are roughly
22% smaller in A1 when compared to A0. As Figure 7(c) shows,
for A2, these values are improved even more. For the same PU
Cap values, PD Cap parasitics in A2 must be in average 92%
bigger than those in A0 to cause SEUs and glitches for similar PD
Caps are roughly 36% smaller. In A3 (Figure 7(d)) there still more
optimization. Comparing to A0, this arrangement requires in
average PD Caps 98% higher to cause SEUs and glitches for same
PD Caps are in average 42% smaller. In fact, as the charts of
Figure 7 show, the optimizations proposed move the fall (critical
points) steadily to the right, representing arrangements
increasingly more robust to charge sharing effects. Another
analysis of the same simulation results appears in Figure 8(a). In
the chart, critical points (the highest value of PD Cap for each PU
Cap before causing an SEU) were isolated for each arrangement.
In this way, A2 and A3 are almost twice as robust as A0.

2013 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS) 215

(a) (b) (c) (d)

Figure 7 – Maximum negative peak values (in Volts) of glitches caused in node O due to charge sharing effects for (a) A0 , (b) A1, (c) A2, and (d) A3.

(a)

(b)

(c)

Figure 8 – Critical PU and PD Cap for the (a) X2 and (b) X18 drive cells, for
a typical process and typical operating conditions, and (c) for the X18 drive
for a slow PMOS and fast NMOS process and typical operating conditions.

After analyzing the results obtained for all driving strengths,
we noticed that bigger drive cells are more susceptible to charge
sharing problems, depending on the arrangement. The difference
on the results for different drives is just quantitative, not
qualitative. Thus, only the worst case, X18 is analyzed here.
Figure 8(b) shows critical PU and PD Cap combinations for this
drive for the same scenario above. It is clear that the improvements
are much bigger. For instance, in worst case, PD Caps of 0.25 fF

are required to generate SEUs for A0, while for A1, A2 and A3,
this value is of 1.3 fF, 1.5 fF and 1.45 fF, respectively. This means
arrangements 5.2, 6 and 5.8 times more robust than A0,
respectively.

The reason why bigger drives are more susceptible to charge
sharing effects is the elevated diffusion capacitances of NMOS
transistors of the logic stack that contribute to internal parasitics,
making lower interconnection parasitics required for causing
SEUs. Also these transistors are bigger and discharge node O at
faster rates. For larger drives, A2 presents better results than A3 for
all cases. In this way, the multi threshold approach is not better in
general to cope with charge sharing in NCL gates. The presented
results are all based on typical fabrication processes. However, as
variations get critical in current technology nodes, this can be an
overoptimistic approach. Accordingly, we simulated all the
circuits for the same scenario for a worst case fabrication process
variation: slow PMOS transistors and fast NMOS transistors.
Thus, bigger glitches are generated in node O and less glitches are
filtered by the output inverter.

Figure 8(c) presents the results obtained for the most critical
case, namely the X18 drive cells. As observable in the Figure, for
A0 no interconnection parasitics are needed to cause SEUs.
However, the proposed optimizations push critical PD Cap values
to over 0.65 fF. In this way, it is expected that 3-of-5 NCL gates
designed according to A0 for an X18 driving strength generate
SEUs when under the scenario shown in Table I. In fact, we
detected that this problem starts at driving strengths larger than
X7. The degradation in robustness of NCL gates as their driving
strength get bigger observed for A0 is undesirable. In fact, the
quality of standard-cell-based logic synthesis relies on the
availability of gates with different functionalities and driving
capabilities. Under a functional point of view, the more gates
available to implement logic functions, the more optimizations are
possible. However optimizations in power, area and speed require
different driving strengths for each gate during physical synthesis.
Thus, it is essential that NCL gates maintain their robustness for
increased driving strengths, in order to provide quality standard-
cell-based design.

Another perspective on the obtained results shows the
observed degradation. Figure 9(a) shows the critical PU and PD
Cap combinations for each driving strength. The chart is a steep
ramp where results get worse as the driving strength increases.
There is a small deviation, in drive X13, which presents better
robustness than X9. However this effect is due to transistor sizing.
After employing the flow of [12], transistors of the logic stack in

216 2013 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)

these drives were set to similar dimensions, while transistors of
their output inverter are different; in X13 they are bigger. A bigger
output inverter leads to a bigger capacitance in O for X13 while
maintaining the same logic stack nodes capacitance, generating a
slightly more robust cell. The steep ramp problem is not observed
in the proposed optimizations. As charts of Figure 9(b), (c) and (d)
show, A1, A2 and A3, present very similar robustness no matter the
driving strength. For these arrangements, the ramp observed in A0
is turned into flatter surfaces, which indicates that these
arrangements are suited for increasing the robustness of NCL-
based logic, while maintaining the advantages of using a standard-
cell-based approach for circuit design.

(a)

(b)

(c)

(d)

Figure 9 – Robustness of arrangements A0 (a), A1 (b), A2 (c) and A3 (d).

VI. CONCLUSIONS

This work presented an analysis of the analog behavior for
NCL gates in the presence of hazards caused by charge sharing
effects. Four different transistors arrangements were proposed and
better robustness in absolute terms was verified for arrangements
A1, A2 and A3. In this way, and given that the only difference
between the arrangements is the transistor topology (there is no
area overhead associated), we strongly recommend the use of A2
or A3. As future works, a tradeoff in terms of operating speed and
power will be performed for the proposed arrangements. Also, it is
necessary to perform an examination of hazards caused by charge
sharing effects in inverted gates, which we believe is a much more
severe problem. This is because in these gates the output is right
after the logic stack (node O). In this way, generated glitches are
not attenuated by the regeneration effect provided by the output
inverter, but directly propagated to the next gate.

REFERENCES
[1] P. A. Beerel, R. O. Ozdag and M. Ferretti. A Designer’s Guide to

Asynchronous VLSI. Cambridge University Press, 2010, 337 p.

[2] A. J. Martin and M. Nyström. Asynchronous Techniques for System-on-
Chip Design. Proceedings of the IEEE, 94(6), June 2006, pp. 1089-1020.

[3] K. M. Fant and S. A. Brandt. NULL convention logic: a complete and
consistent logic for asynchronous digital circuit synthesis. In ASAP’96,
pp. 261-273.

[4] J. M. Rabaey, A Chandrakasan and B. Nikolic. Digital Integrated
Circuits a Design Perspective. Pearson Education, 2003, 761p.

[5] Z. Liang, S. C. Smith and D. Jia. Bit-Wise MTNCL: An ultra-low power
bit-wise pipelined asynchronous circuit design methodology. In:
MWSCAS’10, pp. 217-220.

[6] G. Xuguang, L. Yu and Y. Yintang. Performance Analysis of Low
Power Null Convention Logic Units with Power Cutoff. In APWCS’10,
pp. 55-58.

[7] W. Jun and C. Minsu. Latency & area measurement and optimization of
asynchronous nanowire crossbar system. In I2MTC’10, pp. 1596-1601.

[8] Y. Yang, Y. Yang, Z. Zhu and D. Zhou. A high-speed asynchronous
array multiplier based on multi-threshold semi-static NULL convention
logic pipeline. In ASICON’11, pp. 633-636.

[9] F. K. Lodhi, O. Hasan, S. R. Hasan and F. Awwad. Modified null
convention logic pipeline to detect soft errors in both null and data
phases. In MWCAS’12, pp. 402-405.

[10] S. Andrawes and P. Beckett. Ternary circuits for Null Convention Logic.
In ICCES’11, pp. 3-8.

[11] F. A. Parsan and S. C. Smith. CMOS implementation comparison of
NCL gates. In: MWSCAS’12, pp. 394-397.

[12] M. Moreira, C. Oliveira, R. Porto and N. Calazans. Design of NCL
Gates with the ASCEnD Flow. In: LASCAS’13, 6p.

[13] C. Chorng-Yeong and M. A. Horowitz. Charge-Sharing Models for
Switch-Level Simulation. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 6(6), 1987, pp. 1053- 1061.

[14] T. Karnik and P. Hazucha. Characterization of soft errors caused by
single event upsets in CMOS processes. IEEE Transactions on
Dependable and Secure Computing, 2004, 1(2), pp. 128- 143.

[15] R. P. Bastos, G. Sicard, F. Kastensmidt, M. Renaudin and R. Reis.
Evaluating transient-fault effects on traditional C-element's
implementations. In: IOLTS’10, pp. 35-40.

[16] P. Song and R. Manohar. Efficient failure detection in pipelined
asynchronous circuits. In DFT’05, pp. 484- 493.

[17] C. LaFrieda and R. Manohar. Fault detection and isolation techniques
for quasi delay-insensitive circuits. In: DSN’04, pp. 41- 50.

[18] K. Weidong, Z. Peiyi, J. S. Yuan and R. F. Demara. Design of
Asynchronous Circuits for High Soft Error Tolerance in Deep
Submicrometer CMOS Circuits. IEEE Trans. on VLSI’10, 18(3).

[19] S. Mohammadi, S. Furber and J. Garside. Designing robust
asynchronous circuit components. IEE Proceedings - Circuits, Devices
and Systems, 2003, 150(3), pp. 161- 166.

2013 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS) 217

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

